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Abstract

Knowing the spectral distribution of solar radiation is required to esti-
mate the performance of photovoltaic modules, especially for thin-film mod-
ules. This is not a trivial problem due to the large number of environmental
factors that affect this distribution as solar radiation passes through the at-
mosphere. The use of techniques of artificial intelligence and data mining can
help in the development of models to address this problem. A system based
on these techniques is proposed to predict the solar global spectral irradi-
ance requiring only a few meteorological variables as inputs. The evaluation
of the proposed system has been carried out for different wavelengths taking
into account the spectral response of different technologies of thin-film pho-
tovotaic modules. The errors in predicting solar global spectral irradiance
for wavelengths that range between 350 and 900 nm and air mass lower than
2.1 are smaller than 7% on clear-sky days and than 16% for cloudy days,
which is a significant improvement on other proposed models. Moreover,
an open access implementation of the developed system is available at the
URI: http://fvredl.ctima.uma.es. It could be useful for engineers and
companies in the fields of the environment and renewable energies.
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1. Introduction

Renewable energy has emerged as an increasingly competitive way to
meet new power generation needs. Incidentally, the serious problems posed
by climate change means that renewable energies are called on to play an
increasingly important role in the current energy mix. According to the
data included in the Report published by the International Energy Agency
(Report IEA, 2017), in 2016 a total of 75 GW of photovoltaic energy (PV)
were installed in the world, representing an increase of 50 % on the power
installed in 2015.

This growth in the number of installations connected to the electricity
grid poses an important challenge in terms of its correct integration in the
electricity system: the prediction of its production. Therefore, forecasting
the power that would be produced by photovoltaic plants is a matter of in-
terest but is not a straightforward problem as this power depends on the
availability of the solar resource, and it is difficult to predict. In addition to
the main influential parameters to determine the performance of a PV mod-
ule (irradiance and cell temperature), solar spectral distribution is another
important factor, mainly when modules of solar thin-film technologies are
used [, 2, 3].

The different gasses in the Earth’s atmosphere does not affect all types of
photons in the same way and some wavelength bands experiment a significant
reduction. Therefore, the solar spectrum presents a high variability with
location and time. Two kinds of models to estimate the spectrum at Earth’s
surface can be found in the literature. On the one hand, there are radiative
transfer methods, which are complex and rigorous [4, [5 [6]. They take into
account measured vertical profiles of the layers of the atmosphere, which
constitute a massive dataset. Consequently, they require high computational
resources and large execution times.

On the other hand, the atmospheric transmittance methods are simpler
models where each physical phenomenon that occurs in the atmosphere is
modelled by a simple formula. These expressions are combined to synthesise
the shape of the spectrum at specific locations and conditions. Bird presents
a very simple model to estimate the solar spectrum requiring minimum com-
putational resources, [7]. It is based on several previous works, mainly the
papers by [8] and [9]. In the subsequent work by [10] the SPCTRAL2 model
is described incorporating several improvements to estimate the diffuse spec-
tral irradiance taken from [I1]. Gueymard presents SMARTS2 [12], a simple



radiation model to estimate the spectrum for cloudless atmosphere for ev-
ery plane orientation that outperforms previous models, especially when the
zenith angle is high. However, according to [13], the success of these methods
depends on the availability of certain atmosphere indexes that are hard to
find for a specific location, which makes it difficult to apply for photovoltaic
applications.

Data mining techniques can be incorporated to improve these models.
In the research by [14], a complex physical model is employed repeatedly
to simulate the spectral irradiance for 153 discrete wavelengths points from
280 to 700 nm for different combinations of atmospheric conditions. Then,
a multilayer perceptron with 153 neurons in the output layer is trained with
this dataset. Once the neural network has been trained, the solar spectrum
for specific conditions can be obtained with minimum computation time. [15]
have developed another neural network model to estimate the solar spectrum
that is also valid for covered skies. For each discrete wavelength point from
a set of 66 selected values (from 300 to 1100 nm), a different neural network
is trained to obtain the spectral irradiance at that wavelength, using the
spectral irradiance value for a cloudless sky (using the SPCTRAL2 model
[10]), the air mass, and the global and direct clearness indices as inputs. [10]
present a multilayer perceptron to obtain the spectral irradiance distribution
using only the horizontal global irradiance, the air temperature, the air mass
and the clearness index as inputs. In addition, a self-organised map was
used in order to perform a selection from the most representative samples
from the original dataset improving the generalisation power of the neural
network (this selection technique was previously used in a work by [I7]). In a
paper by [18], a statistical analysis is performed on a dataset of experimental
spectra measured over one year. They conclude that all these spectra can be
classified according to their shapes into a few clusters, each one characterised
by a representative spectrum (its centroid) and its APE (average photon
energy), a value that can be calculated from the spectrum itself. All the
spectra of the same type are very similar and only differ by a scaling factor.
In a later paper, [19] study a way to obtain the solar spectrum using only
a few meteorological parameters that are easily available at every weather
station.

