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Abstract
In this paper we introduce RAPOSa, a global optimization solver specifically designed for
(continuous) polynomial programming problems with box-constrained variables. Written
entirely inC++,RAPOSa is based on theReformulation-Linearization (Sherali andTuncbilek
in J Glob Optim 103:225–249, 1992). We present a description of the main characteristics
of RAPOSa along with a thorough analysis of the impact on its performance of various
enhancements discussed in the literature, such as bound tightening and SDP cuts. We also
present a comparative studywith three of themain state-of-the-art global optimization solvers:
BARON, Couenne and SCIP.

Keywords Global optimization · Polynomial programming · Reformulation-Linearization
Technique (RLT )

1 Introduction

In this paper we introduce RAPOSa (ReformulationAlgorithm for PolynomialOptimization
—Santiago), a new global optimization solver specifically designed for polynomial program-
mingproblemswith box-constrainedvariables. It is basedon theReformulation-Linearization
Technique [33], hereafter RLT, and has been implemented in C++. Although it is not
open source, RAPOSa is freely distributed and available for Linux, Windows and MacOS.
It can also be run from AMPL [18] and from NEOS Server [12]. The RLT-based
scheme in RAPOSa solves polynomial programming problems by successive lineariza-
tions embedded into a branch-and-bound scheme. At each iteration, a linear solver must
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be called, and RAPOSa has been integrated with a wide variety of linear optimization
solvers, both open source and commercial, including those available via Google OR-
Tools [28]. Further, auxiliary calls to nonlinear solvers are also performed along the
branch-and-bound tree to improve the performance of the algorithm, and again both
open source and commercial solvers are supported as long as they can be called from
.nl files [19, 20]. More information about RAPOSa can be found at https://raposa.usc.
es.

In conjunction with the introduction of RAPOSa, the other major contribution of this
paper is to study the impact of different enhancements on the performance of the RLT. We
discuss not only the individual impact of a series of enhancements, but also the impact of
combining them. To this end, Sects. 4 and 5 contain computational analyses on the use of
J -sets [13], warm starting of the linear relaxations, changes in the branching criterion, the
introduction of bound tightening techniques [5, 6, 29] and the addition of SDP cuts [31],
among others. Interestingly, RAPOSa incorporates a fine-grained distributed parallelization
of the branch-and-bound core algorithm, which delivers promising speedups as the number
of available cores increases.

The most competitive configurations of RAPOSa according to the preceding exten-
sive analysis are then compared to three popular state-of-the-art global optimization
solvers: BARON [30], Couenne [6] and SCIP [8]. The computational analysis is per-
formed on two different test sets. The first one, DS-TS, is a set of randomly generated
polynomial programming problems of different degree introduced in Dalkiran and Sher-
ali [14] when studying their own RLT implementation: RLT-POS.1 The second test
set, MINLPLib-TS, contains the polynomial programming problems with box-constrained
and continuous variables available in MINLPLib [9]. The main results can be sum-
marized as follows: (i) In DS-TS, all configurations of RAPOSa clearly outperform
BARON, Couenne and SCIP, with the latter performing significantly worse than all the
other solvers and (ii) In MINLPLib-TS, differences in performance are smaller across
solvers, with SCIP exhibiting a slightly superior performance. Importantly, the enhanced
versions of RAPOSa are clearly superior in this test set to the baseline configura-
tion.

The outline of the paper is as follows. In Sect. 2 we present a brief overview of the
classic RLT scheme and different enhancements that have been introduced in recent years.
In Sect. 3 we discuss some specifics of the implementation of RAPOSa and of the testing
environment. In Sect. 4 we present some preliminary computational results, in order to define
a configuration of RAPOSa that can be used as the baseline to assess the impact of the main
enhancements, discussed in Sect. 5. In Sect. 6 we present the comparative study with BARON,
Couenne and SCIP. Finally, we conclude in Sect. 7.

2 RLT: state of the art andmain contributions

2.1 Brief overview of the technique

The Reformulation-Linearization Technique was originally developed in Sherali and Tunc-
bilek [33]. It was designed to find global optima in polynomial optimization problems of the

1 Unfortunately, we could not include RLT-POS in our comparative study, since this implementation is not
publicly available.
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following form:

minimize φ0(x)

subject to φr (x) ≥ βr , r = 1, . . . , R1

φr (x) = βr , r = R1 + 1, . . . , R
x ∈ � ⊂ R

n .

(1)

where N = {1, . . . , n} denotes the set of variables, each φr (x) is a polynomial of degree δr ∈
N, � = {x ∈ R

n : 0 ≤ l j ≤ x j ≤ u j < ∞, ∀ j ∈ N } ⊂ R
n is a hyperrectangle containing

the feasible region, and the degree of the problem is defined as δ = maxr∈{0,...,R} δr .
A multiset is a pair (S, p), in which S is a set and p : S → N is a map that indicates the

multiplicity of each element of S. We slightly abuse notation and use (N , δ) to denote the
multiset of variables (N , p) in which p(i) = δ for each i ∈ N . For each multiset (N , p), its
cardinality is defined by |(N , p)| = ∑

i∈N p(i).
The RLT algorithm involves two main ingredients. First, the bound-factor constraints,

given, for each pair of multisets J1 and J2 such that J1 ∪ J2 ⊂ (N , δ) and |J1 ∪ J2| = δ, by

Fδ(J1, J2) =
∏

j∈J1

(x j − l j )
∏

j∈J2

(u j − x j ) ≥ 0. (2)

Note that any point in� satisfies all the bound-factor constraints. Second, the RLT variables,
given, for each multiset J ⊂ (N , δ) such that 2 ≤ |J | ≤ δ, by

X J =
∏

j∈J

x j . (3)

Each multiset J can be identified with a monomial. For instance, the multiset J =
{1, 1, 2, 3, 4, 4} refers to the monomial x21 x2x3x

2
4 . Therefore, to each monomial J one can

associate different bound factors of the form J = J1 ∪ J2, depending on which variables
are used for the lower-bound factors and which ones for the upper-bound factors. Further,
monomial J = {1, 1, 2, 3, 4, 4} also defines the RLT variable X112344.

