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Abstract
We examined the impact of adding the seaweed Cystoseira baccata (Ochrophyta, Sargassaceae) in various forms to two 
different growing substrates: pine bark and gorse compost. Specifically, we examined the influence of the seaweed on the 
physical and chemical properties of the substrates, and on their agronomic performance on a lettuce crop. The seaweed was 
used in a 20% (v/v) proportion and three different forms, namely: fresh (FS), washed fresh (WFS), and washed and dried 
(WDS). The mixed substrates exhibited no signs of instability. FS and DWS increased the total water retention capacity 
of pine bark by 20% and 27%, respectively. Adding the seaweed in any of its three forms to this type of substrate, which is 
poor in nutrients and has a low electrical conductivity (EC), significantly increased its P, K, Mg and Na contents, as well 
as its EC (from 0.08 dS  m–1 in the control substrate to 0.69, 0.12 and 0.27 dS  m–1 in those containing FS, WFS and WDS, 
respectively). On the other hand, only in fresh form (FS) altered the salinity and total K content of a substrate rich in nutrients 
and salts such gorse compost (from 0.89 to 1.42 dS  m−1 in terms of EC and 0.59% to 0.98% in K). All mixtures performed 
well as substrates for a lettuce crop. Those containing DWS increased aerial mass in gorse compost, while any of the tested 
formats increased aerial mass in pine bark.
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Introduction

The expansion of intensive agriculture has raised an increas-
ing to need to grow plants off-ground (particularly in pots 
and other containers). This in turn has made new inputs such 
as plant growing substrates necessary and highly useful for 
protected intensive horticulture, nursery cropping, improved 
sowing, gardening and soil reclamation, among other pur-
poses. Ultimately, the unstoppable growth of soil-less crop-
ping has prompted a search for suitable materials (Caron 
and Rochefort 2013).

Peat continues to be the most widely used substrate for 
soil-less cultivation, mainly on the grounds of its good prop-
erties and easy handling (Schmilewski 2008). However, peat 
cannot be renewed and its withdrawal from nature can lead 
to the destruction of highly fragile ecosystems (Holmes 
2007) which act as major carbon sinks (Bullock et al. 2012; 
Ceglie et al. 2015). Also, peat is largely imported from other 
countries. The previous reasons have prompted a search for 
alternative materials to be used as growing substrates (Morel 
et al. 2000; Caron and Rochefort 2013; Raviv 2013). Such 
materials, however, can contain toxins, pathogens, weed 
seeds and immobilized nitrogen, and be unstable and oxy-
gen-deficient (Naasz et al. 2009). Coir, pine bark and com-
posts have emerged as effective, solid alternatives to peat in 
recent times (Schmilewski 2008).

The search for non-peat substrates has increasingly 
focused on valorised organic wastes or by-products to 
avoid their dumping (Raviv 2008) and to obtain them from 
the vicinity of farms to additionally reduce their carbon 
footprint. Alluvial seaweed possesses a very high ecologi-
cal significance but can pose serious disposal problems if 
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it accumulates in large amounts (Harb and Chow 2022). 
This is particularly so when eutrophication associated to 
farming, urban and industrial wastewater, or aquaculture 
led to green tides (Bárbara and Cremades 2010) or dur-
ing the summer, when seaweed tends to accumulate and 
decay on beaches, thus raising off-odours or even public 
health problems.

Seaweed is a practical, economical source of useful com-
pounds for the nutraceutical, pharmaceutical, chemical, 
food and cosmetic industries (Biris-Dorhoi et al. 2020). For 
example, beach cast seaweed, especially of the brown kind, 
has traditionally been applied to crops grown on coastal 
areas (Metting et al. 1990). Although the main agricul-
tural use of seaweed has been in amendments or fertilizers 
directly applied to soil, the increasing development of “blue 
technology”, which is based on marine organisms (Berthon 
et al. 2021), has promoted the use of seaweed for a variety 
of agricultural purposes. In fact, seaweed is currently used 
in various forms in fertilizers. In some cases, it is previously 
charged with specific ions by bioabsorption from wastewater 
containing heavy metals (Bădescu et al. 2017). Seaweed is 
also being increasingly used in biostimulants and as a means 
of improving soil properties (Illera-Vives et al. 2020). How-
ever, it has been little explored as a growing substrate and no 
commercial forms for this use exist as yet.

