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Abstract

Knowing the spectral distribution of solar radiation is required to esti-
mate the performance of photovoltaic modules, especially for thin-film mod-
ules. This is not a trivial problem due to the large number of environmental
factors that affect this distribution as solar radiation passes through the at-
mosphere. The use of techniques of artificial intelligence and data mining can
help in the development of models to address this problem. A system based
on these techniques is proposed to predict the solar global spectral irradi-
ance requiring only a few meteorological variables as inputs. The evaluation
of the proposed system has been carried out for different wavelengths taking
into account the spectral response of different technologies of thin-film pho-
tovotaic modules. The errors in predicting solar global spectral irradiance
for wavelengths that range between 350 and 900 nm and air mass lower than
2.1 are smaller than 7% on clear-sky days and than 16% for cloudy days,
which is a significant improvement on other proposed models. Moreover,
an open access implementation of the developed system is available at the
URI: http://fvred1.ctima.uma.es. It could be useful for engineers and
companies in the fields of the environment and renewable energies.
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11 1. Introduction

12 Renewable energy has emerged as an increasingly competitive way to
13 meet new power generation needs. Incidentally, the serious problems posed
14 by climate change means that renewable energies are called on to play an
15 increasingly important role in the current energy mix. According to the
16 data included in the Report published by the International Energy Agency
17 (Report IEA, 2017), in 2016 a total of 75 GW of photovoltaic energy (PV)
18 were installed in the world, representing an increase of 50 % on the power
19 installed in 2015.

This growth in the number of installations connected to the electricity
grid poses an important challenge in terms of its correct integration in the21

electricity system: the prediction of its production. Therefore, forecasting22

the power that would be produced by photovoltaic plants is a matter of in-23

terest but is not a straightforward problem as this power depends on the24

availability of the solar resource, and it is difficult to predict. In addition to25

the main influential parameters to determine the performance of a PV mod-26

ule (irradiance and cell temperature), solar spectral distribution is another27

important factor, mainly when modules of solar thin-film technologies are28

used [1, 2, 3].29

The different gasses in the Earth’s atmosphere does not affect all types of
photons in the same way and some wavelength bands experiment a significant31

reduction. Therefore, the solar spectrum presents a high variability with32

location and time. Two kinds of models to estimate the spectrum at Earth’s33

surface can be found in the literature. On the one hand, there are radiative34

transfer methods, which are complex and rigorous [4, 5, 6]. They take into35

account measured vertical profiles of the layers of the atmosphere, which36

constitute a massive dataset. Consequently, they require high computational37

resources and large execution times.38

On the other hand, the atmospheric transmittance methods are simpler
models where each physical phenomenon that occurs in the atmosphere is40

modelled by a simple formula. These expressions are combined to synthesise41

the shape of the spectrum at specific locations and conditions. Bird presents42

a very simple model to estimate the solar spectrum requiring minimum com-43

putational resources, [7]. It is based on several previous works, mainly the44

papers by [8] and [9]. In the subsequent work by [10] the SPCTRAL2 model45

is described incorporating several improvements to estimate the diffuse spec-46

tral irradiance taken from [11]. Gueymard presents SMARTS2 [12], a simple47
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radiation model to estimate the spectrum for cloudless atmosphere for ev-48

ery plane orientation that outperforms previous models, especially when the49

zenith angle is high. However, according to [13], the success of these methods50

depends on the availability of certain atmosphere indexes that are hard to51

find for a specific location, which makes it difficult to apply for photovoltaic52

applications.53

Data mining techniques can be incorporated to improve these models.54

In the research by [14], a complex physical model is employed repeatedly55

to simulate the spectral irradiance for 153 discrete wavelengths points from56

280 to 700 nm for different combinations of atmospheric conditions. Then,57

a multilayer perceptron with 153 neurons in the output layer is trained with58

this dataset. Once the neural network has been trained, the solar spectrum59

for specific conditions can be obtained with minimum computation time. [15]60

have developed another neural network model to estimate the solar spectrum61

that is also valid for covered skies. For each discrete wavelength point from62

a set of 66 selected values (from 300 to 1100 nm), a different neural network63

is trained to obtain the spectral irradiance at that wavelength, using the64

spectral irradiance value for a cloudless sky (using the SPCTRAL2 model65

[10]), the air mass, and the global and direct clearness indices as inputs. [16]66

