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Abstract
This paper addresses two sampling methodologies to respectively estimate the Owen value
and the Banzhaf–Owen value for TU-games with a priori unions. Both proposals are based
on stratified sampling on the set of those coalitions that are compatible with the system of
unions according to their cardinalities. These sampling methodologies are analysed in terms
of the theoretical properties and of the establishment of bounds for the absolute error from a
statistical point of view. Finally, we evaluate the performance of these tools on several real
well-known examples in the literature.

Keywords Multi-agent systems · Games with a priori unions · Coalitional values · Sampling

1 Introduction

The notion of cooperation bases any real multi-agent interactive situation. The collaboration
among those agents involved in this class of problems is often presented as an essential
requirement to achieve a common goal. From a mathematical point of view, transferable
utility games (or TU-games) are the tools for modelling this kind of situations. Besides,
allocating the profits or the costs resulting from the cooperation becomes a relevant issue
to be dealt with in cooperative game theory. In this line of research, coalitional values have
received much attention in the game-theoretical literature.

Formally, a coalitional value assigns an allocation vector for each TU-game that implicitly
confers a certain compromise to be enforced for all players in the case of being accepted.
The Shapley value (Shapley, 1953) and the Banzhaf value (Banzhaf, 1964) are considered
two of the most relevant examples of coalitional values in literature, that are obtained by
weighty averaging the marginal contributions of a player to those coalitions to which it does
not belong. However, these coalitional values do not contemplate the possibility of existing a
structure of coalitions that have previously committed themselves to cooperate in a TU-game,
as in many real problems. For instance, different situations in politics, logistics or focused on
cost sharing address this assumption. To model them, transferable utility games with a priori
unions (or TU-games with a priori unions) are used as an extension of TU-games to this
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context. Analogously, the called Owen value (Owen, 1977) is introduced as the extension of
the Shapley value andOwen (1982) introduces theBanzhaf–Owen value as the corresponding
extension of the Banzhaf value.

Undoubtedly, it is well known how difficult it is to exactly calculate the Shapley value
and the Banzhaf value when the number of agents involved significantly increases. By its
definition, the total amount of marginal contributions to be evaluated exponentially increases.
However, this drawback is not unrelated to the context of TU-games with a priori unions.
Under this perspective, Deng and Papadimitriou (1994) study the coalitional values from
a complexity theoretic point of view. Many references focus on potential applications of
coalitional values by providing, for specific classes of games, the procedure to polynomially
compute them by consequently reducing the associated computational complexity. Among
others, Algaba et al. (2019) provides an extensive analysis of the computational aspects and
the applications of the Shapley value. However, this is not the only reference that focuses on
this task. Firstly, wemention those linked to a cost setting. For instance, Littlechild and Owen
(1973) and Vázquez-Brage et al. (1997) obtain a polynomial expression for the Shapley and
the Owen values for sharing the costs by the planes’ operation in airport games, respectively.
In maintenance of railway infrastructures, Costa (2016) and Fragnelli et al. (2000) provide
the exact expressions for the above-mentioned coalitional values as cost sharingmechanisms.
Another approach is the one introduced by Moretti et al. (2007) and Lucchetti et al. (2010),
that characterize the Banzhaf value and the Shapley for microarray games and that apply
them to identify those relevant genes in cancer diseases. In addition to the above, coalitional
values have been widely used in voting situations in the literature. The proposals of Owen
(1972, 1975), based on direct enumeration and approximation methodologies, are used by
Leech (2002, 2003) for computing power indices for TU-games. Algaba et al. (2003) use
generating fucntions to efficiently compute power indices for weighted multiple majority
games. After, Algaba et al. (2007) and Alonso-Meijide and Bowles (2005) make use of these
procedures to rank themembers of the InternationalMonetary Fund (IMF) and of the enlarged
European Union according to the power that several coalitional values indicate, respectively.
Alonso-Meijide et al. (2009) does the same task with the members of the European Union.

Sampling techniques (Cochran, 2007) are an alternative for estimating the coalitional
values when the complexity of their exact computation increases enough. It needs to be
stressed that the above-mentioned coalitional values are obtained as the expected value of
marginal contributions by considering alternative probability mass functions. Using this idea,
the usage of samplingmethodologies for estimating the populationmean of a randomvariable
seems natural.

The use of sampling techniques in this context is not new and they have been applied
in a wide variety of papers. The initial reference to be mentioned is Mann and Shapley
(1960), that estimate the Shapley value for voting situations. Extending this approach for
general TU-games, Castro et al. (2009) and Fernández-García and Puerto-Albandoz (2006)
provide an algorithm to estimate the Shapley value based on simple random sampling with
replacement (in what follows, SRSwr). Besides, Bachrach et al. (2010) also use this sampling
technique to estimate the Banzhaf value for simple games. Under the existence of a system
of a priori unions, Saavedra-Nieves et al. (2018) describe the algorithm to estimate the Owen
value also based on SRSwr. Besides, Saavedra-Nieves and Fiestras-Janeiro (2021) add the
non-replacement hypothesis to SRSwr for theBanzhaf–Owen value estimation. Alternatively,
other approaches, as the one introduced in Benati et al. (2019) and based on the stochastic
approximation of deterministic games, have been used. However, stratified sampling is used
by Castro et al. (2017), Fernández-García and Puerto-Albandoz (2006) and Maleki (2015)
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to approximate the Shapley value as a guarantee to reduce the variance of the estimators
obtained under simple random sampling with replacement.

Themain goal of thiswork is to propose two samplingmethods to respectively approximate
the Owen value and the Banzhaf–Owen value for a large class of TU-games with a priori
unions, generalizing those results in Maleki (2015) and extending them to the case of the
Banzhaf’s values. Both mechanisms are based on stratified sampling techniques on the set
of compatible coalitions with a system of a priori unions. The idea that bases their definition
is the complete division of the population of compatible coalitions according to the sizes of
the unions and the coalitions in the union that they are composed of. The use of stratified
sampling in this setting can be naturally justified for the following two features:

• When simple random sampling with replacement is used to estimate, for instance, the
Banzhaf–Owen value, all coalitions compatible with the partition are equally likely to
be extracted, regardless of which stratum they belong to. It is noteworthy that, according
to the criterion of defining the strata by the cardinality of the coalitions involved, not all
the strata have the same weight within the population of compatible coalitions. This fact
should be reflected in the extraction probabilities of each sampling unit.

• Stratifying the sampling units ensures that the population is previously divided into
homogeneous subpopulations. Under stratified sampling, simple random sampling with
replacement (SRSwr) is performed in each of these subgroups, so that the resulting esti-
mator is obtained as a weighted mean of the corresponding subpopulation estimators.
From a statistical point of view, the usage of this methodology ensures a reduction in
variability with respect to what is obtained under SRSwr.

We analyse our sampling proposals by providing a collection of statistical results that thor-
oughly study those properties that the estimators of the Owen value and the Banzhaf–Owen
value under stratified sampling respectively satisfy, as well as that provide theoretical bounds
of the absolute error incurred in the estimation.

This paper is organized as follows. Section2 introduces the formal definitions and nota-
tions on cooperative game theory. The procedures based on stratified sampling to estimate
the Owen value and the Banzhaf–Owen value are described in Sect. 3. In particular, their
statistical properties are studied and some theoretical results to bound the error are provided.
Section4 evaluates the performance of the sampling proposals from a computational point
of view through the approximation of the above-mentioned coalitional values in three well-
known examples where they can be exactly obtained. Some concluding remarks are deferred
to Sect. 5. Finally, three appendices are included in an Online Resource section. Appendix
A displays the numerical results in the estimation of the Banzhaf–Owen value as an index
of the power for the members of the IMF in 2002. Appendix B shows the analogous results
corresponding to the Owen value estimation under stratified sampling in the same context.
Appendix C details the results of estimating the Owen value by using the proposal based on
stratified sampling in a bankruptcy problem.

2 On coalitional values

In this section, we introduce theoretical terminology that is used to build the procedures for
estimating coalitional values.

A transferable utility cooperative game (or TU-game) is given by a pair (N , v), with
N = {1, . . . , n} the set of players and v : 2N −→ R a map that assigns to each coalition
S ⊆ N a real number v(S) that represents the worth of the cooperation of the members of
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S.1 By convention, v(∅) = 0. We denote by |S| the number of elements of S. The class of
TU-games with player set N is denoted by G N .

A relevant issue in cooperative game theory focuses on the definition of procedures for
allocating the worth of the cooperation among the involved players. To this aim, coalitional
values as the Shapley value can be used. Alternatively, the Banzhaf value is usually used as
ranking index due to its non-efficient character. However, the link between them is the fact
of its definition in terms of the average of the contributions of a player to the set of coalitions
that do not contain it. That is, fixed i ∈ N and (N , v) ∈ G N , player i’s marginal contribution
to coalition S ⊆ N \ {i} is given by

v(S ∪ {i}) − v(S). (1)

The Shapley value (Shapley, 1953) is formally defined, for every i ∈ N and every (N , v) ∈
G N , as

Shi (N , v) =
∑

S⊆N\{i}

s! (n − s − 1)!
n! (v(S ∪ {i}) − v(S)). (2)

Moreover, the Banzhaf value (Banzhaf, 1964) is defined for every i ∈ N and every (N , v)

by

Bzi (N , v) = 1

2n−1

∑

S⊆N\{i}
(v(S ∪ {i}) − v(S)). (3)

However, other approaches can be considered. A TU-game with a system of a priori unions
is a triple (N , v, P) where (N , v) is a TU-game and P = {P1, . . . , Pm} is a partition of N ,
i.e., ∪m

k=1Pk = N and Pk ∩ Pl = ∅ for k �= l. P is interpreted as a coalition structure that
restricts the cooperation among the players in N . U N denotes the set of TU-games with a
priori unions and with player set N . In what follows, we denote by P(i) the union to which
i belongs and pi = |P(i)|. A coalition T ⊆ N\{i} is said to be compatible with partition P
for a player i if T = ∪

Pl∈R
Pl ∪ S for a coalition of unions R ⊆ P \ P(i) and a coalition of

players S ⊆ P(i) \ {i}.
The Owen value (Owen, 1977) is defined, for every i ∈ N and every (N , v, P) ∈ U N , as

Oi (N , v, P) =
∑

R⊆P\P(i)

∑

S⊆P(i)\{i}

s!(pi − s − 1)!r !(m − r − 1)!
pi !m!

