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Abstract

In this paper, we apply the notion of n-fold filters to the EQ-algebras and intro-

duce the concepts of n-fold pseudo implicative, n-fold implicative, n-fold obsti-

nate, n-fold fantastic prefilters and filters on an EQ-algebra E . Then we inves-

tigate some properties and relations among them. We prove that the quotient

algebra E/F modulo an 1-fold pseudo implicative filter of an EQ-algebra E is a

good EQ-algebra and the quotient algebra E/F modulo an 1-fold fantastic filter

of a good EQ-algebra E is an IEQ-algebra.
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1. Introduction

Recently, a new class of algebras called EQ-algebras has been introduced
by Novák in [9]. These algebras are intended to become algebras of truth
values for a higher-order fuzzy logic (a fuzzy type theory, FTT). An EQ-
algebra has three basic binary operations (meet, multiplication and a fuzzy
equality) and a top element. The implication is defined from the fuzzy
equality ”∼” by the formula a → b =(a∧b) ∼ a. Its implication and multi-
plication are no more closely tied by the adjunction and so, this algebra gen-
eralizes residuated lattice. From the point of view of potential application,
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it seems interesting that unlike Hájek [5], we can have non-commutativity
without the necessity to introduce, two kinds of implication. Novák and
De Baets in [10] introduced several kinds of EQ-algebras. El-Zekey in [4],
proved that the class of EQ-algebras is a variety. El-Zekey in [4] introduced
prelinear good EQ-algebras and proved that a prelinear good EQ-algebra
is a distributive lattice. Novák and De Baets in [10] defined the concept
of prefilter on EQ-algebras which is the same as filter of other algebraic
structures such as residuated lattices, MTL-algebras, and etc. But the bi-
nary relation introduced by prefilter is not a congruence relation. To learn
more about EQ-algebras, the reader can consult [1, 2, 7, 11, 13, 14]. Filter
theory plays an important role in studying logical algebras. From a logical
point of view, various filters have a natural interpretation as various sets
of provable formulas. In this paper, we introduce n-fold implicative pre-
filter, n-fold pseudo implicative prefilter, n-fold fantastic prefilter, n-fold
obstinate prefilter in EQ-algebra. We prove that the quotient algebra E/F
modulo an 1-fold pseudo implicative filter of an EQ-algebra E is a good
EQ-algebra and the quotient algebra E/F modulo an 1-fold fantastic filter
of good EQ-algebra E is an involutive EQ-algebra. This paper is organized
as follows: In Section 2, the basic definitions, special types of EQ-algebras
and their properties are reviewed. In Section 3, n-fold prefilters and n-
fold pseudo implicative prefilters of EQ-algebras and EQn-algebras are
defined and investigated some results about them. We prove that the quo-
tient algebra modulo 1-fold pseudo implicative filter is a good EQ-algebra.
In Section 4, n-fold implicative prefilter of EQ-algebra, n-fold implicative
EQ-algebra are studied. We show that in good EQ-algebra E with least
element 0, a prefilter F is an n-fold implicative prefilter of E if and only
if E/F is an n-fold implicative EQ-algebra. In Section 5, n-fold obstinate
prefilters, and maximal prefilters of EQ-algebras are investigated. We show
that filter {1} is an n-fold obstinate filter of residuated EQ-algebra E if and
only if every filter of E is an n-fold obstinate filter of E and in a residuated
EQ-algebra E , a filter F is an n-fold obstinate filter of E if and only if
every filter of quotient algebra E/F is an n-fold obstinate filter of E/F .
Finally in Section 6, n-fold fantastic prefilters of EQ-algebras and n-fold
fantastic EQ-algebras are introduced and studied the relation among the
n-fold fantastic prefilters and n-fold fantastic algebras. Then we prove that
in any good EQ-algebra, if F is an 1-fold fantastic filter of E , then E/F is
an involutive EQ-algebra, and we show that in any residuated EQ-algebra
with least element, F is an n-fold implicative filter of E if and only if F
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is an n-fold pseudo implicative filter and n-fold fantastic filter of E . So
we conclude that in any residuated EQ-algebra, E is an n-fold implicative
EQ-algebra if and only if E is both n-fold pseudo implicative EQ-algebra
and n-fold fantastic EQ-algebra.

2. Preliminaries

In this section, we recollect some definitions and results which will be used
in the next sections.

Definition 2.1. [4] An EQ-algebra is an algebraic structure E = (E,∧,⊗,
∼, 1) of type (2, 2, 2, 0) such that, for all x, y, z, t ∈ E the following
conditions hold:

(E1) ⟨E,∧, 1⟩ is a commutative idempotent monoid (i.e. ∧-semilattice with
top element 1);

(E2) ⟨E,⊗, 1⟩ is a commutative monoid and ⊗ is isotone w.r.t. ≤, where
x ≤ y is defined as x ∧ y = x;

(E3) x ∼ x = 1; (reflexivity axiom)

(E4) ((x ∧ y) ∼ z)⊗ (t ∼ x) ≤ z ∼ (t ∧ y); (substitution axiom)

(E5) (x ∼ y)⊗ (z ∼ t) ≤ (x ∼ z) ∼ (y ∼ t); (congruence axiom)

(E6) (x ∧ y ∧ z) ∼ x ≤ (x ∧ y) ∼ x; (monotonicity axiom)

(E7) x⊗ y ≤ x ∼ y. (boundedness axiom)

Proposition 2.2. [10] Let E = (E,∧,⊗,∼, 1) be an EQ-algebra. Define
x → y := (x ∧ y) ∼ x and x̄ := x ∼ 1. Then, for all x, y, z, t ∈ E the
following properties hold:

(i) x⊗ y ≤ x, y and x⊗ y ≤ x ∧ y;

(ii) x ≤ y → x;

(iii) x → y ≤ (z → x) → (z → y) and x → y ≤ (y → z) → (x → z);

(iv) if x ≤ y, then x ∼ y = y → x, z → x ≤ z → y and y → z ≤ x → z;

(v) x → y ≤ (x ∧ z) → (y ∧ z).
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Definition 2.3. [10] Let E be an EQ-algebra. Then E is called:

(i) separated if x ∼ y = 1, then x = y, for all x, y ∈ E, (in other words
x ∼ y = 1 if and only if x = y);

(ii) good if x ∼ 1 = x = 1 ∼ x, for all x ∈ E;

(iii) residuated if x ≤ y → z if and only if x⊗ y ≤ z, for all x, y, z ∈ E;

(iv) involutive (IEQ-algebra) if E contains 0 and ¬¬x = x, for all x ∈ E,
where ¬x = x ∼ 0;

(v) lattice ordered if the poset induced by the underlying semilattice of E
is a lattice;

(vi) a lattice EQ-algebra (ℓEQ-algebra) if E is a lattice ordered and for
all x, y, x, t ∈ E the following substitution axiom holds, ((x ∨ y) ∼
z)⊗ (t ∼ x) ≤ (z ∼ (t ∨ y)).

Proposition 2.4. [10] Each IEQ-algebra is a good, separated and ℓEQ-
algebra.

Proposition 2.5. [4] Let E = (E,∧,⊗,∼, 1) be an EQ-algebra. Then, for
all x, y ∈ E the following statements are equivalent:

(i) E is good;

(ii) x⊗ (x ∼ y) ≤ y;

(iii) x⊗ (x → y) ≤ y;

(iv) 1 → x = x.

Proposition 2.6. [4] Let E = (E,∧,⊗,∼, 1) be an EQ-algebra. Then, for
all x, y, z ∈ E the following statements are equivalent:

(i) E is residuated;

(ii) E is good and x → y ≤ (x⊗ z) → (y ⊗ z);

(iii) E is good and x ≤ y → (x⊗ y);

(iv) E is separated and (x⊗ y) → z = x → (y → z).
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Proposition 2.7. [4] Let E = (E,∧,⊗,∼, 1) be a good EQ-algebra. Then,
for all x, y, z ∈ E the following properties hold:

(i) E is residuated if and only if x⊗ y ≤ z implies x ≤ y → z;

(ii) x ≤ (x ∼ y) ∼ y and x ≤ (x → y) → y;

(iii) E is separated;

(iv) x → (y → z) = y → (x → z);

(v) x → (y → z) ≤ (x⊗ y) → z.