present a multilayer perceptron to obtain the spectral irradiance distribution67

using only the horizontal global irradiance, the air temperature, the air mass68

and the clearness index as inputs. In addition, a self-organised map was69

used in order to perform a selection from the most representative samples70

from the original dataset improving the generalisation power of the neural71

network (this selection technique was previously used in a work by [17]). In a72

paper by [18], a statistical analysis is performed on a dataset of experimental73

spectra measured over one year. They conclude that all these spectra can be74

classified according to their shapes into a few clusters, each one characterised75

by a representative spectrum (its centroid) and its APE (average photon76

energy), a value that can be calculated from the spectrum itself. All the77

spectra of the same type are very similar and only differ by a scaling factor.78

In a later paper, [19] study a way to obtain the solar spectrum using only79

a few meteorological parameters that are easily available at every weather80

station.81

Our aim is to build a system that helps solar engineers to forecast the82

solar spectrum based on a reduced number of meteorological magnitudes83

(that can be easily measured at surface level using low cost instruments) and84

solar astronomical relationships (such as the sun elevation angle, which can85
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be accurately accessed from a particular location, date and time). We seek86

to solve this problem by combining the use of several techniques with the aim87

of achieving a more accurate prediction of solar spectra. In other contexts,88

like prediction of air and dew temperature, where meteorological variables89

are used as inputs, the use of combined data mining models improves results90

obtained too, [20].91

The rest of the paper is organized as follows: Materials and methods92

are detailed in Section 2. The proposed methodology is described in Sec-93

tion 3. The description of the used dataset to train the models is provided94

in Section 4. A discussion of the results obtained when comparing the mea-95

sured and predicted spectra using the different proposed models is presented96

in Section 5. The conclusions of this work are summarised in Section 6.97

The description of the implemented open access software that uses the best98

trained models is presented in Appendix A. It can be used to generate solar99

spectra providing only a few meteorological parameters.100

2. Materials and methods101

This section presents briefly the input parameters used to characterise102

and to predict solar global irradiance spectra. We then describe the basis of103

the data mining models used in the system (all of them induced by implemen-104

tations available in the Weka framework [21]). Finally, we enumerate some105

metrics and methods used to estimate the performance of analyzed models.106

2.1. Expression to calculate the atmospheric parameters107

In addition to the meteorological parameters normally used in spectra108

characterisation and prediction, which are described in Section 4, the fol-109

lowing atmospheric parameters were used as independent variables in the110

different models analysed:111

• Air mass, AM , that is estimated using the following expression [22]:

AM =
1

sinα + 0.50572(α + 6.07995)−1.6364
(1)

where α is the solar elevation (expressed in degrees). The coefficients112

in this expression were estimated using numerical data obtained from113

the ISO Standard Atmosphere model (ISA) that are valid for the mea-114

surements used in our study. The solar elevation is determined by [23]:115
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α = arcsin(sin δsinφ+ cos δ cosφ cosω) (2)

while δ is the Earth’s declination, φ the latitude and ω the local hour116

angle.117

• Clearness index, Kt, that is estimated using [23]:

Kt =
Gt

G0

(3)

where Gt is the measured horizontal global irradiance and the solar
extraterrestrial irradiance, G0, is calculated as [23]:

G0 = IscE0 sinα (Wm−2) (4)

while Isc is the solar constant (1367 Wm−2) and E0 is the eccentricity
correction factor. This factor is estimated as [24]:

E0 = 1.000110+0.034221 cos Γ+0.001280 sin Γ+0.000719 cos 2Γ+0.000077 sin 2Γ
(5)

where Γ is the day angle that is estimated using the day number of the
year dn (1 ≤ dn ≤ 365) :

Γ =
2π(dn − 1)

365
(6)

2.2. Classification models118

The classification models analyzed to deal with non-numerical attributes119

are as follows: ZeroRules and Decision Stump (considered as the base line120

of the classifiers), Näıve Bayes, IB1 (a k-nearest neighbour model that only121

consider the closest example), MLP (multi-layer perceptron), J48 (imple-122

mentation of C4.5, a decision tree), VFDT (an incremental decision tree123

algorithm particularly appropriate for large datasets) and Random Forest124

(an evolution of bagging that includes the ability to reduce overfitting most125

of the time). A detailed description can be found in [25]. They are succinctly126

described in the following subsections.127
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2.2.1. Näıve Bayes128

This algorithm is one of the simplest variants using the Bayes Rule [26]:

P (A | B) =
P (B | A)P (A)

P (B)
(7)

