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Abstract
We study the problem of sharing the revenues from broadcasting sports leagues among 
participating clubs. First, we characterize the set of rules satisfying two basic axioms: ano-
nymity and additivity. Then, we decentralize the problem by letting clubs vote for rules. No 
majority equilibrium exists when they are allowed to vote for any rule within the character‑
ized set. However, if the set is restricted in a meaningful and plausible way (just replacing 
anonymity by equal treatment of equals), majority equilibrium does exist.

Keywords Resource allocation · Broadcasting problems · Voting · Majority · Anonymity

JEL Classification D63 · C71 · Z20.

1 Introduction

Sports organizations crucially rely on the revenues they obtain from broadcasting their 
events. In 2019, the National Football League (NFL—the professional American football 
league) generated more than US$ 4.5 billion in broadcasting rights worldwide. The English 
Premier League (EPL—the top English football league), the National Basketball Associa‑
tion (NBA—the major professional basketball league in North America), and La Liga (the 
top professional football division of the Spanish football league system) followed in the 
ranking, generating US$ 3.83, US$ 3.12 and US$ 2.27 billion, respectively.1 These massive 
amounts are typically obtained via collective bargaining. That is, each sports league organ‑
izes itself via a governing body, which negotiates with TV broadcasters selling broadcast‑
ing rights for all games played in the league. An interesting problem emerges once the deal 
is closed; namely, how to share those revenues among participating clubs in the league. 
This problem can be solved in two ways. One way is  by means of a social planner (ideally, 
but not necessarily, considering some sort of rule that is singled out from an axiomatic 
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characterization). We refer to this as a centralized way. The other way involves no social 
planner, and the involved parties (clubs in this case) themselves decide via some voting 
protocol. We refer to this as a decentralized way. We will mostly focus in this paper on the 
latter (although we also include a characterization result in our analysis).

One might argue that in a one‑club/one‑vote environment, uniform sharing is more or 
less guaranteed because weak‑drawing clubs may block unequal sharing by refusing to per‑
mit broadcasting games involving them and strong‑drawing clubs (Fort & Quirk, 1995). 
This is less realistic nowadays. In recent years, most leagues have expanded timetables, 
so that very few games overlap. We also have more accurate data about audiences in each 
game. Consequently, it is easier to estimate the (broadcasting) strength of each participat‑
ing club in a league, and the uniform sharing might easily be dismissed on grounds of 
fairness.

Our analysis will take as a starting point the audience matrix associated with each 
league—that is, the collection of the (TV) audiences of all games in the league. More pre‑
cisely, if all clubs involved in a league are listed as columns and rows of a matrix, then each 
entry of the matrix will collect the audience (number of TV viewers) of the game involv‑
ing the team at the corresponding row and the team at the corresponding column, played 
at the former’s stadium.2 If we assume a pay‑per‑view system, in which each viewer pays 
the same fee to watch a game, then the overall number of viewers can be interpreted as the 
overall amount of revenue to be allocated (normalizing the fee to one). Then, we will con‑
sider rules that fully allocate such an amount among all participating clubs. The uniform 
rule (outlined above) is obviously an option. But others exist too. We concentrate on those 
that satisfy two basic principles: anonymity and additivity. The first states that a permu‑
tation of the set of agents equally permutes the allocation. Thus, the name of the agents 
does not matter. The second one is standard in axiomatic work and it can be traced back 
to Shapley (1953). It states that revenues should be additive on the audience matrix, which 
precludes some externalities, while conveying a form of simplicity.

Our first result (Theorem 1) characterizes all the rules satisfying  anonymity and additiv-
ity. They require that the amount received by each club is dependent on three characteris‑
tics: its overall home audience, its overall away audience, and the overall audience in the 
whole tournament (league). We then let clubs vote among these rules and obtain a first neg‑
ative result (Theorem 2): no majority equilibrium exists. That is, for each problem within 
a large class we identify, and each solution for it (obtained from one of the rules character‑
ized), there exists another solution (obtained from another rule, among those characterized) 
that is strictly preferred by a majority of clubs.

The above negative result is another instance of Condorcet’s paradox of voting, which 
is perhaps best exemplified by the problem of determining the division of a cake by major‑
ity rule (Hamada, 1973). Such a result might lead one to despair of ever achieving a vot‑
ing equilibrium in our setting. Nevertheless, as Campbell (1975) puts it, majority voting is 
never allowed to operate by itself without restraints imposed by constitution and conven‑
tion. We actually show that we can avoid majority cycles in our setting with a simple move 
in that direction. More precisely, instead of anonymity, we could consider another axiom, 
dubbed equal treatment of equals, stating that if two clubs have the same audiences, then 
each time they play a third, they should receive the same amount. Thus, both axioms are 

2 Thus, for a league with a standard double round‑robin format, the matrix would be square and the diago‑
nal entries would be empty.
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related to the principle of impartiality.3 It turns out that the combination of this axiom 
with additivity characterizes another family of rules, which happens to be included in the 
family of rules characterized in Theorem 1. We refer to them as general compromise rules, 
because they offer a general (not necessarily convex) compromise between two focal rules: 
on the one hand, the uniform rule already mentioned; on the other hand, a rule dubbed  
concede-and-divide, which allocates revenues comparing individual and average (broad‑
casting) performance in a meaningful way. We then obtain a positive result (Theorem 3). 
That is, we show that if we allow clubs to vote among rules within any bounded subset of 
the family of general compromise rules, majority equilibrium does exist.

To prove the previous result, we exploit an interesting feature of the family of general 
compromise rules. Rules within the family satisfy the so‑called single-crossing property, 
which allows one to separate those clubs that benefit from the choice of one or the other 
rule, depending on the rank of their overall audiences. This is a sufficient condition for the 
existence of a majority voting equilibrium (Gans & Smart, 1996). And it also has some 
other implications, referring to the distributive impact of the rules within the family, as 
well as the identification of the majority voting equilibrium (Hemming & Keen, 1983).

