
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-022-04961-y

1 3

A hybrid CUDA, OpenMP, and MPI parallel TCA‑based 
domain adaptation for classification of very high‑resolution 
remote sensing images

Alberto S. Garea1 · Dora B. Heras1 · Francisco Argüello2 · Begüm Demir3

Accepted: 16 November 2022 
© The Author(s) 2022

Abstract
Domain Adaptation (DA) is a technique that aims at extracting information from a labeled 
remote sensing image to allow classifying a different image obtained by the same sensor but 
at a different geographical location. This is a very complex problem from the computational 
point of view, specially due to the very high-resolution of multispectral images. TCANet 
is a deep learning neural network for DA classification problems that has been proven as 
very accurate for solving them. TCANet consists of several stages based on the application 
of convolutional filters obtained through Transfer Component Analysis (TCA) computed 
over the input images. It does not require backpropagation training, in contrast to the usual 
CNN-based networks, as the convolutional filters are directly computed based on the TCA 
transform applied over the training samples. In this paper, a hybrid parallel TCA-based 
domain adaptation technique for solving the classification of very high-resolution multispec-
tral images is presented. It is designed for efficient execution on a multi-node computer by 
using Message Passing Interface (MPI), exploiting the available Graphical Processing Units 
(GPUs), and making efficient use of each multicore node by using Open Multi-Processing 
(OpenMP). As a result, an accurate DA technique from the point of view of classification and 
with high speedup values over the sequential version is obtained, increasing the applicability 
of the technique to real problems.

Keywords  CUDA · OpenMP · MPI · GPU · Multicore · Domain adaptation · Feature 
extraction · Remote sensing · Multispectral

Alberto S. Garea, Dora B. Heras, Francisco Argüello and Begüm Demir have contributed equally to 
this work.

 *	 Alberto S. Garea 
	 jorge.suarez.garea@usc.es

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04961-y&domain=pdf


	 A. S. Garea et al.

1 3

1  Introduction

The classification of images is one of the most common processes in the Remote Sens-
ing (RS) field [1–3]. During this process, each of the pixels that comprises the image is 
classified, that is, it is assigned to one of the previously defined class labels. The solution 
to classification problems using supervised methods is strongly linked to the existence of 
reference field information. In many cases, building this information is costly in time and 
effort since it may require data from difficult access areas and a subsequent contrast of 
information provided by different sources. In addition, when working with high-resolution 
images, most of the common classification algorithms fail to distinguish the different ele-
ments present in the image [4].

As an alternative, Machine Learning (ML)-based classification algorithms play a very 
important role in the remote sensing literature for very high spatial resolution images [5, 
6]. ML encompasses a set of algorithms that capture system dynamics without human 
intervention. This makes them more robust and less dependent on human experts. Deep 
Learning (DL) defines a subset of ML algorithms with high computational cost, which 
learn to represent the problem as a nested hierarchy of concepts where more general con-
cepts are defined in relation to simpler concepts and more abstract representations are 
obtained based on less abstract ones. ML-based architectures such as Artificial Neural 
Networks (ANNs) [7, 8] or architectures based on DL such as Deep artificial Neural Net-
works (DNNs) [9] or Convolutional Neural Networks (CNNs) [10–12] have been success-
fully used for remote sensing image classification.

The lack of high-quality reference data [13, 14] poses a particular challenge in the clas-
sification of the images. The problem is more complex if images belonging to different 
spatial areas need to be classified or if they were taken by different sensors or at different 
times. In all these cases, the spectral shift between the different images, produced dur-
ing in-flight data acquisitions due, for example, to instrumental pressure, temperature, or 
vibrations, could reduce the accuracy of a joint classifier [14, 15]. Furthermore, given the 
fact that the scarcity of available reference information affects the success of the classifica-
tion task, and since the manual labeling process is very expensive [16], the need to find 
techniques that take advantage of all the available reference information gains particular 
relevance. Transfer Learning (TL) methods contribute to alleviate the problem.