Agricultural seaweeds could be an optimal component of 
growing substrates by virtue of its being natural, biodegrad-
able, free of weed seeds and acceptable for organic produc-
tion (EC Council 889/2008). In addition, they supply crops 
with substantial amounts mineral nutrients (Verkleij 1992; 
Cabrita et al. 2016), vitamins (Bourgougnon et al. 2011) 
and complex organic compounds, and primary and second-
ary metabolites (Biris-Dorhoi et al. 2020). Furthermore, the 
enzymes and biocidal compounds they contain (Illera-Vives 
et al. 2020) act as biostimulants facilitating crop develop-
ment (Crouch et al. 1992; Berthon et al. 2021), and their 
good rheological properties can help avoid moisture losses. 
In any case, the agronomically significant properties of 
seaweeds differ among taxonomic groups, species, year, 
season or even location (Villares et al. 2007; Adams et al. 
2011; Sharma et al. 2012; Schiener et al. 2015). Therefore, 
developing effective seaweed-based products for addition to 
agricultural substrates requires careful assessment of their 
properties and performance.

The primary aims of this work was to examine the use of 
the brown alga Cystoseira baccata as a component of grow-
ing substrates to be applied to seedbox-grown horticultural 
crops. Cystoseira baccata in fresh, unwashed (FS), washed 
(WFS), and dried and washed form (WFS), was examined 
for its effect on the physical and chemical properties of two 
widely used commercial substrates for organic agriculture, 
namely: pine bark and gorse compost.

Material and methods

Preparation of substrates

Seaweed

Cystoseira baccata (S. G. Gmelin) P. C. Silva is a brown 
seaweed growing in Atlantic waters and widely distributed 
in the northwest of the Iberian Peninsula (García-Fernández 
2020). Cystoseira baccata was collected during low tide on 
the As Margaridas beach (Santa Cruz-Oleiros, A Coruña, 
NW Spain; 43°21′47.5″ N, 8°20′46.5″ W). Its composition 
is summarized in Table 1.

The material was used in three different forms, namely:

• Fresh seaweed (FS), which was obtained simply by hand 
clearing all other species and removing spurious material 
such as seashells or plants reaching the shore, followed 
by cutting into largely uniform fragments not longer than 
2 cm.

• Washed fresh seaweed (WFS), in which the high salinity 
of the previously collected material was reduced prior 
to use by immersion in a 1:4 (v/v) proportion in water 
without stirring, followed by cutting as with FS.

• Dried washed seaweed (DWS), which was prepared by 
drying a fraction of WFS in a Selecta Dry-big forced air 
oven at 40 °C for 48 h to reduce moisture from 78 to 13% 
prior to cutting as with the previous two forms.

Substrates

The three forms of seaweed used were mixed with two dif-
ferent commercial growing substrates, namely: (a) pine bark 
from Dermont, which was placed under a hot air stream at 

Table 1  Characterization of the 
starting materials

All values except those of EC are expressed on a dry weight basis. * Illera-Vives et al. 2022b

Parameter EC
(dS  m–1)

Percent contents in dry mass Cytokinins 
(pmol  g–1)*

C N Ca Mg Na K P

Seaweed 9.65 40.31 2.12 0.34 3.99 2.8 3.99 0.23 498.03
Pine bark 0.08 57.32 0.04 0.25 0.07 0.04 0.12 0.08 –
Gorse compost 0.59 42.28 2.16 0.83 0.76 0.11 0.59 1.66 –
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300 °C to degrade phytotoxins, pathogens and adventitious 
seeds; and (b) gorse (Ulex europaeus L.) compost from 
Abonos Lourido (http:// abono slour ido. com) (see Table 1).

The fresh seaweed mixture was prepared by adding a 1:5 
(v/v) proportion of FS to the substrate (pine bark or com-
post). The resulting dry weight ratio was 1:0.06 for pine 
bark and 1:0.13 for the compost. The substrates containing 
WFS or DWS were prepared on the basis of dry weights to 
avoid the impact of drying on the results. Table 2 shows the 
amount of seaweed used in each sample.

All mixtures were placed in 60 L plastic containers in the 
laboratory and checked for stability by using an aliquot to 
measure temperature, pH and moisture on a weekly basis for 
one month. Appropriate aeration and substrate uniformity 
were ensured by hand turnover (specifically, with two suc-
cessive transfers where the material was gently tapped for 
increased aeration and sponginess).

