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A B S T R A C T   

Obesity increases the risk of chronic diseases, such as type 2 diabetes mellitus, dyslipidemia, and cardiovascular 
diseases. Simple anthropometric measurements have time limitations in reflecting short-term weight and body 
fat changes. Thus, for detecting, losing or maintaining weight in short term, it is desirable to develop portable/ 
compact devices to monitor exercise-induced fat burn in real time. Exhaled breath acetone and blood-borne 
β-hydroxybutyric acid (BOHB) are both correlated biomarkers of the metabolic fat burning process that takes 
place in the liver, predominantly post-exercise. Here, we have fabricated a compact breath analyzer for 
convenient, noninvasive and personalized estimation of fat burning in real time in a highly automated manner. 
The analyzer collects end-tidal breath in a standardized, user-friendly manner and it is equipped with an array of 
four low-power MEMS sensors for enhanced accuracy; this device presents a combination of required and 
desirable design features in modern portable/compact breath analyzers. We analyzed the exhaled breath (with 
our analyzer) and the blood samples (for BOHB) in 20 participants after exercise; we estimated the values of 
BOHB, as indication of the fat burn, resulting in Pearson coefficient r between the actual and predicted BOHB of 
0.8. The estimation uses the responses from the sensor array in our analyzer and demographic and anthropo
metric information from the participants as inputs to a machine learning algorithm. The system and approach 
herein may help guide regular exercise for weight loss and its maintenance based on individuals’ own metabolic 
changes.   

1. Introduction 

According to the World Health Organization, in 2016, 39 % of adults 
worldwide were overweight (pre-obese) and 13 % were obese [1]. This 
is a major public health concern, as obesity increases the risk of several 
chronic diseases, including diabetes mellitus, cardiovascular diseases, 
musculoskeletal disorders, and some cancers. An effective way to pre
vent and manage obesity includes to gradually lose weight and to 
maintain it in long term through a comprehensive approach, combining 
an energy intake reduction, an increase in physical activity and a change 
in lifestyle habits. However, the conventional way to evaluate obesity, 

predominantly by the body mass index (BMI), has limitations in 
reflecting changes (fat burning rates) occurring in the body in real time. 
There are ways to accurately measure these metabolic changes related to 
fat loss in real time, e.g., through venous β-hydroxybutyric acid (BOHB) 
and exhaled breath acetone. These two ketone biomarkers are the result 
of metabolic fat burning processes which is called lipolysis in the liver 
[2]. Increased ketones, ketosis, is related to weight loss [3]. Also, several 
researchers have found the correlation between these two ketones and 
their increased levels after exercise as a result of such metabolic pro
cesses [2,4,5]. Only acetone gets exhaled through the breath and col
lecting blood to measure BOHB is too invasive to perform regularly for 
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at-home/gym monitoring, leaving the monitoring of breath acetone as 
an attractive option. 

Conventional techniques to monitor breath acetone include gas 
chromatography coupled with mass spectroscopy [6–9], ion mobility 
[10,11] and laser absorption [12]. The main disadvantage of these so
phisticated breath analysis techniques is their cost and lack of porta
bility. Thus, there is a need for simple and miniaturized devices that 
allow the general public to conveniently monitor metabolic changes 
related to weight loss, especially those from exercise and/or diet 
monitoring. In this regard, metal oxide gas sensors have many advan
tages for this application due to their high sensitivity [13], low cost, low 
power consumption [14], low detection limit [14,15], fast response 
speeds [16], and small size [17]. However, there are challenges in the 
implantation of these gas sensors in a system for daily monitoring of 
exhaled breath. The human breath contains nearly 900 compounds 
(including acetone), which may pose a selectivity issue for acetone 
detection; also, these compounds may change depending not only on 
exercise but also on other factors [18]. In particular, besides physical 
activity [4–7], acetone levels may vary depending on diets [19], fasting 
status, and diseases (like diabetes mellitus for acetone) [20,21]. Given 
the complexity of exhaled human breath, many design features must be 
taken into consideration for a portable/compact breath analyzer based 
on metal oxides. 