TL encompasses a set of techniques that are responsible for applying the knowledge 
previously acquired for one or more tasks in a given source domain, to another task related 
to the initial one, in a target domain [17]. Domain Adaptation (DA) techniques [18–21], 
which are a subset of TL, use reference information from images belonging to a source 
domain to try to classify images belonging to a target domain, for which no reference 
information is available. Among the techniques applied to perform DA, we can high-
light Feature Extraction (FE) techniques [22, 23], which try to reduce the displacement 
between the two domains by finding a function that can map the data to a new space that 
better defines them. Within these techniques, CORAL [23] is an example, based on the 
alignment of the covariance of both domains. Other more complex examples are based on 
neural networks such as techniques based on Stacked Denoising Auto-Encoders (SDAE) 
[22].



1 3

A hybrid CUDA, OpenMP, and MPI parallel TCA‑based domain…

The use of DL-based architectures for DA, such as CNNs, has also been proven effec-
tive [24]. This type of network is basically made up of a set of nested convolutional filters. 
They require an iterative process to learn the weights of the network [25], which, depending 
on its complexity, could become very expensive. Therefore, different alternatives to this type 
of neural network have been proposed to reduce the computational cost. In [26], the authors 
proposed to replace the costly iterative process of training a CNN by computing the convo-
lutional network filters using Principal Component Analysis (PCAs). For the case where the 
data are not linearly separable, [27] presented a scheme that uses kernel PCA (KPCA) to 
extract features.

Similarly, TCANet [28] was proposed by the authors as a DL network for DA applied to 
multi and hyperspectral remote sensing images. Similarly to [26], in this case, the convolu-
tional filters that operate on patches of the multispectral image are obtained through Transfer 
Component Analysis (TCA). TCA [29] is a feature extraction technique specially designed 
for DA. TCANet has the main advantage that it does not require training based on backpropa-
gation, since TCA is itself a learning method that obtains the filter coefficients directly from 
the input data. Even with this advantage, TCANet incurs in a high computational cost requir-
ing parallel computation. The high computational cost of processing RS information makes 
the use of parallel computing resources imperative [30].

As in other research fields, the requirement for rapid and effective solutions for process-
ing the massive amounts of data associated with RS has led to the extended use of different 
computing paradigms the last few years. These include supercomputing, cloud computing, 
specialized hardware computing, and quantum computing, among others [31, 32]. In par-
ticular, supercomputers have been widely used in RS applications to accelerate and scale the 
processes of image classification, target detection, clustering, registration, data fusion, com-
pression or feature selection/extraction [33]. Many of the papers focus on exploiting the het-
erogeneous parallel architectures of the computing nodes by using a hybrid MPI, OpenMP 
and CUDA implementation [34]. For example, [35] presents a hybrid implementation of a 
target classification and recognition technique based on the Cross model Neural Cognitive 
Computing (CNCC) algorithm.

Regarding techniques based on DL, most of them are designed for being executed at least 
using GPU-based architectures. Nevertheless, new parallel and big data implementations are 
being provided by the authors trying to reduce the computational time of the applications. 
For example, [36] presented a cloud-based implementation of an autoencoder (AE), a Deep 
Neural Network (DNN) for nonlinear data compression. In [37] a hyperspectral pyramidal 
ResNet architecture model executed on a heterogeneous system was proposed. Ordoñez et al. 
[38] exploited the parallelism of a cluster in a multi-node, multi-GPU implementation for the 
effective co-registration of bands and multispectral images.

In this paper, a hybrid parallel supervised classification scheme based on DA by using 
TCANet and Support Vector Machines (SVM) as classifier is presented. It is applied to very 
high-resolution multispectral images corresponding to vegetation areas captured by a drone. An 
optimization of the technique based on reducing the computational cost by reducing the num-
ber of data blocks processed in the training stage of the scheme is firstly proposed. In addition, 
the code is modified to exploit a multi-node architecture by using Message Passing Interface 
(MPI), the multicore architecture of each node by using Open Multiprocessing (OpenMP), and 
the GPUs available in each node by using Compute Unified Device Architecture (CUDA). The 
resulting implementation considerably decreases the execution time of the classification scheme 



	 A. S. Garea et al.

1 3

while preserving the quality of the classification results. The codes and datasets used in the exper-
iments are available at https://​gitlab.​citius.​usc.​es/​hiper​espec​tral/​tcanet_​jos_​2022.