(
v( ∪

Pl∈R
Pl ∪ S ∪ {i}) − v( ∪

Pl∈R
Pl ∪ S)

)
. (4)

Notice that it is considered as an extension of the Shapley value for TU-games with a priori
unions since that O(N , v, P) = Sh(N , v) if P contains either one or n a priori unions.

Owen (1982) extends the Banzhaf value to the context of TU-games with a system of
a priori unions. The Banzhaf–Owen value for every i ∈ N and every (N , v, P) ∈ U N is
defined by

BzOi (N , v, P) =
∑

R⊆P\P(i)

1

2m−1

∑

S⊆P(i)\{i}

1

2pi −1

(
v( ∪

Pl∈R
Pl ∪ S ∪ {i}) − v( ∪

Pl∈R
Pl ∪ S)

)
(5)

where P(i) ∈ P such that i ∈ P(i) and pi = |P(i)|.

1 In cost settings, a TU-game is known as a cost game and is usually denoted by (N , c).
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From a theoretical point of view, Alonso-Meijide et al. (2007) and Lorenzo-Freire (2017)
are examples of references that characterize the above-mentioned coalitional values. In the
literature, there are multiple applications of them on real-world problems. However, the main
drawback in exactly computing coalitional values as the ones mentioned is computational.
The complexity of this calculus increases when the set of players enlarges due to the number
of elements to be evaluated increases exponentially.

3 A stratified sampling procedure to estimate coalitional values

In this section, we provide mechanisms to estimate the Owen value and the Banzhaf–Owen
value for general games by using stratified sampling techniques. We initially introduce the
procedure for their estimation and then, we analyse the properties from a statistical approach.

3.1 Numerical implementation of the sampling algorithm

Here, we propose a sampling methodology to estimate coalitional values, in particular the
Owenvalue and theBanzhaf–Owenvalue for generalTU-games, basedon stratified sampling.
Take (N , v, P) ∈ U N a TU-game with a system of a priori unions and i ∈ N a fixed player
such that i ∈ P(i) ∈ P .

A stratified sampling procedure (Cochran, 2007) can be applied in this context due to the
interpretation of the considered coalitional values of i in Expressions (4) and (5) as being a
mean of means. The idea that justifies our proposal is based on the reformulation of the Owen
value and the Banzhaf–Owen value as follows, in line with the proposal for the Shapley value
estimation for a TU-game in Maleki (2015).

Let (N , v, P) ∈ U N be a game with a priori unions and let i ∈ N be a player such that
i ∈ P(i) ∈ P . First, we consider the set of all possible coalitions distributed into strata. Fixed
an index k, with k ∈ {0, 1, . . . , m − 1}, and an index h, with h ∈ {0, 1, . . . , pi − 1}, we
implicitly determine the strata Ckh of all compatible coalitions with k unions in P \ P(i) and
with h players in P(i)\{i}.

Consequently, theOwen value allows for an alternative formulation that arises fromgroup-
ing the addends in Expression (4) according to the cardinality of the evaluated coalitions. So,
it can be rewritten as

Oi (N , v, P) = 1

m · pi

m−1∑

k=0

pi −1∑

h=0⎛

⎝
∑

R⊆P\P(i): |R|=k

∑

S⊆P(i)\{i}: |S|=h

1
(m−1

k

)(pi −1
h

)
(

v

(
∪

Pl∈R
Pl ∪ S ∪ {i}

)
− v

(
∪

Pl∈R
Pl ∪ S

))⎞

⎠

(6)

or, alternatively,

Oi (N , v, P) = 1

m · pi

m−1∑

k=0

pi −1∑

h=0

Ekh
i , (7)
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where the expected marginal contribution of player i within strata Ckh is denoted by

Ekh
i =

∑

R⊆P\P(i): |R|=k

∑

S⊆P(i)\{i}: |S|=h

1
(m−1

k

)(pi −1
h

)
(

v

(
∪

Pl∈R
Pl ∪ S ∪ {i}

)
− v

(
∪

Pl∈R
Pl ∪ S

))
.

Analogously, the Banzhaf–Owen value for (N , v, P) supports the alternative formulation
shown below. Thus,

BzOi (N , v, P) = 1

2m−12pi −1

m−1∑

k=0

pi −1∑

h=0

( ∑

R⊆P\P(i): |R|=k

∑

S⊆P(i)\{i}: |S|=h

(
v( ∪

Pl∈R
Pl ∪ S ∪ {i}) − v( ∪

Pl∈R
Pl ∪ S)

))
(8)

or, equivalently, as

BzOi (N , v, P) =
m−1∑

k=0

pi −1∑

h=0

Wkh Ekh
i , (9)

where Wkh = (m−1
k )(

pi −1
h )

2m−12pi −1 and Ekh
i is the expected marginal contribution of player i within

strata Ckh .
For a fixed i ∈ N , our procedure is the following.Wefirstly takewith replacement a sample

of coalitions of size k composed by unions other than the one to which i belongs. Secondly,
for each element of the first sample, we take with replacement a coalition in P(i) \ {i} of size
h. From the formal definition, the Owen value or the Banzhaf–Owen value estimation for i
corresponds to different alternatives of averaging the means of the corresponding player i’s
marginal contributions in the different strata.

We formally describe the algorithm. Given a TU-game with a priori unions (N , v, P) ∈
U N , a system of a priori unions P = {P1, . . . , Pm}, and an arbitrary player i ∈ N , the steps
of the sampling procedure are described below.

1. The population of the sampling process is the set of compatible coalitions with P for i .
2. The parameter under study is Oi (N , v, P) and BzOi (N , v, P), that is, the Owen value

and Banzhaf–Owen value for player i .
3. The characteristic to study in each sampling unit corresponds to player i’s marginal con-

tribution for each coalition T that is a compatible coalition with P for i . Then, if we
consider T ⊆ N \ {i} in terms of the R = {Pk Pk ⊆ T } and S = T ∩ P(i), we have

x(R, S)i = v( ∪
Pl∈R

Pl ∪ S ∪ {i}) − v( ∪
Pl∈R

Pl ∪ S).

4. The sampling procedure is as follows. Formally, we take with replacement in each strata
Ckh a sample Skh = {(R1, S1), . . . , (R�kh , S�kh )} of �kh pair of coalitions (R j , S j ) such
that R j ⊆ P \ P(i), with |R j | = k, and S j ⊆ P(i) \ {i}, with |S j | = h, and for all
j ∈ {1, . . . , �kh}.
As a consequence of this sampling procedure, we obtain a sample of �kh compatible
coalitions, where each element takes the form ∪

Pl∈R j
Pl ∪ S j for j = 1, . . . , �kh .

5. The estimations of Oi and BzOi by stratified sampling are obtained as the mean of the

marginal contributions over the samples in two different ways. We denote by E
kh
i the esti-

mation of Ekh
i . This approximation is obtained as the mean of the marginal contributions
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over the sample Skh , i.e.

E
kh
i = 1

�kh

�kh∑

t=1

x(Rt , St )i , for all k ∈ {0, . . . , m − 1} and for all h ∈ {0, . . . , pi − 1}.

5.1. Thus, the estimation of Oi under stratified sampling, denoted by O
st
i , is given by

O
st
i = 1

m · pi

m−1∑

k=0

pi −1∑

h=0

E
kh
i . (10)

5.2. Analogously, the estimation of BzOi under stratified sampling, denoted by BzO
st
i ,

is given by

BzO
st
i =

m−1∑

k=0

pi −1∑

h=0

(
Wkh E

kh
i

)
(11)

where Wkh = (m−1
k )(

pi −1
h )

2m−12pi −1 is the weight of strata Ckh in the population and � =
m−1∑
k=0

pi −1∑
h=0

�kh denotes the size of the sample used for estimating BzOi .

The pseudocode of the algorithm for estimating the Owen value and the Banzhaf–Owen
value using stratified sampling is as follows.

Procedure 3.1 Let (N , v, P) ∈ U N be a TU-game with a priori unions and take i ∈
N .
Initialize O

kh
i = 0 and BzO

kh
i = 0 for all k ∈ {0, . . . , m−1} and for all h ∈ {0, . . . , pi −1}.

Take �kh > 0 for all k ∈ {0, . . . , m−1} and for all h ∈ {0, . . . , pi −1} and � =
m−1∑
k=0

pi −1∑
h=0

�kh .

Do k = 0.
while k < m − 1 do
Do h = 0.
while h < pi − 1 do
Do j = 0.
while j < �kh do
Do j = j + 1.
Take R j ⊆ P \ P(i) of size k and S j ⊆ P(i) \ {i} of size h with replacement.
Calculate x(R j , S j )i = v( ∪

Pl∈R j
Pl ∪ S j ∪ {i}) − v( ∪

Pl∈R j
Pl ∪ S j ).

