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Abstract: Background: Insulin-like growth factor 1 (IGF-1) seems to be involved in the neural circuits associated
with social cognition and brain structure.

Objectives: To investigate the association of IGF-1 levels with social cognition and brain structure in
Huntington’s disease (HD).

Methods: We evaluated social cognition using the Ekman test in 22 HD patients and 19 matched controls. Brain
structure was assessed using standard volume-based voxel-based morphometry and surface-based cortical
thickness pipeline. We analyzed the association of IGF-1 levels with social cognition and brain structure using
adjusted regression analysis.

Results: Social cognition was worse in HD patients (P < 0.001), on antidopaminergic drugs (P = 0.02), and with
lower IGF-1 levels (P = 0.04). In neuroimaging analyses, lower IGF-1 levels were associated with social cognition
impairment and atrophy mainly in frontotemporal regions (P < 0.05 corrected).

Conclusions: In HD, abnormal IGF-1 function seems to be associated with brain atrophy leading to clinical
deficits in social cognition.

Previous literature has proposed a relationship between hypo-
thalamic dysfunction and the limbic system with the devel-
opment of non-motor symptoms (NMS) in Huntington’s
disease (HD).! In this regard, several studies have found
a range of neuroendocrine disturbances in HD, including
higher vasopressin concentration levels and a trend for dis-
turbed regulation of the oxytocin, corticotropic, thyrotropic,
and lactotropic axes.” Among these neuroendocrine distur-
bances, there is a growing interest in the protective role of
insulin-like growth factor 1 (IGF-1) on metabolic and mito-

chondrial function in HD.? Moreover, IGF-I receptors have

been discovered in the amygdala and prefrontal cortex,
which contributes to the neural circuits known as the “social
brain.”®

Based on the data mentioned above, we hypothesized that
IGF-1 dysfunction would be associated with social cognition
impairment and brain structural changes. Therefore, we aimed
to investigate the IGF-I function and its association with social
cognition and brain structure in patients with HD versus con-
trols. A secondary objective was to understand the role of the
global hypothalamic function in social cognition, motor, and

other NMS in HD.
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BRIEF REPORT

SOCIAL COGNITION AND HUNTINGTON’S DISEASE

Methods
Design

This was a multicenter, cross-sectional, observational, case—
control study. The research procedure was conducted using the
RECORD guidelines.”

Sample characteristics
and ethics

This study was approved by the Institutional Review Board of
the Complejo Universitario Burgos and Soria (Spain) (Ceim
1973). Data were collected for ambulatory participants who
signed the informed consent after a full explanation of the
procedure, International ~ Conference on
Harmonization-Good Clinical Practice (ICH-GCP) guidelines,

stored on file, and available on request.® We included a consecu-

following  the

tive sample of symptomatic HD patients with the larger allele
236 CAG repeats within the huntingtin gene, with a Unified
Huntington’s Disease Rating Scale (UHDRS) total motor
(TMS) score >4, and age, gender-matched controls. We
excluded participants with prosopagnosia, defined as Benton
Facial Recognition Test score <40,'" relevant psychiatric illness
with a short Problem Behaviors Assessment for HD (PBA) score
>2." visual or auditory interference, moderate—severe cognitive
impairment (Mini-Mental State Examination score <25),"2 a
pre-existent endocrine disease, central nervous system disorder
disturbances other than HD, history of alcohol or drug abuse,
treatment with corticosteroids, pregnant and breastfeeding
women, delivery within the last 6 months, treatment with con-
traceptives, night shift working and weight change in the preced-
ing 6 months. Controls were recruited principally from the HD
group’s partners, spouses, or caregivers with no clinical evidence
or family history of HD, and the same exclusion criteria was
applied.