Our aim is to build a system that helps solar engineers to forecast the
solar spectrum based on a reduced number of meteorological magnitudes
(that can be easily measured at surface level using low cost instruments) and
solar astronomical relationships (such as the sun elevation angle, which can
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be accurately accessed from a particular location, date and time). We seek
to solve this problem by combining the use of several techniques with the aim
of achieving a more accurate prediction of solar spectra. In other contexts,
like prediction of air and dew temperature, where meteorological variables
are used as inputs, the use of combined data mining models improves results
obtained too, [20].

The rest of the paper is organized as follows: Materials and methods
are detailed in Section [2 The proposed methodology is described in Sec-
tion [3] The description of the used dataset to train the models is provided
in Section [d A discussion of the results obtained when comparing the mea-
sured and predicted spectra using the different proposed models is presented
in Section Bl The conclusions of this work are summarised in Section [6l
The description of the implemented open access software that uses the best

trained models is presented in [Appendix A] It can be used to generate solar
spectra providing only a few meteorological parameters.

2. Materials and methods

This section presents briefly the input parameters used to characterise
and to predict solar global irradiance spectra. We then describe the basis of
the data mining models used in the system (all of them induced by implemen-
tations available in the Weka framework [21]). Finally, we enumerate some
metrics and methods used to estimate the performance of analyzed models.

2.1. Ezpression to calculate the atmospheric parameters

In addition to the meteorological parameters normally used in spectra
characterisation and prediction, which are described in Section [ the fol-
lowing atmospheric parameters were used as independent variables in the
different models analysed:

e Air mass, AM, that is estimated using the following expression [22]:

1
 sina 4 0.50572(ar + 6.07995) 16364

AM (1)
where « is the solar elevation (expressed in degrees). The coefficients
in this expression were estimated using numerical data obtained from
the ISO Standard Atmosphere model (ISA) that are valid for the mea-
surements used in our study. The solar elevation is determined by [23]:

4



a = arcsin(sin dsing + cos d cos ¢ cos w) (2)

while ¢ is the Earth’s declination, ¢ the latitude and w the local hour
angle.

o Clearness index, K3, that is estimated using [23]:

G,
B = —
EN (3)

where G, is the measured horizontal global irradiance and the solar
extraterrestrial irradiance, Gy, is calculated as [23]:

Go = I Fpsin o (Wm™?) (4)

while I is the solar constant (1367 Wm*Q) and FEj is the eccentricity
correction factor. This factor is estimated as [24]:

Ey = 1.000110+0.034221 cos I'+0.001280 sin I'+0.000719 cos 21'4-0.000077 sin 2T°
()

where I is the day angle that is estimated using the day number of the

year d,, (1 <d, < 365) :

27(d, — 1)

I =
365

(6)

2.2. Classification models

The classification models analyzed to deal with non-numerical attributes
are as follows: ZeroRules and Decision Stump (considered as the base line
of the classifiers), Naive Bayes, IB1 (a k-nearest neighbour model that only
consider the closest example), MLP (multi-layer perceptron), J48 (imple-
mentation of C4.5, a decision tree), VFDT (an incremental decision tree
algorithm particularly appropriate for large datasets) and Random Forest
(an evolution of bagging that includes the ability to reduce overfitting most
of the time). A detailed description can be found in [25]. They are succinctly
described in the following subsections.



