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Summary

In this chapter, we will introduce a series of simulation-​based design methods 
that incorporate models of occupant behavior to achieve occupant-​centric 
design objectives. To this end, we will first summarize the scenarios in which 
occupant behavior models can be integrated into simulation-​aided design 
(Section 8.1). We will then explore a number of key simulation-​aided design 
methods and objectives with a focus on the role of occupants (Sections 8.2 
and 8.3). Finally, we will demonstrate and test the occupant-​centric 
simulation-​aided design procedures on a carefully described prototypical 
building model (Section 8.4).

8.1 � Occupants in Simulation-​Aided Design

Before we delve into the description and demonstration of occupant-​centric 
simulation-​aided design methods, this section provides a general framework 
to better understand different ways in which occupants can be incorporated 
into simulation-​aided design methods. The framework is based on two key 
questions about modeling occupants in the design process:

1		  Do the occupant models respond to iterative changes in the building 
design, i.e., are the occupant models static or dynamic in relation to the 
changes in building design?

2		  Are the occupant models themselves subjected to iterative changes in 
the design process, i.e., are occupant-​related assumptions among the 
design’s fixed or variable parameters?

We refer to the four possibilities resulting from the questions above (static-​
fixed, static-​variable, dynamic-​fixed, dynamic-​variable) as occupant behav-
ior modeling approaches in simulation-​aided design process and discuss 
them in the following.
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It is important to note that this chapter does not intend to provide a defin-
itive answer as to which approach to model occupants is suitable for which 
type of building performance query thorough the design process. Rather, 
the aim is to review the key relevant considerations to help modelers/
designers make an informed decision with regard to incorporating occupant 
behavior models in a given design problem. Chapter 3 (see in particular Sec-
tions 3.4 and 3.5), Chapter 5 (which introduces occupant-​centric metrics), 
and Chapter  7 provide further insight into this challenge from different 
perspectives.

8.1.1 � Static Occupant Behavior Models as Fixed Design Parameters

In the simplest approach, occupants can be incorporated into a simulation-​
based design process as static models that remain fixed throughout the 
iterative design evolution. Arguably, due to the relative ease of access to 
the required data for this modeling approach and its straightforward im-
plementation in building simulation tools, it has been widely adopted in 
simulation-​based design efforts. As highlighted in Chapter 6, many build-
ing energy standards recommend static assumptions for different types of 
buildings and spaces, such as maximum values and schedules of occupancy, 
lighting, and equipment use. As well, dynamic building thermal perfor-
mance simulation tools generally have native components for definition of 
this type of occupant model. However, adopting a static occupant modeling 
approach means turning a blind eye to human–​​human interaction within 
a building as well as human–​​building and human–​​environment interac-
tions (see Chapter 3). In particular, because of the disconnect between the 
design’s indoor environmental conditions and occupant operation of the 
environmental control systems, design performance is not fully captured. 
Moreover, this type of simulation-​aided design investigation does not reveal 
whether the building performs as expected when occupied differently than 
intended. With these limitations in mind, the building performance model-
ers should consider whether this simplified occupant modeling approach is 
suitable for their specific design problem.

The following example clarifies the above approach and its key limita-
tions. In a performance-​based design of a window, the designer/modeler 
aims to find the optimum size of the window that minimizes the energy de-
mand of an office space in a typical year. The building thermal model used 
for energy demand estimation represents the room occupancy with specific 
assumptions, including the maximum number of occupants, lighting and 
equipment power density, and the corresponding schedules for weekdays 
and weekends. Thus, the building model captures the internal heat generated 
by the occupants, lights and equipment, and the optimization process finds 
a solution for window size that, for example, minimizes the sum of heating, 
cooling, and electrical energy use. However, in this optimization process, 
design iterations with larger windows are not favored by the optimization 
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algorithm, as the building energy model does not consider the relation be-
tween the provided daylight levels and the use of electrical lighting by occu-
pants. Moreover, since the occupant-​related assumptions are not subjected 
to iterative changes through the optimization process, the modeler is not 
able to investigate if different patterns of occupancy or occupant behavior 
yield different window sizes as the optimum design solution.

8.1.2 � Static Occupant Behavior Models as Design Variables

To some extent, the implications of different occupancy patterns for design 
performance can be studied while benefiting from the simplicity of static 
occupant models. Building on the example in Section 8.1.1, if the designer/
modeler has control over the number of occupants in the room, the maxi-
mum occupant density can be set as a continuous or discrete design variable 
to represent a reasonable range of occupancy density or different pre-​
defined occupancy scenarios. Similarly, different sets of occupancy-​related 
schedules can be defined and assessed during the design process. In both 
cases, the simulation-​aided design exploration may either find the fittest oc-
cupancy patterns to minimize the objective function or determine if differ-
ent patterns of occupancy yield different design solutions to be judged by 
the client. It is important to note that when using static occupant behavior 
schedules as design variables, the modeler should ensure that occupancy-​
related assumptions (such as lighting and equipment use schedules) are tied 
to the changes in occupancy, so that the studied behavior not only includes 
the number of users but also reflects their interaction with appliances.

8.1.3 � Dynamic Occupant Behavior Models as Fixed Design 
Parameters

Given the limitations of static occupant models in simulation-​based design 
processes, it is worth considering a dynamic modeling approach to capture 
relevant interactions of occupants with building environmental control sys-
tems, such that the design process is informed by the two-​way relationship 
between design performance and occupant behavior. While dynamic oc-
cupant behavior models can be deterministic or stochastic, arguably both 
types have the potential to enhance the representation of occupants in the 
design process. Stochastic models capture the probabilistic nature of occu-
pant environmental control actions. However, they come with a challenging 
computational cost, especially if the design process relies on numerous iter-
ative simulations. Deterministic dynamic occupant models are not compu-
tationally expensive, but the modeler should be aware that they mirror ideal 
theoretical or automated scenarios of adaptive actions (see Chapter 6).

To revisit the example from Section 8.1.1, the designer/modeler could, for 
instance, incorporate a deterministic dynamic model of a light switch into 
the building model such that a number of the lights are switched off when 
the indoor daylight illuminance at a certain point exceeds a given threshold. 
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Although this model expresses a building-​environment interaction not di-
rectly related to occupancy, it can be used to mimic a human–​environment 
interaction using the building control system as a surrogate for an ideal sce-
nario of occupant-​adaptive action. Of course, there are a number of data-​
driven stochastic light switch models available that the modeler could opt 
for. However, either way, the light switch model enables the optimization 
process to reward larger windows due to their potential for reducing electri-
cal lighting use.

It should be also noted that, once the libraries of occupant behavior are 
rich enough, dynamic occupant behavior models will also allow for investi-
gating the impact of environmental control interfaces on occupant behavior 
and building performance within the simulation-​aided design process (see 
Chapter 9).

8.1.4 � Dynamic Occupant Behavior Models as Design Variables

Inclusion of the new generation of occupant models (as dynamic, data-​
driven, stochastic, and agent-​based models) in the simulation-​aided design 
process makes it possible to capture the occupant interactions with building 
environmental control systems, and provides further opportunities to test 
the design for different occupants and operation scenarios. As discussed 
in Chapter 6, many studies of occupant adaptive behavior have observed 
large samples of occupants and documented a wide range of interactions 
with different environmental control systems in different types of buildings. 
A number of these studies have also established personas based on distinct 
types of environmental control behavior (see Chapter 4). Thus, with these 
occupant behavior models, the simulation-​aided design process can, among 
other things, test the robustness of building design schemes in relation to 
different types of occupants and/or finetune the design process for specific 
types of occupants – ​for instance, the elderly.

Returning to the example in Section 8.1.1, data-​driven dynamic occupant 
models allow to study how different types of occupants (for example, in 
terms of their readiness to switch lights on and off depending on daylight 
availability) yield different optimum window designs. This is, for example, 
particularly relevant when designing for people with limited mobility. Thus, 
applying occupant behavior models as design variables could inform the 
design process to develop environmental controls that better fit to specific 
types of users. Thereby, the design team can either target the most repre-
sentative type of occupants for a given project, accommodate specific “edge 
cases”, or propose multiple design solutions based on different assumptions 
on future occupants to be discussed with the client.

8.2 � Simulation-​Aided Design Methods

Having considered the approaches to integrate occupant models in de-
sign process, this section describes four common simulation-​aided design 
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methods used by different members of design teams to make design deci-
sions factoring in occupancy behavior: uncertainty and risk assessment, 
sensitivity analysis, parametric design, and optimization.