Do E
kh
i = E

kh
i + 1

�kh
x(R j , S j )i .

end while
Do h = h + 1.

end while
Do k = k + 1.

end while

Finally, O
st
i = 1

m·pi

m−1∑
k=0

pi −1∑
h=0

E
kh
i and BzO

st
i =

m−1∑
k=0

pi −1∑
h=0

Wkh E
kh
i .

When applying this procedure for all i ∈ N , the vectors O
st = (O

st
1 , . . . , O

st
n ) and

BzO
st = (BzO

st
1 , . . . , BzO

st
n ) correspond to the estimation of the Owen value and the

Banzhaf–Owen value for the game with a system of a priori unions (N , v, P), respectively.
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Before the theoretical analysis from a statistical approach, we introduce a brief game-
theoretical remark. The estimated Owen value is not efficient under stratification in the sense
that

∑n
i=1 O

st
i is not necessarily equal to v(N ). Following the ideas of Castro et al. (2017),

an efficient estimator for the Owen value can be directly obtained as

O
ef f
i = O

st
i +

(
v(N ) −

n∑

i=1

O
st
i

)
O

st
i

n∑
i=1

O
st
i

, for each i ∈ N .

The first problem that arises when using a stratified sampling procedure consists of decid-
ing how to divide the total amount of samples among the different strata. This step is called
the allocation procedure in sampling. Implicitly, it determines in which strata the sampling
methodology under consideration has to make a large effort. For instance, Neyman (1934)
establishes a specific procedure for determining the size of the sample that minimizes the
variance of the estimators under stratified sampling and, as a consequence, the error in the
estimation. However, the main drawback when using this mechanism in large-scale problems
is the computational difficulty arisen from its obtaining.

Fixed i ∈ N , take � > 0 as the total amount of samples that we extract from the population
under stratified sampling. Below, we distinguish two scenarios.

• The simplest allocation procedure consists of assigning the same number of samples from
each strata. This procedure is named as the uniform allocation procedure under stratified
sampling. Its usage is only recommended for those cases in which no information is
available about variability of units within strata. Thus, if 	·
 denotes the ceiling function,

�kh =
⌈

�

m · pi

⌉

for each strata Ckh , with k ∈ {0, . . . , m−1} and h ∈ {0, . . . , pi −1}. Under this approach,
we have to extract the same amount of samples per strata.

• As the strata sizes are not necessarily equal, a proportional allocation procedure is used
to maintain a steady sampling fraction throughout the population. The total sample size,
�, should be allocated to the strata proportionally to their sizes. Formally, take a strata of
compatible coalitions Ckh for a given k ∈ {0, . . . , m −1} and a given h ∈ {0, . . . , pi −1}.
The total amount of compatible coalitions for i formed by k unions in P \ P(i) and h
players in P(i) \ {i} is (m−1

k

)(pi −1
h

)
.

Thus, the proportional allocation procedure assigns to each strata Ckh , with k ∈
{0, . . . , m − 1} and h ∈ {0, . . . , pi − 1}, a total amount of coalitions to be extracted
from it equal to

�kh = ⌈
� · Wkh

⌉
,

where Wkh = (m−1
k )(

pi −1
h )

2m−12pi −1 is the weight of the strata. Notice that this approach assigns
more effort for those larger strata.

In what follows, we will analyse the statistical properties of the proposed estimators in
estimating the Owen value and the Banzhaf–Owen value. For each of them, we will further
distinguish two scenarios according to the sampling allocation procedure used.
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3.2 The estimator of the Owen value

In this section, we focus on analysing the properties of the estimator of the Owen value for
player i , Ost

i , from a statistical perspective. In this section, we only include the most relevant
theoretical results.

By the interpretation of the estimator as a mean of means, we firstly analyse the properties

of E
kh
i . We have that E

kh
i = 1

�kh

∑�kh
k=1 x(R j , S j )i is the unbiased estimator of Ekh

i , that
is, the theoretical mean of player i’s marginal contributions using all compatible coalitions

associated to strata Ckh , with k ∈ {0, . . . , m − 1} and h ∈ {0, . . . , pi − 1}. Thus, E(E
kh
i ) =

Ekh
i . In terms of its variance, it holds that V ar(E

kh
i ) = θ2kh

�kh
, where θ2kh denotes the variance

of the marginal contributions in the strata with respect to its theoretical mean Ekh
i given by

θ2kh = 1

(m−1
k )(

pi −1
h )

∑
R⊆P\P(i): |R|=k

∑
S⊆P(i)\{i}: |S|=h

(
x(R, S)i − Ekh

i

)2.

First, according to the definition of this estimator Ost
i , we know that it is unbiased since

E(O
st
i ) = Oi , where E(·) is the mean operator. In terms of the variability, this estimator

satisfies Var(O
st
i ) = E((O

st
i − Oi )

2). Formally,

Var(O
st
i ) = 1

m2 · p2i

m−1∑

k=0

pi −1∑

h=0

V ar(E
kh
i ) = 1

m2 · p2i

m−1∑

k=0

pi −1∑

h=0

θ2kh

�kh
.

According to the procedure for allocating the sample among the considered strata by using
stratified sampling, we distinguish two possibilities.

• First, if the uniform allocation procedure is used, �kh = ⌈
�

m·pi

⌉
for each Ckh , with

k ∈ {0, . . . , m − 1} and h ∈ {0, . . . , pi − 1}. Thus, we have that

Var(O
st
i ) = 1

m2 · p2i

m−1∑

k=0

pi −1∑

h=0

θ2kh⌈
�

m·pi

⌉ .

• Otherwise, under the proportional allocation procedure, �kh = ⌈
� · Wkh

⌉
for each Ckh ,

with k ∈ {0, . . . , m − 1} and h ∈ {0, . . . , pi − 1},

Var(O
st
i ) = 1

m2 · p2i

m−1∑

k=0

pi −1∑

h=0

θ2kh

	�Wkh
 .

Then, the mean squared error (MSE) of O
st
i is

M SE(O
st
i ) = (

E(O
st
i ) − Oi

)2 + Var(O
st
i ).

By the unbiased character of the estimator, M SE(O
st
i ) = Var(O

st
i ). In terms of the variance

of O
st
i , we have ensured that its value is zero when the sample size is equal to the population

size. Then, the estimator is consistent since that

lim
�→2pi −12m−1

M SE(O
st
i ) = 0.

It is important to remark that the exact value of Var(O
st
i ) is usually unknown. Thus, its value

can be estimated by

̂
Var(O

st
i ) = 1

m2 · p2i

m−1∑

k=0

pi −1∑

h=0

θ̂2kh

�kh
, (12)
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being θ̂2kh the unbiased estimation of the variance θ2kh on the sample Skh , whose expression
is

θ̂2kh = 1

�kh − 1

�kh∑

j=1

(
x(R j , S j )i − E

kh
i

)2
. (13)

3.2.1 Error analysis of the Owen value estimation

A fundamental issue in the problem we are dealing with focuses on bounding the error in
the estimation, that is, the difference between the approximated value and the exact one.
This error is often not possible to be measured and thus, a probabilistic bound on this is
theoretically provided instead. In words, we have that the approximation is at a distance
greater than ε of the real value with a probability α as maximum. Formally, this is equivalent
to

P(|Ōst
i − Oi | ≥ ε) ≤ α, with ε > 0 and α ∈ (0, 1].

Thus, the estimated value usually becomes a good approximation of the real one, in this case
of the Owen value and under stratified sampling, when sampling sizes sufficiently enlarge.

Moreover, the availability of information on the marginal contributions for each player
i ∈ N results fundamental for bounding the error in the estimation. Fromamathematical point
of view, Hoeffding’s inequality (Hoeffding, 1963) results useful. It states that if

∑k
j=1 X j

denotes the sum of k observations X1, . . . , Xk drawn with replacement, with a j ≤ X j ≤ b j

for all j ∈ {1, . . . , k}, then

P(|
k∑

j=1

X j − E(

k∑

j=1

X j )| ≥ t) ≤ 2 exp

( −2t2
∑k

j=1(b j − a j )2

)
, for all t ≥ 0. (14)

Firstly, we provide a general result for bounding the error in the Owen value estimation based
on Hoeffding’s inequality. Notice that the resulting bound coincides with that one obtained
for the case of simple random sampling with replacement, as in Bachrach et al. (2010).

Proposition 3.2 Let (N , v, P) ∈ U N be a TU-game with a priori unions. Take ε > 0,
α ∈ (0, 1] and denote the range of the marginal contributions for (N , v, P) by

wi,kh = max
(R,S),(R′,S′)∈Ckh

(x(R, S)i − x(R′, S′)i ),

for all k ∈ {0, . . . , m − 1} and h ∈ {0, . . . , pi − 1} and by wi , the maximum of these values.
Then,

� ≥ ln(2/α)w2
i

2ε2
implies that P(|Ost

i − Oi | ≥ ε) ≤ α.