The first step of the RLT algorithm is to build a linear relaxation of the polynomial
problem (1). To do this, the polynomials of the original problem are linearized by replacing
all the monomials with degree greater than 1 by their corresponding RLT variable (3). This
linearization is denoted by [·]L . Furthermore, the linearized bound-factor constraints in (2)
are added to get tighter linear relaxations:

minimize [φ0(x)]L
subject to [φr (x)]L ≥ βr , r = 1, . . . , R1

[φr (x)]L = βr , r = R1 + 1, . . . , R
[Fδ(J1, J2)]L ≥ 0, J1 ∪ J2 ⊂ (N , δ), |J1 ∪ J2| = δ

x ∈ � ⊂ R
n .

(4)

Note that if constraints in (3) are added to the linear relaxation (4), the resulting problem is
equivalent to problem (1). The next step of the RLT algorithm is to solve the linear relaxation
in (4) to obtain a lower bound of the original polynomial problem. Next, a branch-and-bound
scheme is used to find the global optimum of the polynomial problem. Since a solution of
the linear relaxation that satisfies constraints in (3) is feasible to problem (1), the branching
rule is usually based on violations of these constraints, which are referred to as RLT-defining
identities. The convergence of this scheme to a global optimum is proven in Sherali and
Tuncbilek [33].
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Along the branch-and-bound tree, the RLT algorithm obtains, and gradually increases,
lower bounds for the optimal solution of the minimization problem by solving the linear
relaxations. It obtains upper bounds when the solution of a linear relaxation is feasible in the
original problem. The absolute and relative differences between the lower and upper bounds
lead to the so called absolute and relative optimality gaps. The goal of the algorithm is to close
these gaps to find the global optimum of the polynomial problem. Thus, stopping criteria
often revolve around thresholds on the optimality gaps.

2.2 Enhancements of the original RLT algorithm

In this section we briefly discuss six enhancements of the basic RLT algorithm. All of them
are part of the current implementation of RAPOSa and its impact on the performance of the
algorithm is thoroughly analyzed in Sects. 4 and 5.

2.2.1 J -sets

This enhancement was introduced in Dalkiran and Sherali [13], where the authors prove that
it is not necessary to consider all the bound-factor constraints in the linear relaxation (4).
Specifically, they prove two main results. The first one is that convergence to a global opti-
mum is ensured even if only the bound-factor constraints associated with the monomials
that appear in the original problem are included in the linear relaxation. The second result is
that convergence to a global optimum is also ensured without adding the bound-factor con-
straints associated with monomials J ⊂ J ′, provided the bound-factor constraints associated
with J ′ are already incorporated. Equipped with these two results, the authors identify a
collection of monomials, which they call J -sets, such that convergence to a global optimum
is still guaranteed if only the bound-factor constraints associated with these monomials are
considered.

The use of J -sets notably reduces the number of bound-factor constraints in the linear
relaxation (4) (although it still grows exponentially fast as the size of the problem increases).
The main benefit of this reduction is that it leads to smaller LP relaxations and, hence, the
RLT algorithm requires less time in each iteration. The drawback is that the linear relaxations
become less tight because they have less constraints and more iterations may be required
for convergence. Nevertheless, practice has shown that the approach with J -sets is clearly
superior. We corroborate this fact in the numerical analysis Sect. 4.1.

2.2.2 Use of an auxiliary local NLP solver

Most branch-and-bound algorithms for global optimization rely on auxiliary local solvers and
the RLT scheme can also profit from them, as already discussed in Dalkiran and Sherali [14].
They proposed to call the nonlinear local solver at certain nodes of the branch-and-bound
tree. In each call, the nonlinear local solver is provided with an initial solution, which is the
one associated to the lower bound of the RLT algorithm at that moment.

This strategy helps to decrease the upper boundmore rapidly and, hence, allows to close the
optimality gap more quickly. The only drawback is the time used in the call to the nonlinear
solver. Practice has shown that, in general, it is beneficial to call it only at certain nodes
instead of doing so at each and every node.
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2.2.3 Products of constraint factors and bound factors

This enhancementwas alreadymentioned inSherali andTuncbilek [33]whenfirst introducing
theRLT technique for polynomial programmingproblems. It consists of defining tighter linear
programming relaxations by strengthening constraint factors of the form φr (x) − βr ≥ 0
of degree less than δ. More precisely, one should take products of these constraint factors
and/or products of bound factors in such a way that the resulting degree is no more than δ.
Similar strengthenings can also be associated to equality constraints φr (x) = βr of degree
less than δ, by multiplying them by variables of the original problem.

Note that, although the new constraints are tighter than the original ones in the nonlinear
problem, this is not necessarily so in the linear relaxations. Thus, we also preserve the original
constraints to ensure that the resulting relaxations are indeed tighter and, therefore, the lower
bound may increase more rapidly. Since the addition of many of these stronger constraints
may complicate the solution of the linear relaxations, one should carefully balance these two
opposing effects.

2.2.4 Branching criterion

The design of a branch-and-bound algorithm requires to properly define different components
of the algorithm. The most widely studied ones are the search strategy in the resulting tree,
pruning rules and branching criterion; refer, for instance, toAchterberg et al. [1] andMorrison
et al. [26]. In Sect. 5.4 we focus on the latter of these components. More precisely, we study
the impact of the criterion for the selection of the branching variable on the performance of
the RLT technique.

2.2.5 Bound tightening

Bound tightening techniques are at the core of most global optimization algorithms for non-
linear problems [5, 6, 29]. These techniques allow to reduce the search space of the algorithm
by adjusting the bounds of the variables of the problem. Two main approaches have been dis-
cussed in the literature: (i) Optimality-based bound tightening, OBBT, in which bounds are
tightened by solving a series of relaxations ofminor variations of the original problem and (ii)
Feasibility-based bound tightening, FBBT, in which tighter bounds are deduced directly by
exploring the problem constraints. Since OBBT is computationally demanding while FBBT
is not, combined schemes are often used, under which OBBT is only performed at the root
node and FBBT is performed at every node of the branch-and-bound tree.

These techniques lead to tighter relaxations and, therefore, they do not only reduce the
search space, but they also help to increase the lower bound of the optimization algorithm
more rapidly. Moreover, since the resulting linear relaxations are not harder to solve than
the original ones, bound tightening techniques are often very effective at improving the
performance of global optimization algorithms.