2.2.1. Naive Bayes
This algorithm is one of the simplest variants using the Bayes Rule [26]:
P(B| A) P(4) .
P(B)

P(A| B) =

It seeks to estimate the posterior probability P(class | observation) of each
class given an observation and then selects the most likely class. Although
the attributes must supposedly be conditionally independent, this algorithm
performs very well even when that assumption does not occur. It can deal
either with categorical or numerical attributes and it is robust in the presence
of noise or missing attributes.

2.2.2. K-nearest Neighbour

The instance-based algorithms are another very simple approach, but that
simplicity does not imply poor performance. They are based on determining
which examples in the dataset are the most similar to the new observation.
The output of the algorithm will take in consideration such information and
calculate a distance function. One of the most commonly used methods is the
k-nearest neighbour (where k refers to the number of neighbours to consider)
[27]. Omne of the objections to these methods is the computational cost that
depends on the dataset size as the observation must be compared against all
the examples in the dataset.

2.2.3. Multilayer perceptron

A multilayer perceptron (MLP) is a feedforward artificial neural network
that generates a set of outputs from a set of inputs. An MLP is characterized
by several layers of input nodes connected as a directed graph between the
input and output layers. It is trained using the Levenberge-Marquardt back-
propagation algorithm, in which the artificial neural networks are organised
in layers and send their signal forward, and the errors are propagated back-
wards. This learning function uses an adaptive learning rate. The behaviour
of this type of network depends on multiple factors, such as the transfer
function and the number of neurons in the hidden layer.

2.2.4. Decision trees

The algorithms that induce decision trees are widely used and multi-
ple alternatives likewise exist. Some of their characteristics are particularly
noteworthly, such as the capacity of being easily understandable (even by
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non-expert persons) and the ability of recursively partitioning the problem
in order to simplify its resolution (in a divide-and-conquer strategy). One of
the most well-known algorithms is C4.5 [28], which allows the user to work
with numerical data (besides categorical data), missing attributes, etc. The
algorithm for building trees employs a top-down, greedy search through the
space of possible branches. It uses entropy and information gain to generate
a decision tree.

The entropy is used to calculate the homogeneity of a sample. It is
necessary to calculate both the entropy before splitting and after splitting.
The expression to calculate the entropies is shown in eq. [§

H(X) =~ ZP(%) log, p(:) (8)

where p is the frequency of attribute X with n outcomes, and b is the base
of the logarithm, usually equal to 2.

The information gain, I(X,Y), is based on the decrease in entropy after
a dataset is split on an attribute X. It is calculated using eq[9]

I(X,)Y)=H(X)—- H(X|Y) 9)

In addition to the classical batch learning procedure to induce the deci-
sion tree to consider the whole dataset (as is the case of C4.5), the decision
tree can be induced in an incremental way, which allows better planning of
the resources, particularly when datasets are large. One of the most used al-
gorithms is VEDT [29], which uses Hoeffding’s concentration bounds before
selecting the best attribute to split a node.

2.3. Models for regression

The proposed methodology requires the use of regression models to deal
with numerical attributes. The methods selected are Linear regression (con-
sidered as the base line model), M5P and REP Tree (regression trees) and
Random Forest. In the following subsections the main ones are briefly de-
scribed.

2.83.1. Linear regression

Linear regression is one of the most commonly used type of regression
models. It works with experiences characterized by numeric attributes. Lin-
ear regression is a geometric method to approximate a cloud of points (the
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experiences with n attributes) by means of a linear equation in a space of n
dimensions (the number of attributes):

a1 * T+ ag *x Ty + -+ ay, * T, = ap (10)

where all the exponents are 1.

A linear equation represents a subspace of dimension n — 1 known as a
hyperplane. The linear regression method obtains values for a;, with ¢ =
0,...,n in the linear equation, that is, the better approximation for the
cloud of points (from Machine Learning point of view, the linear equation is
an explanation of the set of experiences).

2.3.2. M5 (or M5P)

M5’ is an evolution of M5 algorithm defined by [30]. It was proposed
by [31] and it is implemented as M5P in the data mining platform called
Weka [21]. Let us briefly describe M5. It was defined to predict values rather
than categories. The model tree construction is based on the divide-and-
conquer method. The training set is split by all possible tests. The error
is measured by considering standard deviation. The test that maximise the
error reduction is chosen. The major innovations of M5 are:

1. Underestimating the error on unseen cases, by multiplying the error
value by (n + v)/(n — v), where n is the size of the training set and v
the number of parameters. Therefore, the error increases if there are
many parameters and a small number of cases.

