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Abstract: Large variations in the polarization resistance of Lag ¢Srg4Cog2FepgO3.5 (LSCF) cathodes
are reported in the literature, which are usually related to different preparation methods, sinter-
ing temperatures, and resulting microstructures. However, the influence of the electrolyte on the
electrochemical activity and the rate-limiting steps of LSCF remains unclear. In this work, LSCF
nanostructured electrodes with identical microstructure are prepared by spray-pyrolysis deposition
onto different electrolytes: ZI‘O,84Y0.1601'92 (YSZ), Ceo‘gcdo.l 01.95 (CGO), LaO.gsro‘lGao‘gMg0‘202'85
(LSGM), and Bij 5Y(503.5 (BYO). The ionic conductivity of the electrolyte has a great influence
on the electrochemical performance of LSCF due to the improved oxide ion transport at the elec-
trode/electrolyte interface, as well as the extended ionic conduction paths for the electrochemical
reactions on the electrode surface. In this way, the polarization resistance of LSCF decreases as the
ionic conductivity of the electrolyte increases in the following order: YSZ > LSGM > CGO > BYO,
with values ranging from 0.21 Q cm? for YSZ to 0.058 Q) cm? for BYO at 700 °C. In addition, we
demonstrate by distribution of relaxation times and equivalent circuit models that the same rate-
limiting steps for the ORR occur regardless of the electrolyte. Furthermore, the influence of the
current collector material on the electrochemical performance of LSCF electrodes is also analyzed.

Keywords: nanostructured materials; SOFC; cathode; electrolyte; spray-pyrolysis

1. Introduction

Solid oxide fuel cells (SOFCs) are one of the most promising technologies for efficient
power generation and hydrogen production [1]. The main challenges regarding the com-
mercialization of these devices are the reduction of the operating temperature and the
development and optimization of alternative cell components (electrolyte, electrodes and
interconnectors) with the aim of reducing their production costs [2,3].

One of the most limiting factors to achieve highly efficient SOFC devices at interme-
diate temperatures (600-800 °C) is the high polarization resistances of the cathode due
to the sluggish oxygen reduction reaction (ORR) compared to the hydrogen oxidation
reaction (HOR). In order to overcome this drawback, new cathode materials have been in-
Vestigated, such as Smg 5Srg 5C003.5, Lag Srg.4C005.5, (Pr,Gd)BaCo0,0s5, 5, or CazCo409. 5,
achieving remarkable results at 600 °C compared to the traditional Lag gSrg,MnO;3.5 (LSM)
cathode [4,5]. However, these cobalt-based electrodes suffer from several disadvantages,
including high thermal expansion coefficients, chemical reactivity with the electrolyte
and low phase stability after long-term operation [6-8]. In contrast, iron-cobalt based
perovskites, such as Lag ¢Srp 4Cog 2Fep §O3.5 (LSCF), exhibit moderate thermal expansion
while having a good electrocatalytic activity for ORR, which makes it one of the most
promising cathodes for SOFCs [9,10].

It is evident that the performance of SOFC electrodes depends on their intrinsic bulk
properties, which are related to the composition and crystal structure, since they affect

Nanomaterials 2022, 12, 3936. https:/ /doi.org/10.3390/nan012223936 https:/ /www.mdpi.com/journal /nanomaterials


https://doi.org/10.3390/nano12223936
https://doi.org/10.3390/nano12223936
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0001-6717-6762
https://orcid.org/0000-0002-3701-4700
https://orcid.org/0000-0002-2673-1413
https://orcid.org/0000-0002-3361-2340
https://orcid.org/0000-0003-0632-6442
https://doi.org/10.3390/nano12223936
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12223936?type=check_update&version=2

Nanomaterials 2022, 12, 3936

20f13

the electrical conduction and electrocatalytic activity for ORR. In particular, a high ionic
conductivity is required to extend the so-called triple phase boundary (TPB), where the
electrochemical reactions occur, to the whole electrode surface. In this sense, the electrode
microstructure also plays a critical role in affecting the electrode performance, since the gas
transport and number of active sites depend on the porosity and surface area.

