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1. Introduction

The search for new devices to extract energy from natural renewable resources has been motivated in the past few
decades mostly by economic reasons, today reinforced by the urgency of mitigating climate change. Wind is already a
very consolidated source of renewable energy, constituting a relevant fraction of the total electricity generation in many
countries. Wind energy engineering remains an active field of research and innovation, mostly focussed on more efficient
designs and configurations for the traditional rotating wind turbines (McKenna et al., 2022), and on the development
of new and imaginative devices to extract energy from other configurations that may exploit more efficiently the
wind-structure interaction (Tang et al., 2009; Hamlehdar et al., 2019; Lee et al., 2019).

It is in this last mentioned context that we analyze here, theoretically and computationally, the dynamics and
performance of a flexible flapping-foil turbine concept which can extract energy from relatively low wind speeds (lower
than 5 m/s, as we shall see). Research on hydrokinetic flapping-foil turbines that extract energy mechanically from the
foils heaving and/or pitching motions has been very active in the past few years (see. e.g., the reviews by Xiao and Zhu,
2014; Young et al., 2014), specially using rigid flapping foils, in either fully constrained (Kinsey and Dumas, 2008; Zhu,
2012; Deng et al,, 2014; Kim et al., 2017), semi-passive (Shimizu et al., 2008; Zhu et al., 2009; Zhu and Peng, 2009;
Abiru and Yoshitake, 2011; Su and Breuer, 2019; Boudreau et al., 2019a,b) and fully passive (Peng and Zhu, 2009; Zhu,
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2012; Veilleux and Dumas, 2017; Wang et al., 2017; Boudreau et al.,, 2018, 2020) configurations. The energy harvesting
performance of fully passive hydrofoils at the wake of different flow-induced vibration mechanisms has been recently
assessed by Tamimi et al. (2022). However, rigid flapping foils using these purely mechanical devices are less effective for
extracting energy from the usual wind velocities than from tidal and other natural water currents due to the much larger
mass ratio of a foil in air than in water (McKinney and DelLaurier, 1981; Veilleux and Dumas, 2017). This difficulty can be
mitigated with the use of flexible flapping foils elastically mounted to translational and torsional springs and dampers,
whose flexural motion may resonate with either the heaving or the pitching passive motions, or with both coupled, in
such a way that one may extract energy in a wider parametric range than with the rigid-foil counterpart (Fernandez-Feria,
2022). Particularly from much lower wind speeds, as it is shown in the present paper.

The power extraction efficiency of kinematically constrained hydrokinetic flapping-foil turbines has been shown to
improve when some prescribed chordwise flexibility is added to the otherwise rigid foil motion (Liu et al.,, 2013; Quang
and Hwan, 2015; Zhu et al,, 2019), or when some parts of the foil are allowed to deform passively with the flow (Wu
et al,, 2015; Liu et al., 2016; Jeanmonod and Olivier, 2017; Liu et al., 2017). Fully-passive flexible flapping-foil hydrokinetic
turbines have also been proposed based on piezoelectric or electromagnetic devices (Khaligh et al., 2010), commonly
taking advantage of an external forcing such as the vortex shedding from a bluff body (Allen and Smits, 2001). But flutter
instabilities in water currents, where the mass ratio is small, are only possible at high velocities (Shelley et al., 2005; Tang
and Paidoussis, 2007; Eloy et al., 2008; Michelin et al., 2008), impeding energy harvesting from natural water currents
when only a passive heaving motion is allowed, as shown in the present work. Spontaneous oscillations of the foil in
natural water streams are only feasible when coupled pitch and heave passive motions are allowed to resonate jointly
with the flexural motion of the flexible foil (Fernandez-Feria, 2022). In air, however, where the mass ratio is larger than in
water, the foil may undergo flutter instabilities amenable to be used for wind-energy extraction with only passive heaving
motion, and even for a clamped foil (Alben, 2008), but in the last case energy has to be extracted using piezoelectric
devices (Tang et al., 2009). We show in the present study that just allowing for a passive heaving motion of the flexible foil
suffices for energy extraction at particular resonant frequencies and low wind speeds. This relatively simple mechanical
device is analyzed in what follows, both theoretically and numerically, for a two-dimensional (2D) flexible foil elastically
mounted to a translational spring and a translational damper at the leading edge.

This configuration with just passive heave at the leading edge, i.e. without pitching nor selecting any other pivot
axis, is chosen for its simplicity, both to facilitate the fully viscous numerical simulations of the flow interaction with
the flexible-foil device and also from a manufacturing point of view. The theory shows that the most unstable flutter
instabilities of a flexible plate are generated when the pivot point is close the leading edge, with no great differences
when it is located upstream of the quarter chord point (Fernandez-Feria, 2022). On the other hand, as already mentioned,
it is theoretically shown below that the device does not work in water without allowing for passive pitching. But, since it
theoretically works in air without pitching, it is of interest to explore numerically the feasibility of this simpler device to
extract energy from the wind, independently that it would perform better allowing for passive pitching, not necessarily
at the leading edge. The study of the effect of passive pitching combined with the pivot axis location is left for a future,
more demanding numerical work.