Physical and chemical characterization of substrates

As stated above, the substrates were turned over on a weekly 
basis for 1 month to ensure adequate aeration and uniform-
ity. Once all samples were confirmed to be stable, they were 
characterized chemically by analysis for pH, electrical con-
ductivity (EC), organic matter, water-soluble elements and 
 CaCl2 + DTPA extractives (viz., N-NH4

+,  K+,  Ca2+,  Mg2+, 
 Na+,  Cl– and  PO4

3–) according to European standards EN 
13037 (2011), EN 13038 (2011), EN 13039 (2011) and EN 
13652 (2001), respectively. Total C and N were determined 
on a Leco 2000 autoanalyser; total Ca, Mg, Na and K by 
inductively coupled plasma–optical emission spectroscopy 
(ICP–OES) following attack with  H2SO4 (Thomas et al. 1967); 
P colorimetrically (Chapman and Pratt 1997); and heavy met-
als (Cd, Cu, Cr, Hg, Mn, Ni and Zn) by ICP–OES upon attack 
with  HNO3 in an ETHOS 900 Microwave Labstation oven.

Bulk density, particle density and total porosity 
were determined according to EN 13041 (2012), with 

measurements at 1, 3, 5, 7.5 and 10 kPa. Moisture contents 
were expressed as volume fractions (v:v). Aeration capacity 
(AC) was calculated as the difference between total poros-
ity and the moisture content by volume at 1 kPa, easily 
available water (EAW) as the volume fraction of moisture 
retained by each substrate at 1 − 5 kPa, buffering capacity 
water (BCW) as the amount of moisture retained from 5 to 
10 kPa, and unavailable water (UW) as that retained above 
10 kPa (Felipó et al. 1979).

Agronomic evaluation of substrates

The agronomic potential of the substrates, and their interac-
tions with plants, were assessed in terms of seed germination 
and plant growth.

Seed germination

Seaweed phytotoxicity was assessed according to Zucconi 
et al. (1981a) using watercress (Lepidium sativum L.) seeds. 
For this purpose, 60 mL of sample was added to 300 mL 
of distilled water and mixed for 2 h. Then, 10 seeds were 
placed on pieces of filter paper and supplied with 5 mL of 
aqueous extract in Petri dishes. The seeds were incubated 
at 28 °C in the dark and then used to determine the average 
germination (AG), average root length per plant (ARLP) and 
Munoo–Liisa vitality index (MLV). The last parameter was 
calculated as follows:

where GRsi is the average germination of each replicate i 
in a treatment (in percentage); GRc that of the control sam-
ple (peat); RLsi the average total length of roots for each 

MLV(%) =

(

GRs1 × RLs1
)

+
(

GRs2 × RLs2
)

+
(

GRs3 × RLs3
)

3 ×
(

GRc × RLc
) × 100

Table 2  Final weight of each 
substrate

a  Seaweed, b Dry matter (kg dry weight), c Fresh matter (kg fresh weight)
FS Fresh seaweed, WFS Washed fresh seaweed, DWS Dried washed seaweed

Substrate SWa  DMb SW  FMc Substrate DM Substrate
FM

Total DM Total FM

Pine bark 0.00 0.00 11.12 15.91 11.12 15.91
Pine bark + FS 0.50 3.36 8.90 12.73 9.40 16.09
Pine bark + WFS 0.50 2.34 8.90 12.73 9.40 15.07
Pine bark + WDS 0.50 0.58 8.90 12.73 9.40 13.31
Gorse compost 0.00 0.00 4.78 12.31 4.78 12.31
Gorse compost + FS 0.50 3.36 3.82 9.85 4.32 13.21
Gorse compost + WFS 0.50 2.34 3.82 9.85 4.32 12.19
Gorse compost + WDS 0.50 0.58 3.82 9.85 4.32 10.43
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replicate i in a treatment; and RLc that for the control treat-
ment (peat).

Lettuce growth in a seedbox

Agronomic tests were conducted in a glass greenhouse with 
automatic air ventilation and sprinkling. A total of 10 seeds 
of lettuce (Lactuca sativa L.) were sown in each of 75 mL 
tray cells. Forty-one days later the fresh root and aerial 
weight were measured to calculate the growth promotion 
index (GrP) as

where APW is the average plant weight for each treatment.

Statistical analysis

Data were processed with the software package IBM 
SPSS Statistics v. 23.0. Treatment means were com-
pared via ANOVA and significant differences (p < 0.05) 
between treatments identified with Duncan’s test follow-
ing confirmation of data normality with the Kolmogo-
rov–Smirnov test and variance homoscedasticity with 
Levene’s test. When the latter failed, data were subjected 
to the Games–Howell test.