2 � TCANet‑based classification scheme

TCANet is, as explained in the previous section, based on TCA for the computation of the filters 
corresponding to each layer of the DA network. This section first describes TCA and then pre-
sents the proposed supervised classification scheme based on TCANet [28].

2.1 � TCA for domain adaptation

TCA is a kernel-based feature extraction technique proposed by [29]. To achieve this objective, 
TCA tries to learn transfer components across domains in a Reproducing Kernel Hilbert Space 
(RKHS). To minimize the distance between the two distributions, TCA applies Maximum Mean 
Discrepancy (MMD) [39], a nonparametric and computationally simpler kernel-based measure 
defined as:

where �S corresponds to the data of the first distribution (source), �T to the data 
of the other one (target), Ns and Nt are the number of samples from the source and 
the target domains, respectively. H is a universal RKHS [40], and � ∶ X → H is a 
nonlinear mapping function that can be found by minimizing the distance as defined 
by (1). Using the kernel trick (i.e., K(�i, �j) = �(�i)

��(�j) ), [41] proposed to convert 
this problem into a kernel learning problem, where (1) can be rewritten as:

where

is a kernel matrix whose elements have been defined by K() on the source domain 
( �S,S ), on the target domain ( �T ,T ), and also on the cross-domain ( �S,T and �T ,S ), 
and � = [Lij] ≥ 0 with

Based on a unified kernel learning method proposed by [29] that uses an explicit low-
rank representation, the kernel learning problem solved by TCA can be summarized as:

(1)dist(�S,�T ) =

‖‖‖‖‖‖
1

NS

NS∑
i=1

�(�Si) −
1

NT

NT∑
i=1

�(�Ti)

‖‖‖‖‖‖

2

H

,

(2)dist(�S,�T ) = trace(��),

(3)� =

[
�S,S �S,T

�T ,S �T ,T

]
∈ ℝ

(NS+NT )×(NS+NT )

(4)Lij =

⎧⎪⎨⎪⎩

1

N2

S

if �i, �j ∈ �S,

1

N2

T

if �i, �j ∈ �T ,

−
1

NSNT

otherwise.

https://gitlab.citius.usc.es/hiperespectral/tcanet_jos_2022


1 3

A hybrid CUDA, OpenMP, and MPI parallel TCA‑based domain…

where the second trace is the distance between mapped samples dist(��
S
,��

T
) such 

that ��
S
= {��

Si
} = {�(�Si)} , �

�
T
= {��

Ti
} = {�(�Ti)} , � is a trade-off parameter, � is an 

identity matrix of size m × m , and � is a centering matrix. The first trace in (5) is a 
regularization term needed to control the complexity of the projection matrix 
� ∈ ℝ

(NS+NT )×m , m ≪ NS + NT . � is necessary to transform the corresponding fea-
ture vectors to the new m-dimensional space. To avoid the trivial solution ( � = 0 ), 
the constraint �T���� = � is added.

Equation (5) can be reformulated as a trace maximization problem where the solution of 
the projection matrix � comes through the eigendecomposition of

giving the m eigenvectors corresponding to the m principal eigenvalues of �.

2.2 � TCANet‑based classification scheme

This section describes the TCANet-based classification scheme used in this paper and pre-
viously presented in [28] . Figure 1 shows the block diagram of the proposed classification 
scheme that includes a final supervised classification stage using SVM. The diagram details 
the steps followed for the training stage.

