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Online and Non-parametric Drift Detection
Methods Based on Hoeffding’s Bounds

Isvani Frías-Blanco, José del Campo-Ávila, Gonzalo Ramos-Jiménez, Rafael Morales-Bueno,
Agustín Ortiz-Díaz and Yailé Caballero-Mota

Abstract—Incremental and online learning algorithms are more relevant in the data mining context because of the increasing necessity
to process data streams. In this context, the target function may change over time, an inherent problem of online learning (known as
concept drift). In order to handle concept drift regardless of the learning model, we propose new methods to monitor the performance
metrics measured during the learning process, to trigger drift signals when a significant variation has been detected. To monitor this
performance, we apply some probability inequalities that assume only independent, univariate and bounded random variables to obtain
theoretical guarantees for the detection of such distributional changes. Some common restrictions for the online change detection as
well as relevant types of change (abrupt and gradual) are considered. Two main approaches are proposed, the first one involves
moving averages and is more suitable to detect abrupt changes. The second one follows a widespread intuitive idea to deal with
gradual changes using weighted moving averages. The simplicity of the proposed methods, together with the computational efficiency
make them very advantageous. We use a Naïve Bayes classifier and a Perceptron to evaluate the performance of the methods over
synthetic and real data.

Index Terms—concept drift, control chart, incremental learning, weighted moving average.
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1 INTRODUCTION

L EARNING from data streams, the target concept of
which can change over time, is a research area of

growing interest. In these situations, large volumes of
data are acquired over time, possibly at a high incoming
rate. For example, such changes can emerge due to
changing clothing preferences (e.g. given by a season
change), news preferences, energy consumption, etc.
Spam filtering is another example: spammers try to elude
filters by disguising their emails while spam filters must
be updated to successfully identify spam over time. So it
is possible that a learning model previously induced may
be inconsistent with the current data, making an update
necessary. This problem is commonly known as concept
drift. Many learning algorithms have been implemented
as the base model for handling concept drift, such as
rule-based systems, decision trees, Naïve Bayes, support
vector machines, instance based learning, and ensemble
of classifiers [1], [2].

In supervised incremental learning, a well-extended
approach to handle concept drift constantly monitors
a performance measure (e.g. accuracy) of the learning
model. If a significant drop in this measure is estimated

• I. Frías-Blanco is with the Regional Faculty of Granma, University of
Computer Sciences, Granma, Cuba, e-mail: ifriasb@grm.uci.cu.

• J. del Campo-Ávila, G. Ramos-Jiménez and R. Morales-Bueno are with
the Department of Lenguajes y Ciencias de la Computación, Univer-
sity of Málaga, Complejo Tecnológico, 29071 Málaga, Spain, e-mail:
jcampo@lcc.uma.es, ramos@lcc.uma.es, morales@lcc.uma.es.

• A. Ortiz-Díaz is with the Department of Computer Science, University of
Granma, Granma, 85100 Cuba, e-mail: agustin@udg.co.cu.

• Y. Caballero-Mota is with the Department of Computer Science, University
of Camagüey, Camagüey, Cuba, e-mail: yailec@yahoo.com.

a concept drift is assumed and some actions are defined
to update the model according to the latest data. In
this strategy, change detectors that are independent of
the learning algorithm play a crucial role [3], [4], [5].
These detectors often operate over a stream of real
values (corresponding to a given performance measure);
due to the difficulty of detecting online distributional
changes, most existing approaches monitor changes in a
suitable statistic, such as the mean or median [6]. Thus,
the problem of concept drift detection is reduced to
estimating significant changes in the statistic calculated
from the sequence of values that measure a performance
characteristic.

Often, this stream of real values is also large (possibly
infinite), since the learning model is monitored over
time. Therefore, it is common to impose restrictions on
these online change detectors [6], [7]. The computational
complexity required to process each performance value
must be constant and methods should be single-pass,
where each performance value is processed once and
then discarded. These change detectors must also deal
with common types of change prevalent in many real-
world data [2]. Under these conditions, many traditional
statistical approaches that assume a fixed size of the
input data for estimating distributional changes are not
suitable. Some of the most studied parametric schemes to
detect changes online are Shewhart’s control charts, ex-
ponentially weighted moving average (EWMA) control
charts and Page’s cumulative sum (CUSUM) procedure
[8]. However, in many situations the data are not ruled
by these well-known probability distributions, and non-
parametric approaches are more suitable.

Some existing approaches do not fulfill the afore-
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mentioned computational restriction [5], [9]. For exam-
ple, ADWIN2 [5] keeps a window of length W with
O(logW ) memory and update time, where W is the
number of measured values generated after the last drift
detection. Another related methods, DDM [3], EDDM
[4] and ECDD [10] do not provide rigorous guarantees
of performance; whilst DDM [3] and ECDD [10] as-
sume measured values given according to a Bernoulli
distribution, so they are restricted to a stream of bits.
ECDD, which uses the EWMA estimator for concept drift
detection, only focuses on the false positives rate.

This paper concerns about the problem of detecting
concept drift in supervised incremental learning. Specif-
ically, we propose a family of methods for monitoring
over time the mean as estimated from a sequence of
real values (corresponding to the performance measure)
in order to detect significant changes. Thus, we extend
some methods for detecting change in data streams by
removing any assumption related with the probability
density function that generates these measured values.
Instead, we assume that these values are given according
to independent and bounded random variables. Addi-
tionally, the proposed methods take care of important
issues of online learning: they are single pass, process
each incoming measured value in constant time and
space complexity, and provide rigorous guarantees of
performance in the form of bounds on false positives
and false negatives rate.

Although in this paper we study the concept drift
problem assuming that all the incoming instances are
labeled, the proposed change detectors can also be ap-
plied to more realistic scenarios in which instances arrive
online but labels are harder to obtain [11].

This paper is structured as follows. Section 2 pro-
vides the problem statement and its main peculiarities.
Later, in Section 3 we review some outstanding research
work dealing with the change detection problem in
data streams. Then, a nonparametric two-sample test
involving moving averages with strong probabilistic
guarantees is discussed in Section 4. In Section 5 this test
is generalized to improve the detection when the change
is gradual by means of weighted moving averages. The
algorithm that detects changes online from these tests is
shown in Section 6. Section 7 presents a study that shows
the performance of the methods over both synthetic and
real data. Finally, we conclude this paper in Section
8, summarizing the most salient results and proposing
future work.

2 NOTATIONS AND DEFINITIONS

Consider the following incremental learning scenario.
A very large (or possibly infinite) sequence S =
(~a1, c1); (~a2, c2); . . . of pairs (~ai, ci), named examples (or
instances), arrives over time, where ~ai ∈

−→A is a vector
in which each component is called attribute and ci ∈ C
is its corresponding class label taken from a finite set C
named class. Assuming the existence of a target function

ci = f(~ai), the incremental learning task is to obtain a
model f̂ that approximates f , so that f̂ maximizes the
prediction accuracy. Often it is also assumed that the
examples are regulated by a probability density function
P (
−→A , C). Concept refers to the whole distribution P (

−→A , C)
of the problem at a certain point in time. Therefore, a
change in the whole distribution of the problem is called
concept change or concept drift.

2.1 The Speed of Change

Speed of change refers to the transition period between
consecutive concepts. For example, tracking abrupt and
gradual changes is an important issue since these types
of change are prevalent in many real-world data. Often
they are handled separately on different learning algo-
rithms or by using different change detectors [3], [4]. If
S = (~a1, c1); (~a2, c2); . . . ; (~at, ct); ...; (~an, cn) is a sequence
of n examples where each (~ai, ci) has associated with it
the concept Pi = P (~ai, ci), a change is abrupt if there
is a change point t + 1 such that Pi remains constant for
0 < i ≤ t, and changes at this point (t+1) to P ′j remaining
constant for t < j ≤ n.

On the other hand, some research studies have identi-
fied various types of gradual changes [2], [12], [13], [14].
For instance, Helmbold and Long [13] assume a possible
permanent but slow concept drift defining P (fi(

−→A) 6=
fi+1(

−→A)) ≤ ∆, where ∆ > 0 is a bound for the drift
rate on the sequence of target functions fi(

−→A). Other
theoretical results [12] have assumed that examples are
generated independently and randomly from a sequence
Pi of joint distributions over −→A × {0, 1} supposing that
consecutive pairs of distributions have at most γ total
variation distance (0 < γ ≤ 1).