Our work relates to several branches of the literature. On the one hand there is the 
literature on voting regarding taxes, pioneered by Foley (1967), who analyzed the prob‑
lem of voting on taxes in an endowment economy (and showed that there always exists 
a majority voting equilibrium for the class of flat taxes).4 In our setting, voting refers to 
allocation rules, rather than tax methods. As such, we are closer to the literature on vot‑
ing for resource allocation (Birnberg et al., 1970; Barzel & Sass, 1990). Thus, our work 
also touches the sizable body of literature on fair allocation, with a special emphasis on 
its well‑developed component dealing with rationing problems (O’Neill, 1982; Kamin‑
ski, 2000; Thomson, 2019). On the other hand, this paper is a new stage in our research 
agenda on sharing the revenues raised from the collective sale of broadcasting rights for 
sports leagues (Bergantiños & Moreno‑Ternero, 2020a, 2020b, 2021, 2022a, 2022b, 2022c, 
2022d, 2023). As such, it connects to literature dealing with broadcasting and revenue 
sharing in sports (Cave & Crandall, 2001; Szymanski & Késenne, 2004).

We conclude this introduction mentioning that our analysis may have potential applica‑
tions that go beyond the four big leagues mentioned at the beginning of this section. Two 
of those referred to (European) football, also known as soccer. Table 1 below lists the most 
important leagues for that sport, ranked according to their value per game (based on the 
contracts in place as of September 2022). This allows us to obtain a more accurate picture 
for soccer numbers worldwide.

Note that most of these leagues have a standard round‑robin tournament from which 
we can obtain an audience matrix, thus satisfying the informational requirements of our 
model. This is not the case in some other major sports with a different format, such as 
F1, golf, or tennis. In the case of F1 (and MotoGP and similar racing sports), participants 
likely compete in several races during the season. We can therefore only have combined 

3 Impartiality is a basic requirement in the theory of justice (Young, 1994; Moreno‑Ternero & Roemer 
2006). In the context of fair allocation, it essentially translates as imposing the rule that ethically irrelevant 
aspects be excluded from the allocation process. The two axioms mentioned above (anonymity and equal 
treatment of equals) are indeed motivated by the desire for impartiality, although many other axioms are 
also motivated by that objective.
4 Foley’s work mostly relies on verbal discussion. A more formal treatment of his model (and some of his 
results) is provided by Gouveia and Oliver (1996). See also Gouveia (1997) or Moreno‑Ternero (2011) for 
similar models and results.



30 Public Choice (2023) 194:27–44

1 3

audiences for each race, without disentangling the audience for each pair or participants. 
Similarly, in the case of golf, participants compete at different tournaments, and even 
though some participants do not make the cut by the last days of each tournament, we can 
only obtain combined audiences. Finally, both tennis and international football competi‑
tions (such as the FIFA World Cup) rely on knock‑out tournament formats. In that case, we 
would easily obtain an audience matrix as well (although it would have more empty entries 
than an audience matrix from a round‑robin tournament), and thus our model could also be 
applied.

The rest of the paper is organized as follows. We introduce the model, basic rules and 
axioms in Sect.  2, and we provide the main characterization result in Sect.  3. Section 4 
is devoted to the decentralization process. We first show that in letting clubs vote among 
the rules within the family characterized in Sect. 3, we cannot guarantee the existence of 
a majority voting equilibrium. We then show that such an existence is guaranteed when 
the set of voting alternatives is restricted to another focal family of rules. We then explore 
additional features of such a family and its (associated) majority voting equilibrium. Sec‑
tion 5 concludes. For smooth flow, some proofs have been deferred to an appendix.

2  The model

We consider the model introduced in Bergantiños and Moreno‑Ternero (2020a). Let N be 
a finite set of clubs. Its cardinality is denoted by n. We assume that n ≥ 3 . For each pair of 
clubs i, j ∈ N , we denote by aij the broadcasting audience (number of viewers) for the game 
played by i and j at i’s stadium. We use the notational convention that aii = 0 for each i ∈ N.5  
Let A ∈ An×n denote the resulting matrix of broadcasting audiences generated in the whole 
tournament involving the clubs within N. As the set N will be fixed throughout our analysis, 
we will not explicitly consider it in the description of each problem. Each matrix A ∈ An×n 

Table 1  Top 10 domestic soccer 
leagues in value per  gamea

a The source is https:// en. wikip edia. org/ wiki/ List_ of_ domes tic_ footb 
all_ league_ broad cast_ deals_ by_ count ry. Last accessed, September 30, 
2022

League Country Value per game Currency

Premier League England 8 million GBP
Bundesliga Germany 3.59 million EUR
La Liga Spain 2.60 million EUR
Serie A Italy 2.44 million EUR
Ligue 1 France 1.53 million EUR
English Football League England 0.708 million GBP
Scottish Premiership Scotland 0.555 million GBP
Primeira liga Portugal 0.588 million EUR
Brasileirao Brazil 2.734 million BRL
Major League Soccer US 0.525 million USD

5 Alternatively, we could write a
ii
= � to specify that a team i cannot play against itself.

https://en.wikipedia.org/wiki/List_of_domestic_football_league_broadcast_deals_by_country
https://en.wikipedia.org/wiki/List_of_domestic_football_league_broadcast_deals_by_country
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with zero entries in the diagonal will thus represent a problem, and we will refer to the set 
of problems as P.