After a first step where NS and NT random samples are selected as a training set from 
the source and the target images, respectively, a patch extraction process is performed. This 
process extracts a patch of size D × D × B around each selected training sample being D the 
spatial width and height of the patch and B the number of bands. The training samples are 
{�i}

NS

i=1
, �i ∈ ℝ

D×D×B for the source, and {�i}
NT

i=1
, �i ∈ ℝ

D×D×B for the target. Then, each 
patch is reshaped from 3D ( D × D × B ) to a 2D patch of size D2 × B . So, the input for the 
next step is built by stacking nS 2D patches from the source and nT 2D patches from the target 
{�i}

n1
i=1

, �i ∈ ℝ
D2×B, n1 = NS + NT.

(5)minw trace(�T�) + �trace(�T����)

s.t. �T���� = �,

(6)� = (� + ����)−1���,

Fig. 1   Diagram of the classification scheme based on TCANet. Steps followed for training



	 A. S. Garea et al.

1 3

After the patch extraction step, a sequence of TCA stages equivalent to the different lay-
ers of a CNN are computed. These are represented in Fig. 1 as TCA iterations. The output 
of each iteration is the input to the following one. Similar to a CNN where the number of 
outputs from a layer is proportional to the number of filters it applies, the number of outputs 
of each TCA iteration is proportional to the number of TCA filters computed in the iteration. 
It consists of three steps as indicated in the figure. First, in step I, a factorization of the 2D 
patches is computed. It consists of extracting from each 2D patch, blocks of data for the TCA 
computation of step II. TCA is used to perform the computation of the called TCA filters, 
which are used to compute a convolutional operation over all the previously extracted 2D 
patches. During step III a filtering process is performed by applying the computed filters of 
the iteration producing filtered 2D patches as output.

Once the last TCA iteration is computed, a feature extraction process is responsible for produc-
ing the new features generated by the network. A new representation for each of the NS and NT 
input samples is obtained based on these new features. The last step of the procedure is the clas-
sification process in which each of the initial input samples is assigned to a class among a set of 
predefined possible classes. Any supervised algorithm could be selected for classification. In this 
case, SVM, the same classifier as in [28] was selected. SVM classifiers have been found to provide 
similar results to other commonly used, nonparametric classifiers such as Random Forest (RF) and 
can handle scenarios with a low number of training samples [42]. SVM is also presented by some 
authors as a standard noncontextual classifier for remote sensing classification [43].

For the test stage, all the steps described above are applied, except for the computation of 
the TCA filters. These filters are computed in the training stage and only applied in the test 
stage. As can be seen, there is a high potential of parallelism in the scheme as the same opera-
tions are performed over a large number of data patches.

3 � Hybrid parallel TCANet‑based classification scheme

The classification process described in the previous section incurs in high computational costs 
for different reasons. The main one is the large size of the multispectral datasets as a conse-
quence of the very high spatial resolution of the images. Another reason is that the domain 
adaptation network requires the extraction of a 3D patch for each pixel used for training and 
for testing. In addition, the number of sub-patches increases with each iteration of TCA as this 
number is multiplied by a factor equal to the number of filters for the iteration. As a conse-
quence, the process is hardly computable without applying optimizations and exploiting the 
concurrency capabilities of the available hardware. Different optimization and parallelization 
techniques have been applied in order to design a technique that is computationally efficient. 
In particular, we propose a hybrid CUDA, OpenMP, and MPI parallel scheme for classifica-
tion based on DA.

Algorithm 1 presents the pseudocode summarizing the parallel proposal for an optimized 
TCANet-based classification scheme. The full scheme requires executing the code, first for 
training and then with some changes for testing. The pseudocode corresponds only to the 
training stage. It consists, as explained in the previous section, of the following steps: patch 
extraction, iterative TCA computation made up of three steps (factorization, TCA calculation, 
and filtering), feature extraction, and, finally, classification training by using the SVM. Later 
on, we will explain the differences between the training and the test stages of the scheme.



1 3

A hybrid CUDA, OpenMP, and MPI parallel TCA‑based domain…



	 A. S. Garea et al.

1 3

The first optimization applied to the code with respect to the first version of TCANet 
presented in [28] consists of reducing the computational cost by minimizing the number of 
blocks that are extracted from each patch during the factorization step (step I shown in lines 
7–17 of the pseudocode in Algorithm 1). The step has been modified for extracting only non-
overlapping blocks, so that the spatial context information is still considered but the number 
of blocks is reduced.