2.2 Monitoring Statistics

The change detectors proposed in this paper can be
applied to a well-known scheme for handling concept
drift with two modules [3], [4], [5]: the change detector
and the learning algorithm. Change detectors can alter-
nate between two states: in-control where it is estimated
that the concept is stable and out-control achieved when
estimating a concept change. As each example arrives
the learning algorithm makes a prediction ĉi ∈ C based
on the vector of attributes ~ai. Then, the change detector
is updated via a loss function L(ĉi, ci) defined as L : C ×
C → R (e.g. 0-1 loss function with L(ĉi, ci) = 1 if ĉi 6= ci
and L(ĉi, ci) = 0 otherwise). Next, the aforementioned
example (~ai, ci) is provided for the learning algorithm
to continue its training.

Thus, the change detector receives as input a stream of
real values (calculated from the values estimated by the
loss function) and gives as output the information of the
current status estimated by the detector. The family of
methods proposed in this article applies to this scheme
if L(ĉi, ci) corresponds to independent and bounded
random variables.
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Following the PAC learning model, if the distribution
of the examples is stationary, the error rate of the learn-
ing algorithm will decrease when the number of exam-
ples increases [3], [4]. This way, a significant increase in
the mean (e.g. in the error rate of the learning algorithm)
as estimated when tracking L(ĉi, ci) over time, may in
fact signify a concept drift.

As we have already mentioned, a very widespread
intuitive idea for detecting concept drift is to moni-
tor some convenient statistic X̂ over time, computed
over a stream x1, x2, ..., xt, xt+1, ..., xn of performance
values. In this paper we study moving averages and
weighted moving averages, which have the form X̂ =∑n
i=1 vixi (e.g. on moving averages ∀i, vi = 1/n and

X̂ = X); additionally, we assume performance values
generated according to n independent random vari-
ables X1, X2, ..., Xt, Xt+1, ..., Xn bounded, real-valued
and univariate. The problem in hand is to estimate if X̂
changes significantly over time. In abrupt changes (that
is to say E(Xi) = µ0 for 0 < i ≤ t and E(Xj) = µ1 6= µ0

for t < j ≤ n), the problem is to estimate weather such a
change point t+1 exists in this sequence. Unfortunately,
the assumption of abrupt change is often unrealistic.

Frequently, with gradual changes there is not a defined
change point but a transition period between consecutive
concepts. Slow and permanent gradual changes are more
difficult to track. In these cases, the population mean of
the performance values (e.g. the accuracy) often varies
slowly and continuously.

3 RELATED WORK

Although the problem of detecting arbitrary distribu-
tional changes has been extensively studied in the statis-
tical community, far fewer approaches have studied it in
data stream environments. In the following subsections
we mention relevant algorithms used in online learning,
which fall in two main categories: window strategies and
weighted-instance approaches.

3.1 Window Strategies

Due to the huge amount of data, it is important to define
how the incoming data will be recorded. In the area of
machine learning and data mining, the incoming data
are generally stored in a buffer called time window. Gama
and Rodrigues [15] also mention three relevant models
within this category: landmark, sliding and tilted win-
dows. In incremental learning, time windows have been
used to process the input examples, associating with
each example a time stamp that defines its age. Since
it is not feasible to exactly calculate statistics relative
to several sub-windows, relevant algorithms have been
proposed to approximately maintain statistics, offering
mathematical guarantees to bound the error of the esti-
mation [7].

These results have also been extended to detect sig-
nificant changes in the population mean. For instance,

ADWIN (ADaptive WINdowing) [5] eliminates an obso-
lete part of a window (sub-window) when it concludes
that this part has a different distribution. ADWIN2 [5], a
more efficient version, does not examine all the window
divisions in order to find a good cut point quickly.

However, the temporal complexity of these window-
based algorithms depends on the number of values seen
so far. Other approaches are capable of detecting change
in a single-pass through the observed values [3], [4],
guaranteeing a theoretical limit to the maximum process-
ing time of each incoming value. For instance, following
the idea of some classical approaches to detect changes
online [8], DDM [3] identifies a single cut point in the
sequence of incoming values, by counting the number
of errors. To improve the detection on gradual and slow
types of change, Baena et al. [4] consider the distance
between two classification errors instead of considering
only the number of errors.

3.2 Weighted-Instance Strategies

Lazarescu and Venkatesh [16] show some disadvantages
of window strategies. First, there is no single window
size to deal with rapid and slow types of concept drift.
Even with dynamic adjustable windows, it is difficult to
handle continuous and slow changes at the same time.
In machine learning, another prominent strategy weights
the data [17] or parts of the hypothesis [1], [18] according
to their age or current utility.

A widespread solution uses weighted moving aver-
ages, where recent performance values receive more
weight (since they have more probability of occurrence)
than the previous ones. A well-known area involves the
EWMA statistic, which is an optimal mean estimator
when the mean follows a first-order integrated moving
average model [19] and when the mean is subject to ran-
dom step changes [14]. EWMA is as simple to apply as
CUSUM, it can be used to estimate the current mean and
performs as well as the CUSUM procedure [20]. Weights
on the EWMA mean estimator X̂t decrease exponentially
as in a geometric series on time: X̂t = (1−λ)X̂t−1 +λXt,
where λ acts as the forgetting factor (0 < λ ≤ 1), Xt is
the current value of a sequence of random variables and
X̂0 can be taken to be the average of preliminary data.
Usually, if the statistic exceeds a specified control limit
a change is estimated. Anyway, most research studies
assume that the random variables Xt are ruled by a
known probability distribution function [8].

Nuñez et al. [21] implement a variant of the EWMA
procedure to detect concept drift inducing decision trees.
Specifically, they consider a concept change if a perfor-
mance measure has a persistent descent; this persistence
being the key to distinguishing between noise and a true
concept change.

A recent method, ECDD [10], uses an EWMA chart to
monitor the misclassification rate of an online classifier.
The control limit is computed by using a Monte Carlo
approach and a regression method to fit a polynomial
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under various conditions. These polynomials, which are
computed considering the parameter λ and the required
false positives rate, must be stored in a “look-up table”
in order to detect change during the stream monitoring.

In the information filtering domain, Klinkenberg [17]
indicates that users may change their interests in a
specific topic slowly. To deal with this type of change,
he also suggests decreasing the importance of older
examples by a weighting scheme. In this sense, global
weighting selects the weight of the example xt based on
their respective age using an exponential aging function
wη(xt) = exp(−ηt), where the parameter η performs as
the forgetting factor (η ≥ 0). Optimal weights in local
example weighting are estimated by the performance of
the learner on the newest batch of data.

Cohen and Strauss [22] formalize the problem of main-
taining sums and statistics of a data stream. They exam-
ine some families of decay functions and explore storage
requirement mainly for exponential scenarios (exp(−ηt)),
polynomial scenarios (1/tα) and sliding window scenar-
ios. They also propose desired properties for a given
family of decay functions, among them a sufficiently rich
class of decay rates as particular applications depend on
the time scales of correlations between values.

As we discussed, most studied parametric schemes to
detect changes online assume an underlying probabil-
ity density function, but real data rarely follow these
well-known parametric distributions. Other methods do
not fulfill common computational restrictions for online
change detection or do not have strong guarantees of
performance. The methods derived in the following
sections can detect changes from statistics involving
some of the aforementioned weighting schemes. These
methods can be applied straightforwardly in online
change detectors that consider a single cut point in the
stream of real values. In the next section we obtain a
more simple non-parametric test from the Hoeffding’s
inequality concerning moving averages.

4 A-TEST: BOUNDING MOVING AVERAGES
There are methods applied to learning in data stream
scenarios that compute confidence intervals for different
parameters (e.g. error rate) considering well-known dis-
tributions. For example, the normal distribution has been
assumed given that the sample size (n) is large enough to
approximate an unknown probability distribution func-
tion to the normal distribution [5].