123



Annals of Operations Research (2023) 320:325–353 335

Proof Clearly, since that O
st
i = 1

m·pi

m−1∑
k=0

pi −1∑
h=0

(
1

�kh

�kh∑
t=1

x(Rt , St )i

)
for a sample, it is easy to

check that

P

(
|Ost

i − Oi | ≥ ε
)

= P

(
|Ost

i − E(O
st
i

)
| ≥ ε)

= P

(∣∣∣∣
1

m · pi

m−1∑

k=0

pi −1∑

h=0

⎛

⎝ 1

�kh

�kh∑

t=1

x(Rt , St )i

⎞

⎠

− E

⎛

⎝ 1

m · pi

m−1∑

k=0

pi −1∑

h=0

⎛

⎝ 1

�kh

�kh∑

t=1

x(Rt , St )i

⎞

⎠

⎞

⎠
∣∣∣∣ ≥ ε

)

= P

⎛

⎝
∣∣∣∣
m−1∑

k=0

pi −1∑

h=0

�kh∑

t=1

x(Rt , St )i

mpi�kh
− E

⎛

⎝
m−1∑

k=0

pi −1∑

h=0

�kh∑

t=1

x(Rt , St )i

mpi�kh

⎞

⎠
∣∣∣∣ ≥ ε

⎞

⎠ .

(15)

Thus, we can distinguish two possibilities according to the allocation procedure used in
each case.

• First, if we use the uniform allocation procedure, �kh = ⌈
�

m·pi

⌉
for each k ∈ {0, . . . , m −

1} and h ∈ {0, . . . , pi − 1}. As approximation, we take �kh = �
m·pi

. Thus, the final
expression in (15) can be written as:

P

⎛

⎝
∣∣∣∣
m−1∑

k=0

pi −1∑

h=0

�kh∑

t=1

x(Rt , St )i − E

⎛

⎝
m−1∑

k=0

pi −1∑

h=0

�kh∑

t=1

x(Rt , St )i

⎞

⎠
∣∣∣∣ ≥ ε�

⎞

⎠ (16)

• Secondly, under the proportional allocation procedure, �kh = ⌈
� · Wkh

⌉
for each k ∈

{0, . . . , m − 1} and h ∈ {0, . . . , pi − 1}. We can naturally consider that �kh ≈ � · Wkh .
Consequently, the final expression in (15) can be written as:

P

⎛

⎝
∣∣∣∣
m−1∑

k=0

pi −1∑

h=0

�kh∑

t=1

x(Rt , St )i

mpi Wkh
− E

⎛

⎝
m−1∑

k=0

pi −1∑

h=0

�kh∑

t=1

x(Rt , St )i

mpi Wkh

⎞

⎠
∣∣∣∣ ≥ ε�

⎞

⎠ (17)

It is possible to check that the quantities in (16) and (17) are upper-bounded by 2 exp

(
−2ε2�

w2
i

)
,

beingwi = max{wi,kh}. Taking α > 0 such that 2 exp

(
−2ε2�

w2
i

)
≤ α, we conclude the proof.

��
Secondly, we provide a general result for bounding the error in the estimation of Ekh

i , with
k ∈ {0, 1, . . . , m − 1} and h ∈ {0, 1, . . . , pi − 1}, based on the range of the marginal contri-
butions. Before, we introduce a statement based on Hoeffding’s concentration inequality in
order to bound the error in the estimation of Ekh

i for Ckh when using the range of marginal
contributions.

Proposition 3.3 Let (N , v, P) ∈ U N be a TU-game with a priori unions. Take ε > 0 and
α ∈ (0, 1]. Then,

�kh ≥ ln(2/α)w2
i,kh

2ε2
implies that P(|Ekh

i − Ekh
i | ≥ ε) ≤ α,

being wi,kh the range of the marginal contributions of player i for (N , v, P).
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Proof Clearly, since that E
kh
i = 1

�kh

∑
(R,S)∈Skh

x(R, S)i for a sample of �kh elements,

P(|Ekh
i − Ekh

i | ≥ ε) = P(|Ekh
i − E(E

kh
i )| ≥ ε)

= P(|
∑

(R,S)∈Skh

x(R, S)i − E(
∑

(R,S)∈Skh

x(R, S)i )| ≥ ε�kh).

Applying Hoeffding’s inequality (14), it holds that

P

⎛

⎝∣∣
∑

(R,S)∈Skh

x(R, S)i − E(
∑

(R,S)∈Skh

x(R, S)i )
∣∣ ≥ ε�kh

⎞

⎠ ≤ 2 exp

(
−2ε2�kh

w2
i,kh

)
≤ α,

concluding the proof. ��

Using the formulation of the Owen value in Expression (7), the total estimation error of
Ost

i under stratified sampling can be bounded as follows

|Oi − O
st
i | ≤ 1

m · pi

m−1∑

k=0

pi −1∑

h=0

|Ekh
i − E

kh
i |

≤ 1

m · pi

m−1∑

k=0

pi −1∑

h=0

√
ln(2/α)w2

kh

2�kh
= 1

m · pi

√
ln(2/α)

2

m−1∑

k=0

pi −1∑

h=0

√
w2

i,kh

�kh

(18)

where the second inequality holds by applying Hoeffding’s inequality for bounding the
estimation error of Ekh

i on each strata Ckh .
Thus, we provide the following result that generalizes the analysis of the error in this

setting.

Proposition 3.4 Let (N , v, P) ∈ U N be a TU-game with a priori unions. Take ε > 0,
α ∈ (0, 1].
• If the uniform allocation procedure is used,

� ≥ 1

ε2

ln(2/α)

2 · m · pi

(m−1∑

k=0

pi −1∑

h=0

wi,kh

)2

, ensures that |Oi − O
st
i | ≤ ε.

• If the proportional allocation procedure is used

� ≥ 1

ε2

ln(2/α)

2 · m2 · p2i

(m−1∑

k=0

pi −1∑

h=0

wi,kh√
Wkh

)2

, ensures that |Oi − O
st
i | ≤ ε.

Proof In view of the inequality in (18), it holds that

|Oi − O
st
i | ≤ 1

m · pi

√
ln(2/α)

2

m−1∑

k=0

pi −1∑

h=0

√
w2

i,kh

�kh

Thus, if we distinguish by the allocation procedure used under stratification, we have the
following.
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• By using the uniform procedure, we have �kh = ⌈
�

m·pi

⌉
for each strata Ckh , with k ∈

{0, . . . , m − 1} and h ∈ {0, . . . , pi − 1}. Besides, it satisfies that �kh ≥ �
m·pi

. Thus, we
only have to take ε > 0 such that

1

m · pi

√
ln(2/α)

2

m−1∑

k=0

pi −1∑

h=0

√
w2

i,kh

�kh
≤ 1

m · pi

√
ln(2/α)

2

m−1∑

k=0

pi −1∑

h=0

√
w2

i,kh

�/(m · pi )
≤ ε.

• If we use the proportional procedure, we have �kh = ⌈
�Wkh

⌉
for each strata Ckh , with

k ∈ {0, . . . , m − 1} and h ∈ {0, . . . , pi − 1}. Besides, it holds that �kh ≥ �Wkh . Then, it
satisfies that

1

m · pi

√
ln(2/α)

2

m−1∑

k=0

pi −1∑

h=0

√
w2

i,kh

�kh
≤ 1

m · pi

√
ln(2/α)

2

m−1∑

k=0

pi −1∑

h=0

wi,kh min

{
1√

�Wkh
, 1

}

≤ 1

m · pi

√
ln(2/α)

2

m−1∑

k=0

pi −1∑

h=0

√
w2

i,kh

�Wkh
≤ ε

(19)

for a given ε > 0.

This concludes the proof. ��

3.3 The estimator of the Banzhaf–Owen value

Here, we analyse the statistical properties of the estimator of the Banzhaf–Owen value for
player i , BzOst

i . The study that we do is analogous to the one in the previous section. We
refer to it when it is necessary.

From the previous section, it is easy to check that the estimator BzO
st
is unbiased since that

E(BzO
st
i ) = BzOi for all i ∈ N . The variance under stratification is given byVar(BzO

st
i ) =

E((BzO
st
i − BzOi )

2) and, more explicitly, by

Var(BzO
st
i ) =

m−1∑

k=0

pi −1∑

h=0

W 2
kh V ar(E

kh
i ) =

m−1∑

k=0

pi −1∑

h=0

W 2
kh

θ2kh

�kh
.

Again, this expression takes a different form depending on the procedure considered for
allocating the sample among the strata under stratified sampling.

• When using the uniform allocation procedure, as �kh = ⌈
�

m·pi

⌉
for each Ckh , with

k ∈ {0, . . . , m − 1} and h ∈ {0, . . . , pi − 1}, we have that

Var(BzO
st
i ) =

m−1∑

k=0

pi −1∑

h=0

W 2
kh

θ2kh⌈
�

m·pi

⌉ .

• If we use a proportional allocation procedure, �kh = ⌈
� · Wkh

⌉
for each Ckh , with

k ∈ {0, . . . , m − 1} and h ∈ {0, . . . , pi − 1}. Hence,

Var(BzO
st
i ) =

m−1∑

k=0

pi −1∑

h=0

W 2
kh

θ2kh

	�Wkh
 .
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In this case, the mean squared error (MSE) of BzO
st
i is

M SE(BzO
st
i ) = (

E(BzO
st
i ) − BzOi

)2 + Var(BzO
st
i ).

By the null bias of the estimator, it holds that M SE(BzO
st
i ) = Var(BzO

st
i ). Moreover,

according to the expressions of the variance of BzO
st
i , it satisfies that its value reduces when

the sample size tends to the population size. In this sense, the estimator is also consistent
since that lim

�→2pi −12m−1
M SE(BzO

st
i ) = 0.

For those situation in which the exact value of Var(BzO
st
i ) is unknown, the estimation of

its value is given by

̂
Var(BzO

st
i ) =

m−1∑

k=0

pi −1∑

h=0

W 2
kh

θ̂2kh

�kh
, (20)

being θ̂2kh the unbiased estimation of the variance θ2kh given in Expression (13).