The detailed operations associated to one iteration of TCA (lines 7–36 in the pseudocode) 
can be observed in Fig. 2. In particular, the factorization is shown in the bottom left part of 
the figure, denoted as Step I. All the extracted blocks are used in step II to compute the TCA 
filters (lines 18–23 in the pseudocode) as shown in Fig. 2. Note in the parameter definition of 
the pseudocode that, for each TCA iteration, the sizes of matrices �

�
 , � , and � are increased, 

in particular, they are multiplied by the number of filters computed in the iteration. The size 
of the matrix of filters for iteration i is �i and it is directly proportional to the number of fil-
ters for the iteration. The cost of the TCA computation is, therefore, increased for each new 
TCA iteration. The computed TCA filters are used, as in a CNN, to perform convolutional 
operations on input patches in step III (lines 24–36 of the pseudocode and also represented in 
Fig. 2). During Step III the computed filters (matrix �i ) are applied to each input patch pro-
ducing the outputs of the iteration (see [28] for a more detailed explanation).

After the filtering process, features need to be extracted. A complete explanation of the 
steps followed for feature extraction (see lines 37–46 of the pseudocode) are described in 
[28]. This feature extraction consists basically on two loops. The first one performs a binariza-
tion of the filtered patches produced by the last TCA iteration by using the Heaviside func-
tion. The second one is a loop that in each iteration reduces the features obtained for each 
group of FK binarized filtered patches being K the number of TCA iterations. The output of 
this process is a feature vector describing each input patch. It was proven that the accuracy of 



1 3

A hybrid CUDA, OpenMP, and MPI parallel TCA‑based domain…

the classification obtained by means of the parallel algorithm is the same as that obtained by 
the original TCANet.

The whole classification scheme was designed to exploit multiple computing nodes by 
using MPI, the multicore processors of each computing node by using OpenMP, and the 
multi-GPU architecture available in the computing nodes through the use of CUDA.

OpenMP is a standard and portable Application Programming Interface (API) for writing 
shared memory parallel programs [44]. It means that it is designed for systems where all their 
threads have direct access to all available memory. OpenMP provides the programmer with 
high-level tools (compiler directives and library routines) that facilitate the parallelization of 
serial programs in Fortran and C/C++.

In the OpenMP execution model, a thread called master is always defined, and it exists during 
the execution of the program. Only when a parallel region is encountered, additional threads are 
created to perform the parallel task. The master thread is responsible for creating and activating 
these threads, whose number can be defined by the user or by the system where the program 
is being executed. The synchronization of all the threads takes place at the end of the parallel 
region with an implicit barrier. Once the last thread has finished its work and, therefore, it has 
reached the barrier, the execution continues with the master thread until a new parallel region is 
encountered.

In particular, OpenMP was applied in Algorithm 1 to the steps called patch extraction, factori-
zation, filtering, feature extraction, and classification. The main regions of the code affected by 

Fig. 2   Details of one TCA iteration [28]



	 A. S. Garea et al.

1 3

the OpenMP parallelization are indicated (lines 3, 8, 13, 25, 31, 37, and 41 of the pseudocode). 
With this computing model, the work is executed by different threads assigned to different cores 
by means of OpenMP inside each computing node. As the tasks performed within the loops of 
the code may be different for each thread, a dynamic scheduling strategy was selected for auto-
matically partitioning the iterations of those loops with OpenMP thus avoiding idle threads.

CUDA is a general-purpose parallel computing platform and programming model intro-
duced by NVIDIA in 2006 [45]. The way NVIDIA GPUs execute programs using CUDA 
is by invoking parallel functions called kernels that run as a grid of blocks of threads. In our 
case, as shown in Algorithm 1 (lines 18–23), step II of each TCA iteration (lines 19–23) is 
computed using the GPUs available in the computing node. Different kernels are executed 
by the different GPUs by using CUDA over C++. For each kernel executed in a GPU, each 
block of threads corresponding to the kernel is assigned to any of the Streaming Multiproces-
sors available in the GPU, so not all blocks run concurrently.