Other methods do not assume any probability distri-
bution function and use various probability inequalities.
For example, IADEM algorithm family [23] induces de-
cision trees without instances memory using Chernoff’s
and Hoeffding’s bounds; it only stores in the nodes the
relevant information in terms of relative frequencies.
Then, given a desired confidence (1− δ), it uses concen-
tration bounds to estimate which is the maximum error
(ε) and then calculates which is the confidence interval
([E(X)−ε, E(X)+ε]) for all stored parameters and mea-
sures. Thus, the induction of the tree considers enriched

information to execute different actions (expansion of a
node, selection of most appropriate attribute to expand,
etc.).

Therefore, concentration bounds have been already
used in data stream scenarios, and one of the most
extended inequality is the one proposed by Hoeffding
[24].

Theorem 1 (Hoeffding’s inequality). Let X1, X2, . . . , Xn

be independent random variables such that Xi ∈ [ai, bi], where
i ∈ {1, . . . , n}. Let X= 1

n

∑n
i=1Xi. Then for any ε > 0,

Pr
{
X − E

[
X
]
≥ ε
}
≤e−2n

2ε2/
∑n
i=1(bi−ai)

2

From this theorem and considering the average X , we
can estimate the error εδ , given a significance level of at
most δ:

εδ =

√
1

2n
ln

1

δ

As we can see, Hoeffding’s inequality assumes only
independent and bounded random variables, but none
probability function is assumed. The involved statistic
(X) and the error bound (εδ) can be computed in O(1)
time and space computational complexity at each incom-
ing value, what makes it applicable to learning from
data streams [23]. Particularly, a corollary proposed by
Hoeffding [24, page 16] can be applied to the detection of
significant changes in the moving averages of streaming
values.

Corollary 2. If X1, . . . ,Xn, Y1, . . . , Ym are independent
random variables with values in the interval [a, b], and if
X = 1

n

∑n
i=1Xi, Y = 1

m

∑m
i=1 Yi, then for ε > 0:

Pr
{
X−Y−

(
E
[
X
]
− E

[
Y
])
≥ ε
}
≤e

−2ε2

(n−1+m−1)(b−a)2

(1)

Analogously to Theorem 1, but considering instead the
difference between averages, we can estimate the error
εα, given a significance level of at most α:

εα = (b− a)

√
n−1 +m−1

2
ln

1

α
(2)

Therefore, Corollary 2 can also be used with O(1) time
and space computational complexity in order to detect
distributional changes. From Corollary 2 we can obtain a
statistical test bounding the probability of type I and type
II errors. We call this test the A-test (A because it involves
Averages). Let the null hypothesis H0 : E

[
X
]
≤ E

[
Y
]

against the alternative one H1 : E
[
X
]
> E

[
Y
]

and
let X−Y ≥ εα the rule to reject H0. Next corollary
bounds the probability of type I and type II errors for
this statistical test.

Corollary 3 (A-test). Under the conditions on Corollary 2,
for εα defined in the equation (2):

1) if E
[
X
]
≤ E

[
Y
]
, then Pr

{
X−Y ≥ εα

}
≤ α

(bound for the type I error),
2) if E

[
X
]
≥ E

[
Y
]

+ ς , and ς > εα then
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Pr
{
X−Y < εα

}
≤ e

−2(ς−εα)2

(n−1+m−1)(b−a)2

(bound for the type II error).

In an obvious way we can derive a similar test for
the null hypothesis H0 : E

[
X
]
≥ E

[
Y
]

against the
alternative one H1 : E

[
X
]
< E

[
Y
]
, being Y −X ≥ εα

the rule to reject H0. Thus, a two-tailed test can also
be obtained. This way, given a sequence of random
variables X1, . . . ,Xn, Y1, . . . , Ym, we can detect changes
in the population mean by monitoring the difference
between moving averages from the A-test.

5 W -TEST: BOUNDING WEIGHTED MOVING
AVERAGES

In this section we derive a more general statistical test
for weighted moving averages, although equally efficient
and simple. In this case, recent incoming real values will
have more weight than the older ones, assuming that
they have more probability of occurrence.

McDiarmid [25] generalized the Hoeffding’s inequal-
ity for dependent random variables, specifically for a
martingale difference sequence, and we have the follow-
ing interesting result:

Theorem 4 (McDiarmid’s inequality). Let
X1, X2, . . . , Xn be independent random variables such
that Xi ∈ Ai ∈ [ai, bi], where i ∈ {1, . . . , n}. Let
g : A1 × . . . × An → R be a measurable function that
satisfies the independent bounded differences condition,
i.e., there exists a vector d = (d1, . . . , dn) such that∣∣∣g (−→X)− g(

−→
X
′
)
∣∣∣ ≤ di for all vectors −→X and −→X

′
that differ

only at the i-th coordinate. Let Y be a random variable
defined as Y = g(X1, X2, . . . , Xn). Then for any ε > 0,

Pr
{
Y − E

[
Y
]
≥ ε
}
≤ e−2ε

2/
∑n
i=1d

2
i (3)

Being in mind Theorem 4, we can define g(
−→
X ) as a

function which aims to give more weight to the most
recently arrived examples. We propose monitoring a
weighted sum updated at every arrived value. However,
since not all examples are available in the data stream
context before the processing, but arrive over time, we
have defined g(

−→
X ) to be efficient in terms of time and

space complexity. This way, we examine some weight
functions whose respective weighted sums can be up-
dated in O(1) computational time for each new value.

If we assume X1, X2, . . . , Xn to be independent ran-
dom variables the values of which are in the interval
∀i Ai ∈ [a, b], additionally we take −→X to be a random
vector defined as −→X = (X1, X2, . . . , Xn) and consider
the weights vi ∈ (0, 1] that can be generated by a time-
decay function; then we can define the weighted moving
average

g(
−→
X ) = X̂n =

n∑
i=1

viXi (4)

that satisfies the independent bounded differences con-
dition (needed in Theorem 4): as Xi ∈ [a, b] and vi ∈ (0, 1]
(i ∈ {1, . . . , n}), therefore di = (b− a)vi.

In general, if on a given weighted scheme the weights
vi are not restricted in the interval (0, 1] (e.g. 0 < vi <∞),
they can be normalized as follows.

Consider E[Xi] = µ for all i ∈ {1, . . . , n}, we can
present E[g(

−→
X )] like

E

[
n∑
i=1

viXi

]
=

n∑
i=1

viE[Xi] = µ

n∑
i=1

vi

To conveniently monitor changes in the average value
in a simple way, we can make

∑n
i=1 vi = 1 and conse-

quently E[g(
−→
X )] = µ. This way, we rewrite equation (4)

in a more general form:

X̂n =
1

Wn

n∑
i=1

wiXi (5)

where Wn =
∑n
i=1 wi and vi = wi/Wn. Additionally,

written in the following recurrent form, equation (5) can
be computed in O(1) time complexity at each incoming
value (note that Wn =Wn−1 + wn; X̂1 = X1):

X̂n =
Wn−1

Wn
X̂n−1 +

wn
Wn

Xn.

Furthermore, we can compute Dn =
∑n
i=1 d

2
i on equation

(3) with O(1) time complexity at each incoming value
(D1 = (b− a)2):

Dn =

n∑
i=1

d2i =

(
b− a
Wn

)2 n∑
i=1

w2
i

Dn =

(
Wn−1

Wn

)2

Dn−1 + (b− a)2
(
wn
Wn

)2

.

Logically, we can obtain a confidence interval from Theo-
rem 4 for the weighted moving average X̂n with respect
to its expected value.