Several breath analyzers have been reported in research to sense 
exhaled breath acetone in portable or compact systems on-line [4,6,15, 
19,22], i.e., directly without storing the breath to maintain its authen
ticity. In general, these systems achieve their intended purpose for 
on-line acetone breath sampling and they incorporated many of the 
desirable design considerations. Specifically, the end-tidal breath, i.e., 
the breath containing endogenous volatile organic compounds (VOCs), 
is collected/sampled in most consulted systems; this is done to exclude 
the beginning of the exhaled breath that contains exogenous VOCs [4, 
15,19,22]. These systems also monitor the inlet pressure or control the 
flow of the breath (to a sensor chamber) for standardized, consistent 
sampling [4,15,19,22]. Few systems preferentially integrate sensors of 
various sensitivity characteristics in an array to enhance selectivity [6] 
or they couple other selectivity-enhancement mechanisms such as a gas 
chromatography column for the same purpose [15]. However, in spite of 
the features these systems have, each system lacks at least one of these 
desirable considerations. Therefore, it is the purpose of this research to 
incorporate in a single system all of the above-mentioned, desirable 
characteristics (Table S1). Additionally, it may be advantageous to use 
suitable data processing/machine learning techniques to account for 
inherent variabilities in the breath from participant to participant. In 
previous research, machine learning techniques have been used in 
exhaled breath analysis with an array of sensors [23] or with gas chro
matography and mass spectroscopy techniques [24] to predict and di
agnose liver diseases, cancers, asthma, and other conditions with high 
accuracy. To the best of our knowledge, this use of machine learning 
techniques has not been exploited before for compact/mobile fat 
burning monitoring. Thus, a compact breath analyzer coupled with 
machine learning techniques and the use of relevant demographic and 
anthropometric data show great promise. 

In this work, we present a compact system with automatic breath 
sampling and a gas sensor array to provide with on-line, personalized 
exercise-induced metabolic values of BOHB based on the response of the 
sensors, health data of the participants and a recurrent neural networks 
(RNNs) algorithm. This system integrates the design considerations 
previously mentioned for a compact acetone breath analyzer. Specif
ically, we have developed an automatic on-line breath sampling assisted 
by CO2-triggered valves and a pressure sensor for consistent end-tidal 
breath collection, an array of compact metal oxide sensors with 
various sensitivities for enhanced selectivity, and the use of RNNs to 
estimate the values of BOHB. Venous BOHB and breath tests (with our 
system) were taken at various times after exercise for 20 participants to 
monitor metabolic fat burn. The relation of venous BOHB and the 

responses of the sensors in the system to exhaled breath was established; 
based on the gas sensor responses and demographic and anthropometric 
health data from the participants, the values of BOHB could be 
estimated. 

2. Experimental 

2.1. Design of portable breath acetone analyzer 

The breath analyzer is designed to only pass the end-tidal portion of 
the breath to a gas chamber in an automated flow sequence, aided by a 
series of valves, tubes, and a pump that help guide the exhaled breath. 
Specifically, for the automated breath sampling, the system monitors the 
pressure (≥ 980 Pa) and CO2 levels (≥ 3 %); after meeting the specified 
threshold values for pressure and CO2 concentration, the breath flow is 
switched from a bypass exhaust route to the gas chamber where the 
response of the sensors is recorded and transmitted to the computer. 
Three percent of CO2 in the breath is considered end-tidal and the 
pressure is set to have sufficient breath in the flow [4]. An array of four 
commercial metal oxide sensors, with various sensitivity characteristics, 
are in the chamber to sense the breath. With this system, a person ex
hales through a mouthpiece on the device for approximately 10 s. In the 
past [25], we have performed preliminary tests of the sensors and the 
system to show selectivity and breath sampling capabilities. Table S1 
shows a comparison of the design features for compact/portable breath 
acetone analyzers; as shown, our system combines the features 
described here. 