Definition 2.8. [10] Let E be an EQ-algebra. A nonempty subset F ⊆ E
is called a prefilter of E , if for all x, y ∈ E,

(F1) 1 ∈ F ;

(F2) If x, x → y ∈ F , then y ∈ F .

A prefilter F is said to be a filter, if

(F3) x → y ∈ F implies (x⊗ z) → (y ⊗ z) ∈ F , for all x, y, z ∈ E.
A proper prefilter F is called a prime prefilter of E if x → y ∈ F or
y → x ∈ F , for all x, y ∈ E.

Definition 2.9. [12] A prefilter F of an EQ-algebra E is called maximal
if and only if it is proper and no prefilter of E strictly contains F that is,
for each prefilter G of E , if F ⊊ G, then G = E.

Lemma 2.10. [3] Let F be a prefilter of an EQ-algebra E. Then, for all
x, y, z ∈ E the following statements hold:

(i) If x ∈ F and x ≤ y, then y ∈ F ;

(ii) If x, x ∼ y ∈ F , then y ∈ F ;

(iii) If x, y ∈ F , then x ∧ y ∈ F ;

Moreover, if F is a filter of E, we have:

(iv) If x, y ∈ F , then x⊗ y ∈ F ;

(v) If x → y ∈ F and y → z ∈ F , then x → z ∈ F .

Remark 2.11. By Proposition 2.6 and Lemma 2.10, if E is a residuated
EQ-algebra, then every prefilter of E is a filter of E .
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Definition 2.12. [8] Let E be an EQ-algebra and X be a nonempty subset
of E. Then the smallest prefilter of E which contains X, i.e.⋂
{F | F is a prefilter of E such that, X ⊆ F} is said to be a prefilter of E

generated by X and is denoted by ⟨X⟩. If a ∈ E and X = {a}, then we
denote by ⟨a⟩ the prefilter generated by {a} (⟨a⟩ is called principal). For
prefilter F and a ∈ E, we denote by F (a) = ⟨F ∪ {a}⟩.
It is clear that a ∈ F implies F (a) = F . We can prove

F (a) = {z ∈ E | a → z ∈ F}

and
⟨X⟩ = {a ∈ E | x1 → (x2 → (x3 → ...(xn → a)...)) = 1, for some xi ∈
X and n ∈ N}.

Definition 2.13. [6] Let F be a prefilter of an EQ-algebra E . Then F is
called

(i) an implicative prefilter of E , if for all x, y, z ∈ E,

(F4) z → ((x → y) → x) ∈ F and z ∈ F imply x ∈ F .

(ii) a positive implicative prefilter of E , if for all x, y, z ∈ E,

(F5) x → (y → z) ∈ F and x → y ∈ F imply x → z ∈ F .

(iii) a fantastic prefilter of E , if for all x, y ∈ E,

(F6) y → x ∈ F implies ((x → y) → y) → x ∈ F .

(iv) an obstinate prefilter of E ,

(F7) x, y /∈ F imply x → y ∈ F and y → x ∈ F .

Proposition 2.14 ([12]). Let E be a residuated EQ-algebra and F be a
fantastic prefilter of E . Then F is an implicative prefilter of E if and only
if F is a positive implicative prefilter of E .

Proposition 2.15 ([12]). Let E be a residuated EQ-algebra and F be a
positive implicative prefilter of E . Then F is an implicative prefilter of E
if and only if F is a fantastic prefilter of E .
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Proposition 2.16 ([12]). Let E be a good EQ-algebra and F be a nonempty
subset of E . Then F is an implicative prefilter if and only if F is both a
positive implicative prefilter and a fantastic prefilter of E .

Let F be a filter of an EQ-algebra E . Then we define a binary relation
≡F on E as follows:

x ≡F y if and only if x ∼ y ∈ F.

Then ≡F is a congruence relation on E. Denote E/F := {[x]F | x ∈ E}
and [x]F = {y ∈ E | x ≡F y} and define operations ∧F , ⊗F , ∼F and
relation ≤F on E/F as follows:

[x]F ∧F [y]F = [x∧y]F , [x]F ⊗F [y]F = [x⊗y]F , [x]F ∼F [y]F = [x ∼ y]F ,

[x]F ≤F [y]F if and only if x → y ∈ F if and only if [x]F →F [y]F = [1]F .

We write [x] instead of [x]F , for short.

Theorem 2.17 ([4]). Let F be a filter of an ℓEQ-algebra E. Then the
quotient algebra E/F = (E/F,∧F ,⊗F ,∼F , F ) is a separated ℓEQ-algebra
and the mapping f : x → [x]F is an epimorphism.

3. n-fold pseudo implicative prefilters of EQ-algebras

In this section, we introduce the notions of n-fold prefilters and n-fold
pseudo implicative prefilters on EQ-algebras and prove some related re-
sults. Also, we prove that the quotient algebra modulo by 1-fold pseudo
implicative filter is a good EQ-algebra.

In what follows, let n denotes a positive integer and for any x ∈ E, xn

denotes x⊗ x⊗ ...⊗ x, in which x occurs n times and x0 = 1.

Definition 3.1. Let E be an EQ-algebra. A nonempty subset F ⊆ E is
called an n-fold prefilter of E , if for all x, y ∈ E,

(i) 1 ∈ F ;

(ii) If xn, xn → y ∈ F , then y ∈ F .

An n-fold prefilter F is said to be an n-fold filter of E , if F satisfies (F3).

Obviously, each prefilter is an n-fold prefilter. But the converse is not
true.
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Example 3.2. Let E = {0, a, b, c, 1} be a chain such that 0 ≤ a ≤ b ≤ c ≤ 1.
Define the operations ∧,⊗ and ∼ on E as follows:

⊗ 0 a b c 1
0 0 0 0 0 0
a 0 0 0 0 a
b 0 0 0 0 b
c 0 0 0 0 c
1 0 a b c 1

∼ 0 a b c 1
0 1 a 0 0 0
a a 1 a a a
b 0 a 1 b b
c 0 a b 1 c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a a 1 1 1 1
b 0 a 1 1 1
c 0 a b 1 1
1 0 a b c 1

x ∧ y = min{x, y}.

Then E = (E,∧,⊗,∼, 1) is an EQ-algebra. Let F = {1, c}. Then F is an
n-fold filter of E , for all n ∈ N.
Let F = {1, a}. Then F is a 2-fold prefilter of E . Since a ∈ F and
a → b = 1 ∈ F but b /∈ F , F is not a prefilter of E . Similarly F = {1, b} is
a 2-fold prefilter but not a prefilter of E .

Definition 3.3. Let E be an EQ-algebra. A nonempty subset F ⊆ E is
called an n-fold pseudo implicative prefilter of E , if for all x, y, z ∈ E,

(i) 1 ∈ F ;

(ii) xn → (y → z) ∈ F and xn → y ∈ F imply xn → z ∈ F .

Example 3.4. Let E = {0, a, b, 1} be a chain such that 0 ≤ a ≤ b ≤ 1.
Define the operations ∧,⊗ and ∼ on E as follows:

⊗ 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b 1
1 0 a b 1

∼ 0 a b 1
0 1 0 0 0
a 0 1 a a
b 0 a 1 1
1 0 a 1 1

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a 1 1

x ∧ y = min{x, y}.
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Then E = (E,∧,⊗,∼, 1) is an EQ-algebra. Let F = {1, b}. Then F is an
n-fold filter and n-fold pseudo implicative filter of E , for all n ≥ 2.
If F = {1, a}, then F is an n-fold pseudo implicative prefilter of E , for all
n ≥ 2. Clearly, F is not a filter of E , since a2 = a ∈ F and a2 → b = a →
b = 1 ∈ F but b /∈ F . In addition, we can see that F is not an n-fold filter
of E .

Obviously each pseudo implicative prefilter of E is an n-fold pseudo
implicative prefilter of E , but the converse is not true.