Building designers need information to understand what is significant 
to the design challenge at hand and, at the same time, information that is 
useful to make design decisions (Bleil de Souza and Tucker, 2015). In this 
context, designers are assumed to undertake building performance queries 
(i.e., investigate the performance of their design proposal) as well as seek 
design advice (i.e., look for guidance to proceed from the performance of 
the building proposal to an improved design; Mahdavi, 2004). This type of 
interaction between designers and their work happens in most stages of the 
design process. Occupancy data is part of this wider exploration of design 
and building performance, where occupancy (as discussed in Section 8.1) is 
either seen as a fixed design parameter or as a design variable, depending on 
the design stage and the type of performance query or design advice needed.

The methods discussed in this section are mainly normative, i.e., they are 
procedures that describe decisions to be made so that best choices are en-
sured (de Wilde, 2018). Their use in practice is limited by the time available to 
undertake a project, knowledge of the design team, and resources available to 
make decisions. Thus, they may not always be followed “as prescribed” (e.g., 
toward achieving optima). The design team may settle for whatever is satis-
factory to fulfill a set of stakeholders’ needs, mainly specified by the client and 
the main contractor. However, despite still being bounded by practice-​based 
constraints, the importance of these methods in design decision-​making is 
growing as the industry is pushed toward performance-​based design (e.g., 
Directive (EU) 2018/844, EPBD, 2018) and occupant-​centric design (e.g., EN 
ISO 55000, 2014), which means that methods are needed to not only substan-
tiate decisions but also enable tracing accountability and liabilities toward 
achieving tighter targets for carbon emissions and occupant health. This is 
primarily where uncertainty and risk assessment come into play.

Briefly, uncertainty is defined as a “deficiency of information, related to 
understanding or knowledge of an event, its consequences, or likelihood” 
(EN ISO 55000, 2014). Risks are “often expressed in terms of a combina-
tion of the consequences of an event (including changes in circumstances) 
and the associated ‘likelihood’... of occurrence” (EN ISO 55000, 2014). Both 
uncertainty and risks are dealt with by project teams at the very early de-
sign stages before design briefs are developed, and they cascade down to all 
project stages, including commissioning. They are formulated initially by 
project managers with regard to meeting the client’s objectives and expecta-
tions, and then translated by the design team into design objectives to be im-
plemented throughout the design process. Uncertainty and risk assessment 
are further explored in Section 8.2.1.

A key normative method to gauge uncertainty in relation to occupancy 
and to make more informed design decisions is sensitivity analysis (de Wit 



Advanced Simulation Methods for Occupant-Centric Building Design  173

and Augenbroe, 2002), which is described briefly here and in more detail 
in Section 8.2.2. Defined as a way “to establish which of the input param-
eters have the most impact on experimental outcomes” (de Wilde, 2018), 
sensitivity analysis is mainly used by engineers and consultants to make 
decisions related to building services and systems at spatial coordination 
and technical design stages. It can also be used by consultants to generate 
design alternatives that help building designers “decide on the alternative 
that gives the highest chance of a desired outcome” (de Wilde, 2018) related 
to building form, spatial distribution, materials choices, etc. in conceptual 
and technical design stages.

However, when building designers are exploring a universe of design solu-
tions, they often rely on parametric design to create and express ideas and 
make decisions related to building form and its relationships with differ-
ent aspects of performance (structural, shading, daylight, etc.). More than 
a method, parametric design is a set of scripting tools that aid architects 
in manipulating relationships between different design elements by means 
of parameters, which provides fast feedback on performance to keep pace 
with the rapid design evolution that happens in conceptual design stages (de 
Wilde, 2018). Parametric design is examined in more depth in Section 8.2.3.

Finally, Section 8.1.1 focuses on optimization, which is “the process of 
finding the best [design] alternative” (de Wilde, 2018) out of a range of alter-
natives to satisfy specific objective functions. Optimization has question-
able use for building designers who normally deal with multiple objective 
functions and simultaneously manipulate several design parameters that are 
not always quantifiable (de Wilde, 2018). However, the method can be used 
by engineers and consultants in technical design stages when main design 
parameters are already defined and fine-​tuning of best combinations of al-
ternatives is being investigated.

8.2.1 � Uncertainty and Risk Assessment

In simulation-​aided building design, uncertainty is the inability to accu-
rately predict the impact of assumptions, decisions, or, generally, the inputs 
on building performance. As a simple example, a lack of knowledge about 
building occupancy patterns when designing an office building increases 
uncertainty about the lighting or plug-​in equipment energy use.

Uncertainty during simulation-​aided building design can be attributed 
to several sources, including human error, weather data, accuracy of sim-
ulation tools, accuracy of materials’ physical and thermal properties, and 
accuracy of assumptions about occupants and their behaviors (de Wit and 
Augenbroe, 2002). Additionally, client-​driven design changes (McGraw Hill 
Construction, 2014) and discrepancies between assumptions used during 
design (Abuimara et  al., 2020) are also recognized as possible sources of 
uncertainty.
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8.2.1.1 � Risks Associated with Uncertainty

Uncertainty in the outputs of simulation-​aided building design is associated 
with several risks that undermine the credibility of design predictions. The 
widely recognized performance gap is typically attributed to uncertainty in 
design assumptions and predictions that mismatches post-​occupancy con-
ditions. Uncertainty during design can also lead to the risk of making sub-
optimal design decisions that would compromise the energy and comfort 
performance of buildings. Examples of suboptimal design decisions include 
over-​/under-​sizing of HVAC equipment and flow rates, selecting inappropri-
ate window shading devices, overlooking adaptive technologies (e.g., light-
ing controls, DCV), and over-​/under-​sizing windows (O’Brien et al., 2019). 
These suboptimal or conservative design decisions lead to high operational 
costs throughout the building lifecycle.

8.2.1.2 � Assessing and Managing Uncertainty during Design

A typical approach for mitigating risks that stem from uncertainty in the 
design process is to make conservative assumptions and follow conservative 
approaches. In other words, designers base their decisions on the worst-​case 
scenario (Djunaedy et al., 2011). This approach might work in some but not 
many situations, as it often leads to increased capital and running costs of 
the buildings (Wang et al., 2018). It could also compromise the energy and 
comfort performance of the building. Therefore, assessing and handling un-
certainty during simulation-​aided building design is of great importance for 
building cost, performance, and stakeholders’ expectations.

In order to manage uncertainty in a simulation-​aided design process, first 
and foremost, the modelers need to acknowledge and communicate it in the 
performance predictions. Reporting a performance range instead of deter-
ministic values is an effective way of implying uncertainty (Sun and Hong, 
2017). Aiming at robust design strategies is also considered a promising ap-
proach for mitigating uncertainty (see Section 8.2.2).

There are various quantitative and qualitative techniques that can assist 
in determining uncertainty (Burhenne et al., 2010; Smith, 2013). Examples 
of quantitative methods are sensitivity analysis, Monte Carlo simulation, 
and Bayesian statistical modeling (de Wit and Augenbroe, 2002; Tian et al., 
2018). An example of a qualitative method is the confidence level test.

8.2.1.3 � Occupants as a Source of Uncertainty

The nature of building occupants and their behavior makes them one of the 
major sources of uncertainty in building design. With regard to occupants’ 
presence in building, the inability to predict the actual number of occu-
pants and the changes that might occur throughout the building life cycle 
is considered a key source of uncertainty in assessing building performance 
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(see, for example, Doiron et al., 2011). Inevitably, the difficulty of predicting 
adaptive behavior of occupants means it might be assumed to act either 
in favor of or against the designer’s objectives, which ultimately informs 
decisions that affect building performance. For example, assuming that oc-
cupants will behave in favor of designer’s objectives might involve relying on 
them to turn off lights when not in use or opening window blinds when there 
is adequate daylight. A contrary example is assuming that occupants will 
misuse operable windows (e.g., leave windows open during a cold winter’s 
day) and so fixed windows are designed.

The mismatch between what is assumed during design and what occurs 
post-​occupancy has several implications for building performance and is 
linked to the so-​called “performance gap” in this field. Arguably, energy-​
intensive occupant behaviors can turn a building that is intended to be 
energy-​efficient into a building that performs worse than a conventional 
building (Norford et al., 1994).

Ongoing efforts have been undertaken to quantify and mitigate the occupant- 
​related uncertainty in the design process. Most notably, as discussed in 
Chapter 6, the development of data-​driven occupant models has aimed to 
achieve a more reliable representation of occupants during building mod-
eling process. Additional efforts have been made to account for occupant-​
related uncertainty by testing variable occupant and occupant behavior 
scenarios to quantify their impact on energy and comfort performance (see, 
for example, Abuimara et al., 2019; Sun and Hong, 2017).