2. Results from the flutter instability analysis

We consider first the linear flutter instability of a two-dimensional (2D) flexible foil of chord length c, constant
thickness ¢, density o5, and elastic modulus E, elastically mounted to a translational spring of constant k, and a damper
of constant by, at the leading edge, but with the pitching or rotational motion mechanically inhibited at this point (see
Fig. 1, where the dimensionless quantities defined just below are used; note that dimensional quantities are written with
a tilde " whenever the same symbol is used below for its dimensionless counterpart). When subjected to a uniform air
current with velocity U, this mechanical system may become unstable if U exceeds a critical velocity U* which depends
on all the above parameters, triggering a coupled heaving and flexural motion of the foil. To analyze this instability, we
consider the linearized dynamical equations taking into account the forces exerted by the fluid on the foil in the inviscid
limit.

Dimensionless variables and parameters are used, scaling all magnitudes with ¢/2, U, and the air density p as
characteristic length, velocity and mass, respectively. The equations for the non-dimensional heaving, h(t), and chord-
wise flexural, d(t), motions are the following [see Fernandez-Feria (2022) for the present case with no pitching motion,

the pivot point located at the leading edge, a = —1, and the centre of mass at the centre of the foil, x, = 0; the dots
denote differentiation with respect to the dimensionless time t, which is scaled with c/(2U)]:
mh + Jud = G, — kyh — by, (1
. . 16
Iah—l—Kdd—l—ng:CF. (2)
These equations are obtained by integrating between x = —1 and x = 1 the Euler-Bernoulli beam equation and that

equation multiplied by (x + 1), respectively, assuming that the foil centerline zs(x, t) can be approximated by a quartic
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Fig. 1. Schematic of the flexible heaving foil (all quantities are dimensionless, except for the velocity U).
polynomial of the form (Fernandez-Feria and Alaminos-Quesada, 2021)
d(t d(t
50,0 = hO)+ o+ 1700 — ok P2 1 er 1 DD 1w, 3)
when the non-dimensional heave and flexural deformation are both small, i.e., assuming |h| < 1 and |d| < 1. This
expression satisfies z; = h(t) and dz;/dx = 0 at x = —1 (passive heave with no pitching at the leading edge) and

8%z,/3x> = 3%z;/3x> = 0 at x = 1 (free trailing edge). The flexural deflection at the trailing edge relative to an otherwise
identical rigid foil with the same heaving motion is then d,(t) = 2d(t).

In Egs. (1)-(2), C; and Cf are the lift and flexural coefficients, respectively, related to the pressure that the fluid exerts
on the foil by

1 1
q(r):/ AGy(x, t)dx, C¢ :/ (x + 1 AGy(x, t)dx, (4)
-1 -1

where ACy(x, t) = (p~ — p*)/(pU?) is the non-dimensional pressure difference between the lower (superscript ~) and
upper (superscript *) sides of the foil. The non-dimensional stiffness S and mass ratio m of the foil are defined as

_Ee . m=42%. (5)
pU2c3 oc
The moment of inertia I, and the coefficients J, and Ky are, in this case of a uniform foil pivoting at the leading edge,
Ia=ﬂm, ]a=ﬂm, Kd=@m. (6)
3 5 315

Finally, the non-dimensional spring stiffness k; and the non-dimensional constant of the linear damper by are related to
their dimensional counterparts through

ki 2Dy
pU2’ "= pUc’
For a rigid foil (S — oo and, consequently, d = 0), Eq. (2) and the coefficients in (6) are not needed.

Following Fernandez-Feria (2022), to analyze the flutter stability of the system we consider small, harmonic pertur-
bations of the form

h(t) =Re[Hoe""] , d(t)=Re[Doe""], (8)

where Re means real part and y, Hp, and Dy are in general complex quantities, with |Hp| < 1, |Dg| < 1, and

(7)

kh =

. wc  wfc

y=k+io, k U T (9)

k is the non-dimensional, or reduced, frequency, being w the dimensional frequency of the perturbations (f is the

frequency in Hz), and —o their non-dimensional growth rate. For this harmonic motion the force coefficients (4) can be

expressed in a closed analytical form, so that Egs. (1)-(2) are transformed into a linear system of two algebraic, complex
equations for Hy and Dy:

_ . _( An An _( Ho
A(y)-X=0 with A_<A21 Azz>’ x_(DO>, (10)

where the different coefficients A; are given in Appendix.
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Fig. 2. Contours of k (a) and —o (b) in the m — k; plane for b, = 0 and S — oc. Dashed contours in (a) correspond to the resonant frequency in
vacuum (13).
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For a given set of values of the different non-dimensional parameters, namely, m, S, k;, and by, the system has nontrivial
solutions for specific values of y satisfying

det[A(y)] =0, (11)

algebraic equation that fixes the oscillations frequency k if the system is unstable, i.e,, if c < 0. For ¢ > 0, any small
perturbation in z; will be damped. Thus, of particular relevance for the energy harvesting problem is the characterization
of the parameters for neutral stability, i.e., for 0 = 0, and the corresponding natural frequencies, k = k, say. Within the
region of the parameter space where o < 0, a passive heave motion of the foil is allowed according to the linear theory,
which may be used to extract energy from the current. This region and the corresponding frequencies will be explored
below for air winds of different velocities on foils with different thickness-to-chord ratios ¢/c, and elastically supported
to springs and dampers of different rigidities. As shown in Fernandez-Feria (2022), the present linearized approximation
is accurate provided that the foil stiffness is not small, i.e. for S > 1.

Eq. (11) for the complex eigenvalue y is solved numerically using the Matlab function fsolve, starting from the leading
neutral frequency corresponding to a rigid foil (Dy = 0) when the fluid-structure interaction (FSI) is neglected. In this
case, the equation simplifies to

—my? +ibyy +kp=0. (12)

The imaginary part of the solution to this equation is never negative, so that the system with a rigid foil in vacuum is
never unstable. It is neutrally stable (o = 0) in the absence of damper (b, = 0), with a natural frequency corresponding
to the (non-dimensional) resonant frequency of a plate attached to a translational spring in vacuum:

K
K = ko = £/ — . (13)
m

If the FSI is taken into account, the rigid foil remains stable for all values of the remaining parameters, which means
that no flutter instabilities are possible for a rigid foil with just heaving motion. One has to allow for a passive pitching
motion (in this case about the leading edge) to be able to extract energy from a current with a rigid two dimensional
foil (Fernandez-Feria, 2022). This is illustrated in Fig. 2, where the frequency k and the growth rate —o are plotted in
the m — ky, plane for S — oo when b, = 0 (remember that the system becomes more stable as the damper constant by
increases). We observe that o > 0 for all cases, while the corresponding frequency k — k;o as m — oo, when the FSI
becomes negligible. Note in Fig. 2 that k >~ k; for sufficiently high values of m when kj, is also large enough. Otherwise,
the FSI effect on the natural frequency is very relevant.

Instabilities for a heaving-only foil become possible for a flexible foil, i.e., for finite S. In fact, as the foil stiffness S
decreases for a given value of ky, flutter instability may appear only for sufficiently large mass ratio m and for sufficiently
small damper constant by, as shown in Fig. 3 for k; = 1. The neutral curve of instability, S = S*(ky, by, M) > 1, appears
in this case for m > m*(ky, by) >~ 3 when by = 0, and for by, < bj(ky, m) ~ 2.75 for m = 10. This map of the unstable
regions as the stiffness S decreases is qualitatively very similar in a wide range of values of the spring constant k;. The
corresponding frequencies comes also from the complex Eq. (11). An approximation can be obtained neglecting the FSI
and assuming by, is small compared with both m and ky, (for b, = 0 the system is neutrally stable, so that the following
values of k are in fact neutral or natural frequencies):

70 S 71 ky 13k, 5041 [k’

kn = krod =)o = [1+ ==+ 1+ ——+—— =] . 14

nT TV 58 m +705+\,/"’355"’4900<s (14)
4
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Fig. 3. Contours of the growth rate (—o) for k; = 1 in the m — S plane for b, = 0 (a), and in the b, — S plane for m = 10 (b). The neutral curves
are labeled with ‘0’. Marked in (a) is the unstable segment for m = 10, from which starts the neutral curve in (b) at b, = 0.

For k;/S = (kn JE)(c/€)® <« 1, which is a physically relevant limit owing to the fact that S is usually large, one has, in
first approximation,

70 S
kroa >/ — —. 15
r0d 29 m ( )

In dimensional form, this frequency (14) [or (15)] is independent of the velocity, and proportional to ¢/c®. In Hz, for
kn/S <« 1,

35 E ¢
~ = — —. 16
froa \ 58 e 2 (16)

Since m has to be larger than unity, these instabilities cannot occur in water currents when S > 1 because the values of
the mass ratio m are much smaller than unity for thin foils and usual values of the material density ps. Thus, a heaving-only
flexible foil cannot be used as a hydrokinetic turbine, and that is why we consider here only the case of air currents, or
wind turbines. In air, m may range between order unity and order one hundred, depending on the relative thickness ¢/c
and the foil material (see below). On the other hand, the value of the damper constant b, has to be sufficiently small
to allow for flutter instabilities, but not so small to be negligible the energy harvested from the wind by the device (see
Section 4 below for the computation of the power output from the numerical simulations.)