2.2.6 SDP cuts

This enhancement is introduced in Sherali et al. [31] and consists of adding specific con-
straints, called positive semidefinite cuts, SDP cuts, to the linear relaxations generated along
the branch-and-bound tree. These constraints are built as follows. First, a matrix of the form
M = [ y yT ] is defined, where y can be any vector defined using variables and products
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of variables of the original problem. It holds that matrix M is positive semidefinite in any
feasible solution. Therefore, given a solution of the current linear relaxation, we can evaluate
M at this solution, obtaining matrix M̄. If this matrix is not positive semidefinite, then we
can identify a valid linear cut to be added to the linear relaxation. More precisely, if there is a
vector α such that αT M̄α < 0, then constraint αT Mα ≥ 0 is added to the linear relaxation.

In Sherali et al. [31] this process is thoroughly explained and several strategies are dis-
cussed, such as different approaches to take vector y, different methods to find α and the
number of cuts to add in each iteration.

3 Implementation and testing environment

3.1 Implementation

Each execution of RAPOSa leans on two solvers: one for solving the linear problems gen-
erated in the branch-and-bound process and one to compute upper bounds as mentioned in
Sect. 2.2.2. The default (free) configuration of RAPOSa runs with Glop [2] and Ipopt
[35], although the best results are obtained using commercial solver Gurobi [23] instead
of Glop. Currently, RAPOSa supports the following solvers:

• Linear solvers: Gurobi [23], Glop [2], Clp [17] and lp_solve [7].2

• Nonlinear local solvers: Ipopt [35], Knitro [11], MINOS [27] and CONOPT
[16].

RAPOSa has been implemented in C++, and it is important to clarify that it connects
differently to the two types of solvers. Since solving the linear problems is the most critical
part of the performance, it connects with the linear solvers through their respective C++
libraries. In the case of the nonlinear local solvers, the number of calls is significantly smaller,
and RAPOSa sends them an intermediate .nl file with the original problem and a starting
point.

Importantly, the user does not need to explicitly generate .nl files to execute RAPOSa,
since it can also be run from an AMPL interface [18].3 Moreover, RAPOSa can also be
executed on NEOS Server [12].

3.2 The testing environment

All the executions reported in this paper have been performed on the supercomputer Fin-
isterrae II, provided by Galicia Supercomputing Centre (CESGA). Specifically, we used
computational nodes powered with 2 deca-core Intel Haswell 2680v3 CPUs with 128GB of
RAM connected through an Infiniband FDR network, and 1TB of hard drive.

Regarding the test sets, we use two different sets of problems. The first one is taken from
Dalkiran and Sherali [14] and consists of 180 instances of randomly generated polynomial
programming problems of different degrees, number of variables and density.4 The second
test set comes from the well known benchmark MINLPLib [9], a library of Mixed-Integer

2 The connection with Glop and Clp was implemented using Google OR-Tools [28].
3 The web site https://raposa.usc.es contains a short tutorial that explains how to interact with RAPOSa either
directly with .nl files or through AMPL.
4 By density we mean the proportion of monomials in the problem to the total number of possible monomials
(given the degree of the problem).
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Nonlinear Programming problems.We have selected fromMINLPLib those instances that are
polynomial programming problemswith box-constrained and continuous variables, resulting
in a total of 168 instances. Hereafter we refer to the first test set as DS-TS and to the second
one as MINLPLib-TS.5

All solvers have been run taking as stopping criterion that the relative or absolute gap is
below the threshold 0.001. The time limit was set to 10 min in comparisons between different
configurations of RAPOSa and to 1 h in the comparison between RAPOSa and other solvers.

4 Preliminary results and RAPOSa’s baseline configuration

The main goal of this section is to add to RAPOSa’s RLT basic implementation a minimal set
of enhancements that make it robust enough to define a baseline version on which to assess,
in Sect. 5, the impact of the rest of the enhancements. First, in Sect. 4.1 we show that the
inclusion of both the J-sets enhancement and the auxiliary nonlinear solver are crucial in order
to be able to get a competitive solver when tackling the problems in DS-TS and MINLPLib-
TS. Then, in Sect. 4.2 we present a comparison of the performance of different LP solvers
and thereafter all new enhancements are validated and tested on the best performing one.
Last, but not least, in Sect. 4.3 we present the results of a parallel version of RAPOSa’s RLT
implementation, to illustrate the potential of improvement of this type of branch-and-bound
algorithms when run on multi-core processors. Yet, in order to provide fair comparisons in
the rest of the paper, particularly in Sect. 6, these parallelization capabilities won’t be used
beyond Sect. 4.3.

Before starting to go over the numerical results, we briefly explain the tables and figures
used to discuss them. The main reporting tool will be a series of summary tables. Each of
these tables contains two blocks of five rows, one for each test set, and as many columns as
configurations of RAPOSa or solvers are being compared. The information of these rows is
as follows:

Solved Number of solved instances. In brackets we show number of instances solved by
at least one configuration and the total number of instances in the corresponding
test set.

Gap = ∞ Number of instances in which the algorithm terminated with an infinite optimal-
ity gap. In brackets we show number of instances with an infinite gap for all
configurations and, again, the total number of instances in the corresponding test
set.

Time Geometric mean time,6 but disregarding those instances solved by all configura-
tions in less than 5 s and also those not solved by any configuration within the
time limit. In brackets we show the remaining number of instances.

Gap Geometric mean gap, but with the following considerations: (i) instances solved
by all configurations under study are discarded, (ii) instances for which no con-
figuration could return a gap after the time limit are also discarded and (iii) when
a configuration is not able to return a lower or upper bound after the time limit,
we assign to it a relative optimality gap of 105. In brackets we show the remaining
number of instances.

5 Instances from DS-TS can be downloaded at https://raposa.usc.es/files/DS-TS.zip and instances from
MINLPLib-TS can be downloaded at https://raposa.usc.es/files/MINLPLib-TS.zip.
6 The use of geometric means is becoming the standard in benchmarking, since they are less sensitive to
outliers than the standard mean.
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Table 1 Impact of J -Sets and auxiliary nonlinear solver

Nodes Geometric mean of the number of nodes generated by the RLT algorithm in
instances solved by all configurations. In brackets we show the number of such
instances.