8.2.2 � Sensitivity Analysis

Sensitivity analysis (SA) refers to analyses that explore the impact of inputs’ 
uncertainty on the outputs (Saltelli, 2002). SA is a necessary step in model 
creation under any setting. SA in building design refers to the process of 
identifying the most important design parameters by quantifying their im-
pact on design performance (Heiselberg et al., 2009). SA assists designers in 
shortlisting design parameters in the search for optimal design solutions.

8.2.2.1 � Methods and Types of Sensitivity Analysis

SA can be categorized into screening, local, and global studies. Screening 
SA, also known as the one-​parameter-​at-​a-​time (OAT) method, is done by 
varying the value of each design parameter individually using the standard 
value of the parameter as a control. Typically, two extreme values of the 
design parameter on both sides of the standard value are tested. Then, the 
difference between the results obtained from standard and extreme values 
are compared to identify the design parameters that are highly influential on 
design outcomes (Hayter et al., 2000).

Local SA is also conducted in an OAT manner, whereby the values of one 
design parameter are varied based on its probability density function while 
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keeping other design parameters unchanged (Heiselberg et al., 2009). While 
OAT SA is a useful technique for eliminating low-​impact design parameters, 
in many cases it is considered inadequate, as it neglects the interactions be-
tween design parameters.

In global SA, a wide range of values for multiple design parameters are 
tested and the outcomes are evaluated. A global SA considers the probabil-
ity density function of design parameters and accounts for the interactions 
between different design parameters and their impact on performance. The 
output of global SA is typically a distribution which is mapped to space of 
inputs using a random sampling technique (Heiselberg et al., 2009). Global 
sensitivity analysis can be conducted using various techniques such as 
Sobol’s sensitivity estimates, the Monte-​Carlo-​based regression-​correlation 
indices, and the Fourier amplitude sensitivity test (FAST) (Zhou et al., 2008). 
Global SA, however, can be computationally demanding for assessing large 
numbers of variations.

8.2.2.2 � Application in Occupant-​Centric Design

As a widely used technique in simulation-​aided building design, SA has 
been used frequently to study occupant-​related parameters during the 
design process. For example, studies by Blight and Coley (2013), Sun and 
Hong (2017), and Abuimara et al. (2019) employed different SA methods to 
quantify the impact of occupants and occupant behaviors on building per-
formance and design decision-​making. Sun and Hong (2017) implemented 
occupant-​related measures such as lighting control, plug-​in equipment 
control, HVAC control, and window use control, which yielded up to 23% 
reduction in energy consumption when implemented one-​at-​a-​time and a 
potential 41% reduction in energy consumption in combination. Abuimara 
et al. (2019) conducted a sensitivity analysis to determine the extent to which 
the energy-​saving potential and associated ranking of a number of design 
options (e.g., improving envelope thermal insulation, window assemblies, 
and systems efficiency) were sensitive to the assumptions about occupants.

8.2.3 � Parametric Design

Parametric design is a method that allows the designer to systematically ex-
plore the design alternatives by iteratively testing different combinations of 
design parameters. In a performance-​based parametric design, the designer 
can assess the range of design performance resulting from the variations of 
geometric and non-​geometric design parameters. To this end, building per-
formance simulation tools offer two workflows:

1		  Manual workflows, where conventional simulation tools are deployed 
to initiate a design concept, and changing the modeling input involves 
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manual editing of the design parameters or repeating the model crea-
tion process until the resulting design performance is satisfactory. The 
manual method is typically applicable where a limited range of possi-
bilities, such as two ends of a spectrum (best-​ and worst-​case scenarios), 
are explored (Azar et al., 2020). Relying on this workflow might hinder 
the applicability of parametric analysis when a large number of design 
alternatives need to be tested (Gilani et al., 2016).

2		  Algorithmic workflows, where the model is defined by explicit definition 
of the design parameters and their dependencies to enable generation 
and examination of potentially a vast number of design alternatives in 
an automated or semi-​automated manner. These workflows can elevate 
the iterative solution search to a more in-​depth investigation of trade-​
offs, facilitate customization of specific design scenarios, and explore 
the impact of design uncertainties on performance.

8.2.3.1 � Parametric Design Tools

The discourse of parametric design and its integration with building per-
formance simulation has resulted in developing tool sets that have been of 
great interest to researchers in recent years. In particular, typical building 
simulation tools such as EnergyPlus, OpenStudio, and TRNSYS, which 
were not originally developed for the purpose of parametric design or mod-
eling complex geometries, can now be deployed via plug-​ins and interfaces 
such as ArchSim (for EnergyPlus), DIVA (for Radiance and EnergyPlus), 
Ladybug-​tools (for Radiance, EnergyPlus, and OpenStudio), and jEPlus (for 
EnergyPlus and TRNSYS), which largely enhance their capabilities for par-
ametric design. These tools are equipped with algorithmic workflows to en-
able generation and simulation of a large number of design alternatives in a 
single environment to facilitate the exploration of cause-​and-​effect relation-
ships. A commonly used interface for parametric modeling is Grasshopper 
(the visual scripting platform for Rhinoceros 3D modeling software), which 
allows users to program via different languages such as C#, Visual Basic, or 
Python. This scripting capability has facilitated the creation of applications 
such as DIVA and Ladybug Tools, which offer extensive parametric simula-
tion possibilities to non-​programming users to explore both geometric and 
non-​geometric aspects of their designs (Roudsari and Pak, 2013).

8.2.3.2 � Applications in Building Design

Deploying parametric design tools allows for evaluating individual, mul-
tiple and interrelated design variables, assessing trade-​offs, and arriving 
at optimum design solutions. Parametric simulation platforms can also fa-
cilitate multi-​disciplinary dialogue through visualization of the mapping 
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between the design variables and corresponding values of performance in-
dicators. To this end, commonly a brute-​force (or exhaustive search) ap-
proach is adopted, where the designer generates and simulates the entire 
full-​factorial space of relevant design configurations using an automated 
algorithm. These can be then visualized and explored using, for example, 
parallel coordinates plots with tools such as Design Explorer (Figure 8.1). 
Understandably, for complex parametric design simulations, generation 
and simulation of all design scenarios is computationally intensive, which 
may make optimization-​based design methods more favorable (see Section 
8.3.4). However, the evolution of cloud-​based simulation platforms (such as 
Pollination Cloud) allows building performance simulations to run much 
faster, thus expanding the applicability of parametric design to complex 
performance-​based design explorations.

8.2.3.3 � Occupants in the Process

Parametric design can integrate occupants in the process as design vari-
ables to generate a mapping between occupant-​related design scenarios 
and building performance indicators. This method can inform the design 
process about the implications of different occupant-​related scenarios for 
building design and operation and increase the design robustness against 
occupant-​related uncertainties. As suggested in Section 8.1, this is best 
achieved if the design models consider occupants’ interactions with the 
environmental control systems. For example, if the window size changes 
substantially through iterative model generations without capturing the 
potential adaptive actions of occupants, the process may not lead to a re-
liable performance assessment or an acceptable design solution for occu-
pants. Additionally, while parametric design environments generally allow 
modelers to easily tie inter-​dependent design parameters together, this 
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Figure 8.1 � An example parallel coordinates plot depicting the mapping between 
design parameters (here, building aspect ratio, north and south façades 
window-​to-​wall ratio, overhang depth) and performance indicators 
(here, heating demand, cooling demand, source energy use intensity).
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consideration of interdependencies should be also applied to occupancy-​
related design parameters. For instance, if variations in the number of occu-
pants do not change the use of equipment and lighting, then the parametric 
design exploration does not properly capture the implications of occupancy 
density for design performance.

8.2.4 � Optimization

The use of optimization algorithms in simulation-​aided design has grown 
in recent years thanks to advancements in computational and design tools 
(Attia et  al., 2015; Ouf et  al., 2020). Building performance optimization 
(BPO) allows designers to investigate millions of design alternatives with-
out running substantial parametric analyses that would otherwise require 
significant computational time (Attia et al., 2013). This process relies on dif-
ferent types of algorithms to significantly reduce the solution space (i.e., all 
possible design alternatives) and identify optimal design parameters that 
achieve specific performance objective(s), while considering the conflicting 
system-​level design trade-​offs (Bucking, 2016).

Generally, mathematical optimization problems can be represented by 
)(∈    min   x X f X  where ∈   x X  is the vector of design variables, → : f X R 

is the objective function (i.e., optimization goal, such as reducing energy 
use), and X ∈ Rn is the constraint set (i.e., parameter constraints, such as 
allowable values for design parameters). If more than one objective function 
exists, then a multi-​objective optimization problem arises. However, the de-
sign process is always multi-​objective. Therefore, transferring actual build-
ing design problems into the mathematical domain has some limitations, 
including that commonly used optimization algorithms applied to building 
design problems are not comprehensive enough to account for all design 
objectives.