2. Using a linear model in nodes where standard regression techniques are
used, but only considering the attributes in the subtree of this node.

3. Simplifying the linear model by eliminating parameters to minimise its
estimated error.

4. Pruning by considering the best between the linear model and the sub-
tree model. If the linear model is chosen, the subtree is pruned and
smoothed based on the number of cases in the branch, the predicted
value and a smoothing constant are obtained.

M5P is an evolution of M5 that uses a standard method of transforming
a classification problem into a problem of function approximation. By using
conditional probability, the greatest approximated probability value is chosen
as the predicted class. Moreover, the smoothing procedure is more complex
and is based on the linear model involved in the leaves.



2.3.3. REPTree

REPTree is an algorithm from Weka. REPTree is a fast decision tree
learner. For classification of numeric attributes, the algorithm first sorts
all numeric fields in the data-set once, at the start of the run, and then
uses the sorted lists to calculate the right splits in each tree node. The
right split minimises the total variance. Related to non-numeric (discrete)
attributes, it uses a regular decision tree with reduced-error pruning. Entropy
is the measure considered. Missing values are dealt with by splitting the
corresponding instances into pieces (as in C4.5).

2.4. Ensemble models for classification or regression

The previously exposed models (classification and regression) are needed
to improve the two different subsystems of the global system that seeks to
predict the solar global irradiance spectrum. The algorithm described so far
to induce such models are used in a stand-alone way, that is, every algorithm
induces a concrete model, but only one. Another active research area in
supervised learning focuses on multiple classifier systems that were benefited
from the idea of using a committee or ensemble of models to perform that
tasks. Many approaches can be used to define a multiple-classifier system,
but two of the most successful methods are bagging and random forest [32].
In general, the methods are highly precise, are robust to outliers and noise
and do not overfit. However, the results are more difficult to interpret than
when a single decision tree is considered.

Bagging [33] is a method that induces an ensemble of M classifiers by
building M different datasets from the original one. Every “new” dataset is
constructed by selecting the examples uniformly at random with replacement,
and then a base classifier is induced by using such a dataset. Subsequently, all
base classifiers predictions are combined with a voting method. The method



is shown in [1l
Input : The data set D

for k< 1to M do
A sample Dy is obtained from the dataset D by means of selecting

the examples uniformly at random with replacement.

By considering Dj, a base classifier Cy is induced.
end

Output: C} classifiers, k = 1,..., M. The global prediction is
obtained combining the M classifiers with a voting method.
Algorithm 1: Bagging algorithm.

Random forest [34] is another method, related to bagging, that induces
a set of individual trees (no classifiers). The other main difference is the
selection of attributes used to induce the trees, because not all attributes
are considered: only a number N of attributes can be used in each node (in
general, N is substantially less than the number of available attributes), It
uses a total of M classifiers. With more details, [2| shows how performs this
method.
Input : The data set D

for k< 1 to M do
A sample Dy, is obtained from the dataset D by means of

bootstrap.
By considering D, and a random selection of N attributes
(N < M), a decision tree T}, is built.

end

Output: 7}, trees, k =1,..., M. The global prediction is obtained
combining the M trees with a voting method.
Algorithm 2: Random forest algorithm.

2.5. Error metrics

The proposed models performances were assessed with quantitative tools,
[35]. Specifically, the error metrics used are the relative mean absolute error
(rM AE), the relative root mean square error (rRM SE), the mean bias error
(M BE) and the correlation coefficient (p). The root mean square deviation
(RMSD) as defined in [36] has also been used:
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RMSD = lli (gifgﬂ 100 (%) (11)

n
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Moreover, the Kolmogorov-Smirnov two samples test has also been used
to compare the probability distribution function of different spectra. This
experimental statistic is estimated using the expression:

disty,, = max |epdfy () — cpdfs ()] (12)
se

where m and n are the size of sample 1 and sample 2, respectively, and cpzifl
and cpzlfg are the estimated cumulative probability distribution functions of
such samples.