Moreover, for each table discussed in the text there are two associated performance profiles
[15] for each test set although, for the sake of brevity, most of them have been relegated to
“Appendix A”. The first performance profile is for the running times and the second one
for the relative optimality gaps. They contain, respectively, the instances involved in the
computations of the geometric mean times and the geometric mean gaps as described above.
In the x-axis we represent ratios of running times or relative optimality gaps, while in the
y-axis we represent the percentage of instances in which the corresponding configuration has
a ratio lower than the value on the x-axis. For each instance, the ratios are computed dividing
running times or relative optimality gaps of each configuration by the best configuration in
that instance.7

4.1 J -sets and nonlinear solver

We start by jointly evaluating the impact of the introduction of J -sets, discussed in Sect. 2.2.1,
and the use of an auxiliary local NLP solver (NLS). Regarding the latter, Ipopt is run at
the root node and whenever the total number of solved nodes in the branch-and-bound tree
is a power of two. We tried other strategies, but we did not observe a significant impact on
the resulting performance. In Table 1 we present the results of four different configurations:
(i) RAPOSa’s RLT basic implementation (No J -sets, No NLS), (ii) the inclusion of the
auxiliary nonlinear solver (No J -sets), (iii) the inclusion of J -sets (No NLS) and (iv) the
inclusion of both the auxiliary nonlinear solver and J -sets (With J -sets and NLS).

The results in Table 1 show that J -sets have a huge impact on the performance of the RLT
technique in both tests sets. It does not matter whether we assess their impact with respect to
RAPOSa’s RLT basic implementation or with respect to the version that already incorporates
the nonlinear solver: there are dramatic gains in all dimensions. What is a bit surprising is
that the configurations with J -sets do even increase the average number of nodes explored
in problems solved by all configurations. Since the version without J -sets leads to tighter

7 It is worth noting that the reliability of performance profiles is sometimes limited when comparing more
than two configurations/solvers [22]. Yet, we think that, when complemented with the numeric results in the
tables, they help to obtain a clearer image of the numerical analysis developed in this paper.
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relaxations, one would expect to observe a faster increase in the lower bounds and a reduction
of the total number of explored nodes (at the cost of higher solve time at each node). A careful
look at the individual instances reveals that the number of explored nodes turns to be quite
close for most instances. Yet, there are a few “outliers” that required many more nodes to
be solved for the version without J -sets, producing a large impact on the average and also
in the geometric average. It might be worth studying further whether these outliers appeared
in the configuration without J -sets by coincidence or if there is some structural reason that
leads to this effect.

It is worth noting that for MINLPLib-TS the number of instances reported is 124 out of
the 168 instances of this test set. This is because, for the remaining 44 instances, the version
without J -sets did not even manage to solve the root node within the time limit. Not only
it did not manage to return any bounds, but it ran out of time when generating the linear
relaxation at the root node and we removed these instances from the analysis.

We move now to the impact of the inclusion of a local solver. Again, Table 1 shows that
there is a huge impact on the performance of the RLT technique in both test sets. Performance
improves again in all dimensions, and specially so at closing the gap, since the number of
instances for which some bound is missing goes down, with respect to RAPOSa’s RLT basic
implementation, from 144 to 0 in DS-TS and from 55 to 4 in MINLPLib-TS. Similarly,
with respect to the version that already uses J -sets, the number goes down from 74 to 0 in
DS-TS and from 38 to 2 in MINLPLib-TS. We have run similar computational tests with
different local NLP solvers and the results are quite robust. Therefore, the specific choice of
local solver does not seem to have a significant impact on the final performance of the RLT
technique.

4.2 Different LP solvers

The results of Table 1 in the preceding section where obtained using the commercial solver
Gurobi [23] for the linear relaxations. We now check to what extent the chosen LP solver
can make a difference in the performance of the RLT technique. To this end, we rerun the
executions of the version of RAPOSa with J -sets and the auxiliary nonlinear solver but
with two open source linear solvers: Clp [17] and Glop [2]. The results in Table 2 show
that Gurobi’s performance is superior to both Clp and Glop. On the other hand, the two
open source solvers are close to one another. These is confirmed by the performance profiles
in Fig. 6 in “Appendix A”. Thus, for the remainder of this paper, all the configurations of
RAPOSa are run using Gurobi as the solver for the linear relaxations.

Table 2 Impact of different linear
solvers
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4.3 Parallelized RLT

We now move to an enhancement of a completely different nature. RAPOSa, as well as all
solvers based on branch-and-bound algorithms, benefits from parallelization on multi-core
processors. The way of exploring the tree in this type of methods makes solving each node an
independent operation, suitable to be distributed through processors in the same or different
computational nodes. Hence, RAPOSa has been parallelized, adapting the classic master-
slave paradigm: a master processor guides the search in the tree, containing a queue with
pending-to-solve nodes (leaves), which will be sent to a set of worker processors. In this
section, we present the computational results of our parallel version of RAPOSa, showing
the obtained speedup as a function of the number of cores.

More precisely, for each instance RAPOSawas initially run in sequential mode (using one
core) and a time limit of 10 min. Next, the parallel version was tested varying the numbers of
cores and prompted to stop when each execution reached the same degree of convergence as
in the non-parallel version. Thus, the analysis focuses on the improvement on the time that
the parallel version needs to reach the same result as the sequential one.

Figure 1 shows the evolution of the speedup with the number of cores for DS-TS.8 In the
x-axis we represent the number of cores (master+slaves) used by RAPOSa, while the y-axis
shows the box plot of the speedup on the 180 DS-TS instances. The red line describes the
ideal speedup: the number of workers. As can be seen, the scalability of the speedup obtained
by the parallel version of RAPOSa is generally good, close to the ideal one when the number
of cores is small (3 and 5) or with a reasonable performance with a larger number of cores
(9 and 17). Furthermore, the speedup does not seem to depend on the linear solver (Gurobi
or Glop) used by RAPOSa.