The condition S < S*(ky, by, m) for flutter instability yields a minimum velocity above which the system may extract
energy from the wind for a given foil material as a function of the relative thickness:

E \'"? /e\32 4
U>U*:< ) (5) L om= (17)
pS* c p C

Since S* is an order-of-unity function, Eq. (17) provides a useful guide to select elastic modulus and thickness-to-chord
ratio for reducing the critical wind flutter velocity, while Eq. (16) provides an approximation for the flutter frequency for
a given chord length and foil density.

Because the mass ratio m depends only on ¢/c for a given material in air, U*, and therefore the instability region, only
depends on the spring and damper constants (through the function S*) once the foil material is selected. Fig. 4 shows
these regions in the &/c — U plane through the corresponding neutral curves for carbon fiber (CF) (E = 75 x 10° N/m?,
ps = 1400 kg/m?) in air (p = 1.225 kg/m?>) for by = 0 and 1 kg/m s (per unit span and using ¢ = 1 m) and increasing
values of kj. Also shown is the curve corresponding to S = 1, above which S < 1 and the results of the present analysis are
not longer valid. We have selected this material as an example because its well known excellent mechanical properties
and relative low density and large fatigue life compared, for instance, with metals such as aluminum or steel.

From Fig. 4 it is clear that the minimum velocity for instability increases with the damper constant by, and that, for a
given by, there is a value of the spring constant which provides the lowest U* within the validity range S > 1. In the cases
plotted in Fig. 4 this happens for k;, &~ 100 when b, = 0, and for k, ~ 75 when b, = 1 (all dimensional quantities are
in SI units), being the corresponding lowest flutter velocities about 4.5 m/s and 6 m/s, respectively. The contours of the
growth rate (—o) and the corresponding frequencies in Hz (f = Uk/mc, with ¢ = 1 m) for these two cases are depicted
in Figs. 5 and 6. The circles in these two figures correspond to the cases where the numerical simulations described in
the following sections are performed.
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Fig. 4. Neutral curves for flutter instability in the ¢/c — U plane for a carbon fiber foil in air for increasing values of the spring constant kn and two
values of the damper constant, b, = 0 (no damper) (a) and b, = 1 (b) (all dimensional quantities are in SI units; the results for b, are computed
using ¢ = 1 m). The dashed curves correspond to S = 1, and only below them the present linear stability results are valid.

(b): =0 (CF —air, by =0,k = 100)

0.1

0.0003 0.001 0.002 0.005

Fig. 5. Contours of f (a) and —o (b) in the ¢/c — U plane for a carbon fiber foil in air with b, = 0, ¢ = 1 m and k, = 100 kg/m s2. Neutral
curve marked with ‘0’ in (b). Dashed curves correspond to S = 1 and dashed contour lines in (a) to the resonant frequency in vacuum (16). Circles
correspond to the numerical simulations (see Section 4).

0.0003 0.001 0.002 - 0.005
ele

Fig. 6. As in Fig. 5, but for by = 1 kg/m s and k, = 75 kg/m s2.

3. Numerical simulation: Formulation and computational method

For the numerical simulations we consider air flow over a 2D carbon fiber plate embedded in a head consisting of
a NACAO0015 profile, which acts as the leading edge (LE) of the foil. The total chord length of the foil (head + plate) is
¢ = 1 m, of which the NACA0015 at the LE occupies a length of c¢/20 [see Fig. 7(b) for a sketch not to scale, together
with the computational domain described below, and also Figs. 8 and 10 for actual pictures of the foil]. Computations are
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Fig. 7. (a) Computational domain and subdomains (to scale). (b) Different dimensions of the foil and the computational domain (not to scale).

performed with plate thicknesses ¢ = 1, 1.5 and 2 mm. Thus, the thickness-to-chord ratio in the numerical simulations
are ¢/c = 1073,1.5 x 107> and ¢/c = 2 x 107>, The density of the NACA0015 head is selected in each case for the
foil centre of mass to be always located at its middle point, like in the theoretical results reported in Figs. 4-6, and the
non-dimensional mass ratios are m >~ 4.57, 6.86 and 9.14, respectively

To solve numerically the coupled FSI problem we use the finite volume-based solver Ansys-Fluent v21.2. Specifically,
since the Reynolds number is about 10°, the flow is solved using the k — w SST turbulence model, well suited to
resolve transitional and developed turbulent flows at these Reynolds numbers. Although turbulence is inherently three-
dimensional, we consider that the mean flow is 2D, so that in the third direction turbulence is assumed to be homogeneous
(i.e., statistically invariant under translations of the reference frame). In these cases, if one uses a RANS approach, like
the k — w SST turbulence model employed in the present work, one may solve for the mean flow variables using 2D
equations. This kind of 2D RANS turbulence modeling, particularly with the k — w SST turbulence model implemented in
the solver package ANSYS Fluent, has been sufficiently validated experimentally for similar aerodynamic problems (e.g.,
Gharali and Johnson, 2013). On the other hand, the intrinsic FSI algorithm is used to simulate the fluid-structure
coupling. Both approaches are described in detail, and validated with experimental data, in recent publications by
the authors (Sanmiguel-Rojas and Fernandez-Feria, 2021, 2022). In particular, a comparison with experimental data
by Heathcote and Gursul (2007) for a similar heaving flexible foil is made in Figs. 4 and 5 of Sanmiguel-Rojas and
Fernandez-Feria (2021). Transient, pressure-based, coupled solver with absolute velocity formulation are the settings for
solution of all simulations. The least-squares cell based method is applied for calculating the gradients of the transport