2.2. Characterization of MEMS-type gas sensors 

Four low-power commercial sensors are integrated into an array 
inside the breath analyzer; these sensors are named sensor #1–4 as 
follows: sensor #1 is TGS8100 from Figaro, Japan; sensor #2 is MiCS- 
6814 – NH3; sensor #3 is MiCS-6814 – RED; and sensor #4 is MiCS- 
6814 – OX (Sensors #2~#4 are from SGX Sensortech, Switzerland). In 
order to validate the response of the sensors to relevant concentrations 
of acetone and CO2 (to test possible interferences), we conducted tests 
where the sensors were mounted on a standard gas chamber (outside the 
breath analyzer) and 2 ppm of acetone and 2 % of CO2 were exposed to 
the sensors at a rate of 500 SCCM. These are concentrations similar to 
those present in exhaled breath. For this ex-situ experiment, a separate 
board was fabricated, shown in Fig. S1. 

2.3. Participant selection criteria 

The study conducted herein included a total of 20 participants. The 
participants were recruited voluntarily and the study was approved by 
the Institutional Review Board of Seoul National University Bundang 
Hospital (IRB B-2006/619–304). The participants are healthy adult male 
and female applicants aged between 22 and 43 years old with BMI of 22 
kg/m2 or higher. Because certain disease conditions [26] and diets [19] 
might be able to influence the levels of biomarkers in the blood and in 
the breath, participants taking medications for the following conditions 
were excluded: diabetes mellitus, hypertension, dyslipidemia or obesity. 
The individuals who were taking diuretics or steroids were also 
excluded. Furthermore, participants with the following history or con
ditions were excluded: excessive diet history (weight loss of more than 5 
% within the last month), people with a history of malignant tumors 
within 5 years (excluding thyroid cancer), and pregnant women. 

2.4. Design of exhaled breath experiments and exercise routine 

Overall, the process for each participant consists of fasting (prior to 
the experiment), following a standard diet the day of the experiment, 
taking demographic survey and anthropometric measurements, per
forming the pedaling exercise, undergoing blood tests (to measure BOHB 
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and other metabolic markers), and taking breath samples with our 
breath analyzer (to measure exhaled acetone). Specifically, the partici
pants fasted for more than 10 h prior to visiting the hospital, the stan
dardized diet (1000 kcal) was provided at the hospital, which included 
sandwiches and drinks. The participants were surveyed and measured 
for demographic and anthropometric information such as sex, age, BMI, 
body fat, and others. The blood tests measure free fatty acids (FFA), 
acetoacetate, total ketones, and BOHB; these are related to the metabolic 
fat burning in the body. Subsequently, they followed the exercise routine 
consisting of 45 min of pedaling on a stationary bike at a top pedaling 
speed of 8 km/hr for men and 7 km/hr for women; the complete 
pedaling profile is shown in Fig. S2. This time of exercise has been re
ported as sufficient to induce an increase of fat burning related bio
markers [2,6]. To investigate changes in BOHB and breath acetone after 
the exercise intervention, the blood and breath sampling were per
formed immediately after exercise, 3 h after exercise and 6 h after ex
ercise. Previous studies have reported significant changes in BOHB after 
3 h of cessation of exercise [4,5]. 

2.5. Data analysis 

The responses of the four sensors during breath analysis are defined 
as the resistance of the exhaled breath over the resistance in air, Rbreath/ 
Rair. The averaged response for all the participants of each of the four 
sensors, at each sampled time, is plotted against the averaged results for 
BOHB to show their relation. We estimated the values of BOHB for four 
participants after using the rest of participants’ data as training set for 
RNN. Here, demographic and anthropometric information for each 
participant (BMI, sex, age, and body fat) were considered for the 
estimation. 