5 Computational analysis of different enhancements

In this section we present a series of additional enhancements of the basic implementation
of the RLT technique and try to assess not only the individual impact of each of them, but
also the aggregate impact when different enhancements are combined. In order to do so, we
build upon a baseline version of RAPOSa that is used as the reference for the analysis, with
the different enhancements being added to this baseline. Given the results in the preceding
section, this configuration is set to use J -sets, Ipopt as the auxiliary local NLP solver,9 and
Gurobi as the linear one. No parallelization is used.

5.1 Warm generation of J -sets

We start with an enhancement that is essentially about efficient coding, not really about the
underlying optimization algorithm. Along the branch and bound tree, the only difference
between a problem and its father problem is the upper or lower bound of a variable and the
bound factors in which this variable appears. Because of this, it is reasonable to update only
those bound-factor constraints that have changed instead of regenerating all the bound-factor
constraints of the child node.

8 We do not include the results for MINLPLib-TS because the majority of the instances are either very easy
or very difficult, so the performance of the parallel version is harder to assess.
9 As we have alreadymentioned, we have seen in our numerical experiments that the performance of RAPOSa
is not very sensitive to the chosen local NLP solver.
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C es

Fig. 1 Speedup of the parallel version of RAPOSa in DS-TS

Table 3 Warm generation of J -sets and warm start on LP Solver

It is important to highlight that there are two running times involved in the process. One
is the running time used to generate the bound-factor constraints, which is higher in the case
that RAPOSa regenerates all the bound-factor constraints. The other running time is the one
used to identify the bound-factor constraints that change between the parent and the child
node. This time is non-existent in the case that RAPOSa regenerates all the bound-factor
constraints. As one could expect, the 0.00% percentage of improvement in the last row of
Table 3a reflects the fact that the warm generation of J -sets has no impact on the resulting
tree.

We can see in Table 3a that the warm generation of J -sets notably improves the perfor-
mance of RAPOSa, which is also convincingly illustrated by the performance profiles in
Fig. 7 in “Appendix A”.

5.2 Warm start on LP solver

As mentioned before, only a small number of bound factors are different between the child
node and its father node. Because of this, it could be beneficial to feed the linear solver with
information regarding the solution of the father problem (optimal solution and optimal basis).
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Table 3b shows the impact of warm start with respect to the baseline configuration.10

Differently from the preceding enhancements, the results are somewhat divided now. Warm
start reduces the running time in solved instances but, at the same time, the gap in the unsolved
ones seems to deteriorate. This suggests that warm start may perform better in relatively easy
instances, but not so well in instances that were not solved within the time limit.

5.3 Products of constraint factors and bound factors

In this section we explore the impact of strengthening the constraints of the original problem
with degree less than δ by multiplying them by appropriately chosen bound factors or vari-
ables. Special care must be taken when choosing these products. The baseline includes the
J -sets’ enhancement and, hence, we do not want to include products that might increase the
number of RLT variables in the resulting relaxations, since this might lead to a large increase
in the number of bound factor constraints.

In order to avoid the above problem, our implementation of this enhancement proceeds
as follows. Given a constraint of degree less than δ, we first identify what combinations
of bound factors might be used to multiply the original constraint so that (i) no new RLT
variables are needed and (ii) the resulting degree is at most δ. We then restrict attention to
the combinations that involve more bound factors and distinguish between two strategies:

More in common Each inequality constraint is multiplied by bound factor constraints that
involve as many variables already present in the constraint as possible.
Similarly, equality constraints aremultiplied by asmany variables present
in the constraint as possible.

Less in common Each inequality constraint is multiplied by bound factor constraints that
involve as many variables not present in the constraint as possible. Simi-
larly, equality constraints are multiplied by as many variables not present
in the constraint as possible.

In both approaches priority is given to variables with a higher density in the original prob-
lem (present in more monomials), which showed to be a good strategy in some preliminary
experiments. Importantly, we create as many new constraints as constraints we had in the
original problem. Alternatively, it would be worth studying more aggressive strategies under
which multiple different combinations of bound factors or variables are considered for each
constraint.

Table 4 shows that the “More in common” approach performs slightly better in DS-TS
and slightly worse in MINLPLib-TS. Interestingly, the “Less in common” approach seems
to lead to slight improvements in both test sets, so it may be worth to study its impact when
combined with other enhancements.

5.4 Branching criterion

In the baseline configuration, we follow the approach in Sherali and Tuncbilek [33] and
choose the branching variable involved in a maximal violation of RLT-defining identities.
More precisely, given a solution (X̄ , x̄) of the linear relaxation, we branch on a variable
i ∈ argmax j∈N θ j , where θ j is defined as:

θ j = max
J⊂(N ,δ) : |J |<δ

{∣∣X̄ J∪{ j} − x̄ j X̄ J
∣
∣}. (5)

10 Currently, RAPOSa only supports warm start when run with Gurobi as linear solver.
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Table 4 Products of constraint factors and bound factors

In a more recent paper, Dalkiran and Sherali [13] apply a slightly more sophisticated
criterion for variable selection, in which the maximum in the above equation is replaced
by a sum and also the violations associated to each variable are weighted by the minimum
distance of the current value of the variable to its lower and upper bound. Here we follow a
similar approach and study different criteria, where θ j is of the form:

θ j =
∑

J⊂(N ,δ) : |J |<δ

w( j, J )
∣
∣X̄ J∪{ j} − x̄ j X̄ J

∣
∣, (6)

where the sums might be replaced by maximums as in the original approach and w( j, J )

represent weights that may depend on the variable and monomial at hand. We have studied a
wide variety of selections for these weights and the ones that have delivered the best results
are the following ones:

Constant weights w( j, J ) = 1 for all j and J . This corresponds with the baseline configu-
ration when maximums are taken in Eq. (6), thus recovering Eq. (5).
Otherwise, if sums are considered we get criterion named “Sum” in
Table 5.

Coefficients w( j, J ) corresponds with the sum of the absolute values of the coeffi-
cients of monomial J ∪ { j} in the problem constraints.

Dual values w( j, J ) corresponds with the sum of the absolute values of the dual
values associated with the constraints of the problem containing J ∪{ j}.

Variable range Defining the range of a variable as the difference between its upper and
lower bounds, w( j, J ) is taken as the quotient between the range of the
variable at the current node and its range at the root node. Thus, variables
whose range has been reduced less are given a higher priority.