Example 3.5. Let E be an EQ-algebra as in Example 3.2. Suppose F =
{1, c}. Then F is a 2-fold pseudo implicative filter of E . Since a → (a →
0) = 1 ∈ F and a → a = 1 ∈ F but a → 0 = a /∈ F , we get F is not a
pseudo implicative filter of E .

Proposition 3.6. Let E be a good EQ-algebra. Then every n-fold pseudo
implicative prefilter of E is an n-fold prefilter of E .

Proof: Let x, y ∈ E such that xn, xn → y ∈ F . Then by goodness,
1n → xn, 1n → (xn → y) ∈ F . Hence 1n → y = y ∈ F .

Example 3.7. Let E be the EQ-algebra as in Example 3.4. Since b ∼
1 = 1 ̸= b, we have E is not good. Suppose F = {1, a}. Then F is an
n-fold pseudo implicative filter of E , for all n ≥ 2. Since an = a ∈ F and
an → b = 1 ∈ F but b /∈ F , we have F is not an n-fold filter of E , for all
n ≥ 2.

Corollary 3.8. Let E be a good EQ-algebra. Then every n-fold pseudo
implicative prefilter of E is a prefilter of E .

Proof: Let F be an n-fold pseudo implicative prefilter of E , x ∈ F and
x → y ∈ F . Then 1n → (x → y) ∈ F and 1n → x ∈ F and so 1n → y =
y ∈ F . Therefore, F is a prefilter of E .

Proposition 3.9. Let E be a good EQ-algebra. Then {1} is an n-fold
prefilter of E , for all n ∈ N.

Proof: Let xn ∈ {1} and xn → y ∈ {1}, then 1 → y = y ∈ {1} and so {1}
is an n-fold prefilter of E , for all n ∈ N. Now, let x → y ∈ {1}. Then x ≤ y
and so x ⊗ z ≤ y ⊗ z, for all z ∈ E. Hence (x ⊗ z) → (y ⊗ z) = 1 ∈ {1}.
Therefore, {1} is an n-fold filter of E .
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Example 3.10. Let E be the EQ-algebra as in Example 3.4. Since b ∼
1 = 1 ̸= b, we get E is not a good EQ-algebra. Since 1n = 1 ∈ {1} and
1n → b = 1 ∈ {1} but b /∈ {1}, we get {1} is not an n-fold filter of E , for
all n ∈ N

In the following theorem, we provide some conditions equivalent to the
concept of n-fold pseudo implicative filter.

Theorem 3.11. Let E be a residuated EQ-algebra, F be a filter of E and
n ∈ N. Then, for all x, y, z ∈ E the following conditions are equivalent:

(i) F is an n-fold pseudo implicative filter of E;

(ii) xn → x2n ∈ F ;

(iii) xn+1 → y ∈ F implies xn → y ∈ F ;

(iv) xn → (y → z) ∈ F implies (xn → y) → (xn → z) ∈ F .

Proof: (i) =⇒ (ii): By Proposition 2.6(iv), we have xn → (xn → x2n) =
x2n → x2n = 1 ∈ F . Since xn → xn = 1 ∈ F by (i), we have xn → x2n ∈ F .
(ii) =⇒ (i): Let xn → (y → z) ∈ F and xn → y ∈ F . Then by Propositions
2.6 and 2.5(iii),

(xn → (y → z))⊗ (xn → y)⊗ x2n = (xn → (y → z))⊗ xn ⊗ (xn → y)⊗ xn

≤ (y → z)⊗ y ≤ z.

Thus by Proposition 2.7(i), (xn → (y → z))⊗ (xn → y) ≤ x2n → z and so
x2n → z ∈ F . Since by assumption, F is a filter of E , we get x2n → z ∈ F .
Also, by Proposition 2.2(iii), xn → x2n ≤ (x2n → z) → (xn → z). Hence
by (ii), (x2n → z) → (xn → z) ∈ F , and so xn → z ∈ F . Therefore, F is
an n-fold pseudo implicative filter of E .
(ii) =⇒ (iii): Let xn+1 → y ∈ F . Then by Proposition 2.6(iv), we have
xn+1 → y = xn → (x → y) ∈ F . Since xn ≤ x, we have xn → x = 1 ∈ F .
Hence by (i) or equivalently (ii), xn → y ∈ F .
(iii) =⇒ (ii): By Proposition 2.6(iv),

xn+1 → (xn−1 → x2n) = x2n → x2n = 1 ∈ F.

Thus by (iii), xn → (xn−1 → x2n) ∈ F . Also, we have

xn+1 → (xn−2 → x2n) = x2n−1 → x2n = xn → (xn−1 → x2n) ∈ F.
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Hence by (iii), xn → (xn−2 → x2n) ∈ F . By repeating this method n
times we get

xn → (x0 → x2n) = xn → (1 → x2n) = xn → x2n ∈ F.

(ii) =⇒ (iv): Let xn → (y → z) ∈ F . Then by Propositions 2.2(iii), (iv)
and 2.7(iv),

xn → (y → z) ≤ xn → ((xn → y) → (xn → z))

= xn → (xn → ((xn → y) → z))

= x2n → ((xn → y) → z) ∈ F.

Also, we have x2n → ((xn → y) → z)) ≤ (xn → x2n) → (xn → ((xn →
y) → z)). Thus

(xn → x2n) → (xn → ((xn → y) → z)) ∈ F.

By (ii), since xn → x2n ∈ F , we have

xn → ((xn → y) → z)) = (xn → y) → (xn → z) ∈ F.

(iv) =⇒ (ii): Since xn → (xn → x2n) = x2n → x2n = 1 ∈ F by (iv), we
get (xn → xn) → (xn → x2n) ∈ F and so by goodness, xn → x2n ∈ F .

Proposition 3.12. Let E be an EQ-algebra and F be a prefilter of E . If
F is an 1-fold pseudo implicative prefilter of E , then for all x, y ∈ E and
n ∈ N the following properties hold:

(i) ((xn ∧ (xn → y)) → y) ∈ F ;

(ii) ((xn ⊗ (xn → y)) → y) ∈ F .

Proof: (i): Let F be an 1-fold pseudo implicative prefilter of E . Since
(xn ∧ (xn → y)) ≤ xn → y, xn, we get ((xn ∧ (xn → y)) → (xn → y) =
1 ∈ F and (xn ∧ (xn → y)) → xn = 1 ∈ F . Hence, by assumption
(xn ∧ (xn → y)) → y ∈ F .
(ii): By (i), (xn ∧ (xn → y) → y) ∈ F . Then by Proposition 2.2(i),
xn⊗ (xn → y) ≤ xn∧ (xn → y) and so (xn∧ (xn → y)) → y ≤ (xn⊗ (xn →
y)) → y. Hence, (xn ⊗ (xn → y)) → y ∈ F .

Corollary 3.13. Let E be an EQ-algebra and F be a prefilter of E . If F
is an 1-fold pseudo implicative prefilter of E , then (1 → x) → x ∈ F , for
all x ∈ E.
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Proof: By Proposition 3.12(i), since 1, x ∈ E, we have (1n∧ (1n → x)) →
x = (1 → x) → x ∈ F .

Theorem 3.14. Let E be an EQ-algebra and F be a prefilter of E. If F is
an 1-fold pseudo implicative filter of E, then E/F is a good EQ-algebra.

Proof: By Theorem 2.17, E/F is a separated EQ-algebra. Then by Corol-
lary 3.13, for any x ∈ E, (1 → x) → x ∈ F and so [1 → x] ≤ [x].
Thus [x] ∼ [1] ≤ [x] and by Proposition 2.2(ii), [x] ≤ [1] ∼ [x], that is
[1] ∼ [x] = [x], for all [x] ∈ E/F . Therefore, E/F is a good EQ-algebra.

Theorem 3.15. Let E be a residuated EQ-algebra and F be a filter of E.
Then the following statements are equivalent:

(i) F is an n-fold pseudo implicative filter of E;
(ii) xm → (x → y) ∈ F implies xm → y ∈ F , for all x, y ∈ F and m ≥ n.