It seeks to estimate the posterior probability P (class | observation) of each129

class given an observation and then selects the most likely class. Although130

the attributes must supposedly be conditionally independent, this algorithm131

performs very well even when that assumption does not occur. It can deal132

either with categorical or numerical attributes and it is robust in the presence133

of noise or missing attributes.134

2.2.2. K-nearest Neighbour135

The instance-based algorithms are another very simple approach, but that136

simplicity does not imply poor performance. They are based on determining137

which examples in the dataset are the most similar to the new observation.138

The output of the algorithm will take in consideration such information and139

calculate a distance function. One of the most commonly used methods is the140

k-nearest neighbour (where k refers to the number of neighbours to consider)141

[27]. One of the objections to these methods is the computational cost that142

depends on the dataset size as the observation must be compared against all143

the examples in the dataset.144

2.2.3. Multilayer perceptron145

A multilayer perceptron (MLP) is a feedforward artificial neural network146

that generates a set of outputs from a set of inputs. An MLP is characterized147

by several layers of input nodes connected as a directed graph between the148

input and output layers. It is trained using the Levenberge-Marquardt back-149

propagation algorithm, in which the artificial neural networks are organised150

in layers and send their signal forward, and the errors are propagated back-151

wards. This learning function uses an adaptive learning rate. The behaviour152

of this type of network depends on multiple factors, such as the transfer153

function and the number of neurons in the hidden layer.154

2.2.4. Decision trees155

The algorithms that induce decision trees are widely used and multi-156

ple alternatives likewise exist. Some of their characteristics are particularly157

noteworthly, such as the capacity of being easily understandable (even by158
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non-expert persons) and the ability of recursively partitioning the problem159

in order to simplify its resolution (in a divide-and-conquer strategy). One of160

the most well-known algorithms is C4.5 [28], which allows the user to work161

with numerical data (besides categorical data), missing attributes, etc. The162

algorithm for building trees employs a top-down, greedy search through the163

space of possible branches. It uses entropy and information gain to generate164

a decision tree.165

The entropy is used to calculate the homogeneity of a sample. It is166

necessary to calculate both the entropy before splitting and after splitting.167

The expression to calculate the entropies is shown in eq. 8.168

H(X) = −
n∑
i=1

p(xi) logb p(xi) (8)

where p is the frequency of attribute X with n outcomes, and b is the base169

of the logarithm, usually equal to 2.170

The information gain, I(X, Y ), is based on the decrease in entropy after
a dataset is split on an attribute X. It is calculated using eq.9.

I(X, Y ) = H(X)−H(X|Y ) (9)

In addition to the classical batch learning procedure to induce the deci-171

sion tree to consider the whole dataset (as is the case of C4.5), the decision172

tree can be induced in an incremental way, which allows better planning of173

the resources, particularly when datasets are large. One of the most used al-174

gorithms is VFDT [29], which uses Hoeffding’s concentration bounds before175

selecting the best attribute to split a node.176

2.3. Models for regression177

The proposed methodology requires the use of regression models to deal178

with numerical attributes. The methods selected are Linear regression (con-179

sidered as the base line model), M5P and REP Tree (regression trees) and180

Random Forest. In the following subsections the main ones are briefly de-181

scribed.182

2.3.1. Linear regression183

Linear regression is one of the most commonly used type of regression
models. It works with experiences characterized by numeric attributes. Lin-
ear regression is a geometric method to approximate a cloud of points (the
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experiences with n attributes) by means of a linear equation in a space of n
dimensions (the number of attributes):

a1 ∗ x1 + a2 ∗ x2 + · · ·+ an ∗ xn = a0 (10)

where all the exponents are 1.184

A linear equation represents a subspace of dimension n − 1 known as a185

hyperplane. The linear regression method obtains values for ai, with i =186

0, . . . , n in the linear equation, that is, the better approximation for the187

cloud of points (from Machine Learning point of view, the linear equation is188

an explanation of the set of experiences).189

2.3.2. M5’ (or M5P)190

M5’ is an evolution of M5 algorithm defined by [30]. It was proposed191

by [31] and it is implemented as M5P in the data mining platform called192

Weka [21]. Let us briefly describe M5. It was defined to predict values rather193