7
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region#2

region#3

(b) (c)

Fig. 8. Different views of mesh#1 for ¢/c = 1073.

quantities on the faces of the cells. The spatial discretization methods in all FSI simulations are solved with second order
for the pressure term, and second-order upwind for continuity and momentum equations. The explicit relaxation factors of
pressure and momentum are set at 0.75 to ensure the stability of the numerical method. First order implicit formulation is
applied for discretizing the flow time derivatives, ensuring stability for transient structures using the method by Newmark
(1959), setting the amplitude decay factor to y = 0.1 to get full stable solutions. At each time step, convergence is
considered that has been reached once the absolute residuals values 1073, 1073, 10~ and 107 are fulfilled for continuity,
turbulence, momentum and structure quantities, respectively. All simulations start from rest. To smooth the mesh in the
dynamic-mesh method we used the boundary distance diffusion method, with a diffusion parameter set to 1.75. The
algebraic multi grid (AMG) with the conjugate gradient (CG) for pre-conditioning is used for stabilizing the dynamic
mesh.

Fig. 7(a) shows the computational domain (width = 15c¢ x length = 30c) used in all the simulations, including to
scale the different regions into which the computational domain is decomposed to ease the meshing procedure described
below. With larger computational domains the results remained practically unchanged, even for the most computationally
demanding cases. Fig. 7(b) displays a schematic not to scale with the dimensions used in the computations, together
with an indication of the boundary conditions. These are: a uniform velocity profile at the inlet, located at a distance 5¢
upstream of the foil LE; non-slip wall condition on the foil, and pressure outlet p = 0 on the rest of the boundaries. Inside
the head of the foil a support is included [see rectangular hole inside the NACA0015 in Fig. 8(b)], which is necessary to
emulate the effect of the forces exerted by the spring and damper at the foil LE. These forces are emulated by a User
Defined Function (UDF), i.e., a C program compiled in Fluent.

A mesh convergence study was performed by doubling the number of cells with the following three meshes: mesh#0
(coarse) with 60956 cells, 588 cells on the profile and a time step Af = 2 x 107* seconds; mesh#1 (medium) with
109912 cells, 832 cells on the profile and a time step Af = 10~ seconds; mesh#2 (fine) with 209 824 cells, 1176 cells
on the profile and a time step At = 0.5 x 10~ seconds. Two cells are placed in the thickness of the plate for the three
meshes [see Fig. 8(c)]. The time step was set to guarantee a maximum CFL < 5 in all cases to avoid numerical instabilities
due to the FSI coupling. The meshes of the fluid region include only quad elements with a maximum skewness < 0.52. In
order to capture correctly the boundary layer around the foil, we set an inflation layer of 12 cells with a growth rate 1.2
and the first cell thickness of size 0.1, 0.071 and 0.05 mm for the meshes #0, #1 and #2, respectively [see Figs. 8(b) and
(c)]. This first layer thickness guarantees a maximum y* < 1 on the foil wall, even for the cases with the highest inlet
velocity reported here, i.e., U = 15 m/s (Reynolds number based on the chord length Re = Uc/v ~ 1.027 x 10°, where
v is air’s kinematic viscosity). Fig. 8 depicts different views of the mesh#1 for ¢/c = 1073,

The results of the mesh convergence analysis are displayed in Fig. 9 in terms of the time evolution of the dimensionless
trailing edge position z; (scaled with ¢/2), and the lift coefficient, C;, both computed with the three meshes for one of
the most unfavorable cases analyzed, i.e., k, = 75 kg/ms?, by, = 1 kg/ms, ¢/c = 1073 and U = 15 m/s. The lift coefficient
is defined as

F,

G=—", 18
LT pU2¢c)2 (18)
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Fig. 9. Mesh convergence study in terms of the time evolution of the dimensionless trailing edge position (a) and the lift coefficient (b), computed
with the three meshes for k, = 75 kg/ms?, by, = 1 kg/ms, ¢/c = 1073, and U = 15 m/s.

(@
o 0.40
0.34
028
022
+ 016
- 0.0 »=
0.04
-0.02
-0.08
-0.14
020

(b) (©)

P 068 P 068
0.42 0.43
017 0.7
0.08 -0.08
034 034 a
0.59 20.59
0.84 -0.84
110 -L10
135 135
L61 -161

Fig. 10. Snapshots of dimensionless pressure contours when kn =75 kg/ms?, by=1 kg/ms, ¢/c = 1073 for a stable case with U =5 m/s (a), and
for an unstable case with U = 15 m/s at two instants within a cycle, at the beginning (b) and at mid cycle (c).

where F, is the z—component of the total force (per unit span) exerted by the fluid on the foil. It is observed in Fig. 9 that
the differences between the results obtained with meshes #1 and #2 are negligible, indicating that both are very close to
mesh independence. Consequently, we select the medium mesh#1 for all the numerical results reported below.