Meta-​heuristic optimization algorithms provide a higher-​level procedure 
that performs iterations on populations of representative building designs; 
thus, they are also known as population-​based algorithms (Evins, 2013). 
Due to their nature as partial search algorithms, near-​optimal solutions 
can be obtained with comparatively less computational time, and issues 
such as discontinuity and non-​linearity can be handled efficiently to avoid 
converging to local minima. However, running meta-​heuristic search algo-
rithms may not always result in finding the same optimal solutions due to 
their stochastic nature. Despite this issue, Evolutionary Algorithms (EA), 
which are meta-​heuristic search algorithms, are the most commonly used 
optimization technique in the reviewed literature (Hamdy et al., 2016). The 
most popular evolutionary algorithm used in building-​related research is 
the Genetic Algorithm (GA) (Attia et al., 2015), which uses the principle of 
natural selection to evolve a set of solutions toward identifying an optimum 
design solution.
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8.2.4.1 � Simulation-​Aided Design with Building Performance 
Optimization

BPO algorithms can be used to achieve various design objectives once they 
are formulated as an optimization objective function. Notably, energy use 
reduction is one of the most common design objectives that can be achieved 
using BPO, as it requires systematic evaluations of various design param-
eters that interact with each other, often resulting in very large solution 
spaces (Bucking, 2016; Carlucci et al., 2015). In this case, using brute-​force 
parametric simulations to evaluate all possible design alternatives may not 
be a viable solution, which highlights the need for BPO. Furthermore, BPO 
can be used to evaluate design robustness (Hoes et al., 2011), which can be 
defined as the ability of a building to maintain the preferred performance 
objective despite different uncertainties (Taguchi and Clausing, 1990).

When more than one design objective is being evaluated, BPO can be per-
formed using two main approaches. In the first approach, different design 
objectives can be combined into one objective function with variable weights, 
such that the optimization objective is to minimize this objective function 
(e.g., Gunay et al., 2019). In this case, an optimal design alternative that rep-
resents a compromise between competing design objectives is identified. In 
the second approach, a multi-​objective optimization problem can be formu-
lated and then used to identify optimal design alternatives that lie on the 
trade-​off curve, known as the Pareto Frontier. Improvements in any of these 
design alternatives to achieve one objective would typically negatively affect 
the other objective(s) (Attia et al., 2013; Evins, 2013; Machairas et al., 2014).

8.2.4.2 � Occupants in Building Performance Optimization

Capturing the bi-​directional relationship between building design and occu-
pant behavior is one of the least studied aspects in BPO literature (Bucking, 
2016). Previous studies have attempted to represent this relationship in BPO 
using three main approaches. The first approach relies on statistical meth-
ods such as Monte-​Carlo simulations to randomly select building loads dis-
tributions that represent occupant-​building interactions from pre-​identified 
distributions (see, for example, Bucking et al., 2011; Sun et al., 2015). The 
second approach focuses on defining several scenarios in which combina-
tions of pre-​determined occupant-​related variables are used (e.g., occu-
pancy profiles, heating setpoints, light use profiles), and then each scenario 
is optimized independently. This approach was used by Kim (2013), Hoes 
et al. (2011), and Bucking et al. (2011) to investigate BPO results under prede-
fined occupant scenarios. However, the main limitation of both approaches 
is that they do not consider the effect of design choices on occupant behav-
ior within the simulation process. To address this issue, Ouf et  al. (2020) 
introduced a third approach in which dynamic and stochastic occupant 
behavior models were incorporated into the BPO process. This approach 
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accounted for the effect of design parameters on occupant behavior during 
every timestep of building simulation, which identified optimal design solu-
tions subject to dynamic and stochastic occupant behavior.

Figure 8.2 provides an overview of the process used by Ouf et al. (2020) 
to integrate stochastic occupant behavior modeling within an optimization 
process using the GA algorithm. For each design alternative generated by 
the GA algorithm, stochastic models were implemented in building simula-
tion to predict occupants’ presence and arrival and departure times. Other 
models were also implemented to predict occupants’ interactions with lights 
and blinds based on indoor and outdoor illuminance at every timestep. 
These implementations can be extended to other occupant-​building interac-
tions such as thermostat key presses depending on design and optimization 
objectives. Given the stochastic nature of these occupant behavior models, 
it is typically necessary to repeat the simulation multiple times to obtain 
results that represent an average and a range of performance under occu-
pant behavior. The exact number of repetitions (X) should be case-​specific 
depending on the models used in the simulation. The main outcomes of this 
workflow proved that the approach used to represent occupants can signif-
icantly influence the choice of optimal design parameters (Ouf et al., 2020).

8.3 � Simulation-​Aided Design Objectives

Regardless of whether they are undertaking design queries or seeking de-
sign advice during the design process, designers/modelers normally have 
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Figure 8.2 � Overview of integrating stochastic occupant behavior in optimization 
using the genetic algorithm.

Adapted from Ouf et al. (2020).
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clear objectives or goals in mind when structuring their simulations, i.e., 
they have clear ideas about using simulation to generate the necessary ev-
idence for them to make decisions. In the following sections, four such de-
sign objectives and their associated treatment of occupants are discussed, 
namely performance compliance checks, robustness to different occupancy 
and occupant behavior patterns, adaptiveness to different occupant behav-
ior patterns, and resilience to extreme weather conditions.

8.3.1 � Performance-​Compliant Design

Performance-​based building standards incorporate simulation tools to en-
able objective assessment of building performance while authorizing design 
flexibility and technological innovation to achieve energy and environmen-
tal targets (CIBSE, 2015). The standards may target different stages in the 
project life cycle for compliance evaluation; this section, however, focuses 
on as-​designed compliance methods.

In the context of building energy codes, the simulation-​assisted compli-
ance checking process commonly involves modeling the proposed design in 
an authorized building simulation tool to compare its energy performance 
with that of the so-​called notional (or baseline) building. The notional build-
ing commonly has the same shape, size, orientation, zoning arrangements, 
usage scenario, and HVAC types as the proposed design, but the properties 
of building fabric and HVAC systems are defined based on the values given 
in the standard.

To provide practical, consistent, and replicable procedures, building per-
formance modeling for the purpose of compliance demonstration needs to 
rely on standard assumptions and simplified methods (CIBSE, 2015; Tre-
genza and Wilson, 2011). As such, the standards provide reliable assumptions 
for designers in the absence of information. They are therefore important 
industry quality assurance mechanisms for “assumed usage” that can be 
referred to in litigation cases and insurance claims.

However, the abovementioned characteristics of standards have made 
them particularly stringent in terms of innovations in occupant-​centric de-
sign (O’Brien et al., 2020). This inflexibility is in contrast to the freedom with 
which the designers can, for instance, explore building physical properties 
and HVAC setup and components in the process. Specifically, the stand-
ards not only require the same usage scenario in the proposed and notional 
buildings, but they also enforce specific types of occupancy models or as-
sumptions. For instance, ASHRAE 90.1 demands the use of schedules to 
model hourly variations in occupancy, lighting power, miscellaneous equip-
ment power, thermostat setpoints, and HVAC system operation, and recom-
mends specific schedules if actual schedules are not known. The National 
Calculation Methodology in the United Kingdom even mandates specific 
occupant behavior and system operation schedules from its database. As 
documented in an international review (O’Brien et  al., 2020), the current 
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building energy codes mostly rely on overly simplistic assumptions about 
occupant adaptive actions (such as modeling operable shades as constantly 
open).

Given the impact of regulations and building standards on the building 
design process and current limitations in terms of the representation of oc-
cupants in the process, compliance modeling is best seen as an initial stage 
in the occupant-​centric design process. This stage needs to be followed by 
more explorative design modeling efforts that allow for more flexible and 
impactful consideration of occupants in the process. Examples of such 
simulation-​aided design efforts are discussed in the next sections.

8.3.2 � Robust Design

Building performance can be highly uncertain during the design process. 
This uncertainty is related to weather, construction quality, material prop-
erties, operational strategies, occupant behavior, and so on. This section fo-
cuses on occupants and how the uncertainty associated with their behavior 
can be addressed by a robust design.

In general, uncertainty is mostly addressed by making conservative as-
sumptions. Designing for weather, for example, considers 99% of condi-
tions. In the case of HVAC, equipment is sized large enough to maintain 
comfortable conditions in a building 99% of the time, and the temperature 
is too warm or too cold for the HVAC to meet all building needs just 1% of 
the time. The assumption is that the conditions during that 1% of time will 
not be too extreme compared to the 99% conditions; and even if they are, the 
duration will not be very long. Analogous approaches are commonly taken 
for occupancy, whereby cooling equipment is designed to be large enough to 
remove heat if the building is fully occupied.