than categories. The model tree construction is based on the divide-and-194

conquer method. The training set is split by all possible tests. The error195

is measured by considering standard deviation. The test that maximise the196

error reduction is chosen. The major innovations of M5 are:197

1. Underestimating the error on unseen cases, by multiplying the error198

value by (n + v)/(n− v), where n is the size of the training set and v199

the number of parameters. Therefore, the error increases if there are200

many parameters and a small number of cases.201

2. Using a linear model in nodes where standard regression techniques are202

used, but only considering the attributes in the subtree of this node.203

3. Simplifying the linear model by eliminating parameters to minimise its204

estimated error.205

4. Pruning by considering the best between the linear model and the sub-206

tree model. If the linear model is chosen, the subtree is pruned and207

smoothed based on the number of cases in the branch, the predicted208

value and a smoothing constant are obtained.209

M5P is an evolution of M5 that uses a standard method of transforming210

a classification problem into a problem of function approximation. By using211

conditional probability, the greatest approximated probability value is chosen212

as the predicted class. Moreover, the smoothing procedure is more complex213

and is based on the linear model involved in the leaves.214
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2.3.3. REPTree215

REPTree is an algorithm from Weka. REPTree is a fast decision tree216

learner. For classification of numeric attributes, the algorithm first sorts217

all numeric fields in the data-set once, at the start of the run, and then218

uses the sorted lists to calculate the right splits in each tree node. The219

right split minimises the total variance. Related to non-numeric (discrete)220

attributes, it uses a regular decision tree with reduced-error pruning. Entropy221

is the measure considered. Missing values are dealt with by splitting the222

corresponding instances into pieces (as in C4.5).223

2.4. Ensemble models for classification or regression224

The previously exposed models (classification and regression) are needed225

to improve the two different subsystems of the global system that seeks to226

predict the solar global irradiance spectrum. The algorithm described so far227

to induce such models are used in a stand-alone way, that is, every algorithm228

induces a concrete model, but only one. Another active research area in229

supervised learning focuses on multiple classifier systems that were benefited230

from the idea of using a committee or ensemble of models to perform that231

tasks. Many approaches can be used to define a multiple-classifier system,232

but two of the most successful methods are bagging and random forest [32].233

In general, the methods are highly precise, are robust to outliers and noise234

and do not overfit. However, the results are more difficult to interpret than235

when a single decision tree is considered.236

Bagging [33] is a method that induces an ensemble of M classifiers by237

building M different datasets from the original one. Every “new” dataset is238

constructed by selecting the examples uniformly at random with replacement,239

and then a base classifier is induced by using such a dataset. Subsequently, all240

base classifiers predictions are combined with a voting method. The method241
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is shown in 1.242

Input : The data set D

for k ← 1 to M do
A sample Dk is obtained from the dataset D by means of selecting
the examples uniformly at random with replacement.
By considering Dk a base classifier Ck is induced.

end

Output: Ck classifiers, k = 1, . . . ,M . The global prediction is
obtained combining the M classifiers with a voting method.

Algorithm 1: Bagging algorithm.

243

Random forest [34] is another method, related to bagging, that induces244

a set of individual trees (no classifiers). The other main difference is the245

selection of attributes used to induce the trees, because not all attributes246

are considered: only a number N of attributes can be used in each node (in247

general, N is substantially less than the number of available attributes), It248

uses a total of M classifiers. With more details, 2 shows how performs this249

method.250

Input : The data set D

for k ← 1 to M do
A sample Dk is obtained from the dataset D by means of
bootstrap.
By considering Dk and a random selection of N attributes
(N < M), a decision tree Tk is built.

end

Output: Tk trees, k = 1, . . . ,M . The global prediction is obtained
combining the M trees with a voting method.

Algorithm 2: Random forest algorithm.

251

2.5. Error metrics252

The proposed models performances were assessed with quantitative tools,253

[35]. Specifically, the error metrics used are the relative mean absolute error254

(rMAE), the relative root mean square error (rRMSE), the mean bias error255

(MBE) and the correlation coefficient (ρ). The root mean square deviation256

(RMSD) as defined in [36] has also been used:257
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RMSD =

[
1

n

n∑
i=1

(
ŷi − ȳ
ȳ

)2
]1/2
· 100 (%) (11)

Moreover, the Kolmogorov-Smirnov two samples test has also been used
to compare the probability distribution function of different spectra. This
experimental statistic is estimated using the expression:

distm,n = max
s∈R
| ˆcpdf1(xs)− ˆcpdf2(xs)| (12)

where m and n are the size of sample 1 and sample 2, respectively, and ˆcpdf1258

and ˆcpdf2 are the estimated cumulative probability distribution functions of259

such samples.260

This value have to be less than the theoretical value cα (that depends of
the significance level, α):(

n ·m
n+m

)1/2

· distm,n < cα (13)