3. Results and discussion 

3.1. The fabricated compact breath acetone analyzer 

Fig. 1 shows an overview of the device and the strategy for BOHB 
estimation in this work. The fabricated, compact breath analyzer, shown 

in Fig. 1(a), has dimensions of 21 cm × 21 cm × 8 cm and weighs 1.3 kg. 
Once the operation is started (Fig. (1b)), the end-tidal breath is guided to 
the sensor array automatically (by pressure and CO2 monitoring). As 
shown in Fig. 1(c), the collected sensor responses are used for quanti
tative estimation of BOHB. Fig. 1(c) (ii) depicts the increase/decrease in 
resistance of the sensors with distinct sensitivity characteristics. Given 
that multiple interfering gases/vapors (such as humidity, ethanol, etc.) 
may be present in the breath at the same time, the use of sensors with 
various sensitivity characteristics in an array is beneficial [6]; for 
example, machine learning or other statistical techniques be applied to 
distinguish the variations attributable to acetone alone. With our breath 
analyzer, we combine the design considerations in several research [4,6, 
15,19,22], i.e., for an on-line breath analyzer that is highly automated, 
with standardized sampling, and one that incorporates a sensor array 
(Table S1). 

Fig. 2 describes in more details the configuration and operation of 
the fabricated device. Fig. 2(a) shows a see-through schematic of the 
analyzer while Fig. 2(b) shows a diagram of operation, highlighting the 
flow sequence of the sampled breath. It is worth noting that the sampler, 
the detachable part with the mouthpiece, has a filter to remove larger 
humid particles and the sampler tube is heated to maintain constant 
temperature. As shown in Fig. 2(a), the exhaled breath travels in the 
following order: through a filter in the detachable part (to help reduce 
humidity), the pressure and CO2 sensors, the gas measurement module 
(containing the gas-sensing array), and finally through the exhaust 
(aided by the pump). This sequence is represented by the green-dotted 
line in Fig. 2(b); before this described sequence takes place, the initial 
flow of breath (blue-dotted line) bypasses the gas chamber (until the 
CO2 levels sensed are greater than 3 %). 

The process of breath collection takes approximately 10 s; this in
cludes the time taken by the participant to exhale inside the device 
(while checking until the pressure and CO2 levels are acceptable as 
indicated on the device), and it includes the time taken by the analyzer 
to guide and capture this end-tidal breath inside the gas chamber in the 
device (using its values and the pump). The system records the resis
tance changes of the sensors in the array before and after the breath is 
captured; all sensor signals stabilize in less than 100 s and recover in 

Fig. 1. Overview of the breath analysis system 
and strategy for BOHB estimation. (a) Isometric 
view of the breath analyzer. (b) Schematic 
representation of the system during operation 
(breath intake). (c)(i) the breath is guided to the 
sensor chamber with the four metal oxide sen
sors. (ii) Typical response of the sensors inside 
the system during breath sampling; each sensor 
shows a response different in magnitude or di
rection. (iii) The response is recorded and then 
used to estimate BOHB with the use of RNN.   
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Fig. 2. Description of the breath analyzer and 
its operation. (a) Three-dimensional model of 
the system (viewed from backside), showing the 
layout of the physical components as they are 
arranged inside the breath analyzer along with 
the flow of breath from the intake to the 
exhaust. (b) Diagram of operation of the breath 
analyzer. After initiated, the system checks for 
pressure and CO2 levels and guides the breath 
to exhaust initially (blue-dotted line); after the 
pressure and level of CO2 is sufficient, the end- 
tidal breath is passed to the gas sensor chamber 
and the response is recorded (green-dotted 
line). The order of the letter bullets next to the 
name of each component (ⓐ through ⓗ), 
consistent in both parts (a) and (b) of this 
figure, follow the flow of the collected breath as 
it passes through the analyzer.   