3.3.1 Error analysis of the Banzhaf–Owen value estimation

Again, a fundamental issue in estimation consists in managing the accuracy of the estimator
using the size of the sample. Also in this context, fixed ε > 0, it is desirable that BzO

st
i is

within a distance of ε from BzOi . Formally, the problem can be formulated in terms of a
confidence interval for BzOi , that is

P(|BzO
st
i − BzOi | ≥ ε) ≤ α, with ε > 0 and α ∈ (0, 1].

Therefore, fixed an accuracy of ε and a confidence level of 1 − α, which is the required
sampling size to ensure this? Next we include some results that can be helpful to solve this
question. For this purpose, we initially follow Proposition 3.2.

Proposition 3.5 Let (N , v, P) ∈ U N be a TU-game with a priori unions. Take ε > 0 and
α ∈ (0, 1]. Then,

� ≥ ln(2/α)w2
i

2ε2
implies that P(|BzO

st
i − BzOi | ≥ ε) ≤ α,

being wi the maximum of the range of the marginal contributions for (N , v, P).

Proof This proof follows the scheme considered in Proposition 3.2. ��
Following Proposition 3.3, we bound the error in estimating BzOst

i because

|BzOi − BzO
st
i | ≤

m−1∑

k=0

pi −1∑

h=0

Wkh |Ekh
i − E

kh
i |

≤
m−1∑

k=0

pi −1∑

h=0

Wkh

√
ln(2/α)w2

kh

2�kh
=

√
ln(2/α)

2

m−1∑

k=0

pi −1∑

h=0

Wkh

√
w2

i,kh

�kh
.

(21)

The second inequality is satisfied due to the use of Hoeffding’s inequality for bounding the
estimation error of BzOkh

i on the strata Ckh .
Next result allows an analysis of the absolute error in the Banzhaf–Owen value estimation

following Proposition 3.4.
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Proposition 3.6 Let (N , v, P) ∈ U N be a TU-game with a priori unions. Take ε > 0,
α ∈ (0, 1].
• If the uniform allocation procedure is applied,

� ≥ 1

ε2

ln(2/α)

2

(m−1∑

k=0

pi −1∑

h=0

Wkhwi,kh

)2

, ensures that |BzOi − BzO
st
i | ≤ ε.

• If the proportional allocation procedure is used

� ≥ 1

ε2

ln(2/α)

2

(m−1∑

k=0

pi −1∑

h=0

√
Wkhwi,kh

)2

, ensures that |BzOi − BzO
st
i | ≤ ε.

Proof This proof follows the scheme considered in Proposition 3.4. ��

4 Empirical analysis

We illustrate the performance of our sampling procedures for some well-known examples
in literature where the exact coalitional values can be exactly determined as a mechanism of
distributing the worth of the cooperation. In these situations, the computation of the Banzhaf–
Owen value and the Owen value is not an easy task when using the general formulations
because the set of agents is sufficiently large. However, there exist polynomial expressions
for both coalitional values in the considered examples, in such a way that it is possible to
compare the simulation results with the exact ones.

The results included in this section have been performed by computing the proposed sam-
pling methods into the statistical software R (R Core Team, 2022) on a personal computer
with an Intel(R) Core(TM) i5-7400 and 8 GB of memory and a single 3.00GHz CPU proces-
sor. In particular, the usage of sampling package in R software makes easier to get coalitions
under simple random sampling with and without replacement.

4.1 A weightedmajority game: the IMF in 2002

The first example we consider is the weighted majority game analysed in Alonso-Meijide
and Bowles (2005). In this context, coalitional values are usually considered to analyse the
distribution of the players’ power.

A weighted majority game models those voting situations in which the involved agents
have different weights. Moreover, there exists a quota q > 0 that imposes the majority in
the voting and a collection of non-negative weights h1, . . . , hn , with hi associated to each
i ∈ N . Formally, a weighted majority game is formally given by a simple game (N , v) such
that, for each S ⊆ N ,

v(S) = 1, if
∑

i∈S

hi − q ≥ 0, and v(S) = 0, otherwise.

For instance, Alonso-Meijide and Bowles (2005) used the Banzhaf–Owen value to know
the distribution of the power of the countries belonging to the Board of Governors of the
International Monetary Fund (IMF). Each country has associated a weight given by its voting
right and they are organized into constituencies that induce a partition of the countries. The
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Table 1 Sample sizes for the
weighted majority game by using
Proposition 3.5

ε = 0.00100 ε = 0.00075 ε = 0.00050

α = 0.1 1,497,866 2,662,873 5,991,465

α = 0.05 1,844,440 3,279,004 7,377,759

α = 0.01 2,649,159 4,709,615 10,596,635
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Fig. 1 Absolute error in estimating the Banzhaf–Owen value for the 179 players using stratified sampling (in
black) and SRSwr (in gray) with q = 50%

modelling of a voting situation of the Board of Governors as a TU-game with a priori unions
is due to the fact of that passing a law depends on the required quota for the majority.

The Board of Governors of the IMF in January 2002 is composed of 179 members. All
information about the Executive Board for IMF members is available at the website www.
imf.org. At that time, countries are organized into 24 constituencies. Thus, (N , v, P) denotes
the weighted majority game with a priori unions that models the problem. Appendix A of
Online Resource provides the list of the country’s voting rights (column 2 of the first three
tables). The different constituencies are separated by dashed lines.

4.1.1 Analysis of the Banzhaf–Owen value estimation

Firstly,we evaluate the performance of our sampling proposalwith the proportional allocation
procedure for estimating the Banzhaf–Owen value in this example. Appendix A of Online
Resource also depicts the Banzhaf–Owen value by using q = 50%, q = 70% and q = 85%
(columns 3, 6 and 9, respectively).

Table 1 initially depicts the required sample sizes by directly using Hoeffding’s inequality.
We consider the usual values of α as well as some bearable values for the absolute error in
this setting. For determining these amounts, Proposition 3.5 is required.

Table 2 additionally displays the required sampling sizes to guarantee amaximumabsolute
error of ε with a probability of at least 1 − α for the different constituency lengths. These
sampling sizes are obtained from the expression in Proposition 3.6 by taking wi = 1 for all
i ∈ N . Besides, the obtained sampling sizes are always smaller than the population size.

We compare the results obtained under stratified sampling with those obtained under
simple random samplingwith replacement (SRSwr). To this aim,we use the ideas of Bachrach
et al. (2010), in line with the one suggested by Laruelle and Valenciano (2004) that ensures
that the Banzhaf–Owen value for (N , v, P) is the Banzhaf value for an alternative TU-game.
Thus, we estimate the Banzhaf–Owen value for each player i ∈ N using both methodologies
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Table 3 Theoretical errors for the
weighted majority game by using
Proposition 3.6

pi α = 0.1 α = 0.05 α = 0.01

1 0.00133 0.00148 0.00177

4 0.00258 0.00286 0.00343

6 0.00302 0.00335 0.00401

7 0.00319 0.00354 0.00424

8 0.00333 0.00370 0.00443

9 0.00347 0.00385 0.00461

10 0.00358 0.00397 0.00476

12 0.00379 0.00420 0.00503

13 0.00388 0.00430 0.00515

14 0.00396 0.00439 0.00527

21 0.00443 0.00492 0.00589

23 0.00454 0.00504 0.00604

Table 4 Theoretical errors for the weighted majority game by using Proposition 3.5

α = 0.1 α = 0.05 α = 0.01

Theoretical error 3.8702 × 10−4 4.2947 × 10−4 5.1470 × 10−4

with a sample size equal to � = 107 with a proportional allocation procedure under stratified
sampling. In practice, we only take a small size of the population of compatible coalitions
with P for each member in each constituency to estimate the Banzhaf–Owen value.

Figure1 displays the graphical comparison of the absolute errors obtained under the sam-
plingmethodologiesmentioned above for the set of players in theweightedmajority game for
the case q = 50%. Appendix A of Online Resource numerically details the results obtained
for all countries, including the absolute errors as well as the estimation of the associated vari-
ances obtained under both methods, stratified sampling and SRSwr. In this example, we can
conclude that both approaches provide correct approximations of the Banzhaf–Owen value.
Besides, we check that stratified sampling usually reduces the incurred absolute errors and
the estimations of the variances with respect to those obtained under simple random sampling
with replacement. Appendix A of Online Resource also includes a detailed analysis of the
absolute errors and the estimated variances for the cases q = 70% and q = 85%, for which
analogous conclusions can be extracted. In view of the values displayed in Table 3, we can
hypothesize that the theoretical bounds of the error given by the expression on the right side
of the last inequality in (21) are very conservative in practice.

However, it is noteworthy thatHoeffding’s inequality also provides values of the theoretical
error for several values of α with � = 107 (see by using Proposition 3.5). They are depicted
in Table 4. In general, they are lesser than those ones given by Proposition 3.6.

Notice that, for the specific case of weighted majority games, those bounds induced by
Proposition 3.5 coincidewith those given byBachrach et al. (2010)when simple random sam-
pling with replacement on coalitions is assumed for the Banzhaf values estimation. Besides,
Saavedra-Nieves and Fiestras-Janeiro (2021) establish those conditions ensuring that Ser-
fling’s inequality, the analogous probabilistic bound to Hoeffding’s inequality in the case
of using simple random sampling without replacement (SRSwor), provide smaller sampling
sizes (not always). In this example, the theoretical errors in Table 4, ensured by Hoeffding’s
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inequality, are quite similar to those ensured by Serfling’s inequality when no replacement in
sampling is assumed (ε = 3.8657 · 10−4, 4.2897 · 10−4 and 5.1410 · 10−4, for α = 0.1, 0.05
and 0.01, respectively). See more details in Saavedra-Nieves and Fiestras-Janeiro (2021).