3. Proposed methodology261

This paper proposes relevant improvements to the system presented by262

[19], which uses both atmospheric and meteorological inputs to estimate the263

real spectrum. We can identify two different subsystems in that system: the264

one that classifies an observation, and the one that estimates the normalisa-265

tion factor for such an observation. We must remark the existence of a third266

aspect in the system, the one responsible for the calibration of the clustering267

itself (with three groups or clusters), but we will not modify it given its good268

performance.269

Then, the system for the prediction of the spectrum is divided into two270

different stages according to the scheme shown in Figure 1.271

First, the shape of the spectral distribution is determined by selecting272

one of three possible predetermined spectra. Actually, these spectra are the273

centroids of the three clusters (or groups) in which the total set of spectra274

have been previously classified [19].275

The cluster selection procedure is performed taking into account the me-276

teorological input variables. However, each cluster has thousands of spectra277

with similar shape but different heights. In order to determine the predicted278
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Classification
Subsystem to
Predict Cluster

Regression
Subsystem to
Predict
Normalization
Factor

Predicted
Cluster

Clustering
Subsystem

Solar Global
Irradiance Spectrum

Astronomical and
Meteorological Data

Cluster
Centroid

Predicted
Normalization

Factor (Et)

Clustering Subsystem

Centroid of cluster 1

Scaled spectrum
using cluster 1 and 

Normalization Factor (Et)

Figure 1: Prediction of a spectrum

spectrum with its actual height, the selected spectrum must be scaled by a279

normalization factor Et. Therefore, the second task consists in computing280

this factor also using the meteorological input values.281

Although the proposal to make the prediction in two stages is valid, we282

have detected that the proposed models for each stage can be improved.283

Several data mining models were analyzed in order to select the best model284

for each stage. For the first subsystem, classification models were checked285

while regression models were studied in the second subsystem. All the models286

were fitted using cross-validation.287
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4. Input data288

Data were recorded at the Photovoltaic Systems Laboratory of the Uni-289

versity of Málaga (latitude: 36.7 N, longitude: 4.5 W, altitude: 50 m). The290

meteorological data recorded are: air temperature, relative humidity, wind291

speed, horizontal global irradiance and the solar spectrum. These measure-292

ments were taken by a software running in a control computer which synchro-293

nizes several instruments. On the one hand, the meteorological conditions294

are acquired at regular intervals of time (every 5 minutes): the horizontal295

global irradiance (captured by a CMP21 pyranometer from Kipp and Zonen),296

the wind speed (sensed by an anemometer Young 3002L), the air tempera-297

ture and the relative humidity (both of them readed from the combined298

probe Young 41382LC). All these sensors are connected to a programmable299

automation controller (National Instruments Compact FieldPoint cFP2120),300

whose registers are accessible at real-time through the protocol OPC-DA301

([37]) over Ethernet. On the other hand, the spectrum of the solar radiation302

is captured using a grating spectrorradiometer (EKO MS-710) connected to303

the control computer using a RS-485 bus. A proprietary protocol has been304

implemented to retrieve the solar spectrum at the same time the meteoro-305

logical measurements are taken. The measurement equipment is calibrated306

every two years by an accredited laboratory (CIEMAT, Madrid).307

The spectrum wavelengths range from 350 to 1050 nm which means that a308

total of 920 values were used for each spectrum. All the selected spectra were309

recorded under a solar elevation angle greater than 15◦ [38]. Measurements310

were collected in two different time periods. Data used to fit the models311

were measured from November 2010 to May 2012. A total of 265054 spectra312

was recorded. Data used to test the model were measured from March 2016313

to May 2016. A total of 20292 measurements were used from this period.314

The values of Aerosol optical depth at 500 nm, Angstrom exponent and315

precipitable water values recorded for the period where measurements were316

recorded are shown in Table 1. These values have been obtained from the317

AERONET website (https://aeronet.gsfc.nasa.gov).318

In addition to the meteorological data the following atmospheric param-319

eters were used as independent variables: air mass (estimated as in [22]) and320

clearness index (estimated as in [23]). The mean values of atmospheric and321

meteorological data for each cluster of the dataset are shown in Table 2.322

13



Year taua500 alpha440−870 PW
2010 0.149 0.92 1.91
2011 0.155 0.99 2.01
2012 0.155 0.93 1.75
2009-2016 (mean) 0.142 0.99 1.84

Table 1: Aerosol optical depth at 500 nm (taua500), Angstrom exponent (alpha440−870)
and precipitable water (PW ). Source: https://aeronet.gsfc.nasa.gov.