Fig. 3. Transient response curves of sensors in the array to relevant concentrations of CO2 and acetone gases, i.e., comparable to concentrations found in human 
breath; the time is shown in kiloseconds (ks). (a) Response of sensor #1 (TGS 8100 sensor from Figaro, Japan). (b) Responses of Sensor #2 (MiCS-6814 – NH3); Sensor 
#3 (MiCS-6814 – RED); and Sensor #4 (MiCS-6814 – OX). Sensors #2–4 are from SGX Sensortech, Switzerland. These four commercial gas sensors in an array show 
small or negligible interference from CO2 and various sensitivity characteristics to acetone gas. 

D.V. Del Orbe et al.                                                                                                                                                                                                                            



Sensors and Actuators: B. Chemical 369 (2022) 132192

5

similar timing. The automated procedure, from breath collection to re
covery, takes approximately 6 min. In future work, we aim to shorten 
this total time by reducing the dimensions of most components in the 
system and making them more compact; this is expected to minimize the 
dead volume and increase the response speed. 

3.2. Gas tests of sensor array 

As mentioned in the experimental part of this work, we have tested 
the commercial sensors to breath-relevant concentrations of acetone and 
CO2 in a standard chamber and printed circuit board (Fig. S1). Fig. 3 
shows that all four sensors show more reactivity in the presence of a 
small concentration of acetone (2 ppm) compared to a large concen
tration of carbon dioxide (2 %), which is beneficial for breath analysis. It 
can also be seen that each sensor shows different reactivity (response) to 
the same concentration of acetone (as expressed schematically in Fig. 1 
(c) (ii)). The different reactivity of each sensor to the same gaseous 
environment is also seen during breath analysis. This feature (of various 
sensitivity characteristics) can be exploited for pattern identification 
and quantification of VOCs present in the breath. 

As expected, the commercial sensors shown herein also show 
different reactivity to other gases. Preliminary demonstration of the 
device in this work [25] shows that the combination of these sensors in 
an array can identify, through principal component analysis (PCA), 
various VOCs (ethanol, acetone and formaldehyde (HCHO)) in simu
lated breath samples. For practical applications, as many VOCs can be 
exhaled based on numerous factors (diet/fasting, diseases, exercise, 
etc.), it is necessary to apply other approaches beyond controlled lab 
tests with simulated breath. These approaches include: the use of array 
of sensors, advanced analytical tools, and validation with a gold stan
dard measurement of fat burning during exercise (such as blood tests for 
BOHB). Previous research has seen the needs to incorporate these ap
proaches. More specifically, most portable breath analyzers use one 
sensor [4,15,19,22]; however, as an example, other previous research 
has shown that by using two sensors, in a portable breath analyzer, it is 
possible to compensate for the effect of another common VOCs in breath 
(ethanol) while measuring acetone [6]. These results support the use of 
the sensors in an array and highlight their potential when used with a 
machine-learning algorithm due to the sensors’ various sensitivity 

values for the same gas and for different gases. 

3.3. Population study 

Detailed information for the clinical profile (demographic, anthro
pometric, and blood data) of each of the 20 participants is shown in the  
Table 1. The same number of female and male participants took part in 
the experiment with an average age of 29.9 ± 5.6 years. The BMI of the 
participants ranged from 22.5 kg/m2 to 35.6 kg/m2, i.e., from healthy 
normal weight to obese. In literature, age, body fat, and weight have 
been shown to negatively correlate with BOHB increases post-exercise 
[27]. In our study, despite the limited sample size, we observed 
similar tendencies in Table 1 (although with notable exceptions), such as 
the younger participants (#9, 14, 19 and 20) showing greater changes of 
BOHB post-exercise. We also observed that participants with the highest 
BMIs (obese participants) showed little changes of BOHB post-exercise 
(participants #8 and 18), consistent with previous studies which re
ported lower metabolic fat burning in obese individuals [2,6]. Given 
their relation in metabolic processes [5], the fatty acids and ketone 
bodies showed positive correlations with BOHB: FFA (Pearson’s 
r = 0.57), acetoacetate (r = 0.93), and total ketone (r = 0.99) (all 
p < 0.05) (Table 1). It is expected that when used in combination of 
breath acetone data, and specially in larger samples, sex, age, BMI or 
body fat, can help estimate the changes in BOHB post-exercise. Partic
ularly, this kind of data has been used in other research for the predic
tion of disease incidence and diagnosis when coupled with machine 
learning techniques [28,29]; we look to extend this kind of approach to 
fat burning monitoring through exhaled breath hereinafter. 