Let �i(A) denote the overall audience achieved by club i, i.e.,

Without loss of generality, we normalize the revenue generated from each viewer to 1 (to be 
interpreted as the “pay‑per‑view” fee). Thus, we sometimes refer to �i(A) as the claim of club 
i. When no confusion arises, we write �i instead of �i(A) . We then denote each club’s (over‑
all) home audience by hi and its (overall) away audience by wi . Formally, for each i ∈ N,

Note that �i = hi + wi for each i ∈ N.
We denote by � the average audience of all clubs.; namely,

For each A ∈ An×n , let ||A|| denote the overall audience of the tournament; namely,

A rule is a mapping that associates with each problem the list of the amounts clubs get 
from the overall revenue. Formally, R ∶ P → ℝ

N is such that, for each A ∈ P,

Rules can generally be structured in the following way. Assume the amount received by 
each club i has three parts: one depending on its (overall) home audience, another depend‑
ing on its (overall) away audience, and the third depending on the overall audience in the 
whole tournament. Formally:

General rules {Gxyz}x+y+nz=1 . For each trio x, y, z ∈ ℝ with x + y + nz = 1, each A ∈ P , 
and each i ∈ N,

General rules have been studied in Bergantiños and Moreno‑Ternero (2022c, 2022d). Note 
that if (x, y, z) = (0, 0,

1

n
) , we obtain the so‑called uniform rule, which divides equally among 

all clubs the overall audience of the whole tournament.6 If (x, y, z) = (
n−1

n−2
,
n−1

n−2
,

−1

n−2
 ), we 

�i(A) =
∑
j∈N

(aij + aji).

hi =
∑

j∈N�{i}

aij, and

wi =
∑

j∈N�{i}

aji.

� =

∑
i∈N �i

n
.

||A|| = ∑
i,j∈N

aij =
1

2

∑
i∈N

�i =
n�

2
.

∑
i∈N

Ri(A) = ||A||.

G
xyz

i
(A) = xhi + ywi + z||A|| = x

(
hi −

�̄�

2

)
+ y

(
wi −

�̄�

2

)
+

�̄�

2
.

6 This rule was first studied in Bergantiños and Moreno‑Ternero (2020b). It also appears in Bergantiños and 
Moreno‑Ternero (2022a, b, c, d).
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obtain another focal rule (the so‑called concede-and-divide), which is based on a comparison 
of the performance of a club with the average performance of the other clubs.7 Formally:

Uniform, U: for each A ∈ P , and each i ∈ N,

Concede-and-divide, CD: for each A ∈ P , and each i ∈ N,

The linear combinations of the above two rules give rise to a new family of (compromise) 
rules, which is fully included within the family of  general rules.8 Formally:

General compromise rules 
{
UC�

}
�∈ℝ

 : for each � ∈ ℝ , each A ∈ P , and each i ∈ N,

Equivalently,

We conclude this section introducing three basic axioms of rules.

First, the axiom that revenues should be additive on A. Formally:

Additivity: For each pair A and A� ∈ P,

Second, an axiom indicating that the name of the agents does not matter. Formally, let � 
be a permutation of the set of agents. Thus, � ∶ N → N such that �(i) ≠ �(j) when i ≠ j. 
Given a permutation � and A ∈ P , we define the problem A� , where for each pair. i, j ∈ N, 
a�
ij
= a

�(i)�(j).

Anonymity: For each A ∈ P , each permutation �, and each i ∈ N,

Third, the axiom that if two clubs have the same audiences, then each time they play a 
third, they should receive the same amoun.

Equal treatment of equals: For each A ∈ P , and each pair i, j ∈ N such that aik = ajk , and 
aki = akj , for each k ∈ N ⧵ {i, j},

Ui(A) =
||A||
n

=
�

2
.

CDi(A) = �i −

∑
j,k∈N�{i}

�
ajk + akj

�

n − 2
=

(n − 1)�i − ��A��
n − 2

=
2(n − 1)�i − n�

2(n − 2)
.

UC�

i
(A) = (1 − �)Ui(A) + �CDi(A).

UC�

i
(A) = (1 − �)

||A||
n

+ �
(n − 1)�i − ||A||

n − 2
=

�

2
+ �

n − 1

n − 2

(
�i − �

)
.

R
(
A + A�

)
= R(A) + R

(
A�
)
.

Ri(A) = R
�(i)(A

�).

7 This rule was first studied in Bergantiños and Moreno‑Ternero (2020a). It also appears in Bergantiños and 
Moreno‑Ternero (2021, 2022a, 2022b, 2022c, 2022d)
8 These rules have been considered in Bergantiños and Moreno‑Ternero (2022b, c, d).
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3  A characterization result

Our first result characterizes the family of rules satisfying the first two axioms introduced 
above.

Theorem 1 A rule satisfies additivity and anonymit if and only if it is a general rule.

Proof It is not difficult to show that each general rule satisfies the two axioms at the state‑
ment. Conversely, let R be a rule satisfying the two axioms. Let A ∈ P . For each pair 
i, j ∈ N , with i ≠ j , let 1ij denote the matrix with the following entries:

Let i ∈ N. By additivity,

Let i, j, k ∈ N be three different clubs. By anonymity,

Then, there exist x̂, ŷ, ẑ ∈ ℝ such that for each i, j ∈ N with i ≠ j and k ∈ N�{i, j} we have 
that

As 
∑
k∈N

Rk

�
1
ij
�
= 1 , it follows that x̂ + ŷ + (n − 2)ẑ = 1.

We define x = x̂ − ẑ , y = ŷ − ẑ, and z = ẑ. Then, x + y + nz = 1 and

By (1),

  ◻

Ri(A) = Rj(A).

1
ij

kl
=

{
1 if (k, l) = (i, j)

0 otherwise.

(1)Ri(A) =
∑

j,k∈N∶j≠k

ajkRi

(
1
jk
)
.

Rk

(
1
ij
)
=Rk

(
1
ji
)
= Ri

(
1
kj
)
= Ri

(
1
jk
)
= Rj

(
1
ki
)
= Rj

(
1
ik
)
,

Ri

(
1
ij
)
=Ri

(
1
ik
)
= Rj

(
1
ji
)
= Rj

(
1
jk
)
= Rk

(
1
ki
)
= Rk

(
1
kj
)
, and

Ri

(
1
ji
)
=Ri

(
1
ki
)
= Rj

(
1
ij
)
= Rj

(
1
kj
)
= Rk

(
1
ik
)
= Rk

(
1
jk
)
.