Designing conservatively for (near) worst-​case scenarios is costly, how-
ever. It means sizing equipment and other systems to be large enough to 
address circumstances that will rarely be encountered – ​for example, sizing 
a chiller to cope with nearly all conditions (O’Brien et al., 2019) or a PV array 
to be nearly certain that a net-​zero energy building will produce as much 
on-​site energy as it consumes over a year (Abdelalim et al., 2019). Design 
conditions tend to be most extreme when there is great uncertainty about 
operating conditions. The operating conditions cannot necessarily be con-
trolled; however, they can be – ​or at least attempted to be – ​quantified and 
buildings designed accordingly.

Robust design is an established design method developed by Genichi 
Taguchi (Phadke, 1995), whereby a system is optimized to reduce variation 
of performance under a range of operating conditions. In the context of this 
chapter, the goal is to reduce the uncertainty of building performance as a 
result of occupancy and occupant behavior. Graphically, this can be repre-
sented by probability distributions, where the objective of robust design is to 
reduce the variance of the distribution and ideally reduce/increase the mean 
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(depending on the objective function). This is depicted in Figure 8.3, which 
shows the probability distribution for two different building design options.

The relationship between the system, uncertainty, and performance is 
normally depicted with a P-​diagram, as shown in Figure 8.4. The descrip-
tion of the figure is premised on the assumption that simulation is used to 
perform robust design. Starting on the left side of the figure, the weather 
and other operating conditions are imposed on the model (as normal). Two 
additional sets of variables are imposed on the model: occupant parameters 
and design parameters. The occupant parameters are described below and 
likely consist of one or more occupant traits with a distribution of values 
for each. The design parameters are the building features that are varied to 
understand the relationship between building design and the distribution of 
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Figure 8.3 � Probability distribution for two different design options. Robustness is 
indicated by the spread (variance) of the distributions. In this case, the 
design depicted by the narrower distribution is preferable because it is 
not only less uncertain but also has a lower mean predicted performance.
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Figure 8.4 � P-​diagram for robust design applied to buildings and uncertainty from 
occupants.
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predicted building performance levels. Finally, the output of the simulation 
is a probability distribution of performance levels (e.g., like those predicted 
in Figure 8.3).

In practice, to perform robust design using simulation, a range of oc-
cupancy or occupant behaviors is required in the form of a distribution. 
They may be, for example, a Gaussian distribution of occupancy densities. 
It could also be as simple as a uniform distribution with a range from the 
lowest to highest foreseeable occupant densities. If a stochastic occupant 
model is used, then it has the inherent property of yielding different results 
each time it is run.

One or more occupant features can be evaluated simultaneously. For in-
stance, occupant density and schedules could be simultaneously considered 
with behaviors related to computer equipment, manual lighting, and oper-
able window use.

While a factorial approach could be used to assess an exhaustive set of 
occupant parameter combinations, a Monte Carlo approach is likely to be 
the most efficient. For instance, a building model may be run X times, each 
with randomized occupant parameters. With the simulations runs, a proba-
bility distribution of performance levels can be established for a given build-
ing design (including the design parameter settings). While this distribution 
may be interpreted in absolute terms, it is typically more valuable to assess 
multiple designs against each other for their robustness.

8.3.3 � Occupant-​Adaptive Design

Aiming for occupant-​centric design, adaptability to changing occupant be-
havior is another key design objective. Building adaptability is defined as 
the ability of a building to adapt to varying conditions while satisfying its 
primary function in an efficient way. In the context of occupant-​centric de-
sign and operation, it is the ability of a building and its components to adapt 
to varying occupancy (Ouf et al., 2019). Figure 8.5 illustrates a conceptual 
comparison between the optimal adaptability of a building and a building 
with traditional non-​adaptive features.

Because buildings experience temporal and spatial variation of occu-
pancy (Gilani et al., 2019; Newsham, 1992), including adaptive features in 
buildings and building systems is necessary to achieve energy efficiency 
and comfort (O’Brien and Gunay, 2019). For example, demand-​controlled 
ventilation (DCV) is an adaptive ventilation technology that is proven to 
improve energy efficiency, especially in buildings with varying occupancy 
(Lawrence, 2004). DCV manages and adjusts the supply of outdoor air to 
building spaces according to actual occupancy (occupancy-​based DCV) or 
CO2 concentration (CO2-​based DCV) (Fisk and De Almeida, 1998). Other 
examples of adaptive building technologies include: lighting controls that of-
fer the ability to provide lighting when and where needed, which suits varia-
ble occupancy in buildings (Pandharipande and Caicedo, 2015); automated 
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window shading devices that can respond to weather variations and satisfy 
occupants’ comfort; and manual or occupant-​controlled features, such as 
operable windows and manual window blinds. These technologies, how-
ever, can also have negative impacts on energy use and comfort if misused 
(e.g., leaving a window open during a cold night).

Designing buildings that adapt to common occupant behaviors can mit-
igate occupant-​related uncertainty and have a positive impact on building 
energy and comfort performance. For instance, a common energy-​intensive 
and wasteful practice in commercial buildings is supplying ventilation to 
building spaces based on a fixed schedule of fully occupied or vacant spaces. 
An alternative adaptive approach is to introduce outdoor air into the spaces 
as needed depending on the number of occupants. Another example is an oc-
cupant who closes the window shades to avoid glare but leaves them closed 
for days, relying instead on electrical lighting at that time. Technologies such 
as automated shading devices, which are controlled based on occupancy and 
solar irradiance, can mitigate this unnecessary lighting energy use.

8.3.4 � Resilient Design

The concept of resilience has attracted increased attention in recent years. 
Extreme weather events, such as heatwaves, hurricanes, and wildfires, in-
flicted a record $210 billion in damages worldwide in 2020 (Dure, 2021), 
and their frequency and intensity are projected to increase (Mora et  al., 
2018). In particular, extreme temperature is one of the leading causes of 
weather-​related deaths globally. During 2004–​2018, an average of 702 heat-​
related deaths (415 with heat as the underlying cause and 287 as a contrib-
uting cause) occurred in the United States annually (Vaidyanathan et al., 
2020). Extreme cold events, especially coupled with power outages, such as 
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Figure 8.5 � Conceptual representation of a building with adaptable features versus 
a building with traditional non-​adaptive features.
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what happened in Texas in the winter of 2021, can be life-​threatening, too 
(Weber and Stengle, 2021). Therefore, as a commitment to occupant health 
and comfort, it is critical to take thermal resilience into account during the 
building design process.

Resilient design aims to improve the building’s capability to prepare for 
and adapt to extreme weather events, resist their impacts, and recover rap-
idly from disruptions. This aim is different from robust design, which targets 
to reduce the uncertainty of building performance brought by occupancy 
and occupant behavior. The ultimate goal of resilient design is to keep oc-
cupants safe and comfortable throughout the extreme weather events. How-
ever, thermal resilience requirements have not been formally incorporated 
in current building energy codes and standards, such as ASHRAE 90.1, 
ASHRAE 189.1, or California Title 24. The LEED rating systems give cred-
its for passive survivability (Wilson, 2015), which improves heat resilience, 
but is not mandatory. RELi is a rating system that provides a comprehensive 
certification for socially and environmentally resilient design and construc-
tion (U.S. Green Building Council, 2018), but, similar to LEED, it is not 
mandatory either.

As advanced building control technologies continue to develop, build-
ings are increasingly designed to be more and more automatic, which leaves 
occupants with relatively fewer control possibilities. While this trend may 
benefit energy efficiency in general, it may also constrain occupants’ abili-
ties to improve the indoor environment during extreme weather conditions 
(e.g., open a window for free cooling), especially during a power outage 
when automatic controls cannot function. Therefore, resilient design should 
also include strategies to empower occupants to self-​rescue during extreme 
conditions.

To evaluate resilient design strategies, extreme weather conditions should 
be defined and used in building performance simulation. For example, a 
heat wave can be characterized by three metrics: duration, intensity, and 
severity (Laouadi et  al., 2020). The duration is measured in terms of the 
number of days of sustained heat events. The intensity is measured by the 
average elevation of outside air temperature above a reference temperature. 
The severity is the time integral of the elevation of outside air temperature 
above a reference temperature over the whole heat wave period. Historic 
weather data over the past few decades can be mined to find the most sig-
nificant extreme event. As extreme events are expected to happen more fre-
quently, designers may also use predicted extreme weather data for future 
scenarios to enhance safety. The weather data provided by CIBSE could be 
a good resource for future weather data (CIBSE, 2016).