Proof: (i) =⇒ (ii): Let F be an n-fold pseudo implicative filter of E and
xm → (x → y) ∈ F , for x, y ∈ E. Since xm ≤ x, we have xm → x = 1 ∈ F
and so by (i), xm → y ∈ F .
(ii) =⇒ (i): Let xn → (y → z) ∈ F and xn → y ∈ F . Then by Proposition
2.2(iii), we have

xn → (y → z) ≤ ((y → z) → (xn → z)) → (xn → (xn → z)),

and xn → y ≤ (y → z) → (xn → z). Thus ((y → z) → (xn → z)) →
(xn → (xn → z)) ∈ F and (y → z) → (xn → z) ∈ F and so xn → (xn →
z) = x2n−1 → (x → z) ∈ F . By (ii), we have x2n−1 → z ∈ F . Since
x2n−1 → z = x2n−2 → (x → z) ∈ F , by (ii), we obtain x2n−2 → z ∈ F .
By repeating this method, we have xn → z ∈ F . Therefore, F is an n-fold
pseudo implicative filter of E .
Proposition 3.16. Let E be a residuated EQ-algebra and F be a filter of
E . If F is an n-fold pseudo implicative filter of E , then F is an n + 1-fold
pseudo implicative filter of E .
Proof: Let F be an n-fold pseudo implicative filter of E and x, y ∈ E
such that xn+2 → y ∈ F . Then by Proposition 2.6(iv), xn+2 → y =
(xn+1 ⊗ x) → y = xn+1 → (x → y) ∈ F . Thus by Theorem 3.15(ii),
xn+1 → y ∈ F and so F is an n+ 1-fold pseudo implicative filter of E .

By the following example we show that the converse of Proposition 3.16,
is not true.
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Example 3.17. Let E be the EQ-algebra as in Example 3.2. Suppose F =
{1, c}. Then F is a 2-fold pseudo implicative prefilter of E . Since a → (a →
0) = 1 ∈ F and a → a = 1 ∈ F but a → 0 = a /∈ F , we get F is not a
1-fold pseudo implicative prefilter of E .

Proposition 3.18. Let F and G be two filters of residuated EQ-algebra
E such that F ⊆ G. If F is an n-fold pseudo implicative filter of E , then G
is an n-fold pseudo implicative filter of E .

Proof: Let F be an n-fold pseudo implicative filter of E . Then by Theo-
rem 3.11(ii), xn → x2n ∈ F , for all x ∈ E and so xn → x2n ∈ G. Therefore,
G is an n-fold pseudo implicative filter of E .

We now define a sequence of subvarieties of the variety of EQ-algebras.

Definition 3.19. Let E be an EQ-algebra. Then E is called an EQn-
algebra, if for all x, y ∈ E, xn → y = xn+1 → y.

Example 3.20. Let E be the EQ-algebra as in Example 3.2. Then E is an
EQn-algebra, for all n ≥ 2.

Proposition 3.21. In any residuated EQn-algebra, n-fold filters and
n-fold pseudo implicative filters coincide.

Proof: By Proposition 3.6, each n-fold pseudo implicative filter of E is
an n-fold filter of E . Let F be an n-fold filter of E and xn+1 → y ∈ F .
Then by assumption, xn → y ∈ F and so by Theorem 3.11, F is an n-fold
pseudo implicative filter of E .

Proposition 3.22. Let E be a residuated EQ-algebra. Then E is an EQn-
algebra if and only if {1} is an n-fold pseudo implicative filter of E .

Proof: Let E be an EQn-algebra and xn+1 → y ∈ {1}. Then by Definition
3.19, xn → y ∈ {1} and so {1} is an n-fold pseudo implicative filter of E .

Conversely, let {1} be an n-fold pseudo implicative filter of E . Since

1 = x2n → xn+1 = (xn ⊗ xn) → xn+1 = xn → (xn → xn+1) ∈ {1}

and xn → xn = 1 ∈ {1}, then xn → xn+1 ∈ {1} and so xn ≤ xn+1. On the
other hands xn+1 = xn ⊗ x ≤ xn. Hence xn = xn+1. Therefore, E is an
EQn-algebra.
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Theorem 3.23. Let E be a residuated EQ-algebra. Then the following
conditions are equivalent:

(i) E is an EQn-algebra;

(ii) {1} is an n-fold pseudo implicative filter of E;

(iii) Each filter of E is an n-fold pseudo implicative filter of E;

(iv) x2n = xn, for all x ∈ E

Proof: (i) =⇒ (ii): By Proposition 3.22, the proof is clear.
(ii) =⇒ (iii): By Proposition 3.18, the proof is clear.
(iii) =⇒ (i): Since F = {1} is a filter of E , by (iii) and Proposition 3.22,
we have (i).
(i) =⇒ (iv): By (i) or equivalently (ii) and the proof of Proposition 3.22,
xn = xn+1. Thus

xn+2 = xn+1 ⊗ x = xn ⊗ x = xn+1 = xn.

By repeating this method, we have x2n = xn.
(iv) =⇒ (i): Let x2n = xn. Then xn → x2n = 1 and so xn → x2n ∈ {1}.
Hence by Theorem 3.11(ii), {1} is an n-fold pseudo implicative filter of E
and by Proposition 3.22, we have (i).

Theorem 3.24. Let E be a residuated EQ-algebra and F be a filter of E.
Then F is an n-fold pseudo implicative filter of E if and only if E/F is an
EQn-algebra.

Proof: By Theorem 3.11(ii), F is an n-fold pseudo implicative filter of E
if and only if xn → x2n ∈ F , for all x ∈ E if and only if [x]n → [x]2n =
[xn → x2n] = [1] if and only if by Theorem 3.23, {[1]} is an n-fold pseudo
implicative filter of E/F if and only if E/F is an EQn-algebra.

4. n-fold implicative prefilters in EQ-algebras

In this section, we introduce the concept of an n-fold implicative prefilters
in EQ-algebras and investigate some properties of them. We define an
n-fold implicative EQ-algebra and show that in good EQ-algebra E with
least element 0 a prefilter F is an n-fold implicative prefilter of E if and
only if E/F is an n-fold implicative EQ-algebra.
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Definition 4.1. Let E be an EQ-algebra. A nonempty subset F ⊆ E is
called an n-fold implicative prefilter of E , if for all x, y, z ∈ E,

(i) 1 ∈ F ;

(ii) z → ((xn → y) → x) ∈ F and z ∈ F imply x ∈ F .

Obviously each implicative prefilter is an n-fold implicative prefilter (for
n = 1). But the converse is not true.

Example 4.2.

(i) Let E be the EQ-algebra as in Example 3.2. Suppose F = {1, c}.
Then F is a 2-fold implicative prefilter of E . Since 1 → ((a → 0) →
a) = 1 ∈ F and 1 ∈ F but a /∈ F , we get F is not an implicative
prefilter of E .

(ii) According to Example 3.4, if F = {1, a, b}, then F is an n-fold im-
plicative filter of E , for all n ∈ N and F = {1, a} is not an n-fold
implicative filter of E , because 1 → ((b → 0) → b) = 1 ∈ F and 1 ∈ F
but b /∈ F .

Proposition 4.3. Let E be an EQ-algebra and F be an n-fold implicative
prefilter of E . Then F is an n-fold prefilter of E , for all n ∈ N.

Proof: Let xn ∈ F and xn → y ∈ F . Since y ≤ 1 → y, we have xn → y ≤
xn → (1 → y) and so xn → (1 → y) ∈ F . Thus xn → ((yn → 1) → y) ∈ F .
Since F is an n-fold implicative prefilter of E and xn ∈ F , we have y ∈ F .
Hence F is an n-fold prefilter of E , for all n ∈ N.

In the next example, we show that the converse of Proposition 4.3 is
not true.

Example 4.4. Let E be the EQ-algebra as in Example 3.4. Suppose F =
{1, b}. Then F is a 2-fold filter of E . Since 1 → ((a2 → 0) → a) = 1 ∈ F
and 1 ∈ F but a /∈ F , we get F is not a 2-fold implicative filter of E .