We do a simulation study to check how the above-described sampling procedures perform.
We choose Austria and estimate 1000 times its Banzhaf–Owen value for several quotas
(q = 50%, 70% and 85%) using the above-described sampling methods with a sample size
equal to � = 107.

From Table 5, we check that the theoretical bounds provided by Hoeffding’s inequality in
Table 4 are conservative on this example.Additionally,wedepict theminimum,maximumand
mean absolute errors observed in these 1000 estimations as well as the results of the estimated
variances and processing times (in seconds) under both proposals. By comparing the observed
values with respect to the original ones, we observe that stratified sampling ensures generally
better results than SRSwr (except the case q = 70%, where the difference is negligible
regarding to the bias). However, the most relevant fact is in the reduction of the estimated
variance, that stratified sampling theoretically ensures, in the three cases considered. This
leads to an increase in the processing time required to obtain it with respect to simple random
sampling with replacement. Appendix A.2 of Online Resource completes the study of the
distribution of the absolute errors.

As mentioned above, a theoretical comparison of the bounds of the error in the Banzhaf–
Owen value estimation is made in Saavedra-Nieves and Fiestras-Janeiro (2021). However,
due to its multiple applications in practice, an empirical comparison of sampling methodolo-
gies is also of interest. Table 5 also includes the results associated with the estimation of the
Banzhaf–Owen value for Austria when assuming simple random sampling without replace-
ment, SRSwor, when � = 107. They are extracted from Saavedra-Nieves and Fiestras-Janeiro
(2021). In terms of bias, SRSwor only improves on previous results in the case q = 50%.
However, in terms of estimated variance, the stratified version of sampling always provides
the best results as expected.

4.1.2 Analysis of the Owen value estimation

Secondly, we check how the proposal based on stratified sampling performs in the estimation
of the Owen value also in the example of the International Monetary Fund. The considered
voting rights are again the ones given in Appendix A of Online Resource.

Table 6 depicts the required sampling sizes to ensure a maximum absolute error of ε with a
probability of at least 1−α for the different constituency. These sampling sizes are obtained
accordingly the corresponding expression in Proposition 3.2, with wi = 1 for all i ∈ N .
However, it is worth to mention that the used bound provides sampling sizes are, in some
cases, larger than the population size (they are highlighted in bold). These correspond to
joints of relatively small size and for very small values of ε. Proposition 3.4 provides worse
results than those given directly by Hoeffding’s inequality in Table 1. Note that, although
those values were obtained for the case of estimating the Banzhaf–Owen value, they are also
valid for their usage in this different context.

In this section we estimate the Owen value for each player i ∈ N using stratified sampling
by using the proportional allocation procedure of the sample with � = 107. We are only
extracting a small portion of the population of compatible coalitions with P for each player
in N .

Figure2 graphically describes the absolute errors obtained under stratified sampling for
the set of players in the weighted majority game for the case q = 50%. Appendix B of Online
Resource includes the numerical results obtained for the set of members. More specifically,
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Table 5 Basic statistics for 1000 estimations of the Banzhaf–Owen value for Austria

q = 50% Absolute error Minimum Average Maximum

Strat. sampling 1.572 × 10−9 3.975 × 10−5 1.460 × 10−4

SRSwr 1.037 × 10−7 4.020 × 10−5 1.925 × 10−4

SRSwor 3.700 × 10−9 3.902 × 10−5 1.445 × 10−4

Estimated variance Minimum Average Maximum

Strat. sampling 2.384 × 10−9 2.397 × 10−9 2.411 × 10−9

SRSwr 2.402 × 10−9 2.420 × 10−9 2.437 × 10−9

SRSwor 2.402 × 10−9 2.415 × 10−9 2.428 × 10−9

Processing time Minimum Average Maximum

Strat. sampling 223.146 238.163 318.315

SRSwr 133.277 139.522 152.954

SRSwor 206.470 229.189 249.270

q = 70% Absolute error Minimum Average Maximum

Strat. sampling 2.596 × 10−8 2.266 × 10−5 9.653 × 10−5

SRSwr 2.800 × 10−8 2.251 × 10−5 9.593 × 10−5

SRSwor 2.800 × 10−8 2.298 × 10−5 1.234 × 10−4

Estimated variance Minimum Average Maximum

Strat. sampling 7.880 × 10−10 7.966 × 10−10 8.035 × 10−10

SRSwr 8.232 × 10−10 8.327 × 10−10 8.402 × 10−10

SRSwor 8.212 × 10−10 8.306 × 10−10 8.428 × 10−10

Processing time Minimum Average Maximum

Strat. sampling 218.174 246.340 313.948

SRSwr 132.296 143.296 154.965

SRSwor 210.500 225.600 241.900

q = 85% Absolute error Minimum Average Maximum

Strat. sampling 1.934 × 10−9 2.961 × 10−6 1.258 × 10−5

SRSwr 7.000 × 10−9 3.122 × 10−6 1.321 × 10−5

SRSwor 7.000 × 10−9 3.081 × 10−6 1.449 × 10−5

Estimated variance Minimum Average Maximum

Strat. sampling 1.352 × 10−11 1.457 × 10−11 1.551 × 10−11

SRSwr 1.449 × 10−11 1.564 × 10−11 1.696 × 10−11

SRSwor 1.416 × 10−11 1.640 × 10−11 8.288 × 10−10

Processing time Minimum Average Maximum

Strat. sampling 224.294 243.331 307.395

SRSwr 128.472 137.557 143.877

SRSwor 223.700 234.200 281.800
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Fig. 2 Absolute error in estimating the Owen value for the 179 players using stratified sampling with q = 50%

Table 7 Theoretical errors for the
weighted majority game by using
Proposition 3.4

pi α = 0.1 α = 0.05 α = 0.01

1 0.12337 0.13690 0.16407

4 0.16882 0.18733 0.22451

6 0.19888 0.22069 0.26449

7 0.20838 0.23123 0.27712

8 0.22197 0.24632 0.29520

9 0.23849 0.26465 0.31717

10 0.24932 0.27666 0.33157

12 0.27978 0.31047 0.37208

13 0.29394 0.32618 0.39091

14 0.30939 0.34332 0.41146

21 0.43887 0.48700 0.58365

23 0.46769 0.51899 0.62198

we include the absolute errors and the estimation of the associated variances. In view of
these results, we can conclude that this new approach provides a correct approximation of
the Owen value. Appendix B of Online Resource also details the numerical results for the
cases q = 70% and q = 85%. Again, we can hypothesize that the theoretical bounds of the
error, given by the theoretical bounds of the error given by the right side of the first inequality
in (19), are very conservative in view of the values depicted in Table 7. Even so, we use this
second alternative since that Proposition 3.2 provides extremely large theoretical bounds of
the error.

Again, we can use as theoretical errors in the Owen value estimation those amounts that
were obtained for the weighted majority game by means of the Hoeffding’s inequality (see
Table 4). Those amounts seem more reasonable that the ones in Table 7.

We complete this analysis by doing a new simulation study to compare which of the two
methods proposed is the best in terms of approximating the Owen value. We take Austria and
we estimate 1000 times its Owen value for several quotas (q = 50%, 70% and 85%) using
stratified sampling with a sample size equal to � = 107. If we use those theoretical errors in
Table 4, we check that for the case of Austria (pi = 10) the obtained absolute errors in the
simulation study are smaller than the theoretical ones (except for the case q = 85%).
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Table 8 Basic statistics for 1000 estimations of the Owen value for Austria

Minimum Average Maximum

q = 50% Absolute error 1.224 × 10−7 4.998 × 10−5 2.334 × 10−4

Estimated variance 3.265 × 10−9 3.782 × 10−9 4.340 × 10−9

Processing time 219.896 238.082 292.914

q = 70% Absolute error 2.665 × 10−8 2.827 × 10−4 1.387 × 10−3

Estimated variance 1.327 × 10−8 1.458 × 10−7 1.098 × 10−6

Processing time 217.079 228.782 242.273

q = 85% Absolute error 9.277 × 10−7 9.146 × 10−4 6.063 × 10−3

Estimated variance 1.119 × 10−7 8.691 × 10−7 2.899 × 10−7

Processing time 219.429 231.147 243.612

From Table 8, it is easy to check that the theoretical bounds adequately perform also
under this approach. A statistical summary of the absolute errors, the estimated variances
and the processing times in these 1000 estimations under stratified sampling is also included.
Appendix B.1 of Online Resource displays the graphical analysis of the distribution of the
absolute errors.

4.2 A bankruptcy game

Along this section, we estimate the Owen value for a bankruptcy game with a priori unions
(N , v, P). This example is partially extracted from the real bankruptcy problem considered
in Saavedra-Nieves and Saavedra-Nieves (2020).