After the training stage described in Algorithm 1, a similar test stage needs to be executed. 
The main differences between training and test are that the test does not include TCA com-
putation and that it is executed for test samples, the pixels of the target not belonging to the 
training set. As the number of test pixels is much higher than the number of training pixels, 
the computational cost of the test stage is also higher than the cost of the training stage. Try-
ing to mitigate this high cost, MPI is used for exploiting the different computing nodes avail-
able in the architectures. MPI is a standard for communication between processes running in 
a distributed memory system. Figure 3 shows the operation of the MPI code. First, the input 
patches are extracted and processed by a master computing node, using the pre-computed 
TCA filters, to obtain their new features. CUDA and OpenMP implementations are used for 
each step as it was indicated in Algorithm 1. Then, the MPI_Send and MPI_Recv functions 
are used to establish a point-to-point communication between the master node and the other 
two slave nodes to equally distribute these features among them as shown in Fig. 3. Each MPI 
node applies the SVM classification model to a group of samples. The results of the classifi-
cations performed in each slave node (i.e., classification maps that label each pixel indicating 
the class to which it belongs) are collected again by the master node. This scheme could be 
extended to a higher number of nodes if the number of test samples were high enough.

4 � Experimental results

This section shows the experimental results obtained for the different implementations of the 
hybrid CUDA, OpenMP, and MPI parallel TCANet-based classification scheme. Several 
optimizations and parallelization techniques are compared in terms of computation time and 
speedups.

The different versions of the proposed implementation have been coded in C++. In addi-
tion, a version using MATLAB has been developed to compare runtime parallelization dif-
ferences between C++ and MATLAB in those implementations without MPI. Regarding 
hardware, a PowerEdge R730 server has been used for running the MATLAB codes. This 
server includes two Intel Xeon E52623v4 processors with four cores (eight threads) each and 
128 GB of DDR4 memory. For the C++ codes, the Finisterrae III supercomputer has been 
used. This supercomputer is located at the Galician Supercomputing Center (CESGA) and 
consists of 354 nodes. Each node includes two Intel Xeon Ice Lake 8352Y processors with 



1 3

A hybrid CUDA, OpenMP, and MPI parallel TCA‑based domain…

32 cores each and a minimum of 256 GB of memory. For the experiments, three nodes were 
used. Although the code could be efficiently executed on a higher number of MPI nodes, 
datasets of a higher size would be necessary for compensating the overhead of distributing the 
data among those nodes. CUDA codes run on the Nvidia A100 GPUs available in each com-
puting node of Finisterrae. Each node has two GPUs based on the NVIDIA Ampere archi-
tecture and is equipped with 108 multiprocessors and 64 cores per multiprocessor, resulting 
in 6912 cores each. The CUDA capability version is 8.0 and each card has 40 GB of memory 
available.

The codes have been compiled using the g++ 10.1.0 version with OpenMP 4.0 support 
under Linux using different configurations of threads and MATLAB 2015. The OpenBLAS 
library was used to accelerate algebraic operations. Regarding the GPU implementation, the 
CUDA codes have been compiled under Linux using the nvcc version 11.2 of the toolkit. The 
cublasXt API, included in the cuBLAS library, was used to perform multi-GPU computa-
tions. Version 4.1.4 of the OpenMPI library was used for the experiments.

The LIBSVM library [46] in its version 3.25 was used for the classification step. The 
type of SVM was C-Support Vector Classification (C-SVC) using the Radial Basis Function 
(RBF) kernel and parameters gamma and C with values 2−10 and 25 , respectively. As usual in 
remote sensing [47], the classification accuracy results are presented in terms of overall accu-
racy (OA), which is the percentage of correctly classified pixels [48].