5.1 Bounding the Difference between Weighted
Moving Averages

By following the idea shown in Section 4, we can obtain a
more general statistical test with probabilistic guarantees
for the type I and II errors analogously bounding the
difference between two weighted moving averages. We
need to use the following corollary:

Corollary 5. If X1, X2, . . . , Xn, Y1, Y2, . . . , Ym are indepen-
dent random variables bounded in the interval [a, b], and if
X̂n =

∑n
i=1 viXi, Ŷm =

∑m
i=1 v

′
iYi , such that X̂n and Ŷn

satisfy the independent bounded differences condition, then for
ε > 0:

Pr
{
X̂n − Ŷm −

(
E
[
X̂n

]
− E

[
Ŷm

])
≥ ε
}
≤ e−

2ε2

Dn,m

(6)
where Dn,m = (b− a)2

[∑n
i=1(vi)

2 +
∑m
i=1(v′i)

2
]
.
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Consider now the null hypothesis H0 : E[X̂n] ≤ E[Ŷn]
against H1 : E[X̂n] > E[Ŷn], and let X̂n − Ŷn > ε̂α the
rule to reject H0, where α is the significance level and
εα is the error bound defined as

ε̂α =

√
Dn,m

2
ln

1

α
(7)

Obviously, equation (6) is a generalization of equation
(1) and the last statistical test is also a generalization of
the A-test presented in Section 4. Similarly, bounds for
the probability of the type I and type II errors can also
be guaranteed. We name this test W -test (W because it
involves Weighted averages).

Corollary 6 (W -test). Under the conditions on Corollary 5,
for ε̂α defined in the equation (7):

1) if E
[
X̂n

]
≤ E

[
Ŷm

]
, then Pr

{
X̂n−Ŷm ≥ ε̂α

}
≤ α

(bound for the type I error),
2) if E

[
X̂n

]
≥ E

[
Ŷm

]
+ ς , and ς > εα then

Pr
{
X̂n−Ŷm < ε̂α

}
≤ e

−2(ς−εα)2

Dn,m

(bound for the type II error).

Proof: The proof is analogous to that of Corollary 3.

5.2 Weighting Schemes Compatible with the W -Test
Let us show a motivating example where we obtain
a confidence interval from Theorem 4 for the EWMA
statistic X̂n = (1− λ)X̂n−1 + λXt with respect to its ex-
pected value. To unify notations, we equivalently define
X̂n for n > 0 and we take X̂1 = X1.

Example 7. When n→∞, if X1, X2, . . . , Xn are random
variables bounded in the interval [a, b], and X̂n is the
EWMA statistic; then

Pr
{
X̂n − E

[
X̂n

]
≥ ε
}
≤ e−

2ε2(2−λ)
λ(b−a)2 (8)

It is easy to show that on the EWMA statistic (see
Example 7)

lim
n,m→∞

ε̂α = (b− a)

√
λ

λ+ 2
ln

1

α
(9)

In the statistical process control field, we analogously
think about ε̂α as a control limit. For large n and
the EWMA statistic, if the random variables follow a
normal distribution (in this case we denote ε̂α as ε̂N ),
ε̂N = Lσ

√
λ/(λ+ 2) is a classical control limit [8], where

σ is the standard deviation and L is a multiplicative
factor to give performance related to both type I and type
II errors. Then, we can show the asymptotic relationship
between α on the W -test and L bearing in mind the
equation (9), precisely α = exp−1(L2σ2/(b− a)).

For example, assuming normality, a typical value L =
3 (three-sigma control limits [8]) makes the probability of

the type I error approximately equal to 0.001. However,
considering random variables bounded in the interval
[0, 1] and the worst-case variance σ2 = 1/4; we can easily
check that for large n, setting over this configuration L =
3 is similar to configuring α = 0.11 (i.e. the bound for
the probability of type I error) on the W -test.

On the other hand, another scheme that has been
used previously is to weight past values according to
an exponential aging function, that is to say wi = βn−i

(0 < β ≤ 1). For instance β = exp(−η) [17], [22]. We
name the corresponding statistic exponential aging.

Example 8. When n→∞, if X1, X2, . . . , Xn are random
variables bounded in the interval [a, b], and X̂n is the
exponential aging statistic; then

Pr
{
X̂n − E

[
X̂n

]
≥ ε
}
≤ e−

2ε2(1+β)

(1−β)(b−a)2

Consider now the configuration in Example 7 and a
moving average X computed over the most recent m
random variables. From the equation (8) and the Hoeffd-
ing’s inequality, we can say that Pr(X − E[X] > ε) and
Pr(X̂−E[X̂n] > ε) are bounded identically selecting λ on
the EWMA statistic X̂n as λ = 2/(m + 1). Analogously,
for the exponential aging statistic on the Example 8 we
can fix β = (m − 1)/(m + 1). EWMA statistic and the
exponential aging statistic are also related asymptotically
by λ = 1− β.

Polynomial weighted schemes have been less studied
in the literature. Anyway, the aforementioned formula-
tion of weighted moving averages is also feasible for
weightings polynomial weighting. An elegant solution is
to define wi = ip. For instance, for convenient small val-
ues of p ∈ Z+, the sums Wn and Dn can be represented
in a closed form expression using the Faulhaber formula.
This way, it can be unnecessary to maintain these sums
updated since for large n, even for small p they can grow
quickly.

5.3 Relationship between the A-Test and the W -Test

Let us now compare the A-test and the W -test suppos-
ing that we know exactly where the change point is
located. Consider the scenario with an abrupt change
at n random variables (i.e. all Xi are i.i.d., there is a
change in the mean value just after Xn arrives, and
again all Yj are i.i.d.). Informally, we can expect that
X̂n ≈ X and Ŷn ≈ Y since in this case E[X̂n] = E[X]
and E[Ŷn] = E[Y ]. However, εα ≤ ε̂α (εα was defined
in equation 2) since Dn,m has a minimum if all vi = 1/n
and all v′i = 1/m. Consequently, in abrupt changes the
A-test must detect the change more quickly than the W -
test involving weighted moving averages.

On the other hand, often in gradual changes it is
the case that not all incoming values have the same
importance, but rather that the importance can decrease
over time. Weighting can be viewed as changing the
probability distribution P (Xi) in order to place higher
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weight on values with a greater probability of occur-
rence [17]. In this setting, using estimators involving
weighted moving averages can be more appropriate.
Nevertheless, an additional problem emerges related
with the weighting estimation. As we have discussed,
some research studies fix some tuning parameter with an
extensive empirical evaluation [21], other weights have
been adapted with respect to the actual performance of
the learner and/or the age of the input values [17], and
other weights have also been computed to be optimal,
assuming an underlying structure of the change [14]. In
any case, the W -test can be straightforwardly applied to
many weighted schemes, principally due to the general
formulation of the weighted moving averages X̂n and
Ŷn, as well as to the probability inequality given in the
Corollary 5.

Finally, as both the A-test and the W -test can be
performed with constant time and space complexity, all
that is left to do is to identify a relevant cut point in the
sequence of values in order to detect significant changes
online. Again, a very simple but effective method is
used.

6 THE ALGORITHM TO DETECT CHANGES
ONLINE

A very extended method to detect the occurrence of
a change is monitoring the evolution of some indicators
or measures. Many options can be considered for this
monitoring, and one approach that fits in very well with
the use of interval estimations is based on the idea of
statistical process control [3], [8]. In this approach two
different levels, warning and drift, are defined on the ba-
sis of the probability density function of a normal distri-
bution. Thus, the method tries to detect when a statistic
(p) computed from the last observed values is statistically
far from the expected one (µ), specifically it sets the
warning level at 95% (Pr {µ− 2σ ≤ p ≤ µ+ 2σ} ≈ 0.95,
where σ is the standard deviation) and the drift level at
99% (Pr {µ− 3σ ≤ p ≤ µ+ 3σ} ≈ 0.99).