The pristine LSCF cathode has been widely prepared by different synthetic and deposi-
tion routes, such as screen-printing, tape-casting, spray-drying, infiltration, spray-pyrolysis
and pulsed laser deposition [11-13]. The different preparation methods and sintering
temperatures have resulted in electrodes with different microstructures and, consequently,
the polarization resistance varies in a wide range from 0.08 to 122 Q2 cm? at 700 °C (Table 1).
Furthermore, different rate-limiting steps for the ORR have been identified depending on
the synthetic method and the electrolyte choice. In particular, improved transport proper-
ties at the electrode/electrolyte interface have demonstrated to enhance the electrochemical
performance by extending the surface paths for electrochemical reactions [14]. In fact,
previous studies on infiltrated cathodes demonstrated a great influence of the ionic conduc-
tivity and surface exchange coefficient (ks) of the electrolyte scaffold on the electrochemical
performance of the electrodes [15-17]. These results suggest that single electrodes could
also be influenced by the level of ionic conductivity of the electrolyte.

Table 1. Brief summary of the polarization resistances (Rp) and reaction order (m) of the rate-
limiting steps of the ORR of Lag ¢Srg 4Fe §Cog203.5 (LSCF) at 700 °C reported in the literature. The
temperature is included when data is not available at 700 °C.

Fabrication Technique Electrolyte Rp (Q cm?) m Ref.
Spray-pyrolysis Z10.84Y0.1601.92 0.21 ONC’?9 This work
Spray-pyrolysis Cep9Gdp101.95 0.11 O~501 This work
Spray-pyrolysis Lag9Srp1GagsMgp 2035 0.089 ON£9 This work
Spray-pyrolysis Bi;5Y(503 0.058 O~f7 This work
Spray-pyrolysis Ce.8Gdp 2019 0.7650°¢ - [18]
Spray-pyrolysis Cep8Gdp2019 0.9 - [19]

Freeze-Drying CepgGdp2019 0.3 - [20]
0
Spray-pyrolysis CepsGdp2019 10600°C 0.20 [21]
0.71
Screen-printing Cep9Gdy101.95 0.12 - [22]
Solid-state reaction Cep9Gdp101.95 15750°C 0 28 [23]

Magnetron sputtering Cep.9Gdp101.95 122 - [24]
Screen-printing Ce9Gdy101.95 0.21750°C - [25]
Screen-printing Sm(,CeygOi9 0.55600°C 8Zi [26]
Co-precipitation BaZrygY(203.5 0.700600°C 8;8 [27]
Spray-pyrolysis Zr084Y01601.92 0.3650°¢C - [28]
Spray-pyrolysis Zr)84Y01601.92 3600°C - [29]

Spray-drying Zr084Y0.1601.92 2 - [30]
Spin coating Zr0.84Y0.1601.92 0.17%0°¢ - [31]
Pulsed laser deposition Z1084Y01601.92 9750°C - [13]
Tape casting Zr084Y0.1601.92 0.4 - [32]

. ~0

Spray-drying Zr984Y01601.92 5 025 [33]
Spray—drying Lao_g SI‘OJ GaOISMgOQ 03_5 0.19 - [34]
Screen-printing Lag gSrg2Gag sMgp203-5 0.08 0.10 [35]

0.82
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These findings reveal the necessity of elucidating the influence of the electrolyte on the
electrochemical properties of LSCF to better understand the electrode processes involved in
the ORR and thereby being able to improve its performance. For this reason, in this study,
nanostructured LSCF cathodes were prepared by spray-pyrolysis deposition on different
oxide ion conducting electrolytes at reduced temperature to ensure negligible reactivity at
the electrode/electrolyte interface. The structural and microstructural characterizations
were carried out by X-ray diffraction (XRD) and scanning electron microscopy (SEM),
respectively. A complete electrochemical characterization was carried out by impedance
spectroscopy (EIS) at different oxygen partial pressures. The impedance spectra were
analyzed by equivalent circuit models and distribution of relaxation times (DRT) to evaluate
the nature of the electrode response as a function of the electrolyte. Additionally, the
influence of the current collector layer (Pt, Ag and Au) on the electrochemical performance
of LSCF was also tested.