Various metrics are used to evaluate the thermal resilience of buildings to 
reflect the impacts of extreme events on human health. Broadly, there are two 
types of metrics: simplified biometeorological indices, such as the Heat Index, 
and heat-​budget models, such as the Standard Effective Temperature (SET; 
World Meteorological Organization and World Health Organization, 2015).  
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The Heat Index and SET are considered suitable metrics for quantitative 
analysis of extreme events and have been adopted by existing research on 
thermal resilience (Opitz-​Stapleton et  al., 2016; Sun et  al., 2020; Wilson, 
2015). Figure  8.6 defines four levels of heat hazards and their associated 
Heat Index ranges.

Two power availability scenarios are suggested for evaluating resilient de-
sign strategies: grid-​on and grid-​off. A grid-​on scenario assumes that electric 
grid power is available and that the building is under normal operation sta-
tus during extreme events. As HVAC systems are sized based on design day 
weather conditions, they may not meet the cooling or heating needs during 
an extremely hot summer or cold winter. Therefore, in a grid-​on scenario, 
the major concerns are whether the air-​conditioning system has adequate 
capacity to meet the cooling/heating loads during extreme weather, and if 
not, how many hours the occupants will experience thermal discomfort.

In contrast, a grid-​off scenario assumes that electric grid power is not 
available due to a power outage. The overlapping of extreme weather con-
ditions and power outage could be life-​threatening, particularly for vulner-
able populations such as the elderly (Weber and Stengle, 2021). In this case, 
the major concerns are indoor temperature rise (how long occupants will 
be overheated during a heatwave) and indoor temperature drop (how long 
occupants will be uncomfortably cold during a cold snap). Regarding vul-
nerable populations specifically, the concept of resilience is also embedded 
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in universal design (Buildings.com, 2021), a framework that emphasizes ac-
cessibility, inclusion, and equity in the design of environments (Progressive 
AE, 2021).

Different metrics and thresholds apply in both of the power scenarios. 
For the purpose of resilience evaluation, each metric is defined with thresh-
olds, where exceeding the thresholds indicates that the indoor thermal con-
ditions are out of the comfort or safety zone. For the grid-​on scenario, the 
indoor environment is less extreme because HVAC systems can still provide 
cooling/heating, and so the metric thresholds are selected mainly to evalu-
ate the impact of the indoor environment on occupants’ thermal comfort. 
For the grid-​off scenario, however, the indoor environment can become life-​
threatening, and so the metric thresholds are selected mainly to evaluate the 
impact of indoor environment on occupants’ health.

8.4 � A Prototypical Testbed for Simulation-​Aided Design

This section presents a series of exercises to demonstrate applications of 
the simulation-​aided design methods and objectives described in Sections 
8.2 and 8.3. A prototype shoebox model representing a private office is used 
in these exercises (with some modifications) to demonstrate the simulation 
objectives as described below.

8.4.1 � Description of the Prototype Model

The shoebox office was modeled with dimensions W × L × H = 4.0 × 4.0 
× 3.0 m. A 3 by 2 m window was added on the south side, the dimensions 
of which could be modified depending on the simulation and design objec-
tives of each exercise. A version of this model is shown in Figure 8.8. The 
shoebox office was located in Ottawa, Canada (ASHRAE climate zone 6), 
and simulated in EnergyPlus V8.8 using the Canadian Weather for Energy 
Calculations (CWEC) annual weather data file, which is based on average 
weather data measured between 1998 and 2014.

The south-​facing wall was exposed to the outdoor environment, while all 
other surfaces of the room were assumed to be adjacent to spaces with the 
same thermal conditions. The south-​facing window (U-​factor = 1.2 W/m2·K, 
solar heat gain coefficient = 0.55 and visible transmittance =0.6) was as-
sumed to be fixed with thermally-​broken aluminum framing with a U-​factor 
of 5.79 W/m2·K and profile width of 6 cm. The outside wall insulation’s U-​
value was specified as 0.325 W/m2·K which exceeds the performance path 
requirements of ASHRAE Standard 90.1–​2016. The internal heat gains 
from occupants, lighting, and electric equipment were assumed to be 130 W,  
8.5 W/m2, and 8.1 W/m2, respectively, as specified in ASHRAE Standard 
90.1 2016. Fresh air was supplied into the office room at a rate of 7.3 L/s 
based on ASHRAE Standard 62.1 during the occupied period. The infiltra-
tion rate into the office was assumed to be 0.3 air changes per hour (ACH), 

http://Buildings.com
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which is a typical infiltration rate for office buildings (Kim and Leibundgut, 
2015). The HVAC system was modeled as an air-​based ideal load system 
with heating and cooling capacity of 1,500 W since this study focused on 
the use of occupant models to inform early-​stage design decisions rather 
than modeling HVAC systems. This heating and cooling capacity was cho-
sen based on a preliminary sizing run. Heating and cooling setpoints were 
assumed to be 21°C and 24°C during occupied hours and 15.6°C and 26.7°C 
during unoccupied hours.

8.4.2 � Occupant Modeling Approach

Two versions of the modeled shoebox office were created: the first version 
relied on ASHRAE Standard 90.1 fixed occupancy assumptions, and the 
second version used advanced occupant behavior models to represent occu-
pants’ presence, use of blinds, and manual switching of lights. For example, 
while the first version of the model uses a fixed occupancy schedule for of-
fice building occupants from ASHRAE 90.1, the second version deploys an 
occupancy model developed by Wang et al. (2005), which relies on random 
sampling of arrival and departure times from a normal distribution. The 
arrival and departure events were as follows: (1) arrival time at 9h00 ± 15 
min; (2) a coffee break at 10h30 ± 15 min; (3) a lunch break at 12h00 ± 15 
min; (4) a second coffee break at 15h00 ± 15 min; and (5) departure time at 
17h00 ± 15 min. Figure 8.7 shows the ASHRAE Standard 90.1 occupancy 
schedule compared to the average weekday occupancy profile that resulted 
from applying Wang et al.’s (2005) occupancy model.

For lighting use, the first version used the ASHRAE Standard 90.1-​2016 
schedule. The second model used predicted light switch behavior using the 
Lightswitch-​2002 model (Reinhart, 2004), which is based on occupancy 
status and work plane illuminance at each timestep. The lighting model 
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assumes a higher probability of switching lights on upon arrival than during 
intermediate occupancy. Upon departure, the likelihood of switching lights 
off is predicted based on the expected duration of absence, which increases 
as the expected duration of absence increases.

ASHRAE Standard 90.1-​2016 stipulates that manual fenestration shading 
devices, such as blinds, shall not be modeled (which is effectively equivalent 
to modeling them as always open); thus, they were not included in the first 
version. In contrast, the second version included blinds, which were simu-
lated based on the Haldi and Robinson (2011) model. This model of blinds 
use predicts the probability of blinds being fully open, partially open, or 
closed, based on indoor and outdoor illuminance, occupancy state, and pre-
vious blind position at each timestep.

The occupant behavior models used in the second version represent the 
ability to account for occupants as dynamic, not as merely passive recipi-
ents of environmental conditions. These models consider how changes in 
daylight availability can trigger occupants to turn the lights on or open or 
close blinds, actions that also affect work plane illuminance and solar heat 
gains. Table 8.1 shows the main differences between the occupant modeling 
approaches used in the two versions.

8.4.3 � Test 1: Robust Design Optimization

In this robust design exercise, the premise is that fixed shading can be op-
timized to reduce the frequency of glare occurrence and corresponding 
shade-​closing events. As we know from the literature (e.g., O’Brien, 2013; 
O’Brien and Gunay, 2015), occupants often close shades as a result of glare, 
but then are likely to leave them closed for an extended period. It follows 
that occupants are more likely to turn on lights if indoor illuminance is 
reduced because of closed shades. Therefore, a brief instance of daylight 
glare can result in significant increases in lighting energy as well as affect 
solar gains. Aside from the desire to minimize lighting energy use, there is 
also value in minimizing the uncertainty of lighting energy use, as this un-
certainty translates to uncertainty for other components (e.g., cooling loads) 
as well as reaching certain targets (e.g., energy use intensity).

8.4.3.1 � Methodology

For this exercise, the stochastic occupancy, lighting, and shade models are 
used (see Table 8.1). It is assumed that both lighting and shades are oper-
ated manually only (i.e., no automation). Due to the stochastic nature of the 
occupant model, plus the interest in the variability of the lighting energy 
as a function of design, we ran the model 50 times for each design iteration 
to obtain the mean and standard deviation of performance. The number 
of simulations was determined by repeatedly running the model until the 
standard deviation did not significantly change.
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In this study, we optimized the fixed solar shading and window geometry 
(see Figure  8.8) to minimize the mean and standard deviation of annual 
light use. While other energy end uses are important, we focused on lighting 
for the purpose of illustrating robust design.