A bankruptcy problem can be also analysed from a game theoretic approach. In this
setting, a bankruptcy game (O’Neill, 1982) is said to be a TU-game (N , v) associated to each
(N , c, E) ∈ B N and given, for each S ⊆ N , by

v(S) = max

{
0, E −

∑

i /∈S

ci

}
. (22)

Saavedra-Nieves and Saavedra-Nieves (2020) refer to the milk problem arisen in Galicia
(Spain) after the suppression of the European milk quotas in April 2015. The usage of
bankruptcy rules in this setting is justified as mechanisms of determining new systems of
quotas (cf. Gallástegui, Iñarra and Prellezo 2002). A main assumption for describing this
situation in terms of a bankruptcy problem is that the maximum of tons of milk in 2014–
2015 imposed for Galicia is reduced. This fact directly determines the needing of establishing
a new distribution of the milk production for the councils. As innovation, it seems reasonable
to additionally evaluate the effect in the new quotas of the organization of the Galician
councils into counties. They are territorial units higher than councils and that are lower than
the province. It is important to highlight the key role of Galicia’s regional articulation in
establishing new legislation. According to this, the bankruptcy rules that consider a priori
unions (see Borm, Carpente, Casas-Méndez, and Hendrickx 2005) can be applied for the
mentioned purpose and, among others, the Owen value. As the task is mainly focused on
comparing the estimations with the exact Owen value, we have only restricted our analysis
to the province of A Coruña (Galicia) by reducing the aggregate milk quota for the province
in 2015 by ρ = 40%. The information about the individual milk production of the councils
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Fig. 3 Absolute error for the 82 councils of A Coruña by using � = 105, � = 106 and � = 107

of A Coruña in April 2015 as well as their organization in counties, that induces the required
partition P , is described in the first column of Table C.10 in the Online Resource section.
We also include in the fifth column the exact Owen value that was obtained by using the
characterization of this coalitional value given in Lorenzo-Freire (2017). Notice that the
corresponding game with a priori unions has associated a total amount of 82 players and,
hence, the Owen value is a vector of dimension 82.

Firstly, we estimate the Owen value for the associated bankruptcy game and that it is
depicted in Table C.10 in Appendix C of the Online Resource section. Figure3 graphically
describes the absolute errors obtained under stratified sampling for the set of players in the
bankruptcy game, with � = 105, � = 106 and � = 107. Appendix C of Online Resource
also completes the numerical results with the estimated variances obtained for the set of
involved players. It is obvious that both measures reduce when sampling size increases. We
can naturally conclude a correct performance of our sampling proposal since it is easy to
check that the theoretical errors given by Proposition 3.2 are conservative enough (Table 9).

Finally, we do a small simulation study to evaluate how stratified sampling performs to
approximate the Owen value. We take Cabana de Bergantiños and we estimate 1000 times
its Owen value with a sample size equal to � = 105.

In view of these results, we can ensure that the theoretical bounds of the error obtained
from the right side of the first inequality in (19) are also very conservative in bankruptcy
settings. See, for instance, the results given in Table 10 for several values of α.
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Table 9 Basic statistics for 1000 estimations of the Owen value for Cabana de Bergantiños

Minimum Average Maximum

Absolute error 41.42 12425.36 73110.17

Estimated variance 1.262 × 108 2.530 × 108 1.827 × 109

Processing time 1.540 2.053 4.520

Table 10 Theoretical errors for
the bankruptcy game by using
Proposition 3.5

α = 0.1 α = 0.05 α = 0.01

Theoretical error 36802.91 40839.26 48944.02

4.3 An airport game

This example corresponds to the estimation of the Owen value for the called airport game
with a priori unions (N , c, P) initially studied in Vázquez-Brage et al. (1997). It allows the
establishment of the fees for the planes operating in an airport. We use this example since
that it admits a polynomial expression of the exact Owen value and thus, the comparison can
be done.

Below, we briefly remind the airport games following the ideas of Littlechild and Owen
(1973). The elements that characterize an airport game are the following. We denote by
T the set of types of planes operating in an airport in a fixed period. Thus, Nτ is the set
of movements operated by planes of type τ ∈ T and N the set of all movements, being
N = ∪τ∈T Nτ . Besides, cτ is the cost of a runway that is suitable for planes of type τ in that
period, satisfying that

0 ≤ c1 ≤ c2 ≤ . . . ≤ c|T |.

Formally, the airport games is defined, for every S ⊆ N , by

c(S) = max{cτ : S ∩ Nτ �= ∅},
in such way that c(S) is the cost of a runway that is used by all the movements in S. Thus,
the definition of a fee for each movement is based on the allocation of c(N ) among all the
movements.

For this purpose, Vázquez-Brage et al. (1997) model this situation by using cost games
with a priori unions (N , c, P), being P the partition in N induced by the airlines to which the
planes belong, and theOwen value. The appropriate use of this coalitional value is because the
airport industry is, in practice, organized through a system of airlines. Vázquez-Brage et al.
(1997) specifies a formula for obtaining the Owen value with less computational complexity
in this class of games. Its usage is illustrated on the real example that corresponds to the
situation given by the movements of planes in the first three months of 1993 at Lavacolla, the
airport of Santiago de Compostela (Spain). The information about these movements as well
as the further elements that characterize the airport game are described in Table 11. It depicts
the partition P induced by the airlines in which the movements are organized, the numbers
of movements per airline, the types of planes with runway costs, and the Owen value. The
corresponding cost game with a priori unions has 1258 players and, hence, the Owen value is
a vector in R

1258. By the property of symmetry of the Owen value, its computation reduces
to 25 different components (one per type in each airline).
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Table 11 Airlines using Lavacolla in the first three months of 1993 and the Owen value

Airline Movements Types Costs Owen value Theoretical
error

O
st
i

Air Europa 36 B-757(3) 32,496 8.110 30044.9622 10.422

172 B-737(5) 39,494 11.183 36515.1322 9.718

Aviaco 12 DC-9(4) 34,265 151.093 5275.6132 124.554

Britannia 6 B-737(5) 39,494 369.224 3594.6030 371.497

British airways 2 B-757(3) 32,496 843.378 1335.6328 863.932

Condor Flugdienst 2 B-757(3) 32,496 843.378 1335.6328 855.244

Caledonian airways 2 B-757(3) 32,496 843.378 1335.6328 830.662

Eurobelgian airlines 2 B-737(5) 39,494 1107.673 1623.2607 1092.225

Futura 32 B-737(5) 39,494 69.230 17494.6815 63.168

Gestair executive set 2 CESSNA(1) 8120 176.522 333.7438 176.522

Iberia 452 DC-9(4) 34,265 2.037 37221.3161 1.760

438 B-727(6) 44,850 9.070 48719.5689 12.340

Air charter 2 B-737(5) 39,494 1107.673 1623.2607 1122.612

Corse Air 4 B-737(5) 39,494 553.836 2560.4507 558.168

Air UK Leisure 2 B-737(5) 39,494 1107.673 1623.2607 1096.867

Ibertrans 2 CESSNA(1) 8120 176.522 333.7438 176.522

LTE 36 B-757(3) 32,496 46.854 15803.6980 39.246

Mac aviation 6 LEARJET-25(2) 15,134 120.367 1377.4427 124.074

Monarch airlines ltd 2 B-737(5) 39,494 1107.673 1623.2607 1103.305

Sobelair 6 B-737(5) 39,494 369.224 3594.6030 352.580

Trabajos Aéreos 2 CESSNA(1) 8120 176.522 333.7438 176.522

Tea Basel LTD 2 B-737(5) 39,494 1107.673 1623.2607 1114.205

Oleohidráulica Balear SA 4 CESSNA(1) 8120 88.261 526.4308 88.261

Viasa 30 DC-10(7) 50,000 334.778 21062.6664 349.594

Spanair 2 B-737(5) 39,494 1107.673 1623.2607 1110.996

Let us estimate the Owen value using our sampling procedure. It is worth to mention
that airport games are concave and thus, by Proposition 3.4, the minimum sampling sizes to
ensure that the absolute error is smaller than or equal to ε, with ε > 0 with probability at least
1 − α can be exactly determined. This numerical example illustrates the main drawbacks of
using stratified sampling in this setting. We take a sample of size � = 108. The second last
column of Table 11 depicts the theoretical maximum absolute errors when using this sample
size with α = 0.1. As the bound of the error depends on the number of strata associated with
each i ∈ N , we obtain theoretical errors large enough in those cases with a large number of
movements. See, for instance, the case of Airlines 1 and 10.

Table 11 also includes the estimations obtained by means of our methodology in the
last column. It is easy to see that, in general, these estimations are quite far from the exact
Owen value.Moreover, this effect is accentuated in those components associatedwith airlines
with many movements. Furthermore, this methodology worsens the results obtained for the
estimation of the Owen value also in this example by using simple random sampling with
replacement (see Saavedra-Nieves et al., 2018). The fact of that the most of the players within
the unions are symmetrical and the large size of the strata may justify this effect. In this way,
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only for those compatible coalitions with less costly movements than the one associated with
i , the corresponding marginal contribution is not equal to zero.

5 Concluding remarks

Multiple real-world situations can be modelled by using cooperative game theory in a wide
variety of contexts. The objective common to all of them is to share the joint costs of coop-
eration between all the players involved and, to face it, coalitional values are usually used
as tool. In particular, we focus on those situations in which cooperation among players is
restricted by the existence of a structure of a priori unions. Notice that there exists a list of
methods that avoid the use of general expressions in some contexts. However, computing the
coalitional values becomes a hard task for the most of TU-games since that the complexity
increases with the enlarging of the set of players. This drawback arises in the most of real
applications and, for this reason, sampling techniques are introduced as an alternative to their
approximation.

According to the reformulations of the expressions of the Owen value and the Banzhaf–
Owen value, we have provided two procedures based on stratified sampling to estimate the
above-mentioned coalitional values for general TU-games with a priori unions.