Assessments

We collected information on demographics, education,
smoking history, and use of antidopaminergic drugs, antide-
pressants (selective serotonin and serotonin/norepinephrine, tri-
cyclic, bupropion, and trazodone), and benzodiazepines. The
disease burden score, an indicator of the severity of neuropa-
thology of HD, was calculated for each HD gene carrier
using the formula (CAG repeat length — 35.5) X age.'> Motor
symptoms severity was assessed using the UHDRS-TMS,’
with higher scores indicating worse motor impairment. Disease
stage was obtained from the Total Functional Capacity (TFC)
scores, with higher scores indicating lower severity status.'’
Social cognition and theory of mind (TOM) were evaluated
using the Ekman 60 faces test,"> and the Reading the Mind

' with higher scores

in the Eyes test (eyes test), respectively,
indicating better social cognition performance. Other NMS

disturbances were assessed, including apathy and social
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behavior, using the Apathy Evaluation Scale-Clinician (AES),
with higher scores indicating greater apathy.'” In addition, in
HD participants, cognition was assessed using the cognitive
UHDRS composite subscore (UHDRS-Cog), by adding the
total correct scores for symbol digit modality test and Stroop
subscore for word reading, with lower scores indicating worse
performance.'®

Hypothalamic-pituitary function

The following early morning, fasting hormones were assayed:
IGF-1, vasopressin, oxytocin, corticotropic-axis hormones (adre-
nocorticotropic hormone [ACTH], and cortisol), somatotropic-
axis hormones (growth hormone [GH]), gonadotropic axis
hormones (luteinizing hormone [LH]; follicle-stimulating
hormone [FSH]; progesterone; 176 estradiol and testosterone),
thyrotropic axis hormones (thyroid-stimulating hormone [TSH],
and free thyroxine [fT4]), and lactotropic axis hormone (prolac-
tin). Measuring range and hormone assays and general biochem-

istry determinations are described in Supplemental File S1.

Neuroimaging acquisition and
processing

In a subset of 19 participants (9 HD and 10 age and sex-matched
controls) for whom a 3 T magnetic resonance imaging (MRI)
study was available, an additional exploratory analysis was per-
formed to address the possible relationship between the IGF-1
levels and brain structure. Neuroimaging procedures, including
volume-based voxel-based morphometry (VBM), gray matter
volume (GMV), and surface-based cortical thickness (Cth) are
described in Supplemental File S2.

Outcome measures

We included the Ekman 60 faces total score, the eyes test (social
cognition outcome measures), and IGF-1 concentration levels as
the first outcome measures. Secondary outcome measures
included CAG repeats length, TFC, UHDRS-TMS, UHDRS-
Cog, and AES scores, and other hypothalamic hormone concen-
tration levels.

Sample size calculation

Based on previous literature using the Ekman test mean differ-
ences as the first outcome,'” assuming a pooled standard devia-
tion of 20 units and 20% dropout rate, the study would require a
sample size of 20 subjects for each group to achieve a power of
80% and a level of significance of 5% (two-sided), for detecting a
true difference in means between the test and the reference

20

group of 20 units.
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Statistical analysis
Analyses were done using the software IBM-SPSS 28. We con-

ducted group comparisons between HD and control participants,
and all tests were two-tailed with a significance level set at
P < 0.05. We conducted exploratory analyses, and there was no
formal adjustment for multiple testing because all hypotheses
tested are interesting in their own right.”' Post hoc bivariate cor-
relations were performed between hypothalamic—pituitary hor-
mone levels with clinical rating scales in untreated HD subjects.
In addition, we conducted a multivariate linear regression analy-
sis, Ekman 60 faces test as the dependent variable, the IGF-1
levels as the independent variable, and age, gender, group of par-
ticipants (HD vs. controls), and intake of antidopaminergic and
antidepressant drugs as the covariates.

To confirm whether the structural brain correlates of IGF-1
levels in HD, where related to the inherent neurodegeneration
occurring in this population, we performed a group comparison of
VBM-GMV and Cth data between HD and controls. Voxel-wise
VBM-GMV and vertex-wise Cth metrics were introduced into a
general linear model (GLM) to explore the structural brain relation-
ship with IGF-1 levels, with age and CAG repeat length as nuisance
covariates given their impact on brain structure. We considered sig-
nificant clusters surviving P < 0.05 and family-wise error (FWE)

correction for multiple comparisons using random field theory for
VBM and a Monte-Carlo simulation with 10,000 repeats for Cth.
In addition, we analyzed the possible relationship between IGF-1
levels with Ekman test scores, GMV, and Cth in the various brain-

level clusters using a correlation model in the HD group.