(2)x̂ = Ri

(
1
ij
)
, y� = Rj

(
1
ij
)
and ẑ = Rk

(
1
ij
)
.

Rk

�
1
ij
�
=

⎧
⎪⎨⎪⎩

x + z if k = i

y + z if k = j

z otherwise.

Ri(A) =
∑

j,k∈N∶j≠k

ajkRi

(
1
jk
)
= (x + z)

∑
j∈N�{i}

aij + (y + z)
∑

j∈N�{i}

aji + z
∑

j,k∈N�{i}∶j≠k

ajk

= xhi + ywi + z||A|| = G
xyz

i
(A).
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If, instead of anonymity, we add equal treatment of equals to additivity, then we char‑
acterize the family of general compromise rules (Bergantiños & Moreno‑Ternero, 2022c). 
This implies that, under the presence of additivity, equal treatment of equals is a stronger 
axiom than anonymity.

4  Decentralization

In the previous section we provided normative foundations for a family of rules to share 
revenues raised from broadcasting. Two basic axioms (anonymity and additivity) char‑
acterize the family of general rules. Such an axiomatic analysis is, nevertheless, silent 
regarding the specific rule to choose within the family. We explore such a problem in 
this section, taking a decentralized approach. More precisely, we study whether the 
choice of a rule within the family could be made by means of simple majority voting, 
letting each club vote for a rule within the family. Due to the overwhelming existence 
of majority cycles (Greenberg, 1979; Balasko & Crés, 1997), one should normally not 
expect a positive answer to this question. This is indeed what the next result confirms.

Some formal definitions first. Given a problem A ∈ P , we say that R(A) is a major-
ity winner (within the set of rules R ) for A if there is no other rule R� ∈ R such that 
R�
i
(A) > Ri(A) for a majority of clubs. We say that the family of rules R has a majority 

voting equilibrium if there is at least one majority winner (within R ) for each problem 
A ∈ P.

Theorem 2 There is no majority voting equilibrium for the family of general rules.

Even though the technical proof of the previous result (see the appendix) might be 
cumbersome, its logic should be clear. It all amounts to realizing that, given a gen‑
eral rule, one can construct another general rule which, at a certain problem, increases 
the amount obtained by a majority of the clubs involved, while reducing the amount 
obtained by all the others. The argument is similar to others used in related models 
(Klingaman, 1969; Marhuenda & Ortuño‑Ortin, 1998).

Given the previous result, our aim now shifts to prove the existence of a majority voting 
equilibrium for a sufficiently large family of rules. Surprisingly, as the next result shows, we 
can do so for any bounded family of general compromise rules. Recall that, as mentioned in 
the previous section, such a family is characterized by the combination of equal treatment of 
equals and additivity. We conclude from here that in the presence of additivity, anonymity 
characterizes a family that is too large to guarantee the existence of a majority voting equi‑
librium, whereas equal treatment of equals characterizes another family (large, but not too 
large) that does guarantee the existence of a majority voting equilibrium. Note that we need 
to impose the bounded requirement, which restricts the domain of the parameter describing 
general compromise rules to a bounded interval. Otherwise, the majority equilibrium might 
not exist, as it may correspond to the rule obtained with one of the bounds of the interval.

To prove the result, we show first that all rules within the family of general compro‑
mise rules satisfy the  single-crossing property. That is, for each pair of rules within the 
family, and each problem A ∈ P , there exists a club i∗ ∈ N separating those clubs ben‑
efitting from the choice of one rule and those benefitting from the choice of the other. It 
turns out that i∗ is precisely the club whose overall audience is closest (from below) to 
the average overall audience.
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Proposition 1 All rules within the family of general compromise rules satisfy the single-
crossing property.

Proof Let A ∈ P . Let �, �, �1, �2 ∈ ℝ , with � ≤ �1 ≤ �2 ≤ � (one of them strict), and 
i ∈ N . We distinguish two cases:

If �i ≤ � , then

If 𝛼i > 𝛼 , then

Let i∗ be the agent whose claim is closest to � from below. And assume, without loss of 
generality, that N = {1,… , n} and �1 ≤ �2 ≤ ⋯ ≤ �n . Then, we have the following: 

 (i) UC
�1

i
(A) ≤ UC

�2

i
(A) for each i = 1, ..., i∗ and

 (ii) UC
�1

i
(A) ≥ UC

�2

i
(A) for each i = i∗ + 1, ..., n.

  ◻

It is well known that the single‑crossing property of preferences is a sufficient condition 
for the existence of a majority voting equilibrium (Gans & Smart, 1996). Thus, the next 
result follows.

Theorem 3 There is a majority voting equilibrium for each bounded family of general com-
promise rules 

{
UC�

}
�∈[�,�]

.

Theorem 3 states that if we let clubs vote for a rule within any bounded family of gen‑
eral compromise rules, then there will be a majority winner for each problem. The iden‑
tity of this winner will be problem‑specific and will depend on the characteristics of the 
problem at stake, as stated in the next result (whose proof appears in the appendix). First, 
some notation. For each A ∈ P , we consider the following partition of N, with respect 
to the average claim ( ̄𝛼 ): Nl(A) = {i ∈ N ∶ 𝛼i < �̄�} , Nu(A) = {i ∈ N ∶ 𝛼i > �̄�} , and 
Ne(A) = {i ∈ N ∶ 𝛼i = �̄�} . That is, taking the average claim (within the tournament) as 
the benchmark threshold, we consider three groups referring to clubs with claims below, 
above, or exactly at, the threshold.9

Proposition 2 Let 
{
UC�

}
�∈[�,�]

 be the domain of rules for voting and A ∈ P . The following 
statements hold: 

 (i) If 2|Nl| > n , then UC�(A) is the unique majority winner.
 (ii) If 2|Nu| > n , then UC�(A) is the unique majority winner.
 (iii) Otherwise, each UC�(A) is the majority winner.