GrP(%) =
APWsample − APWcontrol

APW
× 100

Results

Mixture stability

None of the mixtures used exhibited a large enough increase 
in temperature to suggest microbial activity (Fig. 1). The 
greatest increase was that in the pine bark–FS mixture, 
whose temperature was up to 4.8 °C higher than that of the 
control substrate. The difference, however, soon vanished 
and the temperature was eventually similar to those resulting 
from the other treatments. This pine bark–FS mixture also 
exhibited the greatest pH decrease (Fig. 1), which however 
was very small (only 0.25 units, from 5.22 in the control 
substrate to 4.97 in the mixture). No appreciable acidifica-
tion was observed in any other mixture.

Physical properties

All mixtures were highly porous —porosity was invariably 
above 85% (Table 3). This was an intrinsic feature of both 
substrates that was slightly increased by fresh and washed 
seaweed; the increase, however, was less 1% in all cases. 
Also, the initial substrates featured too high aeration capac-
ity and poor retention of easily available water (EAW) 
(50% in gorse compost and 47% in pine bark) as a result 
of their particle size distribution. Adding seaweed to pine 

Fig. 1  Time course of tem-
perature (a) and pH changes 
(b) in the seaweed-containing 
mixtures relative to the starting 
substrates
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bark reduced its aeration capacity, especially with the dried 
washed form (DWS), which decreased it to 26% —a level 
close to the optimum value (20–30%).

The addition of fresh (FS) or dried seaweed 
(DWS) increased the total water retention capacity 
(EAW + WBC + UW) of pine bark (by 20% with FS and 27% 
with DWS). The increase was largely the result of one in eas-
ily available water by up to 70% with DWS. The increased 
water retention capacity of the pine bark substrate led to an 
R value falling in the recommended range (1–3). No simi-
lar effect, however, was observed in gorse compost. In fact, 
adding seaweed to the compost increased the proportion of 
EAW to a statistically significant, but very small, extent for 
practical purposes.

Chemical properties

Adding FS to pine bark decreased its pH from 5.54 to 5.13 
(Fig. 2). The pH of the pine bark mixtures ranged from 5.73 
to 5.13 and was thus optimal for their use as growing sub-
strates. On the other hand, the pH of the gorse compost mix-
tures was invariably below 5 (4.44–4.56) and hence bound 
to compromise nutrient availability.

The seaweed forms used altered EC to a different extent 
with each substrate. Thus, addition of any form to a low 
conductivity substrate such as pine bark (EC = 0.08 dS 
 m–1) increased its conductivity (by 0.69, 0.12 and 0.27 dS 

 m–1 with FS, WFS and WDS, respectively). However, the 
increase with WFS was significantly less than it was with 
the other two forms. However, EC in the gorse compost sub-
strate, which had a higher initial value (0.89 dS  m–1), was 
only increased significantly by FS.

As expected, adding seaweed to the starting materials 
failed to appreciably increase their contents in organic matter 
(OM), which were already high. Whereas OM was invari-
ably below the 80% recommended minimum value in the 
gorse compost–seaweed mixtures, it exceeded that level in 
both pine bark and its mixtures.

The addition of C. baccata increased the total N content 
of pine bark, from very low levels (0.15%) to 0.31% (Fig. 2). 
However, adding the seaweed to gorse compost, which ini-
tially contained a much higher proportion of N (2.16%), 
failed to increase the content in this nutrient (Fig. 3).

Adding the seaweed to the substrates also increased their 
total content in mineral elements. The greatest increase was 
obtained by adding FS to pine bark, which raised Mg, Na and 
N contents by 114%, 550% and 408%, respectively, relative to 
the control substrate. Adding the seaweed in any of the three 
forms to gorse compost only increased Na significantly; also, 
only FS increased K significantly (by 59%). The seaweed also 
increased the contents in Ca and P of pine bark (from 0.26% 
to 0.25 − 0.42% and 0.01% to 0.28 − 0.31%, respectively), but 
not those of gorse compost —which initially contained much 
higher levels of both elements.