We can adapt this idea, relaxing the assumption of
normality, and substituting the estimation of the inter-
val that uses the standard deviation (σ) with another
one that fixes the desired significance level (α) and
estimates the confidence interval (by means of εα or
ε̂α). In our case, we can define two different confidence
values, one corresponding to the warning level (αW )
and another to the drift level (αD). In Figure 1 we
present a simple method to differentiate between three
separate states: STABLE, when there seems to be no
change; WARNING, when it seems that a possible
concept drift may appear; and DRIFT , when the drift is
clearly identified. The information given by the method
in the variable STATE can be used in many ways and
our proposal does not limit the actions to be executed
when warning or drift states are detected. However,
one of the most direct usages is the following: a) if the
warning level is exceeded a possible drift will arrive and,

Require: x1, x2, ...: potentially not-ended stream of real
values where ∀i, xi ∈ [a, b]

Require: αW ∈ (0, 1]: confidence for the warning level
Require: αD ∈ (0, 1]: confidence for the drift level
Ensure: STATE ∈ {STABLE, WARNING, DRIFT}

/* Variables declaration, at n incoming real values: */
X̂cut: statistic computed from x1, x2, ..., xcut
Ŷn−cut: statistic computed from xcut+1, ..., xn
Ẑn: statistic computed from x1, x2, ..., xn
εX̂cut , εŶn−cut and εẐn : error bounds in correspondence
with the statistic used
init() /* variables are reset */
for all xi arrival on stream x1, x2, ..., xi, ... do

/* update statistics and confidence intervals */
update Ŷi−cut , Ẑi, εŶi−cut , and εẐi having a new real
value xi
/* update the cut point */
if Ẑi + εẐi ≤ X̂i + εX̂i then
X̂cut = Ẑi and εX̂cut = εẐi
reset Ŷi−cut and εŶi−cut

end if
/* determine the current state of the data stream */
if H0 : E[X̂cut] ≥ E[Ŷi−cut] is rejected with size αD
then
STATE ← DRIFT
init()

else
if H0 : E[X̂cut] ≥ E[Ŷi−cut] is rejected with size
αW then
STATE ←WARNING

else
STATE ← STABLE

end if
end if

end for

Figure 1. HDDM: Drift Detection Method based on the
Hoeffding’s inequality.

consequently, new observed examples can be buffered
and used to train an alternative classifier; b) when a drift
signal is triggered a hypothetical alternative classifier
could replace the old one to adapt the learner using the
buffered examples.

Consider a sequence of random variables
X1, X2, . . . , Xcut, Xcut+1, . . . , Xn and the problem of
detecting a significant increment in the mean value of
this sequence (e.g. an increment of the error rate of
a learning algorithm). The first task is to estimate a
relevant cut point in this sequence, that we called cut,
in order to later carry out either the A-test or the W -test
over the samples X1, X2, . . . , Xcut and Xcut+1, . . . , Xn.
Consider the expression X̂i + εX̂i (1 ≤ i ≤ n), where X̂i

can be either a moving average or a weighted moving
average, and εX̂i is its corresponding error bound
computed from Theorem 1 or from Theorem 4. When
there is no change in the population mean, X̂i must
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keep approximately constant and consequently X̂i + εX̂i
must diminish its value (in the case of A-test) or keep
approximately constant (for the W -test). However, at a
given increment in the population mean, the value of
the mean estimator X̂i and as consequence X̂i + εX̂i
must increase. Following this idea, a relevant cut point
in this sequence can be estimated from the minimum
value of X̂i + εX̂i (1 ≤ i ≤ n) [3], [4], [8].

Then, we can apply the respective statistical test (A-
test or W -test) to estimate the actual state (STABLE,
WARNING or DRIFT ) of the change detector from
αW and αD over the samples X1, X2, . . . , Xcut and
Xcut+1, . . . , Xn. This way, if the null hypothesis is
rejected with size αW the current status is set to
WARNING. Similarly, if the null hypothesis is rejected
with size αD, the change detector reaches the DRIFT
level and all counters are reset. Otherwise the null
hypothesis is accepted and the current status is set to
STABLE. We have called this online change detector
HDDM because it is similar to DDM but uses instead
the Hoeffing’s inequality for the two-sample statistical
test.

To perform the statistical test, Figure 1 maintains three
counters (X̂cut, Ŷn−cut+1 and Ẑn). For the A-test, this
method can be slightly improved by applying the fol-
lowing corollary (equivalent to Corollary 2) derived from
the Hoeffding’s inequality. This way, only two counters
(e.g. X̂cut and Ẑn) are necessary.

Corollary 9. If X1, . . . ,Xn, Xn+1, . . . , Xn+m are indepen-
dent random variables with values in the interval [a, b], and
if X = 1

n

∑n
i=1Xi, Z = 1

n+m

∑n+m
i=1 Xi, then for ε > 0:

Pr
{
X−Z−

(
E
[
X
]
− E

[
Z
])
≥ε
}
≤e−

2ε2n(n+m)

m(b−a)2 (10)

In this case, the rule to reject the null hypothesis H0 :
E
[
X
]
≤ E

[
Z
]

against the alternative one H1 : E
[
X
]
>

E
[
Z
]

will be X−Z ≥ εα, where

εα = (b− a)

√
m

2n(n+m)
ln

1

α

Generally speaking, both the A-test and W -test can be
applied to other window techniques in order to consider
many cut points [5], [7]. In this case, a Bonferroni correc-
tion for α can correct multiple tests maintaining bounded
the probability of false detection [5]. Specifically, the A-
test can easily be extended to the ADWIN2 algorithm,
the resulting bound being tighter than the one given by
Bifet and Gavaldà [5] in a constant factor and under the
same theoretical assumptions.

Furthermore, HDDM in combination with W -test
gives place to a more simple method than ECDD [10]
to detect change by means of the EWMA statistic (e.g.,
no “look-up table” is needed nor additional method to
estimate confidence intervals).

Afterward we empirically study some particular con-
figurations of these online change detectors taken into

account different types of changes and learning algo-
rithms.1

7 EMPIRICAL STUDY

Some authors have proposed various performance mea-
sures to be considered in the design and evaluation
of change detection algorithms [5], [8], [26], [27]. We
focus on evaluating the false positives rate (probability of
false detection), false negatives rate (probability of non-
detection) and mean delay for detection as they are the
most considered in incremental learning scenarios [26].

On the other hand, the prequential method is a general
methodology for evaluating incremental learning algo-
rithms. Gama et al. [27] propose a framework for evalu-
ating the quality of streaming learning algorithms. They
defend the use of a predictive sequential error estimated
over a sliding window to calculate the performance of
algorithms that learn from open-ended data streams in
non-stationary environments. At the same time, they
present strategies which apply to both supervised and
unsupervised problems, given that a proper loss function
is defined; and study properties and statistical tests to
comparatively assess algorithms’ performance.

This way, to evaluate precision in artificial data
streams, we periodically test (every 100 training exam-
ples) the learning algorithm with other 100 examples
only used for testing, taking advantage of stream gener-
ators since they can produce a possibly infinite number
of examples. Obviously, this strategy is not so useful
for real-world datasets, so in this case we use a test-
then-train approach [27], [28]. We do not focus on time
and space measurements since all the proposed meth-
ods have O(1) computational time complexity. Although
they do not store examples, the necessary information is
kept in a fixed number of counters.

The methods considered in this experimental study
are HDDM in combination with the A-test and the W -
test, and some others that follow similar strategies and
characteristics. Concretely we use a moving average (by
means of the A-test) and the EWMA statistic (applying
the W -test), both configured with αW = 0.005 and
αD = 0.001. We have considered the algorithm DDM
[3], because it uses a similar approach and it shows a
good performance; it detects abrupt and gradual changes
when the change is not very slow, but it does not perform
as equally well if the contrary happens [4]. We also
include ADWIN2 [5], although it does not process the
input performance values with constant time and space
complexity, it has a very good performance and strong
theoretical guarantees; furthermore, ADWIN2 has been
broadly used as a change detector in many learning
algorithms. We also incorporate ECDD [10], which is a
concept drift detector based on EWMA.

1. The source code (in the Java programming language)
of the proposed change detectors, as well as more detailed
data of the experiment results are available online at
http://www.lcc.uma.es/~jcampo/software/HDDM.
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Previously we have shown the relationship between
the W -test using the EWMA statistic and the control
limit widely studied in the literature assuming that
random variables are normally distributed. Likewise, we
have established the relationship between the EWMA
statistic and another common weighting scheme that
we call exponential aging. We have also shown the
asymptotic similarity between the EWMA statistic and a
moving average over the last m real values (e.g. a sliding
window of fixed size). Thus, in the empirical study we
do not consider some of these basic algorithms.