2. Materials and Methods
2.1. Materials Preparation

Pellets of the electrolyte materials, Zr g4 Y0.1601.92 (YSZ, Tosoh), Ce.9Gdp 101.95 (CGO,
Rhodia, Frankfurt, Germany), and Lag¢Sr1GagsMgp202.85 (LSGM, Kceracell, Chubu-
myeon, Republic of Korea), were prepared from commercial powders. The powders were
compacted into disks of 10 mm and 1 mm of diameter and thickness, respectively, and
then sintered at 1400 °C for 4 h in air. The Bij 5Y(503.5 (BYO) pellets were prepared from
freeze-dried precursor powders and sintered at 1000 °C for 15 min in air as described
elsewhere [16]. The relative density of all pellets was above 97%.

The Lag ¢St 4Cog2Fep303.5 (LSCF) cathode was deposited by spray-pyrolysis onto
YSZ, CGO, LSGM and BYO electrolytes from an aqueous solution (0.02 mol L~') by
dissolving stoichiometric amounts of the corresponding metal nitrate salts: La(NO3)3-6H,0,
Sr(NO3),, Co(NO3)3-6H0, and Fe(NO3)3-9H,0 (Merck, purity above 99%) in Milli-Q water
under continuous stirring. The electrolyte substrates were heated on an aluminum block
at 250 °C and then the precursor solution was sprayed with a flow rate of 20 mL h~! for
1 h on each pellet face to obtain symmetrical cells. More details about the spray-pyrolysis
procedure can be found elsewhere [11]. After the deposition, the layers were calcined in a

furnace in air at 700 °C for 1 h with a heating/cooling rate of 2 °C min .

2.2. Structural, Microstructural and Electrical Characterization

The composition and structure of the materials were studied by X-ray powder diffrac-
tion (XRD) with an Empyrean PANalytical diffractometer (CuK«; » radiation). The XRD
patterns were analyzed with the Highscore Plus and GSAS suite software (3.0.5, PANalyti-
cal, Almelo, The Netherlands) [36,37]. The morphology of the LSCF films was observed by
scanning electron microscopy in a FEI-SEM (Helios Nanolab 650, Hillsboro, OR, USA).

The electrochemical properties of the symmetrical cells were investigated by impedance
spectroscopy with a Solartron 1260 FRA (Solartron Analytical, Hampshire, UK) in the fre-
quency range of 0.01-10° Hz and an AC amplitude of 50 mV. The impedance spectra were
collected as a function of the temperature on cooling (700450 °C) and the oxygen partial
pressure (1073~1 atm) by using an electrochemical cell equipped with an oxygen sensor
and pump [38]. The data were analyzed by distribution of relaxation times (DRT) and
equivalent circuit models with the help of DRTtools (1.0, Matlab 7.2) and ZView software
(2.9¢, Scribner Associates, Southern Pines, NC, USA), respectively [39,40]. The influence
of the current collector layer on the performance of LSCF electrodes was also investigated
using Pt-paste (Metalor Marin, Switzerland), Ag-paste (Sigma-Aldrich St. Louis, MO, USA),
and Au-paste (Metalor), which were similarly painted on both faces of the pellets and then
calcined at 700 °C for 30 min.
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3. Results
3.1. Phase Formation

The XRD patterns of the LSCF cathode, deposited by spray-pyrolysis at 250 °C onto
different electrolytes and calcined at 700 °C for 1 h, are displayed in Figure 1. The XRD patterns
were adequately refined by the Rietveld method in the Pm3m space groups for LSCF, Pbnm
for LSGM and Fm3m for YSZ, CGO and BYO, obtaining a good fitting of the experimental
data with low disagreement factors (Rwp = 5-6%) (Table 2). Moreover, additional diffraction
peaks associated with secondary phases are not observed due to the rapid fabrication and
low temperature used in the present work. This avoids the formation of undesired reaction
products, such as SrZrO; and LayZr,Oy, at the LSCF/YSZ interface [2841].
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Figure 1. Rietveld refinement of LSCF electrode deposited onto different electrolytes at 700 °C,
() ZrogaY01601.92 (YSZ), (b) CepoGdo.101.95 (CGO), () LaggSro.1GaggMgp 20285 (LSGM) and
(d) Bi15Y0.503 (BYO).