Table 3  Physical characterization of the substrates. (mean ± standard deviation, n = 3)

AC Aeration capacity; EAW Easily available water; BCW Buffer capacity water; UW Unavailable water; TWRC  Total water retention capacity; R 
Pressure at which the water and air contents coincided; FS Fresh seaweed; WFS Washed fresh seaweed; DWS Dried washed seaweed. Different 
letters in each column denote significant differences between treatments (rows) at p < 0.05 as per Duncan’s test

Property Gorse compost Pine bark

Control FS WFS DWS Control FS WFS DWS

Bulk density (g  L–1) 169.17 156.81 161.95 180.69 172.81 163.80 165.38 176.18
 ± 3.42 b  ± 3.07 a  ± 3.81 a  ± 6.72 c  ± 4.03 b  ± 3.39 a  ± 6.18 a  ± 2.33 b

Porosity (%) 90.31 91.06 90.85 89.62 88.90 89.58 89.42 88.74
 ± 0.20 b  ± 0.18 c  ± 0.22 c  ± 0.39 a  ± 0.26 a  ± 0.22 b  ± 0.40 b  ± 0.15 a

AC (%) 50.07 50.77 50.37 48.28 46.90 39.11 44.12 34.42
 ± 0.99 a  ± 1.68 a  ± 1.18 a  ± 1.90 a  ± 1.09 c  ± 2.26 bc  ± 5.19 b  ± 4.27 a

EAW (%) 10.46 8.65 9.50 10.76 10.31 15.75 12.52 17.71
 ± 0.39 a  ± 1.38 a  ± 0.53 a  ± 1.71 a  ± 0.92 a  ± 1.75 bc  ± 4.24 ab  ± 4.13 c

BCW (%) 1.59 1.26 1.26 1.34 2.31 2.96 2.43 3.49
 ± 0.85 a  ± 0.57 a  ± 0.81 a  ± 0.59 a  ± 0.73 a  ± 1.27 a  ± 0.93 a  ± 1.56 a

UW (%) 28.20 30.39 29.71 29.25 29.38 31.78 30.34 33.12
 ± 0.81 a  ± 1.02 ab  ± 1.26 a  ± 0.61 b  ± 0.83 a  ± 2.02 ab  ± 2.05 a  ± 1.74 b

TWRC (%) 40.24 40.29 40.48 41.34 42.00 50.48 45.30 54.32
 ± 0.80 a  ± 1.58 a  ± 0.99 a  ± 1.52 a  ± 1.17 a  ± 2.41 b  ± 5.12 ab  ± 4.35 b

R 0.81 0.81 0.81 0.82 0.83 1.01 0.90 1.14
 ± 0.01 a  ± 0.02 a  ± 0.02 a  ± 0.02 a  ± 0.02 a  ± 0.06 b  ± 0.10 a  ± 0.15 b
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A similar effect was observed on all soluble elements, the 
contents in which were increased in pine bark but, again, 
not in gorse compost owing to its initially high levels. In 
fact, the seaweed only increased K in the latter substrate, the 
effect being especially marked with FS. However, adding FS 
raised the levels of unwanted ions such as  Na+ and  Cl– above 
the tolerated limits for award of a European ecolabel (viz., 
150 mg  Na+  L–1 and 500 mg  Cl–  L–1).

As can be seen from Figs. 4 and 5, the seaweed did 
not significantly alter the contents in heavy metals of 

the substrates except for a significant reduction in Cu by 
effect of adding any of the three seaweed forms to gorse 
compost.

Agronomic evaluation

Germination

Adding seaweed to the substrates had no phytotoxic 
effects (Table 4). FS increased germination with gorse 

Fig. 2  Chemical and physico–
chemical changes in pine bark 
by effect of the addition of 
seaweed in three different forms 
(mean ± standard deviation, 
n = 3). Different letters in each 
column denote significant dif-
ferences between treatments at 
p < 0.05 as per Duncan’s test. 
FS fresh seaweed; WFS washed 
fresh seaweed; DWS dried 
washed seaweed
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compost from 73 to 90%. By contrast, adding the sea-
weed to pine bark had no effect on germination but 
increased root length; again, the increase was significant 
only with FS, which raised the level by 38%. Together 
with a slight increase in germination, this effect led to 
a Munoo–Liisa vitality index of 149% with the pine 
bark − FS mixtures.

Agronomic performance

Adding seaweed in any of the three forms to the pine 
bark substrate increased aerial growth in lettuce 
(Table 5) —by up to 728% with WFS. In addition, the 
pine bark − WFS substrate led to a significant increase 
in root mass (583%) and also in growth promotion index 

Fig. 3  Chemical and phys-
ico–chemical changes in the 
gorse compost by effect of the 
addition of seaweed in three 
different forms (mean ± stand-
ard deviation, n = 3). Differ-
ent letters in each column 
denote significant differences 
between treatments at p < 0.05 
as per Duncan’s test. FS fresh 
seaweed; WFS washed fresh 
seaweed; DWS dried washed 
seaweed
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as a result. With gorse compost, however, only DWS led 
to increased aerial and root mass; also, the increase was 
less marked than with pine bark (240% in aerial mass 
and 232% in root mass).