UC
�1

i
(A) =

�

2
+ �1

n − 1

n − 2

(
�i − �

)
≥

�

2
+ �2

n − 1

n − 2

(
�i − �

)
= UC

�2

i
(A).

UC
�1

i
(A) =

�

2
+ �1

n − 1

n − 2

(
�i − �

)
≤

�

2
+ �2

n − 1

n − 2

(
�i − �

)
= UC

�2

i
(A).

9 When no confusion arises, we simply write N
l
 , N

u
, and N

e
 . Note that n = |N

l
| + |N

u
| + |N

e
|.
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The single‑crossing property exhibited at the proof of Theorem 3 also guarantees that 
the social preference relationship obtained under majority voting is transitive, and cor‑
responds to that of the median voter. In our setting, the median voter, which we denote 
by m,  corresponds to the club with the median overall audience (claim). Thus, depend‑
ing on whether this median claim is below or above the average claim, the majority win‑
ner for each problem A will be either the rule UC�(A) or the rule UC�(A) . In other words, 
a tournament with a small number of very strong clubs (i.e., with very high claims) will 
proclaim the allocation UC�(A) (the one favoring weaker clubs more within the fam‑
ily) as the majority winner, whereas a tournament with a small number of very weak 
clubs (i.e., with very small claims) will proclaim the allocation UC�(A) (the one favor‑
ing stronger clubs more within the family). The proofs of the next corollaries appear in 
the appendix.

Corollary 1 Let 
{
UC�

}
�∈[�,�]

 be the domain of rules for voting and let A ∈ P be such that n 
is odd. The following statements hold: 

 (i) If 𝛼m < �̄� , then UC�(A) is the unique majority winner.
 (ii) If 𝛼m > �̄� , then UC�(A) is the unique majority winner.
 (iii) If 𝛼m = �̄� , then each UC�(A) is the majority winner.

Corollary 2 Let 
{
UC�

}
�∈[�,�]

 be the domain of rules for voting and let A ∈ P be such that n 
is even. The following statements hold: 

 (i) If 𝛼 n+2

2

< �̄� , then UC�(A) is the unique majority winner.
 (ii) If 𝛼 n

2

> �̄� , then UC�(A) is the unique majority winner.
 (iii) If 𝛼 n

2

≤ �̄� ≤ 𝛼 n+2

2

 , then each UC�(A) is the majority winner.

If the parameter describing general compromise rules ranges from zero to 1, then it 
yields precisely convex combinations between the uniform rule and concede-and-divide. 
Proposition 2 translates into the following.

Corollary 3 Let 
{
UC�

}
�∈[0,1]

 be the domain of rules for voting and A ∈ P . The following 
statements hold: 

 (i) If 2|Nl| > n , then U(A) is the unique majority winner.
 (ii) If 2|Nu| > n , then CD(A) is the unique majority winner.
 (iii) Otherwise, each UC�(A) is the majority winner.

Corollary 3 implies that if the distribution of claims is skewed to the left (i.e., the 
median claim is below the mean claim), then the uniform allocation (the most equal alloca‑
tion within the family) is the majority winner, whereas if it is skewed to the right (i.e., the 
median claim is above the mean claim), then the concede-and-divide allocation (the most 
unequal allocation within the family, as proved below) is the majority winner. If it is not 
skewed, then any compromise allocation can be the majority winner.

Another consequence of the single‑crossing property is that it guarantees progres‑
sivity comparisons of schedules (Jakobsson, 1976; Hemming & Keen, 1983). Thus, 
we can also obtain an interesting result, referring to the distributive power of the rules 
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within the family of general compromise rules. Formally, given x, y ∈ ℝ
n satisfying 

x1 ≤ x2 ≤ ... ≤ xn , y1 ≤ y2 ≤ ... ≤ yn , and 
∑n

i=1
xi =

∑n

i=1
yi , we say that x is greater than 

y in the Lorenz ordering if 
∑k

i=1
xi ≥

∑k

i=1
yi , for each k = 1, ..., n − 1 , with at least one 

strict inequality. When x is greater than y in the Lorenz ordering, one can state (see, for 
instance, Dasgupta et al., 1973) that x is unambiguously “more egalitarian” than y. In 
our setting, we say that a rule R Lorenz dominates another rule R′ if for each A ∈ P , 
R(A) is greater than R�(A) in the Lorenz ordering. As the Lorenz criterion is a partial 
ordering, one might not expect to be able to perform many comparisons of vectors. It 
turns out, however, that the general compromise rules are fully ranked according to this 
criterion. This is stated in the next result.

Proposition 3 The following statements hold:

• If 0 ≤ �1 ≤ �2 then UC�1 Lorenz dominates UC�2.
• If �1 ≤ �2 ≤ 0 then UC�2 Lorenz dominates UC�1.

Proof Assume, without loss of generality, that �1 ≤ �2 ≤ ... ≤ �n. It is not difficult to show 
that, for each k = 1, ..., n − 1 , 

∑k

i=1
�i ≤ k� , and 

∑k

i=1
�n−i+1 ≥ k�.

In order to prove the first statement of the proposition, let 0 ≤ �1 ≤ �2 . Then, the cor‑
responding general compromise rules preserve the order of claims. Formally,

Thus, it suffices to show that, for each k = 1, ..., n − 1,

Equivalently,

Or,

which follows from the fact that 
∑k

i=1

�
�i − �

�
≤ 0 and �1 ≤ �2.

In order to prove the second statement, let �1 ≤ �2 ≤ 0 . In this case, the corresponding 
general compromise rules reserve the order of claims. Formally,

Thus, it suffices to show that, for each k = 1, ..., n − 1,

UC
�1

1
(A) ≤UC

�1

2
(N,A) ≤ ... ≤ UC�1

n
(A), and

UC
�2

1
(A) ≤UC

�2

2
(N,A) ≤ ... ≤ UC�2

n
(A).

k∑
i=1

UC
�1

i
(A) ≥

k∑
i=1

UC
�2

i
(A).

k∑
i=1

[ ||A||
n

+ �1
n − 1

n − 2

(
�i − �

)]
≥

k∑
i=1

[ ||A||
n

+ �2
n − 1

n − 2

(
�i − �

)]
.