7.1 Performance over Streaming Bits

We generate streams of bits from a Bernoulli distribution
with parameter µ making 30 drifts separated by 100 and
1 000 bits (i.e. the length of stable concepts, see Table
1). We run each algorithm 30 times for every one of
these situations. So we assume that in a run, a change
detector must raise 30 drift signals and must not raise
more than one drift signal per stable mean. This way
we can estimate the false positives and false negatives
rate. We also distinguish types of change controlling
the random difference for mean values: the absolute
value of the difference between old mean and the new
one restricted in an interval [a, b]. This is reflected in
Table 1, separating the performance of each algorithm
in different columns. For each algorithm we estimate
the false positives rate (FP), the false negatives rate
(FN) and the average of retardation for the detection
of changes (DELAY, that measures for example, how
fast the algorithm detects changes). Table 1 shows the
averaged results of these 30 runs. Due to the difficulty
in estimating these performance measures on gradual
changes, we do not consider this type of change in
streaming bits.

In this experiment we study different configurations of
λ in the EWMA statistic using the W -test on HDDM (this
combination is represented as HDDMW -test(λ)), the A-test
(represented as HDDMA-test), DDM, ADWIN2 with the
bound that involves approximation to the normal curve
for large sample size, and ECDD. On HDDMW -test(λ),
HDDMA-test and ADWIN2 we fix the size of the test
(significance level) to α = 0.001. In ECDD, we fix λ = 0.2
and ARL0 = 100 (which controls the false positives
rate).2

As we assume bounded random variables, values
of λ near to 1 in HDDMW -test(λ) are useless. We can
check this observation in equation (9). For example, since
Xi ∈ [a, b], at least limn,m→∞ ε̂α ≤ b − a, what leads
to λ ≤ 2/(ln(1/α) − 1). In all the algorithms the size
was set to α = 0.001 and consequently in HDDMW -test(λ)
useful values are λ ≤ 0.33. Even so, we have found
empirically that configurations for λ ≤ 0.25 generally
outperforms the variant for λ > 0.25. This way, we study
some settings for λ ≤ 0.25.

2. A discussion of the setting of ECDD is given by Ross et al. [10]

Similarly, we can explain the defective false negatives
rate of HDDMW -test(λ) (see Table 1) on changes with less
scale (e.g. |µold − µnew| ∈ [0.1, 0.3]). HDDMW -test(λ) does
not detect such changes since the confidence interval for
this statistic does not tend to zero as the other change
detectors do. However, HDDMW -test(λ) has a low false
positives rate in all the configurations for the parameter
λ, and a very good behavior when the scale of the change
is large.

According to additional experiments, in the EWMA
statistic we note that configurations for λ ≤ 0.1 have
a very good performance in many situations; variants
for 0.1 < λ ≤ 0.2 do not perform so well. In general,
configurations for λ ≤ 0.2 outperformed the variants for
λ > 0.2.

All proposed methods maintained the ratio of false
positives and false negatives according to the theory.
When the mean value varies quite frequently (100 bits
per stable mean value), detecting slight changes is diffi-
cult as confidence intervals are not fit enough. However,
when concepts remain constant for a longer time these
rates are in fact much smaller than α.

Note that the type of abrupt change considered in this
experiment favors the A-test with respect to the W -test
(see Subsection 5.3). Table 1 shows that often HDDMA-test
performs better than DDM in the three performance
measures, this difference is even more notable in the
retardation to detect changes at more bits per concept.
Note that ECDD maintains approximately constant the
false positives and false negatives rate, what indicates
robustness of the method.

Additionally, HDDMA-test also outperformed AD-
WIN2 in many cases. In ADWIN2, where multiple cut
points are considered, the retardation in the change
detection is not as susceptible to the length of the
stable concepts as when considering a single cut point.
Aside from the highest processing time, to maintain
bounded the probability of false positive, the extra loga-
rithmic term ln(n), where n is the number of cut points,
can make the bound much more conservative than
HDDMA-test when n is large. This way, when change de-
tectors that consider a single cut point (e.g. HDDMA-test)
are able to estimate precisely where the change point
is located, they can detect the corresponding concept
drift more quickly because the computed bound is less
conservative.

In supplementary experiments (omitted for space rea-
sons) we note that methods also perform according to
Table 1 when concepts remain constant for a much
longer time (e.g. 100 000 bits per stable mean). However,
ADWIN2 outperforms all the change detectors when
concepts remained constant for a longer period of time
(especially considering the DELAY measure). However,
its computational cost was much more expensive. As
HDDMA-test and DDM use the average to estimate the
change point, older values have the same weight as the
new ones. Then, when concepts remain stable for a large
number of bits there is a notable difference between
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Algorithm 100 bits between changes 1 000 bits between changes
[0.1, 0.3] [0.3, 0.5] [0.5, 0.7] [0.7, 0.9] [0.1, 0.3] [0.3, 0.5] [0.5, 0.7] [0.7, 0.9]

HDDMW -test(0.025)

FP 0 0 0 0 1.48E-04 1.87E-04 9.78E-05 1.44E-05
FN 0.67 0.49 0.33 0.09 0.088 0.018 0.004 0.002

DELAY 16.76 30.22 36.04 40.24 105.62 34.52 19.65 15.09

HDDMW -test(0.050)

FP 0 0 0 0 3.11E-04 3.89E-04 1.86E-04 2.33E-05
FN 0.62 0.16 0 0 0.149 0.023 0.002 0

DELAY 16.05 28.98 19.80 14.68 110.68 29.64 14.86 11.71

HDDMW -test(0.150)

FP 2.22E-05 2.22E-05 1.11E-05 0 2.62E-04 3.24E-04 1.37E-04 7.78E-06
FN 0.75 0.351 0.023 0 0.411 0.076 0.003 0

DELAY 9.99 20.04 16.963 10.71 110.44 56.28 16.95 11.03

HDDMA-test

FP 0 3.33E-05 1.11E-05 1.11E-05 4.33E-05 4.00E-05 3.22E-05 1.22E-05
FN 0.69 0.138 0 0.001 0.022 0.001 0 0

DELAY 15.27 28.67 14.05 8.28 157.78 40.38 22.02 13.24

DDM
FP 2.33E-04 0.001 0.001 0.003 3.08E-04 4.53E-04 6.20E-04 0.001
FN 0.56 0.088 0.037 0.036 0.104 0.003 0.001 0.004

DELAY 18.68 24.20 12.86 7.94 208.67 109.95 57.34 26.80

ADWIN2
FP 0.004 0.006 0.008 0.023 0.004 0.007 0.008 0.009
FN 0.70 0.67 0.25 0 0.05 0 0 0

DELAY 12.27 14.91 46.66 32.30 209.59 56.38 28.26 16.10

ECDD
FP 0.04 0.05 0.05 0.06 0.04 0.05 0.05 0.06
FN 0.6 0.49 0.53 0.20 0.6 0.45 0.47 0.16

DELAY 6.70 11.81 11.64 26.12 23.69 95.61 114.11 260.76
Table 1

Mean value of the methods’ performances over streaming bits.

the estimated change point and the real one; leading to
a considerable retardation in the detection of changes.
This way, a weighted scheme used only to estimate
this change point should improve the performance of
HDDMA-test on large stable concepts.

Generally speaking, for lesser values of λ the size of
the stable concepts is not so influential on HDDMW -test(λ)
as in HDDMA-test and DDM. Thus, the difference in
the retardation to detect changes between ADWIN2 and
HDDMW -test(λ) is similar for changes with large mean
scale. At the same time, this behavior implies that the
warning level on HDDMA-test and DDM should be more
effective than on ADWIN2, HDDMW -test(λ) with λ close
to zero, and ECDD.

7.2 Artificial Data Streams
This experiment is implemented over MOA [28], a
framework for the incremental learning. It provides a
collection of evaluation tools, a great variety of al-
gorithms inherent to incremental learning and several
methods to generate artificial data streams with the
possibility of including concept changes.

We evaluate change detectors with two different incre-
mental learning algorithms [28]: a Naïve Bayes predictor
(NB) and a Perceptron (P). Thus, when an example
arrives, it is classified so that the error rate can be
monitored. When a warning alert is raised an alternative
classifier is trained until a stable concept estimation
returns. In the case of drift trigger, the alternative re-
places the previous one. It is possible to use a more
sophisticated strategy in order to handle concept drift
in similar conditions (e.g. see Bach and Maloof [29]),
however, we again choose the simplest one.