Discussion

Ideal growing substrates usually consist of two or more sub-
stances that are mixed to ensure an optimum balance of physi-
cal, chemical and biological properties for the receiving crop. 
With fresh seaweed, the primary targets are biological stability 

to avoid cropping problems, and to improve some physical 
and chemical properties of the substrate. In this work, fresh 
(FS) and washed seaweed (WFS) were used untreated. On the 
other hand, dry seaweed (DWS) was obtained by removing 
most moisture, which made it somewhat unstable. Accord-
ing to Kaplan et al. (1980) microbial growth is optimal with 
a moisture content of 40–65%. This condition, however, is 
reversed when a crop is established and moisture increased 
through irrigation. In order to ensure that all mixtures would 
be stable and perform well as growing substrates, they were 
monitored for temperature and pH for 1 month prior to the 
experiment (Fig. 1). Temperature is the primary indicator of 

Fig. 4  Differences in heavy 
metal contents in gorse compost 
according to the seaweed 
form used (mean ± standard 
deviation, n = 3). All values in 
dry weight. Different letters in 
each column denote significant 
differences between treatments 
(rows) at p < 0.05 as per Dun-
can’s test. FS fresh seaweed; 
WFS washed fresh seaweed; 
DWS dried washed seaweed
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microbial activity (Liang et al. 2003; Miyatake and Iwabuchi 
2006), an increase above ambient level suggesting the presence 
of microbes and hence instability. pH in immature materials 
tends to decrease through decomposition of labile organic mat-
ter and the resulting release of organic acids. Temperature and 
pH were measured on a weekly basis following turnover by 
hand to ensure aeration and sponginess, and the presence of 
oxygen, in the material. No significant increase in temperature 
or decrease in pH was detected for one month, so all mixtures 
were deemed stable and strong biological activity ruled out.

Unlike its chemical properties, the physical properties of a 
growing substrate are not easily altered. Therefore, in mixing 
components one should ensure that the resulting substrate will 
have a solid structure to achieve a sound balance in air and water 
for optimal plant development while avoiding anoxia and drought. 
These ideal conditions reflect in properties such as bulk density, 
porosity and water retention capacity (Barrett et al. 2016).

Phycocolloids are natural polymers of cell walls in sea-
weed and widely used industrially on account of their good 
rheological properties. Thus, they produce specific matrix 

polysaccharides forming grids capable of retaining large 
amounts of water (Verkleij 1992; García and Martel 2000; 
Lattner et al. 2003). The main phycocolloids in brown sea-
weed such as Cystoseira are alginates, which influence 
moisture distribution in soil (Nabti et al. 2017). Abad et al. 
(2001) established the optimum air- and water-related values 
for substrates as follows: aeration capacity 20–30%, easily 
available water 55–70% and total water retention capacity 
60–100%. Neither of our substrates had properties falling in 
these ranges. In fact, both substrates exhibited excessive aer-
ation capacity and poor retention of easily available water. 
However, adding seaweed improved water retention by pine 
bark, where it substantially increased total water retention 
capacity (EAW + WBC + UW) —the content in easily avail-
able water was raised to 18%, which is close to the mini-
mum acceptable level proposed by De Boodt and Verdonck 
(1972): 20%. Adding the seaweed to pine bark also increased 
R, a measure of water availability at low pressures, with val-
ues above 3 kPa suggesting root anoxia by effect of excessive 
moisture and values below 1 kPa a deficiency in available 

Table 4  Phytotoxicity test 
on lettuce (mean ± standard 
deviation, n = 3)

ARLP Average root length per plant (cm); AG Average germination; MLV Munoo–Liisa vitality index. Dif-
ferent letters in each column denote significant differences between treatments (rows) at p < 0.05 as per 
Duncan’s test. FS Fresh seaweed; WFS Washed fresh seaweed; DWS Dried washed seaweed

ARLP AG (%) MLV (%)

Pine bark
  Control 1.31 ± 0.61 a 83.33 ± 11.55 a –
  FS 1.81 ± 0.87 b 90.00 ± 10.00 a 149.39 ± 15.20 b
  WFS 1.47 ± 0.94 ab 73.33 ± 5.77 a 98.48 ± 21.04 a
  DWS 1.51 ± 0.75 ab 86.67 ± 5.77 a 119.82 ± 13.66 ab