4.1 � Datasets

Three remote sensing datasets were constructed for the experiments based on the data 
acquired by the MicaSense RedEdge multispectral camera mounted on a custom Unmanned 
aerial vehicle (UAV). This sensor captures five different spectral bands: blue (475 nm), green 
(560 nm), red (668 nm), red-edge (717 nm), and NIR (840 nm). The three images were taken 
at a height of 120m, with a high spatial resolution of 10 cm/pixel, during the summer months 

Fig. 3   Diagram of the test stage using MPI on three nodes



	 A. S. Garea et al.

1 3

of 2018 in Galicia, Spain. Seven different classes corresponding to different materials were 
considered for the experiments: water, tiles, asphalt, bare soil, rock, concrete, and vegetation. 
For each of the three images, two disjoint regions were selected and labeled as source and 
target. The objective is the classification of the target region.

The first dataset, shown in Fig. 4, was built based on an image capturing the watershed 
of the river Oitavén, Oitavén from now on. An RGB composite color of the image and the 
corresponding reference data for classification are shown. This image has a spatial size of 
6689 × 6722 pixels. The regions selected as source and target are also depicted. Figure 5 
shows the Eiras dam dataset, Eiras from now on, with a spatial size of 5176 × 18224 pixels. 
Finally, the third dataset shown in Fig. 6 corresponds to creek Ermidas, Ermidas from now 
on, and its size is 11924 × 18972 pixels.

Tables 1, 2, and 3 show the number of available samples of the source and the target 
regions for the Oitavèn, Eiras, and Ermidas datasets, respectively, as well as the dimensions 
in pixels of the regions. A maximum number of 2000 samples per class from both source and 
target were randomly selected for the training phase. In those classes in which the number of 
samples is less than 2000, all available samples were selected. The remainder of the pixels 
from the target were used for the test phase. Seven different classes were considered.

The parameter values of the experiments, as defined in Algorithm 1, for the three datasets 
are shown in Table 4. It can be seen that the values for all the parameters, independent from 
the size of the datasets, are the same for all the datasets for comparative purposes. In particu-
lar, the number of TCA iterations selected was 2, being 2 and 16 the sizes of the TCA filters 
f1 and f2 for the first and the second iteration, respectively.

Fig. 4   Oitavèn. False color composite and reference data for classification



1 3

A hybrid CUDA, OpenMP, and MPI parallel TCA‑based domain…

4.2 � Results

This section presents the experimental results obtained by applying the hybrid CUDA, 
OpenMP, and MPI parallel TCANet-based classification scheme over the three very high-
resolution multispectral datasets described in the previous section.

Table 5 shows a summary of results for the three datasets. All the results presented were 
obtained after averaging ten different executions. The setting of parameters was selected to 
be the same for the three datasets in order to have the same number of iterations and make 
the comparison of execution times for the different datasets of increasing sizes easier. There-
fore, the parameter setting is not tuned for achieving the best classification accuracies for each 
image. The execution times for training and test are aggregated in the Table. The speedup of 
the OpenMP code with one thread is calculated with respect to the time of the MATLAB 
code. The speedups of the OpenMP version with 64 threads and of the final hybrid version 
using MPI, openMP, and CUDA are calculated over the OpenMP version executed with one 
thread. The lowest execution times are obtained for the version exploiting nodes, cores, and 
GPUs. It can be seen that the bigger the image the higher the speedups achieving values of up 
to 40.53× over the OpenMP code with one thread.

The Ermidas image has been selected for a more detailed description of the times for 
all the steps involved in the computation of the proposed scheme, as it is the largest one, 
which implies the highest computational cost. Table 6 shows the execution times (in sec-
onds) for both the training and the test phases of the scheme applied to Ermidas and the 
OA achieved by the classification scheme (88.88%). All the implementations presented 
offered the same OA value as the initial MATLAB version of the code. The execution 
time was split following the different algorithm stages as shown in Algorithm 1. For train-
ing, the steps are: patch extraction, TCA iterations (two iterations were selected in this 

Fig. 5   Eiras. False color composite and reference data for classification



	 A. S. Garea et al.

1 3

case which would be equivalent to a two-layer CNN), feature extraction, and classification 
training. For the test stage, the steps are the same but it is not necessary to compute the 
TCA filters (Step II) since this process is only performed in the training stage.