3.4. Analysis of exhaled breath after exercise 

Previous studies have shown that significant increases in both breath 
acetone and BOHB start to take place after moderate exercise routines in 
the hours following the cessation of the exercise [2,4,5,30], i.e., 
consistent with the metabolic processes whereby the body burns fat as a 
result of the exercise. As acetone and BOHB are correlated, several 
research have used venous BOHB as validation of the exhaled breath 
sensor output (or gas chromatography) [2,4,5]. In our study, we have 
performed similar approach by measuring blood BOHB and breath 

Table 1 
Demographic, anthropometric, and clinical profile of all participants in the experiment and the change of BOHB and other markers (from the end of exercise to 6 h 
thereafter). The summary of all 20 participants is shown in the last row. The ratio of male to female participants is 1:1.  

Demographics Anthropometric and body 
composition 

Blood analysis (change from cessation of exercise to 6 hr thereafter) 

Participant 
number 

Sex [M/ 
F] 

Age 
[year] 

BMI [kg/ 
m2] 

Body fat 
[%] 

Δ (FFA) [μmol/ 
L] 

Δ (Aceto-acetate) [μmol/ 
L] 

Δ (Total ketone) [μmol/ 
L] 

Δ (BOHB) [μmol/ 
L] 

# 1 M 27 26.5 30.2 590 104 455 351 
# 2 M 27 23.2 15.7 139 9 71 62 
# 3 F 34 24.8 37.9 245 35 213 178 
# 4 F 38 26.1 37.2 5 29 196 167 
# 5 F 32 32.0 41.4 208 119 463 344 
# 6 M 28 24.2 21.6 498 93 397 304 
# 7 M 31 24.3 30.8 -105 -22 -51 -29 
# 8 M 27 35.6 35.7 103 -13 -44 -31 
# 9 F 24 29.7 42.0 365 90 359 269 

# 10 F 35 25.0 37.0 -98 -1 30 31 
# 11 M 43 22.6 23.0 492 8 91 83 
# 12 M 31 27.9 23.0 105 44 241 197 
# 13 F 37 23.6 39.0 576 77 336 259 
# 14 F 24 28.2 19.8 25 15 143 128 
# 15 M 28 23.8 26.7 327 52 266 214 
# 16 M 33 25.0 26.0 591 35 199 164 
# 17 F 26 23.3 36.4 155 25 117 92 
# 18 M 28 35.2 31.0 29 12 76 64 
# 19 F 22 22.5 36.8 146 73 342 269 
# 20 F 22 23.0 32.7 85 74 374 300 

Mean 29.9 26.3 31.2 224.1 42.9 213.7 170.8 
Standard Deviation 5.6 4.0 7.7 220.7 39.6 154.1 115.3  
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acetone immediately after exercise, 3 h later and 6 h later. In addition, 
in contrast to other studies reported in literature, we have used an array 
of sensors to better capture the biological information in the breath; the 
results of the blood and breath sampling are shown in Fig. 4 for 20 
participants. Concretely, Fig. 4(a) shows the sampling schedule for 
blood test and exhaled breath; samples are taken immediately after 
exercise, 3 h later and 6 h later. Fig. 4(b) shows the average results of the 
BOHB values for all participants at the different times after exercise; as 
expected, BOHB values increase over time after exercise cessation and 
the standard deviation error bars show that there are variabilities from 
participant to participant because of the different metabolisms in in
dividuals, consistent with previous observations [4,5]. Fig. 4(c) through 
Fig. 4(f) show the average response of each gas sensor in the array versus 
the average results of the BOHB values for all participants at eat time. 
Noteworthy, Fig. 4(b) ~ Fig. 4(f) show linear fits of the data to show the 