Results

We identified 30 HD candidates of those 22 met inclusion and
exclusion criteria: 9 males (41%), 13 females (59%), with a mean
age of 58.09 £ 9.72 years, 19 controls (9 [47%] males and
10 [53%] females), with a mean age of 52.00 £ 9.69 years
(Table 1). Demographics and treatments were not significantly
different between both groups, except for higher frequency of
postmenopausal women (P = 0.02) and higher intake of anti-
dopaminergic and antidepressant drugs in the HD group com-
pared to controls (P = 0.002, P = 0.01, respectively) (Table 1).
Higher concentrations of vasopressin with higher plasma and
urine osmolality, lower 178 estradiol, a trend for higher prolac-
tin, LH, cortisol, GH and IGF-1, and lower oxytocin levels were
found in the HD group compared to controls (Table 1, Supple-
mental tables S1, and S2).

TABLE 1  Clinical characteristics comparison between HD patients and controls

Controls (n) HD patients (n) P value
Males/females (%) 9/10 (19) 9/13 (22) 0.68
Age (yr) 52.00 £ 9.69 (19) 58.09 £ 9.73 (22) 0.052
Postmenopausal women (%) 6 (60) (10) 3 (100) (13) 0.02
Education (>high school) (%) 17 (89.5) (19) 18 (81.8) (22) 0.67
Current smoking (%) 6 (31.58) (19) 6 (27.27) (22) 0.763
Antidopaminergics, yes (%) 0 (19) 9 (40.91) (22) 0.002
Antidepressants, yes (%) 2 (10.53) (19) 10 (45.45) (22) 0.014
Benzodiazepines, yes (%) 1 (5.26) (19) 6 (27.27) (22) 0.09
Ekman total score 52.79 £+ 4.23 (19) 37.68 £ 7.59 (22) <0.0001
Untreated subjects 53.41 +2.47 (17) 40 £ 8.60 (9) NA
Eyes test 35.00 (35.00; 36.00) (19) 34.50 (32.75; 35.00) (22) 0.008
Untreated subjects 35.00 (34.50; 36.00) (17) 34.00 (31.50; 35.00) (9) NA
Apathy evaluation scale 20.00 (18.00; 25.00) (19) 33.50 (28.00; 41.25) (22) 0.0001
Untreated subjects 20.00 (18.00; 24.00) (17) 35.00 (29.50; 36.50) (9) NA
IGF-1 (ng/mL) 90.10 (67.90; 108.00) (17) 96.65 (88.57; 116.25) (9) 0.11
Male 68.00 (60.40; 116.55) (9) 106.00 (74.70; 136.50) (9) NA
Female 94.80 (78.30; 118.75) (10) 96.00 (91.80; 111.00) (13) NA
Untreated subjects 92.20 (67.95; 125.50) (17) 95.90 (81.30; 133.50) (9) NA

Note: Data are expressed in means £ standard deviation or median (interquartile range). Few variables were stratified based on taking antidopaminergic or antidepressants

drugs (untreated subjects).

Abbreviations: HD, Huntington’s disease; NA, not applied; IGF-1, insulin-like growth factor-1.
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VBM-GMV correlates of IGF-1 in HD
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FIG. 1. (A) voxel-based morphometry (VBM)-gray matter volume (GMV) (top) and cortical thickness (bottom) correlates of insulin-like
growth factor 1 (IGF-1) in the Huntington’s disease (HD) group. Lower levels of this hormone were associated with both reduced GMV and
cortical thinning, mainly in frontotemporal regions (P < 0.05 corrected). No regions showed a negative correlation between this hormone
and brain structure; (B) Regions where HD patients showed reduced volume-based VBM and GMV (top) and cortical thickness (bottom)
when compared to controls (P < 0.05 corrected). No regions showed increased gray matter in the HD group compared to controls.