Gorse compost
  Control 1.65 ± 0.75 a 73.33 ± 5.77 ab –
  FS 1.47 ± 0.68 a 90.00 ± 0.00 c 109.67 ± 20.07 a
  WFS 1.63 ± 0.66 a 70.00 ± 10.00 a 94.48 ± 12.51 a
  DWS 1.50 ± 0.79 a 86.67 ± 11.55 bc 107.46 ± 15.69 a

Table 5  Lettuce cropping test (mean ± standard deviation)

Plant survival in percentage. Aerial and root mass in g per plant; GeR Growth promotion index; FS Fresh seaweed; WFS Washed fresh seaweed; 
DWS Dried washed seaweed

Pine bark Gorse compost

Plant survival Aerial mass Root mass GeR Plant survival Aerial mass Root mass GeR

Control 76.7 0.18 0.18 – 60.0 15.76 7.70 –
 ± 15.3 a  ± 0.06 a  ± 0.09 a  ± 17.3 a  ± 12.24 a  ± 3.67 a

FS 63.3 0.79 0.37 214.55 83.3 24.97 14.54 68.41
 ± 11.5 a  ± 0.32 b  ± 0.11 a  ± 57.29 a  ± 15.3 a  ± 4.93 ab  ± 1.94 a  ± 12.84 ab

WFS 70.0 1.49 1.23 640.00 86.7 16.16 10.89 15.30
 ± 17.3 a  ± 0.32 c  ± 0.03 b  ± 86.34 b  ± 15.3 a  ± 9.72 a  ± 8.45 a  ± 74.41 a

DWS 70.0 0.88 0.22 200.91 100.0 53.65 25.58 237.72
 ± 10.0 a  ± 0.33 b  ± 0.13 a  ± 74.21 a  ± 00.0 a  ± 29.65 b  ± 5.57 b  ± 141.42 b
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water (Ansorena 1994). On the other hand, adding the sea-
weed had little effect on gorse compost, which is consistent 
with previous results of Illera-Vives et al. (2022a) with coir. 
This outcome may have resulted from increased adhesion of 
phycocolloids in pine bark by effect of its pore distribution 
(USDA Forest Service 1971), but no experimental confirma-
tion for this hypothesis has to date been provided.

One of the benefits of adding seaweed to a growing sub-
strate is that it increases the contents in nutrients such as N, 
K, Ca, and Mg, thereby allowing the requirements of some 
crops to be better fulfilled. Although seaweed has a modest 
P content, it can still be useful given the scarcity of natural 
phosphorus sources. In fact, some authors (e.g., Cordell et al. 
2009) recommend using seaweed as a sustainable P fertilizer. 
This is especially so with P-poor substrates such as pine bark, 
addition of seaweed to which substantially increases its nutri-
ent contents (particularly those in N, P, K, Ca, and Mg). On 
the other hand, adding the seaweed to a nutrient-rich sub-
strate such as gorse compost only increased the content in 
K —and exclusively with the unwashed form and the result 
of introducing unwanted ions such as  Na+ and  Cl–.

One other very important chemical variable associated to the 
agricultural use of seaweed is its content in heavy metals. Thus, 
the components of seaweed cell walls and, particularly, alginates, 
allow them to accumulate large amounts of metals. One case in 
point is that of brown seaweed species such as Cystoseira, which 
are highly rich in alginates and can thus act as bioaccumulators 
(Davis et al. 2003). For this reason, seaweed to be added to grow-
ing substrates should never be collected from contaminated areas. 
The European Union has set maximum tolerated levels of heavy 
metals in substrates for award of its ecolabel (EU 2019/1009) and 
Spanish law (RD 506/2013) has issued the levels above which 
substrates should not be applied to edible horticultural crops. The 
heavy metal contents of all pine bark mixtures were well below 
the tolerated levels for edible horticultural crops (class A sub-
strates) and remained so upon addition of the seaweed. On the 
other hand, the contents of gorse compost were initially high and 
not substantially altered by the seaweed.