Variable density w( j, J ) is taken to be proportional to the total number of monomials in
which variable j appears in the problem, so that more “active” variables
are given a higher priority.

Table 5 contains the results for the different criteria we have just described. Except for
the baseline, which uses the maximum as in Eq. (5), all other criteria use sums as in Eq. (6);
the reason being that criteria based on sums have shown to be remarkably superior to their
“maximum” counterparts. In particular, we can see in the first two columns of the table that,
just by replacing themaximumwith the sum in the original branching criterion, the geometric
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Table 5 Branching criterion

means of the computing time and gap get divided by two in MINLPLib-TS. In general, all
criteria based on sums perform notably better than the original one. Arguably “Sum” and
“Var. range” are the two most competitive ones and, by looking at the performance profiles
in Fig. 10 in “Appendix A”, it seems that “Var. range” is slightly superior, which goes along
the lines of the approach taken in Sherali et al. [31].11

5.5 Bound tightening

Westudy the effect of different bound tightening strategies.More precisely, Table 6 represents
the following approaches, along with some natural combinations of them:

OBBT root node OBBT is run on the linear relaxation at the root node. OBBT is quite time
consuming, so we limit its available time so that it does not use more
than 20% of the total time available to RAPOSa. Since this sometimes
implies that bound tightening is not applied to all variables, we priori-
tize tightening the upper bounds and also prioritize variables with larger
ranges.

Linear FBBT FBBT is run at all nodes on the linearized constraints of the original
problem.12

Nonlinear FBBT FBBT is run at all nodes on the original nonlinear constraints.

The results in Table 6 show a mild improvement on DS-TS and a very large impact on
MINLPLib-TS. The fact that bound tightening has a relatively small impact on DS-TS was
expected, since the generation procedure for the random instances in this test set already leads
to relatively tight bounds. We can see that the nonlinear FBBT is superior to both the linear
FBBT and the OBBT. Overall, the best configuration is the one combining OBBT at the root
node with nonlinear FBBT at all nodes, which is a standard approach in well established
global solvers. We also run some tests combining OBBT with the execution of both FBBT
schemes at all nodes but, while this lead to a reduction on the number of explored nodes,
this reduction did not compensate for the additional computational overhead of running two

11 In Sherali et al. [31] their weights were of the form w( j, J ) = min{ū j − x̄ j , x̄ j − l j }, which we tried
as well, but they were outperformed by the ones shown in Table 5. Further, Sherali et al. [31] also included
addends of the form

∣
∣ ∏

k∈J∪{ j} x̄k − x̄ j X̄ J
∣
∣. In our experiments we observed no benefit from the inclusion

of these terms.
12 Our C++ FBBT implementation builds upon the following Python implementation https://github.com/
Pyomo/pyomo/tree/main/pyomo/contrib/fbbt, which is part of Pyomo’s environment [10]. We also run some
computational experiments using the bound tightening procedures included in Couenne [6], but the results
were slightly worse.
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Table 6 Bound tightening

FBBT schemes at every node. Additionally, we also checked if it could be beneficial to run
FBBT approaches only at prespecified depths of the branch and bound tree, such as running it
at nodes whose depth is amultiple of 10, but we observed a detrimental effect on performance
with these approaches.

5.6 SDP cuts

The last enhancementwe study is the introduction of SDPcuts to tighten the linear relaxations.
As discussed in Sect. 2.2.6, the main choice of this approach is the vector y that is then used
to define matrix M = [ y yT ]. Importantly, the resulting cuts will involve products of the
different components of y and, since we are using J -sets, we should carefully define vector
y so that the resulting cuts do not lead to the inclusion of new RLT variables (which in turn
would require to include additional bound factor constraints) and increase the solving time
of the linear relaxations.

To minimize the impact of the above issue we proceed as follows. Recall that J -sets
correspond with maximal monomials with respect to set inclusion. Then, given a maximal
monomial J , we define a vector yJ composed of the variables included inmonomial J . Using
these yJ vectors ensures that the set of maximal monomials will not increase significantly
after introducing SDP cuts.13 We are now ready to fully describe the different approaches
we have studied regarding SDP cuts, which are partially inspired in the comprehensive
study developed in Sherali et al. [31], to which the interested reader is referred for a deeper
discussion and motivation.

First, for each yJ vector we consider three possibilities to define matrix M : (i) Taking
yJ itself, (ii) expanding it to vector (1, yJ ) and (iii) expanding it to a vector of the form
(1, yJ , . . .) in which, if possible, products of the variables in J are added while keeping
under control the new RLT variables required by these additional products and without
getting any element in M with a degree larger than δ.

For each of the above three possible definitions of the y vector, we proceed as follows:
(i) By default, SDP cuts are applied in all nodes and they are inherited “forever”, (ii) in
order to save computational time in the computation of the α vectors, the corresponding M

13 If a maximal monomial corresponds with RLT variable X123, when defining matrix M from vector
(x1, x2, x3) we get X11, X22 and X33 from the relaxed diagonal elements of M . If these RLT variables
were not present in the original problem, they will be added in our SDP-cuts approach. Yet, in our analysis
we observed no significant impact from adding these very specific monomials (when required).
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Table 7 SDP cuts

matrix is divided in 10 × 10 overlapping submatrices (each matrix shares its first 5 rows
with the preceding one), (iii) for each eigenvector with a negative eigenvalue, we add the
corresponding cut and (iv) the procedure is repeated for each maximal monomial.

Table 7 shows the results of approaches yJ , (1, yJ ) and (1, yJ , . . .). All of them seem to
improve the performance of the algorithm, except for the running times inDS-TS,with (1, yJ )
being the best of the three. On the other hand, vectors (1, yJ ) and (1, yJ , . . .) perform very
similarly in MINLPLib-TS, the reason being that most problems in this test set are quadratic
and these two vectors, by construction, coincide for quadratic (and for cubic) problems.

Given the above results, we carried out some additional experimets with vector (1, yJ ).
For instance, the last two columns in Table 7 represent the results when considering that cuts
are only inherited to child nodes (Inh-1) and that they are also inherited to grandchildren
(Inh-2). The performance of the latter is comparable with the one with full inheritance, but
no significant gain is observed. Additionally, we also studied the impact of running cycles
of the form “solve → add cuts → solve → add cuts…” at each node before continuing
with the branching, but in our experiments they had a detrimental effect. Similarly, we also
tested configurations in which cuts were added only in nodes at prespecified depths of the
branch and bound tree, such as nodes whose depth is a multiple of 10, but performance also
worsened.