Theorem 4.5. Let E be a good EQ-algebra with least element 0 and F be
a prefilter of E. Then, for all x, y ∈ E and n ∈ N the following statements
are equivalent:

(i) F is an n-fold implicative prefilter;

(ii) (xn → 0) → x ∈ F implies x ∈ F ;

(iii) (xn → y) → x ∈ F implies x ∈ F .
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Proof: (i) =⇒ (iii): Let F be an n-fold implicative prefilter of E and
(xn → y) → x ∈ F . Then by goodness we have 1 → ((xn → y) → x) =
(xn → y) → x ∈ F . Since 1 ∈ F , by (i), we get x ∈ F .
(iii) =⇒ (ii): The proof is clear.
(ii) =⇒ (i): Let x → ((yn → z) → y) ∈ F and x ∈ F . Since F is a
prefilter of E , we get (yn → z) → y ∈ F . Moreover, from 0 ≤ z, we
obtain yn → 0 ≤ yn → z and (yn → z) → y ≤ (yn → 0) → y. Hence
(yn → 0) → y ∈ F . Thus by (ii), y ∈ F . Therefore, F is an n-fold
implicative prefilter of E .

Proposition 4.6. Let E be a good EQ-algebra with least element 0. If F
is an n-fold implicative prefilter of E , then F is an n + 1-fold implicative
prefilter of E .

Proof: Let F be an n-fold implicative prefilter of E such that (xn+1 →
0) → x ∈ F . Then by Proposition 2.2(iv), from xn+1 ≤ xn we have
xn → 0 ≤ xn+1 → 0 and so (xn+1 → 0) → x ≤ (xn → 0) → x. Since F is
prefilter, we have (xn → 0) → x ∈ F and by assumption x ∈ F . Therefore,
F is an n+ 1-fold implicative prefilter of E .

The next example shows that the converse of Proposition 4.6, is not
true.

Example 4.7. Let E be the EQ-algebra as in Example 3.2. Suppose F =
{1, c}. Then F is a 2-fold implicative prefilter of E . Since (a → 0) → a =
1 ∈ F but a /∈ F , we get F is not a 1-implicative prefilter of E .

Theorem 4.8. Let E be a residuated EQ-algebra. Then each n-fold im-
plicative filter of E is an n-fold pseudo implicative filter of E.

Proof: Let F be an n-fold implicative filter of E and xn+1 → y ∈ F .
Then by Propositions 2.2(iii) and 2.7(iv), we have

(xn+1 → y)n → (xn → y)

= (xn+1 → y)n−1 → ((xn+1 → y) → (xn → y))

= (xn+1 → y)n−1 → ((xn+1 → y) → (xn−1 → (x → y))

= (xn+1 → y)n−1 → ((xn−1 → ((xn+1 → y) → (x → y)))

= (xn+1 → y)n−1 → (xn−1 → ((x → (xn → y)) → (x → y)))

≥ (xn+1 → y)n−1 → (xn−1 → ((xn → y) → y))
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= (xn+1 → y)n−1 → ((xn → y) → (xn−1 → y))

= (xn → y) → ((xn+1 → y)n−1 → (xn−1 → y)).

Since xn+1 → y ≤ xn+1 → y = x → (xn → y), we have x⊗ (xn+1 → y) ≤
xn → y. Then

(xn → y)⊗ (xn+1 → y)n−1 ⊗ xn−1 ≤ (xn → y)2 ⊗ (xn+1 → y)n−2 ⊗ xn−2,

Hence
((xn → y)2 ⊗ (xn+1 → y)n−2 ⊗ xn−2) → y ≤ ((xn → y) ⊗ (xn+1 →
y)n−1 ⊗ xn−1) → y and so
(xn → y)2 → ((xn+1 → y)n−2 → (xn−2 → y)) ≤ (xn → y) → ((xn+1 →
y)n−1 → (xn−1 → y)), By (4.1), we have

(xn+1 → y)n → (xn → y) ≥ (xn → y) → ((xn+1 → y)n−1 → (xn−1 → y)).

Then

(xn+1 → y)n → (xn → y)

≥ (xn → y)2 → ((xn+1 → y)n−2 → (xn−2 → y)).

Hence, by repeating this method n-times we get:

(xn+1 → y)n → (xn → y) ≥ (xn → y)2 → ((xn+1 → y)n−2 → (xn−2 → y))

...

≥ (xn → y)n → ((xn+1 → y)0 → (x0 → y))

= (xn → y)n → (1 → (1 → y))

= (xn → y)n → y.

Thus
(xn+1 → y)n → (((xn → y)n → y) → (xn → y)) = 1.

Since F is an n-fold filter of E and xn+1 → y ∈ F , we get ((xn → y)n →
y) → (xn → y) ∈ F . Hence, by Theorem 4.5(iii), xn → y ∈ F . Therefore,
by Theorem 3.11, F is an n-fold pseudo implicative filter of E .

The following example shows that the converse of Theorem 4.8 is not
true.
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Example 4.9. Let E be the EQ-algebra as in Example 3.4. Suppose F =
{1, a}. Then F is a 2-fold pseudo implicative prefilter of E . Since (b2 →
0) → b = 1 ∈ F but b /∈ F , we have F is not a 2-fold implicative prefilter
of E .

Definition 4.10. Let E be an EQ-algebra. Then E is called an n-fold
implicative EQ-algebra, if for all x, y ∈ E, (xn → y) → x = x.

Example 4.11.

(i) Let E be the EQ-algebra as in Example 3.2. Then E is an n-fold
implicative EQ-algebra, for all n ≥ 2.

(ii) Let E be the EQ-algebra as in Example 3.4. Since (an → 0) → a =
1 ̸= a, we have E is not an n-fold implicative algebra of E , for all
n ∈ N.

Proposition 4.12. Every n-fold implicative EQ-algebra is an n + 1-fold
implicative EQ-algebra.

Proof: Let E be an n-fold implicative EQ-algebra. Then (xn → y) →
x = x, for all x, y ∈ E. Since xn+1 = xn ⊗ x ≤ xn, by Proposition 2.2(iv),
we have xn → y ≤ xn+1 → y and so (xn+1 → y) → x ≤ (xn → y) → x = x.
By Proposition 2.2(ii), x ≤ (xn+1 → y) → x. Hence (xn+1 → y) → x = x
and so E is an n+ 1-fold implicative EQ-algebra.

The next example shows that the converse of Proposition 4.12, is not
true.

Example 4.13. Let E be the EQ-algebra as in Example 3.2. Then E is a
2-fold implicative EQ-algebra. Since (a → 0) → a = 1 ̸= a, we get E is not
a 1-fold implicative EQ-algebra.

Lemma 4.14. In a good n-fold implicative EQ-algebra concepts of n-fold
implicative prefilter and n-fold prefilter are coincide.

Proof: Let F be an n-fold implicative prefilter of E . Then by Proposition
4.3, F is an n-fold prefilter of E .

Conversely, let F be an n-fold prefilter of E and (xn → y) → x ∈ F .
Then by Definition 4.10, x ∈ F . Hence, F is an n-fold implicative prefilter
of E .
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Proposition 4.15. Let E be a good EQ-algebra with least element 0.
Then the following statements are equivalent:

(i) E is an n-fold implicative EQ-algebra.

(ii) Every n-fold prefilter of E is an n-fold implicative prefilter of E .

(iii) {1} is an n-fold implicative prefilter of E .

Proof: (i) =⇒ (ii): By Lemma 4.14, the proof is clear.
(ii) =⇒ (iii): By Proposition 3.9, the proof is clear.
(iii) =⇒ (i): Let {1} be an n-fold implicative prefilter of E , x ∈ E and
t = ((xn → 0) → x) → x. Then by Propositions 2.2(iii) and 2.7(iv), we
have:

(tn → 0) → t = (tn → 0) → (((xn → 0) → x) → x)

= ((xn → 0) → x) → ((tn → 0) → x)

≥ (tn → 0) → (xn → 0)

≥ xn → tn.

By Proposition 2.2(ii), x ≤ (xn → 0) → x = t and so xn ≤ tn. Hence
(tn → 0) → t = 1 ∈ {1}. Then by (iii), t = ((xn → 0) → x) → x ∈ {1}
and so (xn → 0) → x ≤ x. By Proposition 2.2(ii), x ≤ (xn → 0) → x.
Thus (xn → 0) → x = x, for all x ∈ E. Therefore, E is an n-fold implicative
EQ-algebra.