4. Numerical simulation: Results

The results plotted in Fig. 9 clearly shows an unstable case: small (numerical) perturbations eventually grow expo-
nentially and saturate. Thus, the flutter instability of the foil reaches a final oscillatory self-sustained state of relatively
large amplitude which, in Fig. 9, is characterized by the oscillation of the trailing edge position and the consequent
oscillatory force that the fluid exerts on the foil due to its passive heaving and flexural motions. The case considered
in Fig. 9 corresponds to an unstable case in Fig. 6, well above the neutral curve in Fig. 6(b). A visualization of the final
oscillatory flow for this case is depicted in Figs. 10(b) y (c) in terms of the non-dimensional pressure field at two instants
of time within a cycle, at the beginning, when the LE is located at z = 0 and the foil is going up [Fig. 10(b)], and in the
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middle of the cycle, when the LE is also at z = 0 but the foil is going down [Fig. 10(c)]. On the other hand, Fig. 10(a)
shows the non-dimensional pressure field for a stable case corresponding to the same structural conditions but for a
wind velocity U = 5 m/s. The flow and the foil remain steady in this case, which lies below the neutral curve in Fig. 6(b)
(neither of the two cases considered in Fig. 10 is marked in Fig. 6; see below for all the cases marked in Figs. 5 and 6
corresponding to different numerical simulations).

As discussed above, the permanent oscillatory state of the plate, triggered by the flutter instability above a critical wind
velocity U* (for given ¢/c and the mechanical properties of the foil, spring and damper), may be used to extract energy
from the wind. Assuming that all the loss of mechanical energy in the linear damper is converted into electric energy, as
was done in previous works that considered a passive heave motion (e.g., Abiru and Yoshitake, 2011; Wang et al., 2017;
Boudreau et al,, 2020), the non-dimensional power output (per unit span) can be written as [it is the last term in Eq. (1)
multiplied by —h, corresponding to the power output per unit span scaled with pU3c/2]:

2
Co = fh(hl = byi?. (19)
EIOU C
Of special relevance is its time average over a cycle of the oscillations (the non-dimensional period is T = 27 /k),
. k t+2m /k
P=-— Cp(t)dt, (20)
27 J,

and the energy efficiency, defined as the fraction of the incoming wind kinematic energy flux per unit span, pU3AZ; /2,

recovered by the system (Xiao and Zhu, 2014; Young et al., 2014),
2Cp

T Az

where Az, = 2AZ /c is the maximum of the non-dimensional distance swept by the trailing edge. Actually, to compute

the time-average power coefficient Cp once the final oscillatory state has been reached we use the last four cycles.

We have performed a series of numerical simulations for the conditions marked with circles in Figs. 5 and 6, white
filled if the system becomes unstable and with open circles for the stable cases. They correspond to the two couples
of values of b, and k; selected in Section 2 for a CF plate with ¢ = 1 m in air, and three thickness-to-chord ratios,
e/c =1073,1.5 x 1073 and 2 x 1073. For each one of these thicknesses the wind velocity U has been increased from a
low value where the system remains stable, up to a higher value of U above the flutter instability threshold. The resulting
dimensionless time evolutions of the leading- and trailing-edge positions, h(t) and z:(t), are reported in Figs. 11 and 12
for a total of 24 numerical simulations. All the numerical simulations are made until a final permanent state has been
reached, many of them demanding more than a week of CPU in a supercomputer. But only an initial interval of each
computation is shown in Figs. 11 and 12 to capture the flutter instability, if any.

We observe, for instance, that for k, = 100 kg/ms? and b, = 0 with &/c = 1073 [Fig. 11(a)] the system is stable for
U = 3 and 4 m/s, while it clearly becomes unstable for 5 and 6 m/s. Therefore, the threshold wind velocity for flutter
instability is between 4 and 5 m/s for this thickness of the foil, which is in close agreement with the theoretical results
shown in Fig. 5(b) for ¢/c = 10~3 (remember that unstable cases are marked with white-filled circles). Similarly, for the
same ¢/c = 1073 but for k;, = 75 kg/m s? and b, = 1 kg/m s [Fig. 12(a)], the threshold wind velocity for flutter instability
found with the numerical simulations lies between 6 and 7 m/s, also in close agreement with the theoretical prediction
in Fig. 6(b) for £/c = 1073. However, as the thickness of the plate increases, and so does the wind velocity for flutter
instability [see Eq. (17)], the numerical results for the critical flutter velocity are larger than the theoretical predictions,
as can be seen with the white-filled circles in Figs. 5(b) and 6(b) for the larger thicknesses &/c = 1.5 x 1073 and 2 x 1073,