5.7 Combining different enhancements: RAPOSa’s best configuration

In this section we study the impact of combining all the enhancements discussed so far in a
new version of RAPOSa. Further, in order to get a more clear impact on the individual impact
of each enhancement, we also study the performance of this new version of RAPOSa when
the different enhancements are dropped one by one.We believe this analysis is a good comple-
ment to the one developed in the preceding sections, where the impact of each enhancement
was individually assessed with respect to the baseline version (the one incorporating just the
J -sets and the auxiliary nonlinear solver). This new version of RAPOSa is defined by taking
the best configuration for each individual enhancement. The J -sets, the auxiliary local NLP
solver, the warm generation of J -sets and the warm start on the LP solver are all incorporated.
Regarding the other four enhancements, we proceed as follows:

Products of constraint factors and bound factors We take the “less in common”approach.

123



Journal of Global Optimization (2018) 17

Branching criterion We consider the criterion based on vari-
able ranges.

Bound tightening We consider OBBT at the root node and
nonlinear FBBT at all nodes.

SDP cuts We consider the approach with vector
(1, yJ ), with cuts being generated in all
nodes and inherited forever.

Since the number of enhancements is relatively large, we have split the results in Table 8
into two blocks, always taking the configuration with all the enhancements, named “All”, as
the reference one. Further, we have 8 additional columns, each of them corresponding to the
results obtained when an individual enhancement is dropped. The results seem to confirm
the findings in the previous sections. Both the use of J -sets and of an auxiliary nonlinear
solver have a dramatic impact in the performance of the RLT algorithm, regardless of the test
set. The next most important enhancement is bound tightening, specially in MINLPLib-TS.
Also the impact of the branching criterion is quite noticeable and, again, more significant in
MINLPLib-TS. The technical enhancement about efficient coding, the warm generation of
J -sets, also has a clearly positive impact on performance on both test sets.

The impact of the remaining three enhancements is somewhat mixed. Warm starting the
linear solver seems to be beneficial in MINLPLib-TS, but not in DS-TS. The situation gets
reversed for the products of constraint factors and bound factors, which slightly improve
performance in DS-TS but slightly reduce it in MINLPLib-TS. Finally, we have that SDP
cuts, when added on top of the other enhancements, seem to deteriorate performance. This
is somewhat surprising and is definitely a direction for further research. Given the promising
behavior of SDP cuts in Table 7, it would be important to understand why they have a
substantial negative impact when combined with the other enhancements.

Table 8 Individual impact of the different enhancements
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(a) (b)

(c) (d)

Fig. 2 Performance profiles for the impact of the different enhancements

In Fig. 2 we represent the performance profiles associated to all the configurations we have
just discussed, with the exception of the configurations without J -sets and without nonlinear
solver since, given their particularly bad performance, would distort the resulting plots. The
performance profiles confirmwhatwe have already seen inTable 8. The versionwithoutwarm
start of the LP solver is the best one in terms of optimality gap of the difficult instances in
DS-TS, whereas the version without SDP cuts is the best one in the other three performance
profiles. The superior performance of this version is specially good in MINLP-TS. The
performance profiles also show that, setting aside the enhancements involving J -sets and the
auxiliary nonlinear solver, the highest impact comes from the bound tightening, specially in
MINLP-TS, where the configuration without this enhancement falls clearly behind the rest.

6 Overall performance and comparison with other solvers

In this section we present a comparison between RAPOSa, BARON, Couenne and SCIP
on the instances of DS-TS and MINLPLib-TS. Ideally, we would have liked to include
RLT-POS [14] in the analysis, since its underlying RLT implementation has been one of the
main sources of inspiration for RAPOSa. Unfortunately, RLT-POS is not publicly available.
Instead, we present in Table 9 a comparison of the enhancements included in both C++
implementations of the RLT scheme, which shows that none of them dominates the other in
terms of enhancements.

The “Reduced RLT” enhancement consists of a series of RLT-based reformulations intro-
duced in [32] for polynomial optimization problems containing linear equality constraints.
The idea is to rely on the basis of the associated linear systems to reduce the size of the
linear relaxations. Different variants of this approach are implemented in RLT-POS. One
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Table 9 Comparison of the functionalities of RLT-POS and RAPOSa

Enhancement → J -sets NLP Warm Gen. Warm Products Branch Bound SDP Reduced
↓ RLT version Solver J -sets Start Cons.&B. Factors Crit. Tight Cuts RLT

RLT-POS YES YES NO NO NO YES NO YES YES

RAPOSa YES YES YES YES YES YES YES YES NO

additional difference between RLT-POS and RAPOSa is that the former contains a heuristic
which, depending on some underlying features of the problem at hand such as the degree, the
density and the number of equality constraints, chooses a specific configuration of the differ-
ent features. The computational study in [14] compares RLT-POS with BARON, Couenne
and also with the SDP based solver SparsePOP [34]. The latter turned out to be the least
competitive, whereas the performance of RLT-POS was notably superior to Couenne and
slightly superior to BARON in DS-TS. These results are comparable to the ones we report
below for RAPOSa. As far as the computational study is concerned, one of the additions of
the current paper is that the analysis is also developed for MINLPLib-TS, which contains
a wide variety of instances coming from real applications, and not just randomly generated
instances as DS-TS.14

We move now to the comparison, for the instances in both DS-TS and MINLPLib-TS,
of RAPOSa with three of the most popular solvers for finding global optima of nonlinear
programming problems: BARON, Couenne and SCIP. All solvers have been run taking as
stopping criterion that the relative or absolute gap is below the threshold 0.001 and with a
time limit of 1 h in each instance. RAPOSa was run with two different configurations: (i) the
baseline version in Sect. 5 (with J -sets and nonlinear solver) and (ii) the version that looked
superior from the analysis in Sect. 5.7 (all the enhancements except the use of SDP cuts). It
is worth mentioning the auxiliary solvers used by each of the global solvers involved in the
comparison. All solvers use Ipopt as the auxiliary nonlinear solver. Regarding the linear
solver, RAPOSa uses Gurobi, whereas BARON, Couenne and SCIP use Clp. Given the
superior performance of Gurobiwith respect to Clp reported in Sect. 4.2, it may be that the
linear solver is giving a slight edge toRAPOSa. Yet, this is not straightforward to assess, since
the solution of linear subproblems is not equally critical for all solvers, since BARON and
SCIP, for instance, heavily rely on nonlinear (convex) relaxations whereas all relaxations
solved by RAPOSa and Couenne are indeed linear.