This value have to be less than the theoretical value ¢, (that depends of
the significance level, «):

N
( > cdisty, p, < Co (13)
n+m '

3. Proposed methodology

This paper proposes relevant improvements to the system presented by
[19], which uses both atmospheric and meteorological inputs to estimate the
real spectrum. We can identify two different subsystems in that system: the
one that classifies an observation, and the one that estimates the normalisa-
tion factor for such an observation. We must remark the existence of a third
aspect in the system, the one responsible for the calibration of the clustering
itself (with three groups or clusters), but we will not modify it given its good
performance.

Then, the system for the prediction of the spectrum is divided into two
different stages according to the scheme shown in Figure [T}

First, the shape of the spectral distribution is determined by selecting
one of three possible predetermined spectra. Actually, these spectra are the
centroids of the three clusters (or groups) in which the total set of spectra
have been previously classified [19].

The cluster selection procedure is performed taking into account the me-
teorological input variables. However, each cluster has thousands of spectra
with similar shape but different heights. In order to determine the predicted
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Figure 1: Prediction of a spectrum

spectrum with its actual height, the selected spectrum must be scaled by a
normalization factor E;. Therefore, the second task consists in computing
this factor also using the meteorological input values.

Although the proposal to make the prediction in two stages is valid, we
have detected that the proposed models for each stage can be improved.
Several data mining models were analyzed in order to select the best model
for each stage. For the first subsystem, classification models were checked
while regression models were studied in the second subsystem. All the models

were fitted using cross-validation.
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4. Input data

Data were recorded at the Photovoltaic Systems Laboratory of the Uni-
versity of Mélaga (latitude: 36.7 N, longitude: 4.5 W, altitude: 50 m). The
meteorological data recorded are: air temperature, relative humidity, wind
speed, horizontal global irradiance and the solar spectrum. These measure-
ments were taken by a software running in a control computer which synchro-
nizes several instruments. On the one hand, the meteorological conditions
are acquired at regular intervals of time (every 5 minutes): the horizontal
global irradiance (captured by a CMP21 pyranometer from Kipp and Zonen),
the wind speed (sensed by an anemometer Young 3002L), the air tempera-
ture and the relative humidity (both of them readed from the combined
probe Young 41382LC). All these sensors are connected to a programmable
automation controller (National Instruments Compact FieldPoint cFP2120),
whose registers are accessible at real-time through the protocol OPC-DA
([37]) over Ethernet. On the other hand, the spectrum of the solar radiation
is captured using a grating spectrorradiometer (EKO MS-710) connected to
the control computer using a RS-485 bus. A proprietary protocol has been
implemented to retrieve the solar spectrum at the same time the meteoro-
logical measurements are taken. The measurement equipment is calibrated
every two years by an accredited laboratory (CIEMAT, Madrid).

The spectrum wavelengths range from 350 to 1050 nm which means that a
total of 920 values were used for each spectrum. All the selected spectra were
recorded under a solar elevation angle greater than 15° [38]. Measurements
were collected in two different time periods. Data used to fit the models
were measured from November 2010 to May 2012. A total of 265054 spectra
was recorded. Data used to test the model were measured from March 2016
to May 2016. A total of 20292 measurements were used from this period.
The values of Aerosol optical depth at 500 nm, Angstrom exponent and
precipitable water values recorded for the period where measurements were
recorded are shown in Table [l These values have been obtained from the
AERONET website (https://aeronet.gsfc.nasa.gov).

In addition to the meteorological data the following atmospheric param-
eters were used as independent variables: air mass (estimated as in [22]) and
clearness index (estimated as in [23]). The mean values of atmospheric and
meteorological data for each cluster of the dataset are shown in Table [2]
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Year taua500 alpha440_870 PW

2010 0.149 0.92 1.91
2011 0.155 0.99 2.01
2012 0.155 0.93 1.75
2009-2016 (mean)  0.142 0.99 1.84

Table 1: Aerosol optical depth at 500 nm (taugs00), Angstrom exponent (alphasso—s70)
and precipitable water (PW). Source: https://aeronet.gsfc.nasa.gov.

Fitting set

Parameter Cluster 1 Cluster 2 Cluster 3
Global solar irradiance (W/m?) 426 593 218
Wind speed (m/s) 2.2 2.1 2.1
Relative humidity (%) 52 51 67
Outdoor temperature (°C) 18.2 24.8 19.4
Air mass 2.33 1.63 1.90
Clearness index 0.66 0.62 0.26

Table 2: Mean values of meteorological parameters for the samples in each cluster of the
data used.