As we have shown in the previous section, on the
HDDMW -test(λ) change detector, all the studied configu-
rations for λ ≤ 0.1 (as well as for 0.1 < λ ≤ 0.2) had

a similar performance. For this reason in this experi-
ment, we only study two variants for the HDDMW -test(λ)
change detector: λ = 0.05 and λ = 0.15. Obviously, we
do not claim that any of these configurations is optimal
so it may be possible to improve the accuracy of all the
methods. However, since it is not useful in practice we
use the above configurations, which perform very well in
many circumstances. Considering the change detectors
(HDDMW -test(0.05), HDDMW -test(0.15), HDDMA-test, DDM,
ADWIN2 and ECDD) and the incremental predictors
(NB and P) we have tested 12 algorithms combining
changes detectors and learning algorithms. Additionally,
we have also included the incremental learning algo-
rithms without any method to detect changes.

To be precise, we run the algorithms over three drift
generators (LED, STAGGER and AGRAWAL) imple-
mented in MOA [28]. In LED, the goal is to predict the
digit displayed on a seven-segment LED display, where
each attribute has a 10% chance of being inverted. The
particular configuration of the generator used for the ex-
periment produces 24 binary attributes, 17 of which are
irrelevant. Drift is simulated by interchanging relevant
attributes.

STAGGER concepts are boolean functions of three
attributes encoding objects. We carry out drift choosing
between the three original target functions.

AGRAWAL generates one of ten different predefined
functions. The generator produces a stream containing
nine attributes, six numeric and three categorical ones.
There are ten functions defined for generating binary
class labels from the attributes. Drift is simulated chang-
ing the function that classifies the examples.

We measure the performance of the learners under
abrupt and gradual types of change. To simulate gradual
changes we use the sigmoid function incrementing the
probability that at each time the new examples belong
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100 examples per concept 1 000 examples per concept
Algorithm Abrupt (t = 0) Gradual (t = 50) Abrupt (t = 0) Gradual (t = 500)

LED STA AGR LED STA AGR LED STA AGR LED STA AGR

HDDMW -test(0.05)

NB x 63.35 98.76 77.36 63.39 85.46 73.76 78.75 99.83 82.07 70.55 90.76 77.25
s 7.77 0.22 4.46 5.34 6.05 4.36 1.44 0.11 9.48 3.03 2.48 7.92

P x 40.14 85.02 61.03 41.21 77.03 62.01 64.48 88.76 57.79 56.77 82.66 58.04
s 2.69 2.77 3.72 2.22 3.23 4.49 2.77 9.05 16.83 4.30 7.88 15.89

HDDMW -test(0.15)

NB x 58.85 94.44 80.19 61.41 82.48 72.89 78.62 98.13 80.94 70.60 88.84 74.64
s 8.51 2.13 2.62 6.57 3.27 4.83 1.87 3.05 10.27 2.95 2.64 7.28

P x 41.01 84.49 61.07 40.03 78.26 58.77 64.14 88.47 60.59 55.65 82.59 58.12
s 1.70 2.59 4.44 1.46 3.65 4.22 3.74 9.33 16.04 4.39 6.73 15.92

HDDMA-test

NB x 56.80 98.38 68.98 55.31 87.62 69.58 78.73 99.81 81.29 70.40 90.44 74.16
s 10.39 0.69 6.95 8.64 4.51 5.61 1.47 0.15 9.81 3.05 3.50 8.28

P x 40.68 85.23 57.48 39.80 77.10 55.12 64.71 88.83 62.89 57.07 82.68 58.51
s 2.83 2.92 4.11 1.52 3.35 4.04 3.07 9.00 15.90 3.78 7.51 14.65

DDM
NB x 54.49 98.73 67.76 47.89 86.75 67.59 78.04 99.83 68.76 70.14 90.40 66.74

s 10.54 0.20 7.69 12.49 5.00 6.20 2.11 0.14 14.81 3.11 3.50 12.64

P x 41.20 85.58 60.09 39.91 78.32 57.11 63.73 88.15 59.53 57.83 82.76 60.04
s 2.68 2.81 4.65 1.69 3.61 6.13 2.84 8.58 16.84 3.70 7.41 15.30

ADWIN2
NB x 51.74 76.37 66.92 49.71 77.07 67.08 76.99 99.83 76.74 69.60 90.63 69.58

s 12.19 8.85 6.78 11.53 6.99 5.51 2.75 0.13 10.78 3.22 2.94 8.82

P x 40.36 85.66 55.29 40.48 77.86 55.75 61.90 88.84 61.30 51.32 82.56 60.41
s 1.76 2.88 5.82 1.35 4.02 5.95 3.23 8.99 16.49 5.60 7.49 14.17

ECDD
NB x 48.85 98.54 74.67 47.89 80.49 64.76 70.88 99.85 70.58 66.46 88.37 67.42

s 13.91 0.36 4.30 12.49 8.29 6.06 3.95 0.11 14.87 4.67 3.63 11.74

P x 40.56 82.15 49.60 40.26 68.32 44.47 51.59 84.91 50.39 44.97 76.56 48.85
s 2.14 3.36 7.46 1.39 5.77 4.56 11.60 12.55 15.90 12.12 10.26 15.52

No drift detector
NB x 48.85 72.93 66.92 47.89 72.42 67.08 41.22 69.12 61.44 40.39 68.83 61.90

s 13.91 5.94 6.78 12.49 5.25 5.51 16.06 12.08 11.82 15.15 11.64 12.01

P x 40.48 85.66 58.98 40.28 77.70 41.67 44.89 85.37 59.50 44.34 82.33 59.73
s 1.47 2.88 4.00 1.50 4.13 5.36 15.05 8.84 16.97 12.23 6.91 16.22

Table 2
Experiments with 100 and 1 000 examples per concept; 50 and 500 examples in the transition period between

concepts on gradual changes (t = 50 and t = 500). Significant differences with respect to the remaining methods’
accuracy are showed in bold for the Naïve Bayes classifier as well as underlined and in italics for the Perceptron.

to the new concept [28]. On gradual changes, we set the
transition period between consecutive concepts to 50 and
500 (100 and 1 000 examples per concept respectively).
There were 30 drifts for each experiment. Each algorithm
was evaluated every 100 examples with another 100 ex-
amples (only used for testing). Table 2 shows the means
and standard deviations of these accuracy measures in
one run for each configuration. Naturally, to evaluate
the performance of change detectors we do not compare
accuracy between different classifiers.

As we expected, the classifier without change detector
rarely outclasses any of the methods for detecting drift.
Naïve Bayes almost always outperforms Perceptron, so
the optimal classification boundary appears to be non-
linear in all cases.

Concepts that remain little time are harder to track,
classifiers have not much information to learn the current
concept and thus the error rate is not so affected at a
concept drift. Furthermore, confidence intervals may not
be tight enough to detect small changes. If such changes
are not detected, classifiers learn a unified concept and
its accuracy often drops significantly. In these cases the
ability of the classifier to learn quickly is more influ-
ential. Table 2 reflects this setting when changes occur
every 100 instances. Change detectors based on EWMA,
which give more weight to recent values, perform better
in these situations (particularlly HDDMW -test(λ), whose
confidence interval also converge rapidly to its limit, see

Example 7). It is important to detect changes as soon
as possible when concepts are short because there is
little time to learn. The Naïve Bayes classifier usually
learns the selected concepts quicker than the Perceptron.
In general, EWMA change detectors in combination
with the Naïve Bayes classifier outperform the other
methods for the above reasons. This difference is not so
appreciable when learning with the Perceptron (which
does not learn as quickly). Even so, HDDMW -test(λ) never
detected all the concept drifts (30 changes) when con-
cepts remained for 100 instances (we do not show this
measurements for space reasons). We noted that ECDD
had a high false positives rate in all the experiments.

The proposed algorithms also perform well in gradual
changes. Note that gradual changes on 100 instances per
concept is hard to track, even so all change detectors
in combination with Naïve Bayes often improve the
performance of the classifier without change detection.
However, in 100 instances per concept, methods do not
perform so well in combination with the Perpectron, and
an alternative strategy may be necessary.