Fitting set
Parameter Cluster 1 Cluster 2 Cluster 3
Global solar irradiance (W/m2) 426 593 218
Wind speed (m/s) 2.2 2.1 2.1
Relative humidity (%) 52 51 67
Outdoor temperature (◦C) 18.2 24.8 19.4
Air mass 2.33 1.63 1.90
Clearness index 0.66 0.62 0.26

Table 2: Mean values of meteorological parameters for the samples in each cluster of the
data used.

5. Results and discussion323

5.1. Estimation of cluster324

Obtaining the type of distribution of the spectrum is the first task to325

predict a new solar spectrum using meteorological data. Different classifi-326

cation algorithms were tested with different configurations. Weka was the327

framework used to fit the data mining models [21]. The most relevant re-328

sults that support our final decision are summarized in Table 3. Taking into329

account these results, Random Forest is the method selected to be installed330

in the “Classification subsystem”. The main reason is that it achieves the331

maximum accuracy, while maintaining a short time to predict an observa-332

tion. These two characteristics are fundamental, because the system is going333

to be accessible via a web page (see Appendix A) and users will need to re-334

ceive the best prediction as fast as possible. Other options such as IB1 offers335

good accuracy, but the prediction time is high (as the observation has to be336

compared against the entire dataset, approximately 265000 examples).337
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Algorithm % correct Model size (KB) Prediction time (ms)
ZeroR 63.75 1 0.001
Decision Stump 63.78 2 0.001
Naive Bayes 76.64 3 0.006
IB1 92.01 18371 45.360
MLP 82.32 12 0.003
J48 90.58 2934 0.003
VFDT 83.01 165 0.004
Random Forest 92.95 244860 0.165

Table 3: Percentage of spectra equals to the centroid of the cluster

5.2. Estimation of normalization factor (Et)338

Each one of the four analysed regression methods was used to induce339

models for each cluster. The number of observations in each cluster was340

66251 for Cluster 1, 168984 for Cluster 2 and 29819 for Cluster 3.341

The correlation coefficient (ρ) and relative mean absolute error (rMAE)342

obtained (using cross-validation with 10 folds) are shown in Figure 2.343

Figure 2: Error metrics in each cluster for the analyzed models to estimate the normal-
ization factor
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Random Forest is the model with lowest errors and greatest correlation344

coefficient for both experiments and for the three clusters. The correlation345

coefficients obtained for this new proposed model (0.98, 0.99 and 0.96 for346

Clusters 1, 2 and 3 respectively) improve significantly those obtained using347

linear regression proposed in [19] where the correlation coefficient obtained348

was 0.94. The following model with lower errors is M5P, which also improves349

the previously reported correlation coefficient. Both models will be used to350

estimate the total error of the prediction process of solar spectra using the351

above-mentioned meteorological data for samples not previously used.352

5.3. Predictions and results for new observations353

The proposed methodology has been validated with spectra that were not354

used to build the models. The following two tests have been conducted:355

• One test after the first stage: the percentage of predicted solar spectral356

cumulative distribution that are statistically equal to the recorded ones.357

• One tests after the second stage: the rMAE estimated for the prediction358

of the normalization factor359

The number of records in the testing set is 20292. These new spectra360

have been recorded besides the meteorological data observed at the moment361

of recording. Thus, we can calculate the predicted spectra by using our362

proposed system and meteorological data, and it can be then compared with363

the measured spectra.364

The cluster corresponding to each recorded spectrum has been obtained365

directly from the centroids proposed in [19] and the normalized spectrum366

using the Euclidean distance function. The number of recorded spectra of367

each cluster is 4276, 12824 and 3192 respectively for Clusters 1, 2 and 3.368

Once all the information of recorded spectra (cluster and normalization369

factor) has been estimated, the following task is to predict new spectra from370

meteorological data. The first stage to predict a spectrum is to determine371

the cluster. The meteorological data are used as entry to the Random Forest372

model (Section 5.1) and the output is the cluster predicted. After this stage,373

a collection of normalized spectra is obtained. In order to check this first374

stage, the recorded (normalized) spectra are compared with the centroid of375

the cluster assigned to each one using the Kolmogorov-Smirnov two sample376

test. For a significance level equal to 0.05, the percentages of recorded spectra377

that are statistically equal to the centroid of the assigned cluster are 98.8,378
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98.5 and 96.1 for clusters 1, 2 and 3 respectively; and for a significance level379

equal to 0.01 these percentages are 99.4, 99.1 and 97.6 respectively.380

Once the clusters have been estimated, the two models analyzed to esti-381

mate the normalization factor were Random Forest and M5P. The estimated382

root mean relative error for each model and cluster is shown in Table 4.383

Model Cluster1 Cluster2 Cluster3
M5P 29.2 6.6 13.3
Random Forest 33.1 9.3 14.1

Table 4: Relative root mean square error in test set for estimating the normalization factor
Et