This discrepancy can be explained by the fact that for these larger flutter velocities the flow separates on the extrados of
the plate, the more so the larger the resulting heaving velocity h and the deflection of the plate, so that the predictions of
the potential theory fail. However, at the much smaller critical flutter velocities for the thinnest plate, the flow remains
mostly attached on both sides of the plate and the predictions of the inviscid theory are more accurate. This behavior
can be observed in Fig. 13, where a comparison is made between the instantaneous flow fields around two plates with
different relative thicknesses, €/c = 1072 and €/c = 2 x 1073, for wind velocities just above the corresponding critical
flutter velocities found numerically in Fig. 12; i.e. U = 8 m/s and U = 20 m/s, respectively. The figure shows snapshots
of the dimensionless turbulent kinetic energy at the beginning of a cycle in the permanent oscillatory motion reached
after the flutter instability, when the leading edge is at z = 0 and going up with the maximum heaving velocity. Clearly,
the flow in the case with U = 8 m/s remains practically attached on both sides of the plate, except for a small leading
edge vortex developing on the intrados of the plate, while in the case with U = 20 m/s the flow is fully separated on
the extrados. This separation is a consequence not only of the larger wind velocity, that hinder the bending of the flow
over the deflected plate, but also of the larger heaving velocity resulting from the flutter instability, which increases the
effective angle of attack at the leading edge. Actually, the maximum non-dimensional flutter velocity, hpq, occurring at
the instant when h(t) = 0, is the tangent of the maximum effective angle of attack at the leading edge. For the cases
plotted in Fig. 13, they are h;;qx = 0.4 and 0.44, respectively, corresponding to angles of attack 21° and 24°. The values of

n 1)

10



R. Fernandez-Feria and E. Sanmiguel-Rojas Journal of Fluids and Structures 114 (2022) 103751

@ (®) ©

) %107 U=3m/s 1><10'3 U=8 m/s 1><10'3 U=16m/s
h(t) —h(t) —h@®
20 hoo 0 z(0) 0 2() |
=1 . . <1 i o | !
10 20 30 40 50 60 20 40 60 80 100 120 140 160 50 100 150 200 250
1><10'3 U=4m/s 1><10'3 U=10 m/s 1><10‘3 U=18 m/s
0 = PRARARRARARRARRRARRARARRARRRRRA 0 WMMMM 0 \MMMMMMAMN
-1 4 L L . -1 . A A L L _: . -1 s " L "
20 40 60 80 20 40 60 80 100 120 140 50 100 150 200
1><10'3 U=5m/s 1x10'3 U=11m/s 1><10'3 U=19 m/s
0 M&W&MMW ' RANARARRARARARAA 0
-1 1 -1
20 40 60 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60
01 U=6m/s ol U=12m/s . U=20m/s
0 0 VAVAVAWAVA\W[\WAWAWA\ 0 NWW\NVW
o1 I I I ! oo I L I I ! I 05 I I I I L
20 40 60 80 100 50 100 150 200 250 300 50 100 150 200 250
t t t

Fig. 11. Non-dimensional leading- and trailing-edge time evolutions, h(t) and z(t), for a CF plate of ¢ = 1 m with k, = 100 kg/m s and b, = 0,
and three values of ¢/c, arranged in three columns for increasing wind velocity U, as indicated: column (a) for &/c = 1073, (b) for e/c = 1.5 x 1073,
and (c) for &/c = 2 x 1073 (c). Only some initial parts of the full computations are shown.
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Fig. 12. As in Fig. 11, but for b, = 1 kg/m s and k; = 75 kg/m s2.

hmay for all the unstable cases considered in Figs. 11 and 12 are reported in Tables 1 and 2, respectively. The separation

of the flow on the extrados increases with both U and fiyq.
Tables 1 and 2 also contains the flutter instability frequencies computed numerically. They are in close agreement
with the frequencies predicted by the theory [compare with the frequencies at the white dots marked in Figs. 5(a) and
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Fig. 13. Snapshots of the dimensionless turbulent kinetic energy (TKE) scaled with U? at the beginning of a flutter period (i.e. when h = 0 and the
plate is going up) once the flutter oscillations have reached a permanent state for two cases shown in Fig. 12: (a) that corresponding to &/c = 103
with U = 8 m/s [third frame in Fig. 12(a)], and (b) corresponding to &/c =2 x 10~3 with U = 20 m/s [third frame in Fig. 12(c)].