�1

k∑
i=1

(
�i − �

)
≥ �2

k∑
i=1

(
�i − �

)
,

UC
�1

1
(A) ≥UC

�1

2
(N,A) ≥ ... ≥ UC�1

n
(A), and

UC
�2

1
(A) ≥UC

�2

2
(N,A) ≥ ... ≥ UC�2

n
(A).
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Equivalently,

Or,

which follows from the fact that 
k∑

i=1

�
�n−i+1 − �

�
≥ 0 and �1 ≤ �2 .   ◻

Proposition 3 implies that the parameter defining the family can actually be interpreted as 
an index of the distributive power of the rules within the family. The uniform rule is the center 
element of the family, obtained when � = 0 . It also happens to be the maximal element of the 
Lorenz ordering, as it generates fully egalitarian allocations. It is then obvious that all other 
rules within the family are Lorenz‑dominated by it. The remarkable feature, which is stated by 
Proposition 3, is that, departing from the uniform rule in both directions (either with positive 
parameters or with negative parameters), we obtain rules that yield progressively less egali‑
tarian allocations. That is, the more we depart from the center element in the family, the less 
egalitarian the rules become. And we can establish those comparisons for each pair of rules 
within each of the two sides of the family. When the pair of rules is composed of rules in dif‑
ferent sides of the family (i.e., one corresponding to a negative parameter and the other cor‑
responding to a positive parameter), then we cannot establish Lorenz comparisons for such a 
pair of rules.

To conclude this section, note that the rules considered above might impose negative amounts 
to some clubs. It might be interesting to restrict our focus to general compromise rules that allo‑
cate non‑negative amounts to all players. It turns out that the family of rules satisfying additivity, 
equal treatment of equals, and non-negativity (for each problem A and each i ∈ N, Ri(A) ≥ 0) is 
characterized at Proposition 2.2 in Bergantiños and Moreno‑Ternero (2022c). This family of rules 
is precisely composed of the general compromise rules UC� where � ∈

[
−1

n−1
,

n−2

2(n−1)

]
. Note that, 

by Theorem 3 above, this family of rules has a majority voting equilibrium.

5  Discussion

We have studied in this paper the problem of sharing the revenues raised from the col‑
lective sale of broadcasting rights for sports leagues, from a decentralized perspective. 
Our starting point is the characterization of a large family of rules by means of two basic 
axioms: additivity and anonymity. We then explore majority voting for such a family and 
obtain a negative result. Although the two axioms allow us to narrow the class of possible 
rules to a workable size (additivity is the critical axiom for that), the resulting family is too 
large to bypass (majority) cycles.

k∑
i=1

UC
�2

n−i+1
(A) ≥

k∑
i=1

UC
�1

n−i+1
(A).

k∑
i=1

[ ||A||
n

+ �2
n − 1

n − 2

(
�n−i+1 − �

)]
≥

k∑
i=1

[ ||A||
n

+ �1
n − 1

n − 2

(
�n−i+1 − �

)]
.

�2

k∑
i=1

(
�n−i+1 − �

)
≥ �1

k∑
i=1

(
�n−i+1 − �

)
,
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We then consider a subfamily of general compromise rules (which are precisely charac‑
terized by replacing anonymity with equal treatment of equals) and obtain a positive result 
for it; namely, if clubs are allowed to vote among general compromise rules, majority equi‑
librium does exist. Furthermore, rules within the family of bounded general compromise 
rules satisfy the single-crossing property. This permits us to obtain further information 
about the majority voting equilibrium, as well as the distributional properties of the rules 
within the family. In particular, we show that the skewness of the distribution of clubs’ 
claims (overall number of viewers during the whole tournament) determines the equilib‑
rium. In cases such as that of La Liga, a small number of clubs have very high claims.10 
This would proclaim the allocation provided by the general compromise rule with the low‑
est parameter the majority equilibrium.

It is left for further research to explore alternative forms of decentralization (via vot‑
ing). For instance, there exists a growing interest in considering approval voting (Brams 
& Fishburn, 1978) as an alternative to majority voting in many instances. This method 
allows each voter to cast her vote for as many candidates as she wishes; each positive vote 
is counted in favor of the candidate. The votes are then added by candidate, and the winner 
is the one who receives the largest number of votes. All other candidates can also be ranked 
according to the number of votes they obtain. An alternative to approval voting is cumula-
tive voting (Glasser, 1959; Sawyer & MacRae, 1962). It allows voters to distribute points 
among candidates in any arbitrary way.11 An interesting case is the one in which every 
agent is endowed with a fixed number of votes that are evenly divided among all candidates 
for whom she votes. This corresponds to the notion of Shapley ranking introduced by Gins‑
burgh and Zang (2003) for the so‑called museum pass game and recently characterized 
by Dehez and Ginsburgh (2020).12 The Shapley ranking can be rationalized as the Shap‑
ley value of an associated cooperative game with transferable utility. In the context of this 
paper, we can also consider a game‑theoretical approach to associate a cooperative game 
with transferable utility to each (broadcasting) problem. A natural way to do this is to take 
an optimistic stance on the revenue a coalition can generate on its own. If so, the Shapley 
value of the game yields a rule that happens to be a member of the family of compromise 
rules (Bergantiños & Moreno‑Ternero, 2020a). It seems plausible to conjecture that such a 
rule would arise as the equilibrium in a decentralized process with Shapley ranking as an 
alternative to majority voting.