Table 2. Structural and microstructural parameters of LSCF cathode deposited onto different elec-
trolytes by spray-pyrolysis.

Lattice Cell Volume o
Electrolyte Parameter (A) (A3) Rwyp (%) dyscr (nm)
YSZ 3.8828 (4) 58.540 (2) 4.57 24
CGO 3.8876 (4) 58.540 (2) 4.86 20
LSGM 3.8820 (4) 58.540 (2) 4.01 -
BYO 3.8883 (4) 58.540 (2) 3.01 22

It has to also be mentioned that LSCF and LSGM phases are not easily discernible in
the pattern because their diffraction peaks appear overlapped, since the crystal structure
and cell parameters are similar (Figure 1c). It is also worth noting that bulk LSCF usually
crystallizes with a rhombohedral symmetry (s.g. R3c). However, a cubic polymorph is
stabilized at room temperature due to the different oxygen non-stoichiometry and surface
free energy of a nanostructured LSCF cathode. A similar behavior was previously observed
for related compositions, such as Lag St 4Cog gFep203.5 and Lag Srg 4C0O3.5 [42,43].
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Regarding the cell parameters of LSCEF, these remain practically unaltered, regardless
of the electrolyte used, ranging between 3.8820(4) and 3.8883(4) A (Table 2). This finding
further confirms that compounds with the same crystal structure and cation composition
are obtained. The average crystallite size of LSCF, calculated by the Scherrer’s equation, is
also independent of the electrolyte, varying between 21 and 24 nm (Table 2).

3.2. Microstructure

SEM images of the LSCF layers deposited onto different electrolytes with a thickness
of approximately 1 mm are shown in Figure 2. The electrode layers have a similar thickness
of 8 £ 1 um and exhibit good adhesion to the substrates without delamination or cracks
despite the low sintering temperature used (700 °C). A porous microstructure is achieved
due to incomplete decomposition of the precursors during the deposition process at 250 °C,
which are removed during the post-thermal treatment at 700 °C, creating additional poros-
ity [42]. It should also be noted that no substantial differences are observed between the
electrode morphologies regardless of the electrolyte used (Figure 2a—d). In all cases, the
nanostructured electrodes show a laminated morphology, which is significantly different
to that observed for traditional screen-printed LSCF electrodes sintered between 1000 and
1200 °C [22,30].

Figure 2. SEM images of the LSCF deposited on different electrolytes at 700 °C, (a) YSZ, (b) CGO,
(c) LSGM and (d) BYO.

Lowering the deposition temperature has additional benefits for the electrode perfor-
mance because the cation interdiffusion between the cell layers is minimized, preventing
the chemical reactivity at the electrode/electrolyte interface [44]. In a previous work,
LSCF cathode was directly deposited by spray-pyrolysis on YSZ electrolyte and negligible
degradation was observed at low temperature after long-term operation [28].

Moreover, the thermal strain gradients caused by the mismatch between the thermal
expansion behavior of the LSCF electrode (14.8-10~° K~1) and the electrolytes (10.3,12.1,
11.5 and ~13.6:107% K~! for YSZ, CGO, LSGM and BYO, respectively) may cause delamina-
tion or cracks, negatively affecting the performance of conventional electrodes prepared at
high sintering temperatures [45-47]. However, this drawback is reduced in nanostructured
electrodes with a large number of grain boundary interfaces [11].
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3.3. Electrochemical Characterization

The electrical characterization was carried out by impedance spectroscopy in symmet-
rical cells at open circuit voltage using Pt as current collector.