5. Results and discussion

5.1. Estimation of cluster

Obtaining the type of distribution of the spectrum is the first task to
predict a new solar spectrum using meteorological data. Different classifi-
cation algorithms were tested with different configurations. Weka was the
framework used to fit the data mining models [21I]. The most relevant re-
sults that support our final decision are summarized in Table [3] Taking into
account these results, Random Forest is the method selected to be installed
in the “Classification subsystem”. The main reason is that it achieves the
maximum accuracy, while maintaining a short time to predict an observa-
tion. These two characteristics are fundamental, because the system is going
to be accessible via a web page (see and users will need to re-
ceive the best prediction as fast as possible. Other options such as IB1 offers
good accuracy, but the prediction time is high (as the observation has to be
compared against the entire dataset, approximately 265000 examples).
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Algorithm % correct Model size (KB) Prediction time (ms)
ZeroR 63.75 1 0.001
Decision Stump 63.78 2 0.001
Naive Bayes 76.64 3 0.006
IB1 92.01 18371 45.360
MLP 82.32 12 0.003
J48 90.58 2934 0.003
VFDT 83.01 165 0.004
Random Forest 92.95 244860 0.165

Table 3: Percentage of spectra equals to the centroid of the cluster

5.2. Estimation of normalization factor (Ey)

Each one of the four analysed regression methods was used to induce

models for each cluster.

The number of observations in each cluster was

66251 for Cluster 1, 168984 for Cluster 2 and 29819 for Cluster 3.
The correlation coefficient (p) and relative mean absolute error (rMAE)
obtained (using cross-validation with 10 folds) are shown in Figure
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Figure 2: Error metrics in each cluster for the analyzed models to estimate the normal-

ization factor
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Random Forest is the model with lowest errors and greatest correlation
coefficient for both experiments and for the three clusters. The correlation
coefficients obtained for this new proposed model (0.98, 0.99 and 0.96 for
Clusters 1, 2 and 3 respectively) improve significantly those obtained using
linear regression proposed in [19] where the correlation coefficient obtained
was 0.94. The following model with lower errors is M5P, which also improves
the previously reported correlation coefficient. Both models will be used to
estimate the total error of the prediction process of solar spectra using the
above-mentioned meteorological data for samples not previously used.

5.3. Predictions and results for new observations

The proposed methodology has been validated with spectra that were not
used to build the models. The following two tests have been conducted:

e One test after the first stage: the percentage of predicted solar spectral
cumulative distribution that are statistically equal to the recorded ones.

e One tests after the second stage: the rMAE estimated for the prediction
of the normalization factor

The number of records in the testing set is 20292. These new spectra
have been recorded besides the meteorological data observed at the moment
of recording. Thus, we can calculate the predicted spectra by using our
proposed system and meteorological data, and it can be then compared with
the measured spectra.

The cluster corresponding to each recorded spectrum has been obtained
directly from the centroids proposed in [19] and the normalized spectrum
using the Euclidean distance function. The number of recorded spectra of
each cluster is 4276, 12824 and 3192 respectively for Clusters 1, 2 and 3.

Once all the information of recorded spectra (cluster and normalization
factor) has been estimated, the following task is to predict new spectra from
meteorological data. The first stage to predict a spectrum is to determine
the cluster. The meteorological data are used as entry to the Random Forest
model (Section and the output is the cluster predicted. After this stage,
a collection of normalized spectra is obtained. In order to check this first
stage, the recorded (normalized) spectra are compared with the centroid of
the cluster assigned to each one using the Kolmogorov-Smirnov two sample
test. For a significance level equal to 0.05, the percentages of recorded spectra
that are statistically equal to the centroid of the assigned cluster are 98.8,
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98.5 and 96.1 for clusters 1, 2 and 3 respectively; and for a significance level
equal to 0.01 these percentages are 99.4, 99.1 and 97.6 respectively.