To conclude, as mentioned above, additivity is the critical axiom in our work to narrow 
the class of possible rules to a workable size. One could think of weakening this axiom by 
means of transfer, as introduced by Dubey (1975). In this context, a rule R satisfies transfer 
if, for each pair A and A� ∈ P,

where if B = max{A,A�} and C = min{A,A�} , then bij = max{aij, a
�
ij
} , and 

cij = min{aij, a
�
ij
} , for each pair i, j ∈ N.

R
(
max{A,A�}

)
+ R

(
min{A,A�}

)
= R(A) + R

(
A�
)
,

10 Typically, only 20% of the clubs playing La Liga have claims above the average (Bergantiños & Moreno‑
Ternero, 2020a, 2021).
11 Both approval voting and cumulative voting can be seen as members of a family of voting procedures 
dubbed size approval voting, which are characterized by Alcalde‑Unzu and Vorsatz (2009).
12 See also Bergantiños and Moreno‑Ternero (2015).
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If we replace additivity by transfer in Theorem 1, then the idea of our proof cannot be 
easily adapted. Our proof first “computes” the rules in the elementary problems 1ij . Later, 
by additivity, the rules are extended to all problems. Without additivity, we would therefore 
need a different route.

We have identified at least a family of rules satisfying transfer and anonymity, but vio‑
lating additivity. Specifically, a rule within this family divides the audience of each game 
between the two teams playing the game, taking into account the audience of the game. 
Formally, for each map f ∶ ℝ+ → ℝ , we define the rule Rf  as follows. For each problem A 
and each i ∈ N,

Appendix

Proof of Theorem 2

Let A ∈ P . Let Nh
l
(A) = {i ∈ N ∶ hi <

�̄�

2
} , Nh

u
(A) = {i ∈ N ∶ hi >

�̄�

2
} , and N

h

e
(A) =

{i ∈ N ∶ h
i
=

�̄�

2
} . Similarly, let Nw

l
(A) = {i ∈ N ∶ wi <

�̄�

2
} , Nw

u
(A) = {i ∈ N ∶ wi >

�̄�

2
} , 

and Nw
e
(A) = {i ∈ N ∶ wi =

�̄�

2
}.

Now, let Gxyz be a general rule. Then,

We consider several cases.
Case 1. |Nh

l
(A)| > n

2
.

Let 𝜀 > 0 , x̂ = x − 𝜀 , ŷ = y , and ẑ = 1−x̂−ŷ

n
 . Then, Gx̂ŷẑ is also a general rule. Further‑

more, for each i ∈ Nh
l
(A) , Gx̂ŷẑ

i
(A) > G

xyz

i
(A) . Thus, more than half of the voters would pre‑

fer Gx̂ŷẑ(A) to Gxyz(A) . Hence, Gxyz(A) is not the majority winner.
Case 2. |Nh

u
(A)| > n

2
.

Let 𝜀 > 0 , x̂ = x + 𝜀 , ŷ = y , and ẑ = 1−x̂−ŷ

n
 . Then, Gx̂ŷẑ is also a general rule. Further‑

more, for each i ∈ Nh
u
(A) , Gx̂ŷẑ

i
(A) > G

xyz

i
(A) . Thus, more than half of the voters would pre‑

fer Gx̂ŷẑ(A) to Gxyz(A) . Hence, Gxyz(A) is not the majority winner.
Case 3. |Nw

l
(A)| > n

2
.

Let 𝜀 > 0 , x̂ = x , ŷ = y − 𝜀 , and ẑ = 1−x̂−ŷ

n
 . Then, Gx̂ŷẑ is also a general rule. Further‑

more, for each i ∈ Nw
l
(A) , Gx̂ŷẑ

i
(A) > G

xyz

i
(A) . Thus, more than half of the voters would pre‑

fer Gx̂ŷẑ(A) to Gxyz(A) . Hence, Gxyz(A) is not the majority winner.
Case 4. |Nw

u
(A)| > n

2
.

Let 𝜀 > 0 , x̂ = x , ŷ = y + 𝜀 , and ẑ = 1−x̂−ŷ

n
 . Then, Gx̂ŷẑ is also a general rule. Furthermore, 

for each i ∈ Nw
h
(A) , Gx̂ŷẑ

i
(A) > G

xyz

i
(A) . Thus, more than half of the voters would prefer Gx̂ŷẑ(A) 

to Gxyz(A) . Hence, Gxyz(A) is not the majority winner.
Case 5. max{|Nh

l
(A)|, |Nh

u
(A)|, |Nw

l
(A)|, |Nw

u
(A)|} ≤

n

2
.

In contrast with the previous cases, we cannot guarantee here that Gxyz(A) is not the major‑
ity winner. For instance, if we take a problem A in which all games have the same audience 
(thus, |Nh

l
(A)| = |Nh

u
(A)| = |Nw

l
(A)| = |Nw

u
(A)| = 0 ), then all general rules would yield the 

Ri(a) =
∑

j∈N�{i}

[
f
(
aij
)
aij +

(
1 − f

(
aji
))
aji
]
.

G
xyz

i
(A) = x

(
hi −

�̄�

2

)
+ y

(
wi −

�̄�

2

)
+

�̄�

2
.
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same (uniform) solution. Hence, Gxyz(A) is the majority winner for each (x, y,  z) such that 
x + y + nz = 1.