The impedance spectra show similar features for all the electrolytes, where the asym-
metric arc suggests the presence of different contributions to the overall polarization
resistance (Figure 3). The impedance spectra were firstly analyzed by distribution of re-
laxation times (DRT) to distinguish the different processes involved in the ORR (Figure 3).
Two main contributions are observed in the DRT spectra regardless the electrolyte com-
position. The high frequency contribution (HF), centered at ~103 Hz, is usually attributed
to charge transfer processes at the electrode/electrolyte interface [48,49], while the low
frequency process (LF), located between 10 and 100 Hz, is assigned to charge transfer
or oxygen dissociation processes occurring on the electrode surface [50,51]. The latter
process is the main resistive contribution to the overall polarization resistance. A minor
contribution is also detected at a very low frequency of ~1 Hz, labelled as D, which is
related to gas-phase diffusion limitations into the electrode [48,49]. Similar findings have
previously been observed by DRT analysis for commercial, nanostructured, and nanofiber
LSCEF electrodes [52].
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Figure 3. Impedance spectra (top) and DRT analysis (bottom) at 700 °C of the LSCF electrode
deposited on (a,b) YSZ, (¢,d) CGO, (e,f) LSGM and (g,h) BYO. The inset of (g) shows the equivalent
circuit used to fitting the data.

Based on the DRT analysis, the impedance spectra were fitted using the equivalent
circuit of the inset of Figure 3g, where L is an inductor attributed to the electrochemical
setup and Rq represents the electrolyte resistance. Each specific electrode process was
fitted by considering an RQ element, where R is a resistance in parallel with a constant
phase element Q. Since the diffusion process D is rather low, it was not considered during
the fitting.

For a better understanding of the influence of the electrolyte on the ORR properties, each
electrode contribution was studied separately as a function of temperature (Figure 4). It is
found that the resistance of the high (Ryr) and low frequency (R ) contributions are affected
by the composition of the electrolyte. In particular, Ryp decreases as the ionic conductivity
of the electrolyte increases, YSZ > CGO > LSGM > BYO, attributed to a faster oxide ion
transfer at the electrode/electrolyte interface. This is further confirmed by the lower activation
energy of BYO (1.08 eV) compared to CGO (1.14 eV), LSGM (1.25 eV) and YSZ (1.33 eV)
(inset Figure 4a). Similarly, Ry r is strongly affected by the ionic conductivity of the electrolyte,
indicating that the electrolyte not only improves the oxide-ion transfer at the interface, but also
extends the surface paths for the electrochemical reaction [53]. Similar findings were observed
for different active layers incorporated between the cathode and the electrolyte [14,53,54]. As
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expected, the corresponding activation energy values for Ry are higher than those for Ry,
ranging from 1.35 eV for BYO to 1.61 eV for YSZ (inset Figure 4b).
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Figure 4. Temperature dependence of (a) Ryp and (b) Ryp resistance and (¢) Cyrp and (d) Crp
capacitance contributions of LSCF electrodes deposited on different electrolytes.

In contrast, the capacitances of the high (Cyr) and low (Cpf) frequency contributions
are nearly independent of the measuring temperature and the electrolyte (Figure 4c,d). It is
well reported that the electrode capacitance increases for those electrodes with high TPB
length [55]. For this reason, the LSCF nanostructured electrodes exhibit high capacitance
values of ~6-1072 and 2-10~2 F cm 2 for the HF and LF contributions, respectively.

Figure 5 shows the overall polarization resistance (Rp = Ryr + Rif) as function of the
temperature for LSCF deposited onto the different electrolytes. In the whole temperature
range, Ry, decreases as the ionic conductivity of the electrolyte increases in the following
order: YSZ > CGO > LSGM > BYO. The LSCF deposited onto BYO shows an R, value of
only 0.058 Q2 em? at 700 °C, which is one of the lowest values reported in the literature for
pure Lag 65r9.4Cop 2Fep O35 (Table 1). Similarly, the activation energy of Ry, decreases from
1.48 eV for YSZ to 1.39 eV for BYO, which confirms that an increase of the ionic conductivity
of the electrolyte induces faster ORR kinetics.