Theorem 4.16. Let E be a good EQ-algebra with least element 0 and F be
a prefilter of E. Then F is an n-fold implicative prefilter of E if and only
if E/F is an n-fold implicative EQ-algebra.

Proof: Let F be an n-fold implicative prefilter of E and x ∈ E such that
([x]n → [0]) → [x] = [1]. Then (xn → 0) → x ∈ F . Thus by Theorem
4.5, x ∈ F , and so [x] = [1]. Hence, {[1]} is an n-fold implicative prefilter
of E/F . Therefore, by Proposition 4.15, E/F is an n-fold implicative EQ-
algebra.

Conversely, let E/F be an n-fold implicative EQ-algebra and x ∈ E
such that (xn → 0) → x ∈ F . Then [x] = ([x]n → [0]) → [x] = [(xn →
0) → x] = [1] and so [x] = [1], that is x ∈ F . Therefore, F is an n-fold
implicative prefilter of E .
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Corollary 4.17. Let F and G be prefilters of good EQ-algebra E with
least element 0 such that F ⊆ G and F be an n-fold implicative prefilter
of E . Then G is an n-fold implicative prefilter of E .

Proof: Let x ∈ E such that (xn → 0) → x ∈ G. Since F is an n-
fold implicative prefilter of E , by Theorem 4.16 we have E/F is an n-fold
implicative EQ-algebra. Then [(xn → 0) → x] = ([x]n → [0]) → [x] = [x]
and so ((xn → 0) → x) → x ∈ F ⊆ G. Hence, by assumption, x ∈ G.
Therefore, G is an n-fold implicative prefilter of E .

5. n-fold obstinate prefilters in EQ-algebras

In this section, we introduce the concept of n-fold obstinate prefilters in
EQ-algebras and investigate some properties. We also show that, a filter
{1} is an n-fold obstinate filter of residuated EQ-algebra E if and only if
every filter of E is an n-fold obstinate filter of E and in each residuated
EQ-algebra E , a filter F is an n-fold obstinate filter of E if and only if
every filter of quotient algebra E/F is an n-fold obstinate filter of E .

Definition 5.1. Let F be a prefilter of EQ-algebra E . Then F is called
an n-fold obstinate prefilter of E , if x, y /∈ F implies xn → y ∈ F and
yn → x ∈ F .

Example 5.2.

(i) Let E be the EQ-algebra as in Example 3.2. Suppose F = {1, c}.
Then F is an n-fold obstinate filter of E , for all n ≥ 2.

(ii) Let E be the EQ-algebra as in Example 3.4. Suppose F = {1, b}.
Then F is a filter and n-fold filter of E , for all n ∈ N. Since a, 0 /∈ F
and an → 0 = a → 0 = 0 /∈ F , we get F is not an n-fold obstinate
filter of E , for all n ≥ 2.

Proposition 5.3. Let E be an EQ-algebra. Then every n-fold obstinate
prefilter is an n+ 1-fold obstinate prefilter of E .

Proof: Let F be an n-fold obstinate prefilter of E and x, y /∈ F . Then
xn → y, yn → x ∈ F . Since xn+1 ≤ xn by Proposition 2.2(ii), xn → y ≤
xn+1 → y. Thus xn+1 → y ∈ F and similarly yn+1 → x ∈ F . Therefore,
F is an n+ 1-fold prefilter of E .
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The next example shows that the converse of Proposition 5.3, is not
true.

Example 5.4. Let E be the EQ-algebra as in Example 3.2. Suppose F =
{1, c}. Then F is a 2-fold obstinate filter of E . Since 0, a /∈ F , we have
a → 0 = a /∈ F . Thus F is not a 1-fold obstinate filter of E .

Theorem 5.5. Let E be an EQ-algebra with least element 0 and F be a
prefilter of E. Then F is an n-fold obstinate prefilter if and only if x ∈ F
or (¬(xn))m ∈ F , for all x ∈ E and some m ∈ N.

Proof: Let F be an n-fold obstinate prefilter of E such that x /∈ F . Since
F is a filter of E , we have 0 /∈ F . Then ¬(xn) = xn → 0 ∈ F and
0n → x ∈ F . Hence, for m = 1 we have, (¬(xn))m ∈ F .

Conversely, let x, y /∈ F . Then (¬(xn))m ∈ F and (¬(yn))k ∈ F ,
for some m, k ∈ N. Thus by Proposition 2.2(i), (¬(xn))m ≤ ¬(xn) and
(¬(yn))k ≤ ¬(yn) and so ¬(xn),¬(yn) ∈ F . By Proposition 2.2(iv), xn →
0 ≤ xn → y and yn → 0 ≤ yn → x. Hence, xn → y, yn → x ∈ F .
Therefore, F is an n-fold obstinate prefilter of E .

Theorem 5.6. Let E be a residuated EQ-algebra with least element 0 and
F be a filter of E. Then the following statements are equivalent:

(i) F is a maximal filter of E;

(ii) For any x /∈ F , there exists n ∈ N such that ¬(xn) ∈ F .

Proof: (i) ⇒ (ii): Let F be a maximal filter of E and x /∈ F . Then
< F ∪ {x} >= E and so 0 ∈< F ∪ {x} >. Thus x → 0 ∈ F . Hence,
¬x ∈ F .
(ii) ⇒ (i): Let G be a proper filter of E such that F ⊊ G. Then there exists
x ∈ G such that x /∈ F . Thus, there exists n ∈ N such that ¬(xn) ∈ F or
x → (x → (...(x → 0)...)) ∈ F ⊊ G. Since G is a filter of E , we get 0 ∈ G.
Hence G = E, which is a contradiction. Therefore, F is a maximal filter
of E .

Corollary 5.7. Let E be a residuated EQ-algebra with least element 0.
Then every proper n-fold obstinate filter of E is a maximal filter of E , for
all n ∈ N.

Proof: Let F be an n-fold obstinate filter of E and G be a filter of E such
that F ⊆ G ⊆ E. If F ̸= G, then there exists x ∈ G such that x /∈ F . Since
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0, x /∈ F , by assumption xn → 0 ∈ F and so ¬(xn) ∈ G. Hence 0 ∈ G and
so G = E. Therefore, F is a maximal filter of E .

Proposition 5.8. Let E be an EQ-algebra and F be an n-fold obstinate
prefilter of E . Then F is an n-fold implicative prefilter of E .

Proof: Let F be an n-fold obstinate prefilter of E but not an n-fold im-
plicative prefilter of E . Then there exist x, y ∈ E such that (xn → y) →
x ∈ F but x /∈ F . Let y ∈ F . Since y ≤ xn → y, we have xn → y ∈ F
and so x ∈ F , which is a contradiction. If y /∈ F , then by assumption
xn → y ∈ F and so x ∈ F , which is a contradiction. Therefore, F is an
n-fold implicative prefilter of E .

The following example shows that the converse of Proposition 5.8, is
not true.

Example 5.9. Let E be the EQ-algebra as in Example 3.4. Suppose F =
{1, a, b}. Then F is an n-fold implicative filter of E , for all n ≥ 2. Since
0, a /∈ F and an → 0 = 0 /∈ F , we get F is not an n-fold obstinate filter
of E .

Theorem 5.10. Let E be a residuated EQ-algebra and F be an n-fold ob-
stinate filter of E. Then F is an n-fold pseudo implicative filter of E.

Proof: By Theorem 4.8 and Proposition 5.8, the proof is clear.

The following example shows that the converse of Theorem 5.10, is not
true.

Example 5.11. Let E be the EQ-algebra as in Example 3.4. Suppose F =
{1, a}. Then F is an n-fold pseudo implicative filter of E . Since 0, b /∈ F
and bn → 0 = 0 /∈ F , we have F is not an n-fold obstinate filter of E , for
all n ≥ 2.

Proposition 5.12. Filter {1} is an n-fold obstinate filter of residuated
EQ-algebra E if and only if every filter of E is an n-fold obstinate filter
of E .