trends of responses over time. As acetone is a reducing gas and giving 
that the concentration of breath acetone increases over time after ex
ercise, the response of sensor #1 (Fig.4(c)) increases while the response 
for sensors #2 ~ #4 (Fig. 4(d) ~ 4(f)) decreases. In Fig. 4, the magnitude 
of the Pearson coefficient r for the sensors varies from 0.71 to 0.99. This 
may indicative that overall acetone levels influence the sensors differ
ently. Additionally, the lower Pearson coefficient values in some sensors 
may arise from interferences of other VOCs or lower selectivity to 
acetone. These variations in sensor responses are also beneficial as they 
may contain information (for the array as a whole) that may help with 
compensation [6] or when using machine-learning algorithms, as will be 
discussed hereinafter. 

Fig. 4. Average values of BOHB and gas sensor responses (from exhaled breath) for all 20 participants (n = 20) at different times after exercise. (a) Time schedule of 
blood sampling (for BOHB) and exhaled breath (gas sensor array). (b) Average values of BOHB at different times after exercise; BOHB increases over time after 
exercise due to the metabolic fat burning process of the participants. Average responses Rbreath/Rair vs BOHB for (c) sensor #1, (d) sensor #2 (e) sensor #3, and (f) 
sensor #4. The sensor #1 experiences an increase in response over time (after exercise) while sensors #2–4 experience a decrease, consistent with an increase in 
acetone from fat burning. 
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3.5. Estimation of BOHB for different excise times 

Ultimately, for monitoring an individual’s fat burning process after 
exercise, a personalized estimation of the BOHB is desired based on the 
gas sensor data and other participant-specific data. Besides the output of 
the gas sensors in Fig. 4, several readily available factors from each 
participant (demographic and anthropometric data, as in Table 1) have 
an effect on fat burning and they may also provide valuable information 
in tandem with the sensor data [2,5,6,27]. Fig. 5 shows an example of 
such strategy for BOHB values estimation. As shown in Fig. 5(a), we 
input the gas sensor responses of the exhaled breath, along with de
mographic and anthropometric information from the participants, to a 
RNN algorithm for regression; here, we obtain BOHB values as an output 
(indicator of fat burned). To implement this technique, the distribution 
of the data set is as follows: 80 % of the data was used for learning and 20 
% for testing (validation). In Fig. 5(b), we see the feature impact of each 
input value; the information provided by the sensors and the 
participant-specific information in the breath analyzer contribute to the 
regression output as indicated by the values of their coefficients. As 
shown, the results in Fig. 5(b) (and in Fig. 5(c)) do not include sensor #1 
as an input feature. Following a filter feature selection method, the data 
from the four original constituent sensors in the array were analyzed for 
collinearity, given that high multicollinearity amongst the constituent 
sensors deteriorates the prediction accuracy (or output error for 
regression) of the machine learning algorithm. It was found that the VIF 
(Variance Inflation Factor) for sensor #1 is greater than 10, which in
dicates that the multicollinearity of this sensor with other sensors is 

high; thus, sensor #1 was removed for better prediction results. Fig. 5(c) 
shows the predicted vs ground truth values of BOHB in the test set; the 
Pearson coefficient r between the actual and predicted BOHB of the 
model (participants in learning set) is 0.8 and for the test set is 0.75 
(p < 0.05). Despite the obtained r value between 0.75 and 0.8 in Fig. 5 
(c), the plot shows some scattering, which leaves room for improvement; 
this can be attributed to the relatively small sample size, i.e., the number 
of participants and breath samples collected [31]. In future work, with 
the goal of improving the predictive performance of the model, the 
sample size will be increased by recruiting more participants and col
lecting more breath samples per participant; additionally, the number of 
sensors will be increased and other transient features (such as rise time 
and shape of the transient curves) will be used. 