In order to get further insight into the rate-limiting steps involved in the ORR, the
impedance spectra were collected as a function of the oxygen partial pressure (pOy).
The relationship between the electrode polarization resistance of each process and the
oxygen partial pressure can be expressed as R = Ry (pO,)~"", where the parameter m
provides information about the nature of the electrode processes. Despite the fact that
the complete ORR can be summarized as follows, Oy + 2V + 4e’ <+ 207, this reaction
comprises multiple sub-steps with different m values that are displayed in Figure 6a:
(1) the oxygen adsorption on the electrode surface (m =1, Oz,gss — O2, 445); (2) the oxygen
gas dissociation on the electrode surface (m =1/2, Oy 435 — 20,45); (3) one electron oxygen
reduction (m = 3/8, Opg +¢ — O);) and (4) (m =1/8, O/, +¢' — O),) or (5) complete
reduction of the oxygen atoms (m = 1/4, O,y +2¢ + V — OF); and (6) the oxygen ion
incorporation at the electrode/electrolyte interface (m =0, Og,ele ctrode O;"eletmlyte) [56].
It has to be noted that all these steps are not detectable for a specific electrode. Only
the rate-limiting steps are discernible in the impedance spectra. In this context, different
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rate-limiting steps have been proposed in the literature for pure LSCF, obtained from
different preparation routes and deposited onto different electrolytes (see Table 1), which
difficulties the possibility to stablish a clear relationship between the electrolyte used and
the rate-limiting steps involved in the ORR. It its worth mentioning that this is a critical
factor to design an adequate electrode microstructure and to improve the cell performance
and durability.

100 ¢
F Ea(eV)
® |Ysz |[14810.03
® |CGO |143:0.05
@ |LSGM | 1.40:0.06
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Figure 5. Overall polarization resistance of LSCF nanostructured electrodes deposited onto different
electrolytes as a function of temperature. The inset figure compares the polarization resistance at 700 °C.
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Figure 6. (a) Schematic diagram of the different sub-reactions of the oxygen reduction reaction.
Impedance spectra at 700 °C of (b) LSCF/YSZ/LSCF and (c¢) LSCF/CGO/LSCF cells as a function of
the oxygen partial pressure and the corresponding (d,e) DRT plots.

Figure 6b,c show representative impedance spectra at 700 °C and different oxygen
partial pressures for LSCF deposited onto YSZ and CGO electrolytes, respectively. Since
the closeness of the characteristic frequencies of each sub-reaction hinders the identification
of the different electrode processes, DRT analysis of the impedance data was performed
(Figure 6d,e). The DRT analysis confirms the presence of two main electrode contributions
for all samples in the whole pO; range studied. As expected, the higher the pO; the lower
overall electrode polarization resistance. Ryp and Ry r contributions were determined by
the integral area under each peak and represented in Figure 7a,b, respectively. The HF
process is nearly independent of the oxygen partial pressure for all samples (im ~ 0), con-
firming that this process is related to the oxide ion transport across the electrode/electrolyte
interface. On the other hand, the LF process shows a m ~ 0.5 for CGO, LSGM, and BYO elec-
trolytes, which is attributed to oxygen dissociation at the electrode surface [27]. However, a
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different rate-limiting-step is observed for LSCF deposited on YSZ. In this case, the m ~ 3/8
indicates that this process is possibly assigned to oxygen dissociative adsorption followed
by charge transfer [55,57]. The poorer oxide ion conductivity of YSZ at intermediate tem-
peratures, in comparison to CGO, LSGM, and BYO, could explain the different behavior.
In fact, the ionic conduction in YSZ cell is limited at the electrode/electrolyte interface,
inducing a slower charge transfer at the electrode surface. In the literature, different ORR
processes were found, due to the different synthetic methods and sintering temperatures
employed, which highly affect the electrode microstructure and thus the electrochemical
properties (Table 1). For instance, Wang et al. [26] found two rate-limiting steps for screen-
printed LSCF on Sm-doped CeO; electrolyte with m = 0.24 and 0.44. Marinha et al. [21]
observed three processes for spray-pyrolysis LSCF electrodes on CGO with m = 0, 0.28 and
0.71 whiles Kim et al. [23] observed only two processes with m = 0 and 0.28 (Table 1).
Moreover, in contrast to previous works [45,47], gas diffusion limitations (m = 1) are not
observed for the spray-pyrolysis electrodes (Table 1). Hence, the nanostructured LSCF
electrodes, deposited by spray-pyrolysis at low temperature, have an adequate porosity,
avoiding problems related to gas diffusion.
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Figure 7. Polarization resistances of the (a) HF and (b) LF electrode contributions of LSCF with
different electrolytes as a function of the oxygen partial pressure at 700 °C.