A single and a multi-​objective optimization process was then used to 
identify shading and window geometry. For the single-objective optimiza-
tion process, an objective function was set up to minimize the value of C as 
given by:

µ σ= +  1.28C Elight Elight

Table 8.1  �Comparison between occupant modeling approaches used for each 
occupant-​related domain in the two versions of the model

Domain First version: ASHRAE 
Standard 90.1 schedules

Second version: occupant behavior 
models

Occupancy Standard schedule for 
occupancy (Appendix G-​I)

Randomly sample five arrival and 
departure times each day from 
pre-​defined normal distributions 
(Wang et al., 2005)

Lighting •	 Standard schedule for 
lighting (Appendix G-​I)

•	 Daylighting controls using 
continuous dimming 

Predict light switch behavior based 
on occupancy state and work plane 
illuminance (Reinhart, 2004)

Blinds No blinds modeled Predict blinds use behavior 
based on occupancy state, 
work plane illuminance, and 
outdoor illuminance (Haldi and 
Robinson, 2011)

Output One simulation 50 simulations 
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Figure 8.8 � Parametric office geometry with variables for robust design test. Note 
that the window is modeled as four windows for the purpose of simulat-
ing partially closed shades.



Advanced Simulation Methods for Occupant-Centric Building Design  193

where µElight and σ  Elight are the mean and standard deviation of lighting 
energy use obtained from 50 simulation runs for a given building design. 
The set of predicted lighting energy use results is assumed to be normally 
distributed. As such, the value 1.28 corresponds to the z-​score for a normal 
distribution so that we are 90% confident that the lighting energy use for a 
particular building design will not exceed the value C.

For the multi-​objective optimization process, the first objective aimed to 
minimize the mean of 50 simulation runs for a given building design, while 
the second objective aimed to minimize the standard deviation of these sim-
ulation runs. Consequently, multiple design alternatives were identified on 
the trade-​off curve, in which improvements to achieve the first objective 
would negatively affect the other. For both the single and multi-​objective 
optimization, the ranges of allowed values for parameters were wide to max-
imize flexibility; however, constraints were imposed to prevent issues such 
as the window exceeding the façade boundaries.

The genetic algorithm (GA) was implemented in MATLAB to call 
EnergyPlus for both optimization processes. The optimization was allowed 
to run for 30 generations. Each generation had a population size of 15. As 
noted above, 50 repeated simulations were used to capture the distribution of 
predictions for a given design; as such, 22,500 simulations were required. The 
crossover fraction used was 0.5, elite count was set to 1, and mutation proba-
bility for each parent vector was randomly assigned from a Gaussian distribu-
tion with 0 as its mean. Refer to Ouf et al. (2020) for more details on a similar 
example for optimizing building design with stochastic occupant models.

8.4.3.2 � Results

The results of the single-objective optimization are shown in Figure  8.9, 
where an improvement of 18% of lighting energy is achieved between the 
first generation (randomized) and the 20th. The optimal shading geometry 
is summarized in Table 8.2, and the corresponding appearance of the façade 
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Figure 8.10 � Optimal fixed shading design corresponding to the lowest predicted 
lighting energy use.

with the optimal shading geometry is shown in Figure 8.10. Note that the 
side fin surfaces above the overhang have no practical impact on indoor 
illuminance. Also note that while the resulting optimal design appears to 
be reasonable from a practical standpoint, many designs were near-​optimal. 
Thus, we recommend that the near-​optimal set of designs be manually ex-
plored to consider practical design implications.

While each simulation yielded different results, Figure 8.11 illustrates the 
shade and light states over the course of a year for the optimal design and 
baseline (no fixed solar shading). For the optimal design, the window shades 
are rarely closed except in the winter. This appears to result in a few days 
with lights on at all. In contrast, the shades are closed for significantly more 
time in the baseline, which results in the lights being on often throughout 
the year. Based on the simulations, the lights were on nearly twice as long 
(about 1,000 hours) for the baseline (without any fixed shading) compared to 
the optimized shading (about 500 hours).

The multi-​objective optimization, on the other hand, resulted in three 
design alternatives that lie on the Pareto frontier (i.e., in which decreasing 
the average light use would result in increasing the standard deviation), as 
shown in Figure 8.12.

By analyzing these three design alternatives, we found that an overhang 
is necessary to decrease the average light use and standard deviation. A 
larger right fin was found to further decrease the average light use, but may 
slightly increase standard deviation (i.e., the level of uncertainty). However, 
a smaller right fin and wider overhang were found to decrease such uncer-
tainty (standard deviation) while slightly increasing average light use, as 
shown in Figure 8.12. These results further highlight the need for manually 
exploring automatically generated design alternatives to consider practi-
cal implications and other contextual factors. Although this optimization 
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Figure 8.11 � Comparison of light and shade states for a single simulation for both 
the optimal and no fixed shading cases.
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process considers the effect of design choices on occupant behavior, other 
contextual factors as well as aesthetics would still necessitate designer 
judgment.

8.4.4 � Test 2: Adaptive Design

An adaptive design exercise was performed to test DCV on the building 
model with both fixed and stochastic occupant models. The first set of sim-
ulations involved using the model with deterministic occupant models (i.e., 
fixed schedules and occupant densities) with and without enabled DCV. 
Figure 8.13 demonstrates a comparison of energy use by category between 
the model with and without DCV. It is evident from Figure 8.13 that DCV 
was not very beneficial in terms of energy use savings when deterministic 
models are used. This is not a surprising outcome, as deterministic occu-
pant models assume constant and near-​full occupancy throughout days and 
weeks, which leads to little difference when DCV is deployed. The modest 
savings in heating energy can be attributed to switching ventilation to per 
person when DCV is deployed instead of per floor area in the default settings.

However, much more significant energy-​saving benefits were observed 
with the model with stochastic occupant models. Figure 8.14 presents the 
results of simulating the model with and without DCV. The end-​use com-
parison shown in Figure 8.14 demonstrates the significant changes in heat-
ing and cooling energy uses when DCV was deployed. DCV is known for 
being more beneficial in terms of energy savings with changing occupancy 
(Lawrence, 2004) and the fluctuating nature of occupancy levels is only cap-
tured by the stochastic occupancy model.

These findings indicate that the use of building adaptive technologies/
solutions offers an opportunity for handling occupant-​related uncertainty. 
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Figure 8.13 � Energy use by category obtained from the building model with deter-
ministic occupancy models with and without DCV.
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This study also provides a case for the discussion in Section 8.1, that the use 
of oversimplified static occupant models can conceal the potential benefits 
of specific design alternatives.

8.4.5 � Test 3: Resilient Design

This study uses the prototypical testbed introduced in Section 8.4.1 to 
demonstrate how to evaluate the thermal resilience of a building design and 
its influence on occupants. To this end, we model the indoor environmental 
conditions during extreme weather conditions and evaluate the effectiveness 
of a number of measures to enhance the resilience of the design.

8.4.5.1 � Methodology

For the purposes of the current test, we treated the prototypical building 
introduced in Section 8.4.1 as a residential unit, as during extreme weather 
conditions (especially coupled with power outages) it is likely that people 
will not go to work but rather shelter at their home. We assumed the resi-
dential unit is occupied 24/7 throughout the extreme event. A heat wave was 
used as an example extreme weather event in this case study.

Figure 8.15 illustrates an overall workflow of the resilient design modeling 
approach. First, a baseline model was developed, and its performance un-
der extreme weather conditions was evaluated under two power availability 
scenarios (see Section 8.3.4 for details). Second, selected design options or 
measures were applied to the baseline model and their effectiveness in im-
proving thermal resilience was evaluated under the two power scenarios. 
Third, the models with resilient design features were simulated and analyzed 

Heating Cooling Lighting Equipment 

No DCV 
DCV 

Figure 8.14 � Energy use by category obtained from the building model with stochas-
tic occupant models. The results demonstrate the energy use benefits of 
deploying adaptive technologies such as DCV.
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with appropriate resilience metrics. As per Section 8.3.4, the Heat Index was 
used as the example resilience metric in this case study.

The key input assumptions of the baseline model were extreme weather 
conditions and power scenarios. We collected 30 years of historical weather 
data from Ottawa, Canada, identified all heat waves that lasted longer than 
five days (Figure 8.16), and selected the most severe heat wave period (in 
2001) as the extreme weather condition for the simulation (upper right circle 
in Figure 8.16). Predicted future weather data can be used in resilient design, 
too, but the associated uncertainty should be specified.