Table 10 contains two summaries of results, one for each test set. First, we can see that,
in DS-TS, both configurations of RAPOSa solved more problems than the other solvers.
For this test set, the version of RAPOSa with no SDP cuts clearly dominates all others,
not only in the number of solved problems, but also in running times and optimality gaps.
At the other end, we see that SCIP falls clearly behind BARON and Couenne in DS-TS.
Regarding MINLPLib-TS, SCIP is the solver that performs best. The behavior of the best
version of RAPOSa is comparable to that of BARON and Couenne, falling behind in running
times but being superior in optimality gaps. This suggests that RAPOSa may be particularly
effective for difficult instances, a hypothesis that the explore more deeply in the performance
profiles below. It is worth noting that BARON, Couenne and SCIP have been tested for
years on MINLPLib-TS instances and, thus, some of these solvers’ enhancements may have
been designed to address weaknesses identified on them. Last, we can also compare the

14 With respect to [14], also the thorough analysis enhancement by enhancement in Sects. 4 and 5 represents
a novel contribution.
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Table 10 Comparative between different configurations of RAPOSa and other solvers

(a) (b)

(c) (d)

Fig. 3 Performance profiles to compare RAPOSa with other solvers

performance of the version of RAPOSa with all enhancements except SDP cuts with the
version with just J -sets and the auxiliary nonlinear solver. The aggregate improvement in
performance is remarkable, specially in MINLPLib-TS.

Figure 3 contains the performance profiles associated to the results reported in Table 10,
which confirm the previous conclusions. It is worth emphasizing once again the significant
gain in performance exhibited by RAPOSa after the inclusion of the enhancements discussed
in this paper. This is specially relevant in MINLPLib-TS since, with these changes, RAPOSa
goes from being the worst solver to being highly competitive with the state-of-the-art solvers.

The results in Table 10 and Fig. 3 both suggest that the performance of RAPOSa may be
particularly good in the most difficult instances of both test sets, since it is more competitive
on the optimality gaps in instances not solved by all instances than on the running times
solved by all instances. Indeed, for DS-TS, even the baseline version of RAPOSa dominates
BARON, Couenne and SCIP in terms of optimality gap. To further explore this insight,
in Fig. 4 we represent the performance profiles associated to the instances that no solver
managed to solve within the time limit of 1 h. They seem to confirm that RAPOSa becomes
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(a) (b)

Fig. 4 Performance profiles to compare RAPOSa with other solvers in the most difficult instances (no solver
solved them in 1 h)

more and more competitive as the difficulty of the instances to be solved increases (at least
in the two test sets under study).

7 Conclusions and future research

In this paper we have introduced RAPOSa, a new global optimization solver specifically
designed for polynomial programming problems with box-constrained variables. We have
thoroughly analyzed the impact of different enhancements of the underlying RLT algorithm
on the performanceof the solver. In particular, our findings provide onemore piece of evidence
of the relevance of bound-tightening techniques to reduce the search space in branch and
bound algorithms.

In Sect. 6 we compared the performance of RAPOSa with three state-of-the-art solvers
and the results are already very promising, since RAPOSa has proven to be competitive with
all of them.Yet, given that RAPOSa is still a newborn, it has a great potential for improvement
and the analyses in Sects. 4 and 5 already highlight some promising directions. We conclude
with a brief outline of a few of them:

Bound tightening Given the impact on performance of bound-
tightening techniques, it may be interesting to
equip RAPOSa with more sophisticated versions
of both FBBT andOBBT routines, such as the ones
described in [4] and [21].

Branching criterion Similarly, given the impact of the branching cri-
terion on the performance of the RLT technique,
it is natural to study whether branching criteria
adapting the integer programming approaches of
pseudo-cost and/or reliability branching [1] can
further improve the performance of the algorithm.

SDP cuts and general cut management Aswe alreadymentioned in Sect. 5.7, a clear direc-
tion for future research is to get deeper into the
analysis of SDP cuts. Given their promising behav-
ior in Table 7, it would be important to understand
why it has a negative impact when combined with
the other enhancements. Further, implementing a
general and flexible cutmanagement schememight
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help to improve the overall performance of RLT
and might also be helpful to correct the undesir-
able behavior of the SDP cuts.

Learning to branch There is an intensive research on the use ofmachine
learning techniques to improve the performance
of the branch-and-bound algorithm, especially in
integer programming [3, 24, 25]. The integration of
the insights from this research into RAPOSa, along
with some ideas that may be specific to polynomial
optimization, is definitely worth pursuing.

Integer problems A natural avenue for RAPOSa is to extend its
branch-and-bound scheme to allow for integer pro-
gramming problems.
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A Performance profiles for the computational experiments in Sects. 4
and 5

In this Appendix we present all performance profiles associated with the computational
analyisis of the different enhancements of the basic RLT discussed in Sects. 4 and 5 (Figs.
5, 6, 7, 8, 9, 10, 11, 12).
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(a) (b)

(c) (d)

Fig. 5 Performance profiles for J -sets and the use of an auxiliary nonlinear solver

(a) (b)

(c) (d)

Fig. 6 Performance profiles for the different linear solvers
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(a) (b)

(c) (d)

Fig. 7 Performance profiles for the warm generation of J -Sets

(a) (b)

(c) (d)

Fig. 8 Performance profiles for the warm start on the LP solver
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(a) (b)

(c) (d)

Fig. 9 Performance profiles for the products of constraint factors and bound factors

(a) (b)

(c) (d)

Fig. 10 Performance profiles for the different branching criteria
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(a)

(c) (d)

(b)

Fig. 11 Performance profiles for the bound tightening techniques

(a) (b)

(c) (d)

Fig. 12 Performance profiles for the SDP cuts
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