3.4. Influence on the Current Collector Layer

Finally, we have studied the effect of the current collector material on the electrochem-
ical properties of the LSCF nanostructured electrode deposited onto a CGO electrolyte. It
is well known that an adequate current collector is needed to ensure a uniform electric
field and proper efficiency of the cell. Some current collectors, such as Pt, can be electro-
chemically active for ORR, or even react with the electrode [58]. For these reasons, Ag and
Au pastes are also investigated as current collectors in a symmetrical cell configuration.
Figure 8a compares the impedance spectra of LSCF/CGO/LSCEF cells with different current
collectors, where almost identical R, values are observed for the Pt- and Ag-containing
cells (~0.29 O cm? at 650 °C). However, the Au-containing cell shows slightly higher values
(0.34 O cm?).

A deeper analysis of the different electrode contributions to the overall polariza-
tion resistance reveals that the HF processes, attributed to the oxide ion transfer at the
electrode/electrolyte interface, are similar for all samples (Figure 8b). Thus, the main
differences between the cells are related to changes in the LF response. In particular, the
cell with Au current collector shows the highest Ry p values. SEM images of the current
collector surface reveal a good porosity for both Pt and Ag cells. In contrast, a dense layer
with low superficial porosity is observed for the Au current collector, which partially blocks
the active sites on the electrode surface and, as consequence, the Ry p contribution increases
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(Figure 8c—e). A similar behavior was observed for LaggSrg,FeOs.s electrode with Au
current collector when compared to Pt and Ag [59].
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Figure 8. (a) Impedance spectra at 650 °C of LSCF electrodes deposited onto CGO electrolyte with
Pt, Ag and Au as current collectors and (b) electrode resistance contributions as a function of the
temperature. SEM images of the surface of (c) Pt, (d) Ag and (e) Au current collectors after the
electrochemical tests.

4. Conclusions

Nanostructured Lag ¢Srg4Cog2Fep O35 (LSCF) electrodes were prepared by spray-
pyrolysis deposition onto different electrolytes: ZrygsY0.1601.92 (YSZ), CegoGdy101.95
(CGO), Lao_gsro.lGao.gMg0,202.85 (LSGM), and Bi1,5YO.503_5 (BYO). The electrochemical
measurements revealed a direct relationship between the ionic conductivity of the elec-
trolyte and the polarization resistance of the cells, which was improved by a faster oxide
ion transport at the electrode/electrolyte interface and an extension of the surface paths
for the electrochemical reactions. The polarization resistance of LSCF deposited onto BYO
was 3.5 times lower than that observed for YSZ, i.e., 0.058 and 0.21 Q) cm? at 700 °C, re-
spectively, which was attributed to the poorer ionic conductivity of YSZ at intermediate
temperatures. The analysis of the impedance spectra by distribution of relaxation times and
equivalent circuit models revealed that similar rate-limiting steps are involved in the ORR
for CGO, LSGM, and BYO electrolytes, which were assigned to oxygen gas dissociation on
the electrode surface and oxide ion incorporation at the electrode/electrolyte interface. An
additional study regarding the influence of the current collector layer revealed that both
Pt and Ag are suitable materials to obtain representative polarization resistance values,
while Au partially blocks the active sites for oxygen reduction on the electrode surface. All
these results demonstrate that the ionic conductivity at the electrode/electrolyte interface
is a bottleneck for the electrode performance of LSCEF, results that can be extended to other
electrodes for SOFCs.
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