Once the clusters have been estimated, the two models analyzed to esti-
mate the normalization factor were Random Forest and M5P. The estimated
root mean relative error for each model and cluster is shown in Table [4]

Model Clusterl Cluster2 Cluster3
M5P 29.2 6.6 13.3
Random Forest 33.1 9.3 14.1

Table 4: Relative root mean square error in test set for estimating the normalization factor
Ei

As can be observed the smallest errors are obtained when the M5P model
is used. However, the model that presented the smallest errors for data used
in the adjustment was the Random Forest model. This can be explained by
the overfitting that sometimes occurs when using Random Forest (especially
when the number of attributes is small as happens in our dataset). Therefore,
the M5P model was the model selected for estimating the normalization
factor in the second subsystem of the developed tool (see .

5.4. Comparison with other models

In order to compare the accuracy of the proposed model with some pre-
vious ones, the root mean square deviation (RMSD) defined in Section
has been used as the error measurement for comparing the measured spec-
tral values and those obtained by the model. The values of wavelength used
ranges from 350 to 1000 nm. The RMSD values obtained are 10.1 and 8.4
% for Random Forest and M5P respectively. These values improve the ob-
tained in [36] that use SMARTS with data from Atenas (urban area) for
predicting the spectral direct beam irradiance and the RMSD values range
from 14 to 24 %. For that location, the aerosol optical depth at 500 nm is
0.174, the Angstrom exponent is 1.30 and the precipitable water is 1.68 for
Atenas; these mean values have been obtained from the AERONET web-
site (https://aeronet.gsfc.nasa.gov), from 2008 to 2017. Although Atenas (in
Greece) and Mélaga (in Spain) are obviously different cities, results are com-
parable because the atmosferical and meteorological conditions are, in effect,
similar.

Finally, the mean differences between estimated and measured values (rel-
atives to the measured values) and the mean bias error have been estimated
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Figure 3: Mean bias error (%) of energy for each wavelength for Clusters 2 and 3 using
Random Forest and M5P models.

for each wavelength, according to the proposal of [39]. Figure [4] shows the
differences between estimated and measured values for Cluster 2 and Cluster
3 once the non-validity of the model for Cluster 1 has been shown. Figure
shows the values of mean bias error obtanied (%) for Cluster 2 and Cluster
3.

In both cases, the observed differences are lower for M5P. For this model,
these relative differences range between 5 and 10 % although for most of the
wavelength are always lower that 6 %. These results improve the previously
reported in [39] that range between -35 to 20 % whether considered wave-
length vary between 300 and 1100 nm while for wavelength between 350 and
900 these differences vary between -12 and 5 %. The mean bias error ranges
between -3 and +4 % for M5P model in cluster 2 and between -7 and 3 %
in cluster 3; in this case, there is a tendency to underestimate the energy for
most of the wavelengths.
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Figure 4: Relative differences between estimated and recorded values of energy for each
wavelength for Clusters 2 and 3 using Random Forest and M5P models. |A| means absolute
value of A.

5.5. Fvaluation of the proposed system in the spectral response ranges of
thin-film photovoltaic modules of different technologies

As is well known, the performance of photovoltaic modules depends on
the solar spectral distribution of the received solar radiation, especially for
thin-film photovoltaic modules. The errors of the proposed system have been
evaluated for several wavelength ranges taking into account the reported
relative spectral response of several PV thin-film modules, [40]. [2], [41]. For
instance, using the data published in [42], [43] and [44] the spectral response
for different technologies is shown in Figure [5

Some thin-film technologies, such as a-Si and CdTe, have spectral re-
sponses very narrow, as can be observed in Figure Consequently, small
alterations in the spectral distribution of sunlight can significantly affect the
power output of modules of these technologies. In order to evaluate the pos-
sibility of using the proposed system to obtain this distribution and using it
in the estimation of the performance of PV thin-film modules, the rMAE for
the prediction of irradiance for 14 wavelength intervals has been estimated.
The intervals of A are as follows:
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[350+ (i —1)-50, 350 +i-50)  fori=1,...,14 (14)

The results obtained are shown in Figure [6]