The tests used here to establish the essential properties of 
the substrates were followed by others aimed at assessing the 
response of crops. One test evaluated the impact on germina-
tion as a measure of phytotoxicity (viz., the ability to have 
adverse effects on plant growth). Phytotoxic substances range 
from secondary metabolites formed as a result of microflora 
degrading fresh organic matter (Zucconi et al. 1981a, b) or 
the substrate containing substances that hinder plant growth 
(e.g., salts, heavy metals, or high concentrations of plant hor-
mones). Compost maturity is widely assessed in terms of the 
index of Zucconi et al. (1981a), which is a measure of ger-
mination and root length relative to a control substrate. The 
index allows both high levels of phytotoxicity, which affect 
germination, and low levels, which affect plant growth, to be 
assessed (Zucconi et al. 1981b).

None of the studied mixtures exhibited any phytotoxic 
effects. Unlike the other seaweed forms, however, fresh seaweed 
(FS) substantially promoted root growth in pine bark and ger-
mination in gorse compost. Thus, FS increased the most critical 
factor in both types of substrates, namely: the relatively low ger-
mination capacity of gorse compost (73% vs 83% in pine bark) 
as the likely result of excessive salinity, and the less marked 
root growth in pine bark. One plausible explanation for this out-
come is that the benefits of growth hormones present in seaweed 
become especially apparent under stressing conditions. In fact, 
some studies have shown their beneficial effects to be especially 
strong in suboptimal conditions for crop growth (Crouch and van 
Staden 1994; Craigie 2011; Kumar et al. 2020).

No phytotoxic effects of a potentially unstable additive such 
as seaweed were observed here. In fact, there were no appreci-
able differences in plant failure between substrates. Also, add-
ing the seaweed in any form invariably increased crop mass. In 
fact, the seaweed considerably boosted plant growth in such a 
nutritionally poor substrate as pine bark; thus, WFS raised GeR 
to 763% in this substrate but only to 113% in gorse compost. 
In any case, the latter substrate was initially very rich in nutri-
ents, so the improvement cannot be ascribed to their supply but 
rather to a biostimulating effect of the seaweed. Plant biostimu-
lants are defined as “substances and materials other than nutri-
ents and pesticides capable of altering physiological processes 
in plant in a way that may increase growth and/or stress resist-
ance upon addition to plants, seeds or growing substrates” (du 
Jardin 2012). As a rule, plant responses to seaweed extracts 
are ascribed to their containing hormones (García and Martel 
2000; du Jardin 2015) such as cytokinins, auxins and abscisic 
acid, and other, hormone-like substances (Stirk et al. 2003; 
Khan et al. 2009; Craigie 2011; Stirk et al. 2014; Battachar-
yya et al. 2015; du Jardin 2015). However, the hormone-like 
activity of seaweed extracts cannot be solely ascribed to their 
containing hormones (Battacharyya et al. 2015). According to 
Craigie (2011), other organic molecules including oligomers 
and polysaccharide elicitors can contribute to the effect. Also, 
according to Wally et al. (2013), the activity may be due to 
seaweed altering the biosynthesis of endogenous plant hor-
mones rather than to the supply of exogenous hormones pre-
sent in seaweed extracts. In addition, seaweed contains a wide 
range of agriculturally useful biological antioxidants such as 
polyphenols in the brown varieties, which protect plants from 
damage by free radicals and other oxidants; also, it possesses 
anti-microbial activity and is thus effective against some plant 
diseases (Cotas et al. 2020).

Conclusions

Our results confirm the starting hypothesis that Cystoseira 
baccata is an effective additive for growing substrates. In 
fact, this brown seaweed is natural, biodegradable, and 
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pathogen- and weed-free; also, it showed no signs of insta-
bility or phytotoxicity during use even in the absence of a 
stabilization treatment. In fresh (FS) and dried form (DWS), 
the seaweed increased the total water retention capacity of 
pine bark by 20% and 27%, respectively. Application to pine 
bark, which is poor in nutrients, significantly increased its 
contents in P, K and Mg; however, it also increased the con-
tents in other, undesirable elements such as Na, as well as 
the electrical conductivity (from 0.08 dS  m–1 in the control 
substrate to 0.69, 0.12 and 0.27 dS  m–1 with FS, WFS and 
WDS, respectively). By contrast, only FS increased salinity 
and the K content in gorse compost, which is rich in nutrients 
and salts.

The fresh seaweed form (FS) had no phytotoxic effects 
on a lettuce crop; rather, it acted as a biostimulant by boost-
ing germination in mixture with gorse compost and led to 
longer roots in mixture with pine bark. All mixed substrates 
performed well on the lettuce crop. This was especially so 
with WFS, addition of which to pine bark increased lettuce 
aerial mass by 728% relative to the control substrate.
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