Baseline models Apply design
measures

Model development Resilience analysis

Resilience
modeling

Output

Resilience
metrics

Power scenarios:
• Grid on
• Grid off

Extreme
weather data

Figure 8.15 � Workflow of resilient design simulation.
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Figure 8.16 � Historical heat waves that lasted longer than five days in Ottawa. Note: 
The size of each bubble represents the global intensity of a heat wave. 
Global intensity is defined by the cumulative difference between the 
temperature and the Sdeb threshold during the event, divided by the 
difference between Spic and Sdeb. Spic is the daily mean temperature 
threshold beyond which an event is detected, and Sdeb is the daily mean 
temperature threshold that defines the beginning and the end of the 
heat wave (Ouzeau et al., 2016).
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Two power scenarios were considered for resilience analysis: grid-​on 
(electric grid power available) and grid-​off (electric grid power unavailable). 
For the grid-​on scenario, we adopted the standard schedules for lighting and 
plug load from ASHRAE 90.1-​2016 and assumed the air conditioners were 
available 24/7. For the grid-​off scenario, the lighting, plug load, and air condi-
tioners were off. We assumed the blinds were not used for the baseline model. 
To test an extreme case, we assumed windows were closed throughout the 
heat wave in the baseline model, which is not common but may still happen in 
some situations, e.g., the windows are blocked for security or other reasons.

Four passive measures were selected as examples to demonstrate the work-
flow of resilient design evaluation. A measure was categorized as a passive 
measure if it still works when the power is off. The measures were as follows:

1		  Add solar control window film. These window films help reduce solar 
heat gain and protect against glare and ultraviolet exposure. They are 
best used in climates with long cooling seasons because they also block 
the sun’s heat in the winter. The properties of the window film were as 
follows: thermal transmittance 4.94 W/m2·K, solar transmittance 0.34, 
solar heat gain coefficient (SHGC) 0.45, and visible transmittance 0.66.

2		  Add an exterior overhang shade. This measure added an exterior over-
hang to the upper edge of the window. An exterior overhang can help 
block the solar irradiance when it is not desired.

3		  Seal windows and doors to reduce infiltration. For conditioned build-
ings, reinforcing air sealing can reduce the amount of undesirable 
outdoor air flow into the building, thus generally reducing the HVAC 
system’s cooling and heating load.

4		  Enable natural ventilation. Natural ventilation can provide free cooling 
when the outdoor environment is cooler than the indoors. This measure 
assumed that the windows in the building were operable, and that the 
occupants could and would open and close windows as needed. The 
windows were assumed to be opened only when the outdoor air tem-
perature was lower than indoor air temperature and the temperature 
difference was large enough to be noticeable by occupants, which was 
assumed to be 2°C in this case study. When grid power is available, 
windows and air conditioners are operated in concurrent mixed-​mode. 
In this mode, natural ventilation has higher priority to provide cool-
ing, and air conditioners provide supplementary cooling when natural 
ventilation alone is not enough to meet cooling load. In other words, if 
natural ventilation can meet cooling loads, the air conditioners will be 
turned off.

8.4.5.2 � Baseline Model Performance

The most severe heat wave identified in Ottawa in the past 30 years lasted 
ten days from August 1 to August 10, 2001. We began the simulation one 
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day before the extreme event and ended it one day after the event, to re-
flect not only the building’s response during extreme conditions, but also 
the variations from normal to extreme conditions and vice versa. Figure 8.17 
shows the outdoor air temperature and baseline indoor air temperature, and 
Figure 8.18 shows the baseline Heat Index variation, both under two power 
scenarios. With no air conditioning and no mitigation solutions, the indoor 
temperature could rise to as high as 49°C on the last day, with Heat Index 
entering an extreme danger level from the fifth day and rising as high as 
67°C on the last day. Such conditions could be extremely dangerous to the 

Figure 8.17 � Comparison of outdoor and indoor air temperature under power-​on 
and power-​off scenarios. The greyed-​out periods are one day before 
and one day after the heat wave under normal operation to illustrate 
the impact of the heat wave.

Figure 8.18 � Hourly indoor Heat Index, with and without grid power. The greyed-​
out periods are one day before and one day after the heat wave under 
normal operation to illustrate the impact of the heat wave.
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occupants, especially vulnerable populations such as the elderly and young 
children.

However, with grid power available to run the cooling system, the indoor 
temperature could be maintained at lower than 28°C and the Heat Index kept 
at a safe level. This is because the cooling capacity was sized based on de-
sign day conditions that were developed using 1% dry-​bulb and 1% wet-​bulb 
cooling design temperatures, which had a maximum dry-​bulb temperature 
of 28.9°C. Also, the outdoor temperature during the heat wave period was no 
higher than 35°C and had at least 10°C–​15°C variation between day and night. 
In this case study, the grid-​off scenario was analyzed further and applied with 
passive measures to explore design strategies for improving thermal resilience.

It should be noted that, in cold climates like Ottawa, many residential 
buildings are not equipped with air conditioners and could still experience 
life-​threatening conditions during heat waves even when grid power is avail-
able. If these passively operated buildings are designed properly, they can 
better cope with heat waves.

8.4.5.3 � Impact of Design Measures on Thermal Resilience

After the baseline performance is established, the four selected passive 
measures listed in Section 8.4.5.1 were applied to the baseline model with-
out grid power, and the indoor environment was simulated to evaluate their 
effectiveness in improving thermal resilience. Figure 8.19 illustrates the heat 
hazard occurrence distribution of the baseline and the passive measures 
without grid power. An occurrence was defined as a heat hazard level hap-
pening at one timestep. The total occurrence percentage of heat hazard lev-
els “Danger” and “Extreme Danger” during the selected heat wave period 
(in this case, August 1st to 10th) was adopted as the indicator to quantify the 
resilience improvement (Sun et al., 2020).

Among the four example measures, natural ventilation performed the 
best, reducing “Extreme Danger” from 70.5% to 8.3%. This result suggested 
that natural ventilation was able to leverage a large amount of free cooling 
because the indoor temperature exceeded the outdoor temperature for ma-
jority of the time, as shown in Figure 8.17. Adding window film and exterior 
overhang shades was also considerably effective, reducing “Extreme Dan-
ger” from 70.5% to 40.6% and 56.2%, respectively. The only passive measure 
that countered resilience was air sealing. In conditioned buildings, reinforc-
ing air sealing can help cut down heat gain through infiltration, which effec-
tively saves energy use of the HVAC systems. However, during extremely hot 
conditions with no grid power available, the outdoor environment can be 
cooler than the indoor environment, in which case reducing infiltration ends 
up being harmful for thermal resilience. On the other hand, if a building 
allows for natural ventilation, occupants do not need to rely on infiltration 
to counter the building overheating.
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It is worth noting that some measures are occupant-​dependent, i.e., they 
need occupants’ active interactions to function well in reality. For example, 
natural ventilation can be very effective if occupants are alert and monitor 
the indoor and outdoor air temperature closely, and they open the windows 
only when the outdoor air temperature is lower than the indoor air tem-
perature and close the windows on the contrary condition. Although the 
results of this case study show that some passive measures can significantly 
reduce “Extreme Danger”, they still cannot guarantee sufficient safety of 
occupants. When the buildings are occupied by vulnerable populations who 
are sensitive to heat, the designers should take active measures, such as on-​
site power generation via solar PV, electric battery, and/or thermal storage 
into consideration to guarantee safety.

8.5 � Closing Remarks

In this chapter, we focused on the role of occupants and occupant mod-
els in the building design process. We introduced a number of simulation-​
based design methods – ​namely, uncertainty and risk assessment, sensitivity 
analysis, parametric design, and optimization. We also presented examples 
of simulation-​aided design objectives – ​namely, performance compliance, 
robustness, adaptiveness, and resilience. Finally, to promote a better un-
derstanding of occupant-​centric design efforts, we tested three specific 
simulation-​aided design procedures on a prototypical building model and 

Pe
rc

en
ta

ge
 [%

]

Baseline Natural
ventilation

Window film Overhang Air sealing

100

80

60

40

20

0

70.5

8.3

40.6

56.2

71.9

Safe
Caution
Extreme caution
Danger
Extreme danger

Figure 8.19 � Heat hazard occurrence distribution of the baseline and design meas-
ures (labeled numbers refer to the total percentage of “Danger” and 
“Extreme danger” occurrences).



204  Farhang Tahmasebi et al.

documented and discussed the findings. These occupant-​centric design 
methods will be further discussed in real-​world case studies provided in 
Chapter 11.
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