As can be observed the smallest errors are obtained when the M5P model384

is used. However, the model that presented the smallest errors for data used385

in the adjustment was the Random Forest model. This can be explained by386

the overfitting that sometimes occurs when using Random Forest (especially387

when the number of attributes is small as happens in our dataset). Therefore,388

the M5P model was the model selected for estimating the normalization389

factor in the second subsystem of the developed tool (see 5.2) .390

5.4. Comparison with other models391

In order to compare the accuracy of the proposed model with some pre-392

vious ones, the root mean square deviation (RMSD) defined in Section 2.5393

has been used as the error measurement for comparing the measured spec-394

tral values and those obtained by the model. The values of wavelength used395

ranges from 350 to 1000 nm. The RMSD values obtained are 10.1 and 8.4396

% for Random Forest and M5P respectively. These values improve the ob-397

tained in [36] that use SMARTS with data from Atenas (urban area) for398

predicting the spectral direct beam irradiance and the RMSD values range399

from 14 to 24 %. For that location, the aerosol optical depth at 500 nm is400

0.174, the Angstrom exponent is 1.30 and the precipitable water is 1.68 for401

Atenas; these mean values have been obtained from the AERONET web-402

site (https://aeronet.gsfc.nasa.gov), from 2008 to 2017. Although Atenas (in403

Greece) and Málaga (in Spain) are obviously different cities, results are com-404

parable because the atmosferical and meteorological conditions are, in effect,405

similar.406

Finally, the mean differences between estimated and measured values (rel-407

atives to the measured values) and the mean bias error have been estimated408
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Figure 3: Mean bias error (%) of energy for each wavelength for Clusters 2 and 3 using
Random Forest and M5P models.

for each wavelength, according to the proposal of [39]. Figure 4 shows the409

differences between estimated and measured values for Cluster 2 and Cluster410

3 once the non-validity of the model for Cluster 1 has been shown. Figure 3411

shows the values of mean bias error obtanied (%) for Cluster 2 and Cluster412

3.413

In both cases, the observed differences are lower for M5P. For this model,414

these relative differences range between 5 and 10 % although for most of the415

wavelength are always lower that 6 %. These results improve the previously416

reported in [39] that range between -35 to 20 % whether considered wave-417

length vary between 300 and 1100 nm while for wavelength between 350 and418

900 these differences vary between -12 and 5 %. The mean bias error ranges419

between -3 and +4 % for M5P model in cluster 2 and between -7 and 3 %420

in cluster 3; in this case, there is a tendency to underestimate the energy for421

most of the wavelengths.422
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Figure 4: Relative differences between estimated and recorded values of energy for each
wavelength for Clusters 2 and 3 using Random Forest and M5P models. |A|means absolute
value of A.

5.5. Evaluation of the proposed system in the spectral response ranges of423

thin-film photovoltaic modules of different technologies424

As is well known, the performance of photovoltaic modules depends on425

the solar spectral distribution of the received solar radiation, especially for426

thin-film photovoltaic modules. The errors of the proposed system have been427

evaluated for several wavelength ranges taking into account the reported428

relative spectral response of several PV thin-film modules, [40]. [2], [41]. For429

instance, using the data published in [42], [43] and [44] the spectral response430

for different technologies is shown in Figure 5.431

Some thin-film technologies, such as a-Si and CdTe, have spectral re-432

sponses very narrow, as can be observed in Figure 5. Consequently, small433

alterations in the spectral distribution of sunlight can significantly affect the434

power output of modules of these technologies. In order to evaluate the pos-435

sibility of using the proposed system to obtain this distribution and using it436

in the estimation of the performance of PV thin-film modules, the rMAE for437

the prediction of irradiance for 14 wavelength intervals has been estimated.438

The intervals of λ are as follows:439
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Figure 5: Relative Spectral response for different technologies (source [42] and [43]).