The fabricated compact breath analyzer can help guide/adjust ex
ercise routines (interventions) for effective weight management in real 
time, analogous to the use of BOHB in the past to guide exercise routines 
[27] but with the added noninvasive advantage of the former. The 
predicted, increased levels of BOHB have several meanings with respect 
to the breakdown of stored fat. Although, in literature, evidence is based 
upon nutritional conditions rather than exercise itself, ketosis with 
BOHB helps the metabolic status with improved muscle strength and 
insulin sensitivity [3]. We expect that the application of the approach 
reported herein to a wider and more diverse population may help train 
and establish a database where compact/portable systems may account 
more accurately for the complex nature of the exhaled breath vola
tilome. In addition, while the potential for personalized fat burning 
monitoring has been demonstrated here with a focus on personalized 

Fig. 5. Machine learning strategy and results. (a) Machine learning architecture to estimate BOHB values (output) based on responses of the sensors in the array and 
demographic and anthropometric information from the participants (inputs). (b) Feature coefficients for each of the variables, showing their contributions for the 
trained model; BF is body fat. (c) Predicted values of BOHB (out of algorithm) vs ground truth values (from blood samples); the Pearson coefficient r between the 
actual and predicted BOHB of the model (learning set) is 0.8 and the r of the test set is 0.75 (p < 0.05). 
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healthcare, another promising application is that of performance sports 
and creational fitness training [30]. On the other hand, there is also 
room for improvement in the device. While the analyzer reported herein 
has smaller dimensions than most comparable analyzers surveyed [4,19, 
22], the size could be further reduced [6,15]; in this regard, our ongoing 
and future work focuses on maintaining and/or improving the various 
performance parameters of the device while reducing it to a handheld 
size. Additionally, in terms of practical uses, we will study the effects of 
interfering factors such as diet and diseases to expand the target users 
and usability of the system. 

Besides the field of metal oxide-based breath analyzers, as discussed 
in this work, another emerging research direction is that of wearable, 
self-powered sensors for breath analysis [32–34] based on piezoelec
tricity and triboelectricity; this emerging field has shown promising 
results for flexible arrays of sensors to detect various biomarkers [32], 
and for nanomaterial-based sensors to detect exhaled breath Oxygen 
[33]. We anticipate that in the future, the complex task of breath anal
ysis will incorporate, besides advanced analytical techniques, the inte
gration of different transduction mechanisms in multi-transduction 
arrays (such as chemiresistive metal oxides and piezoelectric devices) 
for enhanced discrimination capabilities given that each transduction 
can provide distinct sensing signals relevant to the physiochemical 
properties of a gas [35]. 

4. Conclusion 

In conclusion, we have fabricated and tested a compact breath 
analyzer for real-time, personalized monitoring of fat burning induced 
by physical exercise; the breath sampling requires only approximately 
10 s of exhaled breath and the sampling is highly automated. The 
fabricated system incorporates a combination of several design consid
erations for modern compact/portable breath analyzers, including, the 
collection of end-tidal breath systematically and the use of an array of 4 
gas sensors of various selectivity characteristics to better capture the 
complex biological information contained in human breath. As a key 
biomarker to reflect exercise-induced fat burning in real time, we 
measured BOHB after exercise in 20 participants. We found that the 
predicted BOHB was highly correlated with the actual BOHB measured 
in blood, resulting in 0.8 of correlation coefficient r. In our approach, we 
used the response of the sensors in the array and demographic and 
anthropometric data as inputs to a RNN for the estimation. We antici
pate that the advantages of our fabricated system (standardized and 
automated breath sampling, use of an array, etc.) and the approach 
followed for estimation (combined use of several inputs with machine 
learning) could help advance the field of personalized fat burning 
monitoring systems for encouraging physical exercise in the general 
public. 
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