Table 1

Frequencies in Hz and non-dimensional maxima of the heaving velocities for the cases plotted in Fig. 11.
No data are shown for the stable cases, marked with “-".

kn = 100 kg/ms2, by =0

g/c =103 U=3m/s U=4m/s U=5m/s U=6m/s
f (Hz) - 2.10 2.105 2.11

Pimax - 22 x 107* 4.1 x 1073 0.05
g/c=15 x 1073 U=8m/s U =10 m/s U=11m/s U=12m/s
f (Hz) - - - 2.50

Rinax - - - 0.01
gfc=2 x 1073 U =16 m/s U=18 m/s U=19 m/s U=20m/s
f (Hz) - - 2.94 3.13

Hinax - - 0.02 0.5

6(a), respectively], even for the cases with larger plate thicknesses, when the theory underestimates the critical flutter
wind velocity [except for the cases lying above the white dashed line in Figs. 5(a) and 6(b), where the foil stiffness is
too low for the theory to hold]. Table 2, that corresponds to a value of the damper constant b, # 0, also includes the
values of the time-average power coefficient (20). They are relatively low due to the choice of springs and dampers,
which have been selected from the theoretical formulation to minimize the critical flutter wind velocity for a given foil
material and dimensions, not to optimize the output power, which necessarily must be obtained from full numerical
computations. But this numerical optimization of the power output, which is out of the scope of the present work, can be
guided by the analytical formulation presented in this paper, that selects the desired range of flutter wind velocities and
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Table 2
Frequencies in Hz, non-dimensional maxima of the heaving velocities and time-averaged power
coefficients for the cases plotted in Fig. 12. No data are shown for the stable cases, marked with “-".

kn = 75 kg/ms?, b, = 1 kg/ms

g/c =103 U=6m/s U=7m/s U=8m/s U =10 m/s
f (Hz) - 1.96 2.06 225

Nimax - 0.01 0.4 0.64

Cp - 4,08 x 107° 0.019 0.036
g/c=15 x 1073 U =10 m/s U=12m/s U=13m/s U=14m/s
f (Hz) - - 2.38 247

Pimax - - 5 x 1073 0.5

Cp - - 2 x 1078 0.014
e/c=2 x 1073 U=18 m/s U=19 m/s U=20m/s U=22m/s
f (Hz) - - 3.13 323

Timax - - 0.44 0.56

Cp - - 0.0082 0.012

the corresponding frequencies by combining the different materials and dimensions of the plate with appropriate springs
and dampers.

5. Conclusion

It has been shown through accurate numerical simulations that an analytical expression for the onset of flutter
instability of a flexible foil elastically mounted to spring and damper at the leading edge correctly predicts the parametric
range for wind energy harvesting of this simple mechanical device, especially in the lower range of critical flutter wind
velocities. As the critical flutter velocity increases with, for instance, the thickness of the foil, the theory underestimates
it owing to the separation of the flow, but the simple theoretical formulation accurately predicts the frequency of the foil
oscillations after instability for all wind velocities within its validity range, i.e. when the stiffness of the foil is large enough.
The theory cannot provide the power extracted from the wind, which must be obtained numerically. Full numerical
simulations of the interaction between the wind and the very thin flexible foil are however complex and computationally
expensive, demanding days or weeks of CPU in a supercomputer for each simple case. We propose here the combination
of the theoretical formulation with punctual numerical simulations as a powerful tool for searching optimal conditions
for energy harvesting with this flexible flapping foil device. The analysis of the present paper shows that energy can be
harvested at quite low wind velocities.

We have just explored one foil material with several thickness-to-chord ratios mounted to particular springs and
dampers in a range of wind velocities, comparing with full numerical simulations for a selected set of cases. But the flutter
velocities can be lower and the power output larger for other materials, springs and dampers, which can conveniently be
selected using the theory in a given range of wind velocities and with the desired frequency range of the flutter oscillations.
For instance, the theory predicts that the minimum wind velocity for energy extraction decreases with (E/p)(e/c)*/?,
where E is the elastic modulus, p the air density, and ¢/c the thickness-to-chord ratio of the plate. The corresponding
frequency is proportional to (E/ps)/?e/c?, where p; is the density of the foil. Thus, one may select (E/p)(e/c)>/? for a given
range of critical flutter wind speeds, ps and c for the desired frequency, and then vary the spring and damper constants
to optimize the energy efficiency trough full numerical simulations.
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Appendix. Coefficients in Eq. (10)

These coefficients are

Ay = —my? + ky + byiy + A%, (A1)
A = —Joy? + A, (A2)
Ay = —ly? + AL, (A.3)
Ap = —Kqy? + ? S+ AL, (A4)

where the superscript F refers to the contributions to these coefficients from the fluid-structure interaction (i.e., from Cj,
and Cf). Using the expressions of C; and Cr (see Fernandez-Feria, 2022, in absence of pitching motion and with a = 1),
these contributions can be written as

Al =myl[—y +2ic(y)], (A5)
A _n-_149 24 2 +cly) 283, + 22 (A6)
2= T T T e T 2g ) | '

F [ 5, .

Ay =m —27 +Ciy |, (A7)
g [L1015 L, 3 (263, 59 A8)
2= 715367 T ag " Tag T 192 Tag ) | '

where C(y) is Theothorsen’s function of the complex argument y.
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