Proof: Let F be a filter of E and x, y /∈ F . Then x, y /∈ {1} and so
xn → y ∈ {1} ⊆ F and yn → x ∈ {1} ⊆ F . Hence, F is an n-fold obstinate
filter of E . The proof of the converse is clear.
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Theorem 5.13. Let E be a residuated EQ-algebra and F be a filter of E.
Then F is an n-fold obstinate filter of E if and only if every filter of quotient
algebra E/F is an n-fold obstinate filter of E/F .

Proof: Let F be an n-fold obstinate filter of E and x ∈ E such that [x] ̸=
[1]. Then x /∈ F and so there exists m ∈ N such that (¬(xn))m ∈ F and
so [(¬(xn))m] ∈ {[1]}. Hence by Theorem 5.5, {[1]} is an n-fold obstinate
filter of E/F . Therefore, by Proposition 5.12, each filter of the quotient
algebra E/F is an n-fold obstinate filter.

Conversely, let every filter of the quotient algebra E/F be an n-fold
obstinate filter of E/F and x ∈ E such that x /∈ F . Then [x] ̸= [1].
Since {[1]} is a filter of E/F , by assumption, {[1]} is an n-fold obstinate
filter of E , and so there exists m ∈ N such that [(¬(xn))m] ∈ {[1]}. Thus
(¬(xn))m ∈ F . Hence, by Theorem 5.5, F is an n-fold obstinate filter
of E .

6. n-fold fantastic prefilters in EQ-algebras

In this section, we introduce the concept of n-fold fantastic prefilters in
EQ-algebras and investigate some properties about them. Then we prove
that in any good EQ-algebra, if F is an 1-fold fantastic filter of E , then E/F
is an IEQ-algebra, and we show that in any residuated EQ-algebra with
least element 0, F is an n-fold implicative filter of E if and only if F is an n-
fold pseudo implicative filter and n-fold fantastic filter of E . So we conclude
that in any residuated EQ-algebra, E is an n-fold implicative EQ-algebra
if and only if E is both EQn-algebra and n-fold fantastic EQ-algebra.

Definition 6.1. Let E be an EQ-algebra. A nonempty subset F ⊆ E is
called an n-fold fantastic prefilter of E , if for all x, y ∈ E,

(i) 1 ∈ F ;

(ii) z → (y → x) ∈ F and z ∈ F , imply ((xn → y) → y) → x ∈ F .

An n-fold fantastic prefilter F is said to be an n-fold fantastic filter if F
satisfies in (F3).

Example 6.2. (i) Let E be the EQ-algebra as in Example 3.2. Suppose
F = {1, c}. Then F is an n-fold fantastic filter of E , for all n ≥ 2.
(ii) Let E be the EQ-algebra as in Example 3.4. Suppose F = {1, b}. Since
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1 → (0 → a) = 1 ∈ F and 1 ∈ F but ((an → 0) → 0) → a = a /∈ F , we get
F is not an n-fold fantastic prefilter of E , for all n ∈ N.
Theorem 6.3. Let F be a prefilter of good EQ-algebra E. Then F is an
n-fold fantastic prefilter of E if and only if y → x ∈ F implies ((xn → y) →
y) → x ∈ F , for all x, y ∈ E.

Proof: Let F be an n-fold fantastic prefilter of E and y → x ∈ F . Then
1 → (y → x) = y → x ∈ F and 1 ∈ F . Hence ((xn → y) → y) → x ∈ F ,
for all x, y ∈ E.

Conversely, let z → (y → x) ∈ F and z ∈ F . Since F is a prefilter of E ,
we get y → x ∈ F and so ((xn → y) → y) → x ∈ F . Then F is an n-fold
fantastic prefilter of E .
Proposition 6.4. Each n-fold fantastic prefilter of good EQ-algebra E is
an n-fold prefilter of E .
Proof: Let xn, xn → y ∈ F . Then xn → y = xn → (1 → y) ∈ F . Since
F is an n-fold fantastic prefilter of E , we get ((yn → 1) → 1) → y = y ∈
F .

The next example shows that the converse of Proposition 6.4 is not true
and condition of goodness is necessary.

Example 6.5. Let E be the EQ-algebra as in Example 3.4.

(i) Suppose F = {1, b}. Then F is a 2-fold filter of E . Since 1 → (0 →
a) = 1 ∈ F and 1 ∈ F but ((an → 0) → 0) → a = a /∈ F , we get F is not a
2-fold fantastic filter of E .
(ii) Since b ∼ 1 ̸= b, we get E is not a good EQ-algebra. Let F = {1, a}.
Then F is an n-fold fantastic filter of E , for all n ∈ N. Since an = a ∈ F
and an → b = 1 ∈ F but b /∈ F , we have F is not an n-fold filter of E , for
all n ∈ N.
Proposition 6.6. Let F and G be two prefilters of good EQ-algebra E
such that F ⊆ G. If F is an n-fold fantastic prefilter of E , then so is G.

Proof: Let y → x ∈ G and k := (y → x) → x. Then

y → k = y → ((y → x) → x) = (y → x) → (y → x) = 1 ∈ F.

Since F is an n-fold fantastic prefilter of E , we have

(y → x) → (((kn → y) → y) → x) = ((kn → y) → y) → ((y → x) → x)

= ((kn → y) → y) → k ∈ F ⊆ G.
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Since G is a filter of E and y → x ∈ G, we get ((kn → y) → y) → x ∈ G.
Moreover, from x ≤ k = (y → x) → x, we get kn → y ≤ xn → y and so

((kn → y) → y) → x ≤ ((xn → y) → y) → x.

Hence ((xn → y) → y) → x ∈ G. Therefore, G is an n-fold fantastic
prefilter of E .

Definition 6.7. Let E be an EQ-algebra. Then E is called an n-fold
fantastic EQ-algebra, if for all x, y ∈ E, ((xn → y) → y) → x = y → x.

Example 6.8. (i) Let E be the EQ-algebra as in Example 3.2. Then E is
an n-fold fantastic EQ-algebra, for all n ≥ 2.
(ii) Let E be the EQ-algebra as in Example 3.4. Since ((an → 0) → 0) →
a = a ̸= 0 → a = 1, we have E is not an n-fold fantastic EQ-algebra.

Proposition 6.9. Let E be an n-fold fantastic EQ-algebra and F be a
prefilter of E . Then F is an n-fold fantastic prefilter of E
Proof: The proof is clear.

Theorem 6.10. Let E be a residuated EQ-algebra E. Then, for all x, y, z ∈
E the following conditions are equivalent:

(i) E is an n-fold fantastic EQ-algebra;

(ii) (xn → y) → y ≤ (y → x) → x;

(iii) If xn → z ≤ y → z and z ≤ x, then y ≤ x;

(iv) If xn → z ≤ y → z and z ≤ x, y, then y ≤ x;

(v) If y ≤ x, then (xn → y) → y ≤ x.

Proof: (i) =⇒ (ii): Let E be an n-fold fantastic EQ-algebra. Then

((xn → y) → y) → ((y → x) → x) = (y → x) → (((xn → y) → y) → x)

= (y → x) → (y → x)

= 1.

Hence by Proposition 2.6, (xn → y) → y ≤ (y → x) → x.
(ii) =⇒ (i): Let (xn → y) → y ≤ (y → x) → x, for all x, y ∈ E. Then

(y → x) → (((xn → y) → y) → x) = ((xn → y) → y) → ((y → x) → x)

= 1.
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Thus y → x ≤ ((xn → y) → y) → x. Also,

(((xn → y) → y) → x) → (y → x) ≥ y → ((xn → y) → y)

= (xn → y) → (y → y)

= (xn → y) → 1

= 1.

Then (((xn → y) → y) → x) → (y → x) = 1 and so (((xn → y) → y) →
x) ≤ y → x. Hence ((xn → y) → y) → x = y → x. Therefore, E is an
n-fold fantastic EQ-algebra.
(ii) =⇒ (iii): Let xn → z ≤ y → z and z ≤ x. Then by (ii), we have

1 = (xn → z) → (y → z) = y → ((xn → z) → z) ≤ y → ((z → x) → x)

= y → (1 → x)

= y → x.