Higher AES scores were found in the HD group compared
to controls (P < 0.001) and in participants on antidepressants
(P = 0.002) and antidopaminergic drugs (P < 0.001) com-
pared to untreated subjects (Table 1). Similar findings were
found with higher IGF-1 levels (Table 1) and lower Ekman
scores in the HD group compared to controls (Figs. S1).
Moreover, in untreated HD subjects, Ekman scores were
highly correlated with IGF-1 levels (r, = 0.81) and moder-
ately with oxytocin levels (r, = 0.45); AES scores were nega-
tively correlated with oxytocin levels (r, = —0.44); and
higher UHDRS-TMS
(r, = —0.78) (Supplemental File S3). In multivariate regres-

scores with lower IGF-1 levels
sion analysis, lower Ekman scores were more likely in HD
patients (f = —12.25, 95% CI = 16.51; —7.98, P < 0.001),
and on antidopaminergic drugs ( = —5.91, 95% CI =
—11.11; —0.11, P = 0.02). In contrast, higher Ekman total
scores were associated with higher IGF-1 levels (B = 0.06,
95% CI = 0.001; 0.12, P = 0.04) (Supplemental Table S3).
According to this model, with 1-unit IGF-1 increase, the
Ekman total scores increased 0.06 (95% CI = 0.003-0.13,
P = 0.04). This model explained 69% of the variability of
the Ekman total scores.

As expected, HD patients showed widespread cortical and
subcortical atrophy with respect to controls, including the set of
regions showing a significant association with IGF-1 levels in the
HD group (Fig. 1A) and reduced VBM and GMV (top) and cor-
tical thickness (bottom) when compared to controls (P < 0.05
corrected) (Fig. 1B). Lower IGF-1 levels correlated with lower
GMV and cortical thinning in the HD group (Supplemental
Tables S4 and S5). No significant neuroimaging correlates were
obtained when testing for a negative correlation between IGF-1
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levels and brain atrophy in the HD group, nor increased
GMV/Cth in the HD group compared to controls.

Discussion

Based on these preliminary findings obtained from a small sample,
otherwise well clinically characterized HD cohort, our study sug-
gests a hormonal-clinical-brain structure framework, where abnor-
mal IGF-1 function is associated with brain atrophy leading to
impaired social cognition in HD. According to our results, IGF-1
seems to be the most robust peptide associated with social cognition
impairment in HD.?* In post hoc analysis, higher IGF-1 and oxyto-
cin levels were positively correlated with better social cognition
function, and lower oxytocin and IGF-1 levels with higher apathy
and motor impairment, respectively. Similarly, other authors have
found an association between lower oxytocin plasmatic and cere-
brospinal fluid levels with impaired social cognition in HD.>>**
The association between IGF-1 and social cognition might be
explained by its hypothetical neuroprotective role. According to
previous literaure, IGF-1 activates the enzyme serine/threonine
kinase Akt, which phosphorylates the mutant huntingtin protein
at serine 421, promoting neuronal survival and reducing tau

22,2526 CE :
HOWCVCI‘, 1t 18 1ntr1gu—

phosphorylation in animal models.
ing why the IGF-1 was associated with social cognition impair-
ment in HD, when in both groups of participants, the IGF-1
concentration levels were within the age/gender normal range,
with a trend for higher concentrations in the HD group. A

hypothetical explanation could be the lack of IGF-1 function,
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and the elevation of IGF-1 level might reflect a resistant state,?’
theoretically secondary to a loss of sensitivity to GH in HD.

Of note, we found a relationship between IGF-1 levels and
the structural integrity in a set of brain regions involved in social
cognition,”® and particularly vulnerable to HD neuropathology.
One possibility to explore in future studies would be that IGF-1
abnormalities present at birth contribute to brain structure during
neurodevelopment in HD.?* A second possibility would be that
IGF-1 abnormalities occur at the receptor level or later in life,
promoting damaging effects and consequently aggravating brain
atrophy in certain areas of GMV.?® A third possibility would be
that peripheral IGF-1 concentration levels might not be corre-
lated with central IGF-1 concentration levels.

We are aware of the main limitations of this study, and it is
not possible to develop any causal model around this relationship
with the present data. The exclusion of HD patients on medica-
tion in some analyses may result in selection bias, excluding more
severely affected HD patients. In addition, we collected samples
at a one-time point in the morning, excluding the possibility of
analyzing the circadian rhythmicity in our sample. In contrast,
we have reported preliminary novel results by integrating the
HD clinical phenotype, endocrine function, and neuroimaging
findings, which deserve more profound analysis.

In conclusion, our results suggest the clinical implication of
IGF-1 in social cognition and brain structure. These data may
serve other authors to generate new hypotheses for understand-
ing the pathophysiology and conduct larger sample size studies to
confirm these preliminary findings.
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