1. We have introduced a sampling procedure to estimate the Owen value for general TU-
games based on stratified sampling.

2. Analogously, we have innovately extended thesemethodologies to approach the Banzhaf–
Owen value for general TU-games with a priori unions also based on stratified sampling.

The proposals based on stratified sampling have been studied and theoretically analysed
from a statistical approach, and their performance was evaluated on well-known examples in
literature where the Banzhaf–Owen value and the Owen value can be exactly computed. In
particular, we compare the distribution of the power of the countries belonging to the Board
of Governors of the International Monetary Fund (IMF) in 2002, for which the Banzhaf–
Owen value and the Owen value were able to be exactly obtained. We also estimate the
Owen value in a bankruptcy problem for which the exact allocation is obtained after a strong
computational effort. Moreover, we repeat this study on an airport game for which the Owen
value take a polynomial expression. Although both estimators provides good approximations
for weighted majority games, we check that the methodology based on stratified sampling
for estimating the Owen value provides worse results than, for example, the methodology
proposed in Saavedra-Nieves et al. (2018) in those airport games with a large amount of
symmetrical players. This phenomenon would also affect the estimation of the Shapley value
in line with that suggested by Castro et al. (2017) or Maleki (2015). Hence, we can conclude
that the class of TU-games on which the methodologies are applied is decisive in terms
of being affected by this effect. From a statistical point of view, the establishment of new
theoretical bounds of the incurred error that improve the ones hereby provided could be useful
when analysing the quality of the resulting estimations.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10479-022-05044-0.

Acknowledgements The author acknowledges the financial support of Ministerio de Economía y Competi-
tividad of the Spanish government under grants MTM2017-87197-C3-2-P and PID2021-124030NB-C32, and
of Xunta de Galicia through the ERDF (Grupos de Referencia Competitiva) ED431C 2021/24. The author
also thanks the computational resources of the Centro de Supercomputación de Galicia (CESGA).

123

https://doi.org/10.1007/s10479-022-05044-0
https://doi.org/10.1007/s10479-022-05044-0


352 Annals of Operations Research (2023) 320:325–353

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Declarations

Conflict of interest The authors declare that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Algaba, E., Bilbao, J. M., & Fernández, J. R. (2007). The distribution of power in the European constitution.
European Journal of Operational Research, 176(3), 1752–1766.

Algaba, E., Bilbao, J.M., Fernández-García, J. R., & López, J. J. (2003). Computing power indices in weighted
multiple majority games. Mathematical Social Sciences, 46(1), 63–80.

Algaba, E., Fragnelli, V., & Sánchez-Soriano, J. (2019). Handbook of the Shapley value. CRC Press.
Alonso-Meijide, J.M., Bilbao, J.M., Casas-Méndez, B.,&Fernández, J. R. (2009).Weightedmultiplemajority

games with unions: Generating functions and applications to the European union. European Journal of
Operational Research, 198(2), 530–544.

Alonso-Meijide, J.M.,&Bowles, C. (2005).Generating functions for coalitional power indices:An application
to the IMF. Annals of Operations Research, 137(1), 21–44.

Alonso-Meijide, J. M., Carreras, F., Fiestras-Janeiro, M. G., & Owen, G. (2007). A comparative axiomatic
characterization of the Banzhaf–Owen coalitional value. Decision Support Systems, 43(3), 701–712.

Bachrach, Y., Markakis, E., Resnick, E., Procaccia, A. D., Rosenschein, J. S., & Saberi, A. (2010). Approxi-
mating power indices: Theoretical and empirical analysis. Autonomous Agents and Multi-Agent Systems,
20(2), 105–122.

Banzhaf, J. F. (1964). Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Review, 19, 317.
Benati, S., López-Blázquez, F., & Puerto, J. (2019). A stochastic approach to approximate values in cooperative

games. European Journal of Operational Research, 279(1), 93–106.
Borm, P., Carpente, L., Casas-Méndez, B., & Hendrickx, R. (2005). The constrained equal awards rule for

bankruptcy problems with a priori unions. Annals of Operations Research, 137(1), 211–227.
Castro, J., Gómez, D., Molina, E., & Tejada, J. (2017). Improving polynomial estimation of the Shapley

value by stratified random sampling with optimum allocation. Computers & Operations Research, 82,
180–188.

Castro, J., Gómez, D., & Tejada, J. (2009). Polynomial calculation of the Shapley value based on sampling.
Computers & Operations Research, 36(5), 1726–1730.

Cochran, W. G. (2007). Sampling techniques. JohnWiley & Sons.
Costa, J. (2016). A polynomial expression for the Owen value in the maintenance cost game. Optimization,

65(4), 797–809.
Deng, X., & Papadimitriou, C. H. (1994). On the complexity of cooperative solution concepts. Mathematics

of Operations Research, 19(2), 257–266.
Fernández-García, F., & Puerto-Albandoz, J. (2006). Teoría de Juegos Multiobjetivo. Sevilla: Imagraf Impre-

sores SA.
Fragnelli, V., García-Jurado, I., Norde, H., Patrone, F., and Tijs, S. (2000). How to share railways infrastructure

costs? In Game practice: contributions from applied game theory (pp. 91–101). Springer.
Gallástegui, M. C., Iñarra, E., & Prellezo, R. (2002). Bankruptcy of fishing resources: The northern European

anglerfish fishery. Marine Resource Economics, 17(4), 291–307.
Hoeffding,W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American

statistical association, 58(301), 13–30.
Laruelle, A., &Valenciano, F. (2004). On the meaning of Owen–Banzhaf coalitional value in voting situations.

Theory and Decision, 56(1), 113–123.

123

http://creativecommons.org/licenses/by/4.0/


Annals of Operations Research (2023) 320:325–353 353

Leech, D. (2002). Voting power in the governance of the international monetary fund. Annals of Operations
Research, 109(1), 375–397.

Leech, D. (2003). Computing power indices for large voting games. Management Science, 49(6), 831–837.
Littlechild, S. C., &Owen, G. (1973). A simple expression for the Shapley value in a special case.Management

Science, 20(3), 370–372.
Lorenzo-Freire, S. (2017). New characterizations of the Owen and Banzhaf-Owen values using the intracoali-

tional balanced contributions property. TOP, 25(3), 579–600.
Lucchetti, R., Moretti, S., Patrone, F., & Radrizzani, P. (2010). The Shapley and Banzhaf values in microarray

games. Computers & Operations Research, 37(8), 1406–1412.
Maleki, S. (2015). Addressing the computational issues of the Shapley value with applications in the smart

grid (Unpublished doctoral dissertation). University of Southampton.
Mann, I., & Shapley, L. S. (1960). Values of large games, IV: Evaluating the electoral college by Montecarlo

techniques. The RAND Corporation.
Moretti, S., Patrone, F., & Bonassi, S. (2007). The class of microarray games and the relevance index for

genes. TOP, 15(2), 256–280.
Neyman, J. (1934). On the two different aspects of the representativemethod: Themethod of stratified sampling

and the method of purposive selection. Journal of the Royal Statistical Society, 97(4), 558–625.
O’Neill, B. (1982). A problem of rights arbitration from the Talmud. Mathematical Social Sciences, 2(4),

345–371.
Owen, G. (1972). Multilinear extensions of games. Management Science, 18(5–part–2), 64–79.
Owen, G. (1975). Multilinear extensions and the Banzhaf value. Naval research logistics quarterly, 22(4),

741–750.
Owen, G. (1977). Values of games with a priori unions. In Mathematical economics and game theory (pp.

76–88). Springer.
Owen, G. (1982).Modification of the Banzhaf-Coleman index for games with a priori unions. InPower, voting,

and voting power (pp. 232–238). Springer.
R Core Team. (2022). R: A language and environment for statistical computing [Computer software manual].

Vienna, Austria. Retrieved from https://www.R-project.org/
Saavedra-Nieves, A., & Fiestras-Janeiro, M. G. (2021). Sampling methods to estimate the Banzhaf-Owen

value. Annals of Operations Research, 301(1), 199–223.
Saavedra-Nieves, A., García-Jurado, I., & Fiestras-Janeiro, M. G. (2018). Estimation of the Owen value based

on sampling. In E. Gil, E. Gil, J. Gil, & M. Á. Gil (Eds.), The mathematics of the uncertain: A tribute to
Pedro Gil (pp. 347–356). Springer.

Saavedra-Nieves, A., & Saavedra-Nieves, P. (2020). On systems of quotas from bankruptcy perspective: The
sampling estimation of the random arrival rule. European Journal of Operational Research, 285(2),
655–669.

Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of Games, 2(28), 307–317.
Vázquez-Brage, M., van den Nouweland, A., &García-Jurado, I. (1997). Owen’s coalitional value and aircraft

landing fees. Mathematical Social Sciences, 34(3), 273–286.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://www.R-project.org/

	On stratified sampling for estimating coalitional values
	Abstract
	1 Introduction
	2 On coalitional values
	3 A stratified sampling procedure to estimate coalitional values
	3.1 Numerical implementation of the sampling algorithm
	3.2 The estimator of the Owen value
	3.2.1 Error analysis of the Owen value estimation

	3.3 The estimator of the Banzhaf–Owen value
	3.3.1 Error analysis of the Banzhaf–Owen value estimation


	4 Empirical analysis
	4.1 A weighted majority game: the IMF in 2002
	4.1.1 Analysis of the Banzhaf–Owen value estimation
	4.1.2 Analysis of the Owen value estimation

	4.2 A bankruptcy game
	4.3 An airport game

	5 Concluding remarks
	Acknowledgements
	References