Thus y → x = 1 and so y ≤ x.
(iii) =⇒ (iv): The proof is clear.
(iv) =⇒ (v): Let y ≤ x. Since y ≤ (xn → y) → y and

(xn → y) → (((xn → y) → y) → y) = ((xn → y) → y)) → ((xn → y) → y)

= 1,

we have xn → y ≤ (((xn → y)) → y) → y and so by (iv), (xn → y) → y ≤
x.
(v) =⇒ (ii): Since x ≤ (y → x) → x, by induction we have ((y → x) →
x)n → y ≤ xn → y and (xn → y) → y ≤ (((y → x) → x)n → y) → y. By
Proposition 2.7(ii), we have y ≤ (y → x) → x and by (v) we get

(xn → y) → y ≤ (((y → x) → x)n → y) → y ≤ (y → x) → x.

Proposition 6.11. Let E be a residuated EQ-algebra. Then E is an n-fold
fantastic EQ-algebra if and only if {1} is an n-fold fantastic filter of E .

Proof: Let E be an n-fold fantastic EQ-algebra and y → x = 1. Then
((xn → y) → y) → x = 1. Hence {1} is an n-fold fantastic filter of E .

Conversely, let {1} be an n-fold fantastic filter of E and k = (y → x) →
x. Then
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y → k = y → ((y → x) → x) = (y → x) → (y → x) = 1 ∈ {1},

and so ((kn → y) → y) → k = 1 that is (kn → y) → y ≤ k. Since
x ≤ k, we get kn → y ≤ xn → y and (xn → y) → y ≤ (kn → y) → y.
Thus 1 = ((kn → y) → y) → k ≤ ((xn → y)) → y) → k. Hence
((xn → y) → y) → k = 1. So ((xn → y) → y) → ((y → x) → x) = 1. Thus
(xn → y) → y ≤ (y → x) → x. Therefore, by Theorem 6.10, E is an n-fold
fantastic EQ-algebra.

Lemma 6.12. Each filter of residuated EQ-algebra E is an n-fold fantastic
filter of E if and only if {1} is an n-fold fantastic filter of E.

Proof: Let F be a filter of E and {1} be an n-fold fantastic filter of
E . Then by Proposition 6.11, E is an n-fold fantastic EQ-algebra and so
by Proposition 6.9, F is an n-fold fantastic filter of E . The proof of the
converse is clear.

Theorem 6.13. Let E be a residuated EQ-algebra and F be a filter of E.
Then F is an n-fold fantastic filter of E if and only if every filter of E/F
is an n-fold fantastic filter of E/F .

Proof: Let F be an n-fold fantastic filter of E and [x] → [y] = [1]. Then
x → y ∈ F and so ((yn → x) → x) → y ∈ F . Hence

(([y]n → [x]) → [x]) → [y] = [((yn → x) → x) → y] = [1].

Thus {[1]} is an n-fold fantastic filter of E/F . By Lemma 6.12, every filter
of E/F is an n-fold fantastic filter of E/F .

Conversely, let every filter of E/F be an n-fold fantastic filter of E/F
and let y → x ∈ F . Then [y] → [x] = [y → x] = [1]. Since {[1]} is an n-fold
fantastic filter of E/F , we have

[((xn → y) → y) → x] = (([x]n → [y]) → [y]) → [x] = [1].

Hence ((xn → y) → y) → x ∈ F and so F is an n-fold fantastic filter
of E .

Theorem 6.14. Let E be a good EQ-algebra with least element 0 and F
be a filter of E. If F is an 1-fold fantastic filter of E, then E/F is an
IEQ-algebra.

Proof: By Theorem 2.17, E is a good EQ-algebra. Since 0 → x = 1 ∈ F ,
we have
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((x → 0) → 0) → x = ¬(¬x) → x ∈ F

and so [¬(¬x)] ≤ [x]. By Proposition 2.7(ii), [x] ≤ [¬(¬x)]. Hence
[¬(¬x)] = [x] and so E/F is an IEQ-algebra.

By Theorem 4.8, we see that in residuated EQ-algebra such as E , ev-
ery n-fold implicative filter is an n-fold pseudo implicative filter, but the
converse is not true. Now, we show that under certain conditions an n-fold
pseudo implicative filter of E is an n-fold implicative filter of E .

Theorem 6.15. Let E be a residuated EQ-algebra and F be a filter of E.
If F is an n-fold implicative filter of E, then F is an n-fold fantastic filter
of E, for all n ∈ N.

Proof: Let F be an n-fold implicative filter of E and y → x ∈ F . Since
x ≤ ((xn → y) → y) → x, we have xn ≤ (((xn → y) → y) → x)n and
(((xn → y) → y) → x)n → y ≤ xn → y. Also, we have

y → x ≤ ((xn → y) → y) → ((xn → y) → x)

= (xn → y) → (((xn → y) → y) → x)

≤ ((((xn → y) → y) → x)n → y) → (((xn → y) → y) → x).

Thus

((((xn → y) → y) → x)n → y) → (((xn → y) → y) → x) ∈ F

and so by Theorem 4.5(iii), ((xn → y) → y) → x ∈ F . Therefore, F is an
n-fold fantastic filter of E .

Theorem 6.16. Let F be a filter of residuated EQ-algebra E with least
element 0. Then F is an n-fold implicative filter of E if and only if F is
an n-fold pseudo implicative filter and n-fold fantastic filter of E.

Proof: Let F be an n-fold pseudo implicative filter and n-fold fantastic
filter of E and (xn → 0) → x ∈ F . Since xn → x2n ≤ (x2n → 0) → (xn →
0), by Theorem 3.11, we have xn → x2n ∈ F and so (x2n → 0) → (xn →
0) ∈ F . Also, F is an n-fold fantastic filter of E and (xn → 0) → x ∈ F .
Thus

((xn → (xn → 0)) → (xn → 0)) → x = ((x2n → 0) → (xn → 0)) → x ∈ F.
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On the other hand, since (x2n → 0) → (xn → 0) ∈ F and F is a filter of
E , we get x ∈ F . Hence, F is an n-fold implicative filter of E .
By Theorems 6.15 and 4.8, the proof of the converse is clear.

Theorem 6.17. Let E be a residuated EQ-algebra. Then E is an n-fold
implicative EQ-algebra if and only if E is both n-fold pseudo implicative
EQ-algebra and n-fold fantastic EQ-algebra.

Proof: Let E be an n-fold implicative EQ-algebra. Then by Proposition
4.15, {1} is an n-fold implicative filter of E . Thus by Proposition 3.9, The-
orems 6.15 and 4.8, {1} is an n-fold fantastic filter and pseudo implicative
filter of E and so by Propositions 6.11 and 3.22, E is both n-fold positive
implicative EQ-algebra and n-fold fantastic EQ-algebra.

Conversely, let E be both n-fold pseudo implicative EQ-algebra and
n-fold fantastic EQ-algebra and u = xn → y. Then

u = xn → y = x2n → y = xn → (xn → y) = xn → u.

By Theorem 6.10(ii), we have

((xn → y) → x) → x = (u → x) → x ≥ (xn → u) → u = u → u = 1.

Hence (xn → y) → x ≤ x. By Proposition 2.2(ii), x ≤ (xn → y) → x.
Thus (xn → y) → x = x. Therefore, E is an n-fold implicative EQ-
algebra.

7. Conclusion

In this paper, the notions of n-fold implicative prefilter, n-fold pseudo im-
plicative prefilter, n-fold fantastic prefilter, n-fold obstinate prefilter are
introduced and some related results are investigated. At first, equivalent
definition of them are studied and the relation between them are investi-
gated. Then by introducing the notions of n-fold (pseudo) implicative EQ-
algebra and n-fold fantastic EQ-algebra, some related results are studied.
In addition, by using the concept of 1-fold pseudo implicative filter of an
EQ-algebra E , it is shown that E/F is a good EQ-algebra and by using the
concept of 1-fold fantastic filter of a good EQ-algebra E , it is shown that
E/F is an IEQ-algebra.
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