When concepts remained constant for a longer pe-
riod of time (1 000 instances per concept), the proposed
change detectors based on EWMA also performed well,
especially HDDMW -test(0.05). In correspondence with the
theory (Section 5) and with the streaming bits experi-
ments, all the proposed methods had a small false posi-
tives and false negatives rate, as well as a short delay de-
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tection of changes. We also observed that HDDMW -test(λ),
HDDMA-test and DDM approximately detected the same
amount of changes, so we estimate that the difference in
the prediction accuracy was determined by the delayed
detection of such changes (see Table 1).

False positives do not affect the accuracy so much
when classifiers can learn the underlying concept fast
(even, the accuracy can be improved with false detec-
tions). However, Perceptron does not learn the under-
lying concept so rapidly, causing drift signals to have
the additional cost related with slower learning. For
example, when concepts are stable for a longer time,
change detectors that monitor averages frequently out-
perform EWMA change detectors in combination with
the Perceptron, because EWMA change detectors are
more susceptible to noise.
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Figure 2. A typical behavior of the methods under abrupt
change (LED concepts). Abrupt changes occur every
1 000 examples.

Figure 2 represents typical learning curves when
change detectors in combination with NB learn LED
concepts under abrupt changes. We can observe how
the NB accuracy drops when there is not a change
detection mechanism: after 1000 examples occurs the
first change and the accuracy begins to deteriorate (the
model induced for the first concept does not correspond
with the second concept), and the performance varies
with every new change (the degree of variability mainly
depends on the similarity between the current concept
and the model previously induced). This drop in the
accuracy is not so appreciable for the proposed change
detectors because in general, they have a small delay in
detecting such concept changes. We can note that DDM
and ADWIN2 also have a good performance, as well as
how the high false positives rate of ECDD affects the
accuracy of the corresponding learning algorithm.

7.3 Real World Data
The selected real world datasets have been used in dif-
ferent studies about concept drift. For these datasets, it is

not possible to make strong claims about the presence or
type of drift. However, the benefit of evaluating methods
with these real-world datasets explains their presence. In
all cases we evaluate the methods processing the exam-
ples online in their temporal order. At each new example
the classifier is first tested and then trained. Table 3
shows the average and standard deviation of the fraction
among the number of the well-classified examples and
the total of the examples every 100 examples processed;
accuracy is computed with respect to a sliding window
with size 100 [27], [28].

We experiment with the Electricity Market dataset
(ELEC2)3 and other five datasets obtained from the UCI
Machine Learning Repository:4 two datasets based on
the 20 newsgroup collection (USENET1 and USENET2),
the Spam Assassin collection (SPAM) [18], the Forest
Cover Type (COVERTYPE) and the Nursery dataset.

In this experiment, we omitted the HDDMW -test(0.15) as
it was mostly outperformed by HDDMW -test(0.05). Again,
learning with change detection often improves the ac-
curacy of the learner without change detection. The
Perceptron had a poor performance in COVERTYPE,
which indicates high non-linearity in its classification
boundary.

ECDD had a very good performance, mainly in com-
bination with the Naïve Bayes classifier. As Ross et al.
[10] pointed out, this performance with a low ARL0

denotes that changes are occurring quite often. This also
shows the ability of Naïve Bayes to learn concepts quite
quickly. As we said, when the base classifier does not
learn the underlying concept so fast, to raise such drift
signals have an additional cost. For example, DDM and
HDDMA-test, which have a low false positives rate, show
a good performance in combination with the Perceptron.

Table 3 shows that all the proposed methods also
has a competitive performance in real data. This time
HDDMA-test mostly outperformed HDDMW -test(λ). We es-
timate that this behavior is given because many consec-
utive concepts on these real datasets are similar, causing
the changes to have little scale in the error rate. As we
have explained in Subsection 7.1, these changes are hard
to detect for HDDMW -test(λ). For example, HDDMA-test
usually raises less drift signals than HDDMW -test(λ), but
in these real-world data it raised less drift signals only
in the NURSERY dataset.

8 CONCLUSIONS AND FUTURE WORK

In this paper we have presented a family of meth-
ods to detect concept drift in online learning domains
through moving averages and weighted moving aver-
ages. Theoretical performance guarantees for these meth-
ods are provided using probability inequalities that do
not assume knowledge about the probability distribution
function. For the weighted moving average, we have

3. http://moa.cms.waikato.ac.nz/datasets/
4. http://www.ics.uci.edu/mlearn/MLRepository.html



I. FRÍAS-BLANCO et al.: ONLINE AND NON-PARAMETRIC DRIFT DETECTION METHODS BASED ON HOEFFDING’S BOUNDS 13

Algorithm ELEC2 SPAM USENET1 USENET2 COVERTYPE NURSERY

HDDMW -test(0.05)

NB x 84.47 91.51 75.07 70.93 86.23 91.71
s 6.56 7.35 11.51 13.32 8.07 7.58

P x 45.01 97.24 75.07 74.93 0.79 83.65
s 15.07 3.07 9.95 9.04 5.35 11.68

HDDMA-test

NB x 85.09 90.67 75.20 71.00 87.44 92.51
s 6.32 9.26 11.20 12.84 7.96 6.48

P x 46.65 97.23 76.93 74.93 1.68 82.62
s 15.53 3.05 9.15 8.82 9.15 12.00

DDM
NB x 82.70 89.50 73.73 72.93 88.03 91.72

s 8.69 13.82 12.26 11.68 8.35 7.09

P x 43.45 97.47 74.40 74.93 32.39 83.48
s 14.47 2.97 11.46 9.12 33.76 10.97

ADWIN2
NB x 81.01 91.37 70.27 72.13 83.28 91.90

s 9.44 7.15 15.79 11.15 10.85 6.93

P x 43.08 97.23 71.80 74.87 4.15 83.91
s 14.28 3.34 11.54 8.44 15.27 10.98

ECDD
NB x 87.08 88.03 76.53 66.53 90.52 84.72

s 4.56 15.20 8.63 15.24 6.97 7.17

P x 42.44 95.00 71.73 72.93 36.45 65.74
s 14.00 5.43 10.55 9.97 29.47 17.27

No drift detector
NB x 74.17 90.63 63.33 72.13 60.53 83.35

s 14.67 10.87 22.84 11.15 21.76 14.88

P x 42.44 97.30 73.20 74.73 48.75 75.78
s 14.00 3.25 11.97 8.23 32.12 19.11

Table 3
Experiments with real data.

mainly studied the exponentially weighted moving av-
erage (EWMA), which has been proved to be an optimal
mean estimator for some disturbance processes and an
effective estimator for various others. However, due to
the generality of the presented formulation, it can be
applied to many other weighted schemes.

The proposed methods are not dependent of the learn-
ing algorithm, and consequently they can be applied to
any classifier in order to track concept drift. Another
relevant aspect in the area of data stream is that the
methods have O(1) complexity in time order and store
only the required information in a constant number of
counters. All proposed methods improve the learning
accuracy of the algorithm when modeling non-stationary
problems.

We have already initiated a study of how the proposed
change detectors respond to diverse characteristics of
concepts and drifts. We have tested our change detectors
on streaming bits, synthetic and real time-changing data
streams. In streaming bits, we empirically found the false
positives and false negatives rate, as well as the detection
delay of the drift detection methods. In data streams,
we tested these methods by monitoring the error rate
of a Naïve Bayes classifier and a Perceptron, a warning
signal was used to train an alternative classifier that
replaces the original one (who makes predictions) when
this warning signal is followed by a drift signal. All ex-
periments show that the resulting algorithms effectively
adapt its learning in stables and drifting concepts.

We expect to continue this research with other learning
algorithms, different weighting schemes and applica-
tions for real-world problems. Preliminary results by
means of empirical evaluations over artificial and real
data seem to be very promising.

ACKNOWLEDGMENTS

The authors wish to thank the editor and the anonymous
revisors for their useful comments and suggestions.

This work was supported in part by the SESAAME
project number TIN2008-06582-C03-03 of the MEC,
Spain. The authors also wish to thank the support of
the AUIP (Asociación Universitaria Iberoamericana de
Postgrado).

REFERENCES
[1] H. Wang, W. Fan, P. Yu, and J. Han, “Mining concept-drifting data

streams using ensemble classifiers,” in Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2003, pp. 226–235.
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