As can be observed for all the intervals and clusters the smallest errors are
also obtained by the M5P model. Cluster 2, which corresponds to AM values
of around of 1.6 and clearness index of 0.6, is where the errors are smaller; it
is always less than 7 % for wavelengths less than 900 nm. This means that the
model is able to predict the distribution of global solar spectral irradiance for
clear days and central hours of the day with errors that improves significantly
results obtained in the work of [19]. In Cluster 3 the errors for wavelength
less than 900 nm are always less than 16 % which also improved the results
obtained with the model proposed in [19]. This cluster corresponds to AM
values of around 1.9 and the clearness index of around 0.25. This means
that the proposed model is capable of making good predictions of the solar
global radiation spectrum even for cloudy sky. The errors are significant only
in Cluster 1. This cluster corresponds to AM of around 2.3 that means the
proposed model should not be used for low solar heights (first and last hours
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Figure 6: rMAE in each cluster for the two fitted models to obtain the normalization factor
E;. The cluster has been obtained in the first stage (see subsection [5.1)) using Random
Forest model.

in the day).

6. Conclusions

A methodology based on the use of certain classification and regression
techniques to predict the solar global spectral irradiance distribution is pro-
posed. Only several meteorological parameters are necessary to obtain the
corresponding solar spectral distribution. The solar spectrum is obtained in
two steps: in the first one, the type of spectrum that corresponds to the
meteorological parameter is determined using a Random Forest model (clas-
sification technique); in the second one, the normalisation factor is estimated
from these meteorological parameters using a M5P model (regression tech-
nique). This proposed methodology can be applied to any location. The
current estimated models work with meteorological and atmospheric condi-
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tions similar to data used in the training phase. Moreover, our system can
be adapted to regions with very different conditions by refitting the models
with new training sets.

The models have been evaluated for different wavelength ranges taking
into account the spectral response of PV modules of different technologies.
The errors in the prediction of solar global spectral irradiance for wavelengths
that range between 350 and 900 nm and air mass lower than 2.1 are smaller
than 7 % on clear-sky days and than 16 % for cloudy days. These air mass
values correspond to the central hours of the day (for the latitudes used),
when the received irradiance is greater.

The proposed methodology developed using data mining models improves
previously reported results except for high values of air mass.

An open access software implementing the proposed models has been
developed and is available at the URI: http://fvredl.ctima.uma.es. This
software can be used in systems in which it is necessary to predict solar
spectrum such as in the fields of energy, environment or agriculture.

As future research, it would be desirable to extend the proposed method-
ology so that it can be also used when only some of the meteorological data
are available. In addition, the developed tool could also retrieve meteorolog-
ical parameter information from external sources if it were available, without
having to request that information from the user.
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Appendix A. Open access software

The proposed model has been implemented in an open access software
to be accessible to everyone with an internet connection. As the model has
been fitted using Weka tools, it is possible to export a library implemented
in Java that implements that model. The only encapsulation requirements
of that library are the model input values in an object belonging to a Java
class provided by the library itself. A code written in PHP gathers the input
data from a web form filled by the user. The required object is created and
supplied with that information by a wrapper also coded in PHP. The PHP-
Java bridge has been used in order to allow the management of Java objects
from PHP.

The developed software has been published on an open-access website
(see Figure [A.7)).

REQUIRED INPUT VALUES:

(®) Local time () Universal time () Solar time

Hour: Minute:
Day:| 01 VIMonth: January 'lYear: 2017

_) No daylight saving hour (=) Apply daylight saving hour in summer {only EU)

Official time zone for this local time UTC+01:00
Latitude (positive north of equator, negative south of equator) [degrees] 36.715

Longitude (positive east of Greenwich, negative west of Greenwich) [degrees] | -4.478

Irradiance on horizontal surface [W/m? 600

Wind speed [m/s] 1
Alr temperature [*C] 15
Relative humidity [%] 60

Generate
espe ctrum

Figure A.7: HTML form to introduce input parameters (http://fvredl.ctima.uma.es)
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The URI for accessing the software is:

http://fvredl.ctima.uma.es.

The developed web application allows us to generate the solar spectrum
for any location. The user should provide certain meteorological measure-
ments (horizontal global irradiance, air temperature, wind speed and relative
humidity).

With the input information provided by the user, we first load and execute
the model to select the best cluster in order to obtain the shape of the
spectrum. We then use a second model to estimate the normalization factor.
By using the normalization factor, the predicted spectrum is obtained (see
Figure . It is possible to download a file with the predicted spectra.
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Figure A.8: Predicted spectrum using input data of Figure (http://fvredl.ctima.
uma. es))
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