[ 350 + (i− 1) · 50, 350 + i · 50 ) for i = 1, . . . , 14 (14)

The results obtained are shown in Figure 6.440

As can be observed for all the intervals and clusters the smallest errors are441

also obtained by the M5P model. Cluster 2, which corresponds to AM values442

of around of 1.6 and clearness index of 0.6, is where the errors are smaller; it443

is always less than 7 % for wavelengths less than 900 nm. This means that the444

model is able to predict the distribution of global solar spectral irradiance for445

clear days and central hours of the day with errors that improves significantly446

results obtained in the work of [19]. In Cluster 3 the errors for wavelength447

less than 900 nm are always less than 16 % which also improved the results448

obtained with the model proposed in [19]. This cluster corresponds to AM449

values of around 1.9 and the clearness index of around 0.25. This means450

that the proposed model is capable of making good predictions of the solar451

global radiation spectrum even for cloudy sky. The errors are significant only452

in Cluster 1. This cluster corresponds to AM of around 2.3 that means the453

proposed model should not be used for low solar heights (first and last hours454
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Figure 6: rMAE in each cluster for the two fitted models to obtain the normalization factor
Et. The cluster has been obtained in the first stage (see subsection 5.1) using Random
Forest model.

in the day).455

6. Conclusions456

A methodology based on the use of certain classification and regression457

techniques to predict the solar global spectral irradiance distribution is pro-458

posed. Only several meteorological parameters are necessary to obtain the459

corresponding solar spectral distribution. The solar spectrum is obtained in460

two steps: in the first one, the type of spectrum that corresponds to the461

meteorological parameter is determined using a Random Forest model (clas-462

sification technique); in the second one, the normalisation factor is estimated463

from these meteorological parameters using a M5P model (regression tech-464

nique). This proposed methodology can be applied to any location. The465

current estimated models work with meteorological and atmospheric condi-466
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tions similar to data used in the training phase. Moreover, our system can467

be adapted to regions with very different conditions by refitting the models468

with new training sets.469

The models have been evaluated for different wavelength ranges taking470

into account the spectral response of PV modules of different technologies.471

The errors in the prediction of solar global spectral irradiance for wavelengths472

that range between 350 and 900 nm and air mass lower than 2.1 are smaller473

than 7 % on clear-sky days and than 16 % for cloudy days. These air mass474

values correspond to the central hours of the day (for the latitudes used),475

when the received irradiance is greater.476

The proposed methodology developed using data mining models improves477

previously reported results except for high values of air mass.478

An open access software implementing the proposed models has been479

developed and is available at the URI: http://fvred1.ctima.uma.es. This480

software can be used in systems in which it is necessary to predict solar481

spectrum such as in the fields of energy, environment or agriculture.482

As future research, it would be desirable to extend the proposed method-483

ology so that it can be also used when only some of the meteorological data484

are available. In addition, the developed tool could also retrieve meteorolog-485

ical parameter information from external sources if it were available, without486

having to request that information from the user.487
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Experimental system for current–voltage curve measurement of photo-547

voltaic modules under outdoor conditions. Progress in Photovoltaics:548

Research and Applications, 19(5):591–602, 2011.549
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Appendix A. Open access software626

The proposed model has been implemented in an open access software627

to be accessible to everyone with an internet connection. As the model has628

been fitted using Weka tools, it is possible to export a library implemented629

in Java that implements that model. The only encapsulation requirements630

of that library are the model input values in an object belonging to a Java631

class provided by the library itself. A code written in PHP gathers the input632

data from a web form filled by the user. The required object is created and633

supplied with that information by a wrapper also coded in PHP. The PHP-634

Java bridge has been used in order to allow the management of Java objects635

from PHP.636

The developed software has been published on an open-access website637

(see Figure A.7).

Figure A.7: HTML form to introduce input parameters (http://fvred1.ctima.uma.es)
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638

The URI for accessing the software is:639

http://fvred1.ctima.uma.es.640

The developed web application allows us to generate the solar spectrum641

for any location. The user should provide certain meteorological measure-642

ments (horizontal global irradiance, air temperature, wind speed and relative643

humidity).644

With the input information provided by the user, we first load and execute645

the model to select the best cluster in order to obtain the shape of the646

spectrum. We then use a second model to estimate the normalization factor.647

By using the normalization factor, the predicted spectrum is obtained (see648

Figure A.8). It is possible to download a file with the predicted spectra.649

Figure A.8: Predicted spectrum using input data of Figure A.7 (http://fvred1.ctima.
uma.es)
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