Similarly, assume we take a fully polarized and symmetric problem, namely, A is such that 
n is even, aij = aji = s for each pair i, j ∈ {1,… ,

n

2
} such that i ≠ j , aij = aji = t for each pair 

i, j ∈ {
n

2
+ 1,… , n} such that i ≠ j , aij = aji = 0 when i ∈ {1,… ,

n

2
} and j ∈ {

n

2
+ 1,… , n} , 

and s < t . Note that for each i ∈ {1,… ,
n

2
} hi = wi =

n−2

2
s and �i = (n − 2)s , whereas 

for each i ∈ {
n

2
+ 1,… , n} hi = wi =

n−2

2
t and �i = (n − 2)t . Thus, �̄� =

n−2

2
(s + t) and 

|Nh
l
(A)| = |Nh

u
(A)| = |Nw

l
(A)| = |Nw

u
(A)| = n

2
 . For this problem, all general rules would yield 

the same amounts to each club within the same group, and symmetric amounts to both groups. 
More precisely, for each i ∈ {1,… ,

n

2
}, Gxyz

i
(A) =

n−2

4
(s − t)(x + y) +

n−2

4
(s + t) and for each 

i ∈ {
n

2
+ 1,… , n} , Gxyz

i
(A) =

n−2

4
(t − s)(x + y) +

n−2

4
(s + t) . Thus, again, Gxyz(A) is a major‑

ity winner for each (x, y, z) such that x + y + nz = 1.
Nevertheless, the above does not mean that we can always find a majority winner in this 

case. Consider, for instance, the following problem:

As �̄�
2
= 3 , it follows that Nh

l
(A) = {5} , Nw

l
(A) = {3, 5} , Nh

u
(A) = {1, 2} = Nw

u
(A) , and there‑

fore, max{|Nh
l
(A)|, |Nh

u
(A)|, |Nw

l
(A)|, |Nw

u
(A)|} = 2 ≤

n

2
=

5

2
 . We have the following:

Let 𝜀 > 0 , x̂ = x + 𝜀 , ŷ = y −
𝜀

3
 , and ẑ = 1−x̂−ŷ

n
 . Then, Gx̂ŷẑ is also a general rule. Further‑

more, for each i ∈ {1, 2, 4} , Gx̂ŷẑ

i
(A) > G

xyz

i
(A) . Thus, more than half of the voters would 

prefer Gx̂ŷẑ(A) to Gxyz(A) . Hence, Gxyz(A) is not a majority winner.   ◻

Proof of Proposition 2

Let �, �, � ∈ ℝ+ , with � ≤ � ≤ � , and A ∈ P . For each i ∈ N,

If 𝛼i > �̄� , then UC�

i
(A) is an increasing function of � , thus maximized at � = � . This 

implies that, for each i ∈ Nu , UC�(A) is the most preferred outcome.
If 𝛼i < �̄� , then UC�

i
(A) is a decreasing function of � , thus maximized at � = � . This 

implies that, for each i ∈ Nl , UC�(A) is the most preferred outcome.

A =

⎛⎜⎜⎜⎜⎝

0 5 0 0 0

4 0 0 0 0

3 0 0 0 0

0 0 3 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎠
.

i hi wi �i G
xyz

i
(A)

1 5 7 12 2x + 4y + 3

2 4 5 9 x + 2y + 3

3 3 3 6 3

4 3 0 3 − 3y + 3

5 0 0 0 − 3x − 3y + 3

UC�

i
(A) =

||A||
n

+ �
n − 1

n − 2

(
�i − �

)
.
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If 𝛼i = �̄�, then UC�

i
(A) =

||A||
n

 for each � ∈ [�, �] . This implies that, for each i ∈ Ne , all 
rules within the family 

{
UC�

}
�∈[�,�]

 yield the same outcome.
From the above, statements (i) and (ii) follow trivially.
Assume, by contradiction, that statement (iii) does not hold. Then, there exist A ∈ P 

and � ∈ [0, 1] such that UC� is not the majority winner for A. Thus, we can find �� ∈ [�, �] 
such that UC𝜆

�

i
(A) > UC𝜆

i
(A) holds for the majority of the clubs. We then consider two 

cases:
Case 𝜆′ > 𝜆.
In this case, UC𝜆

�

i
(A) > UC𝜆

i
(A) if and only if i ∈ Nl. Now,

which is a contradiction.
Case 𝜆′ < 𝜆.
In this case, UC𝜆

�

i
(A) > UC𝜆

i
(A) if and only if i ∈ Nu. Now,

which is a contradiction.   ◻

Proof of Corollary 1

If 𝛼m < �̄� , then ||Nl
|| ≥ m >

n

2
 . Hence, 2|Nl| > n . By Proposition 2, statement (i) holds.

If 𝛼m > �̄� , then ||Nu
|| ≥ m >

n

2
 . Hence, 2|Nu| > n . By Proposition 2, statement (ii) holds.

If 𝛼m = �̄� , then ||Nl
|| < m, ||Nu

|| < m, and ||Ne
|| > 0 . Hence, we are in case (iii) of the state‑

ment of Proposition 2, which concludes the proof.   ◻

Proof of Corollary 2

If 𝛼 n+2

2

< �̄� , then ||Nl
|| ≥ n+2

2
 . Hence, 2|Nl| > n . By Proposition 2, statement (i) holds.

If 𝛼 n

2

> �̄� , then ||Nu
|| ≥ n+2

2
 . Hence, 2|Nu| > n . By Proposition 2, statement (ii) holds.

Suppose now that 𝛼 n

2

≤ �̄� ≤ 𝛼 n+2

2

. Then, it is enough to prove that we are in case (iii) of 
the statement of Proposition 2.

If �̄� = 𝛼 n

2

 , then ||Nl
|| < n

2
 and ||Nu

|| ≤ n

2
.

If 𝛼 n

2

< �̄� < 𝛼 n+2

2

 , then ||Nl
|| = n

2
 and ||Nu

|| = n

2
.

If �̄� = 𝛼 n+2

2

 , then ||Nl
|| ≤ n

2
 and ||Nu

|| < n

2
.

In either case, the desired conclusion holds.   ◻
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||Nl
|| =|||

{
i ∈ N ∶ UC𝜆�

i
(A) > UC𝜆

i
(A)

}|||
>
|||
{
i ∈ N ∶ UC𝜆

�

i
(A) ≤ UC𝜆

i
(A)

}|||
=|Nu| + ||Ne

||,

||Nu
|| =|||

{
i ∈ N ∶ UC𝜆�

i
(A) > UC𝜆

i
(A)

}|||
>
|||
{
i ∈ N ∶ UC𝜆

�

i
(A) ≤ UC𝜆

i
(A)

}|||
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