For the initial MATLAB code, 16 cores were used, obtaining the highest computation 
time. For the OpenMP code (denoted as OMP in the figure), different numbers of threads 
have been used: 1, 16, 32, and 64. It can be observed that the use of OpenMP reduces the 

Fig. 6   Ermidas. False color composite and reference data for classification



1 3

A hybrid CUDA, OpenMP, and MPI parallel TCA‑based domain…

Table 1   Oitavèn. Samples of the 
source and the target regions

Classes Source Target

2501 × 1898 6689 × 4701

Samples % Samples %

Water 3944 0.16 283219 8.01
Tiles 16787 0.68 61093 1.73
Asphalt 11845 0.48 27413 0.76
Bare Soil 32417 1.32 29898 0.85
Rock 141373 5.74 233494 6.60
Concrete 5414 0.22 40767 1.15
Vegetation 2249483 91.40 2859168 80.88
Total 2461263 3535052

Table 2   Eiras. Samples of the 
source and the target regions

Classes Source Target

1851 × 971 5176 × 17250

Samples % Samples %

Water 43480 15.52 691137 18.56
Tiles 1386 0.46 6846 1.18
Asphalt 84276 28.13 933 0.03
Bare Soil 675 0.23 96260 2.56
Rock 6601 2.20 138199 3.71
Concrete 5844 1.95 21217 0.57
Vegetation 157291 52.51 2769021 74.36
Total 299553 3723613

Table 3   Ermidas. Samples of 
the source and the target regions

Classes Source Target

5824 × 2701 11924 × 16271

Samples % Samples %

Water 13291 0.72 150639 2.98
Tiles 100576 5.42 38102 0.75
Asphalt 139710 7.53 597699 11.80
Bare Soil 49238 2.66 74178 1.47
Rock 0 0 174088 3.43
Concrete 13145 0.71 19721 0.39
Vegetation 1538427 82.96 4009663 79.18
Total 1854387 5064090



	 A. S. Garea et al.

1 3

execution time. The version of the code using three nodes and exploiting the GPUs of 
the nodes by using CUDA (denoted in the table as OMP GPU MPI) also uses 64 cores 
and achieves the lowest execution times. As it can be observed, the hybrid parallelization 
strategy mainly impacts the feature extraction and the classification steps in the test as they 
have the highest execution times. The reason is that they are executed over each single test 
sample being the test samples all the available samples of the target image excluding those 
used for training. A similar behavior was observed for all the images.

5 � Conclusions

In this paper, a hybrid CUDA, OpenMP, and MPI parallel TCANet-based supervised classifi-
cation scheme is presented. It is applied to very high-resolution remote sensing multispectral 
datasets. TCANet is a DA technique that allows extending knowledge from one source image 
to the classification of a different image, corresponding in our case to a different geographi-
cal location. It is designed as a DL network similar to a standard CNN. Several stages built 
based on convolutional filters operate on patches of the multispectral image. The filters are 
calculated by using the TCA feature extraction algorithm. The resulting DL network does 
not require backpropagation. Even with this feature, the computational cost of the classifi-
cation scheme is high, as it operates over a large number of pixels. The application of the 
method requires a final step of supervised classification performed by SVM in the experi-
ments. Different optimizations and a parallel implementation exploiting the different levels 

Table 4   Values of the 
parameters defined in 
Algorithm 1 for the different 
datasets

Parameter Oitavén Eiras Ermidas

D 3 3 3
B 5 5 5
N
S

14000 12061 12000
N
T

14000 12200 12000
K 2 2 2
F1 2 2 2
F2 16 16 16
NTest 3521052 3693413 4878002

Table 5   Execution times (in seconds) and speedups for the different datasets

Dataset MATLAB OMP OMP OMP

1 threads 64 threads GPU

MPI

Oitavén 64273.89 3290.54 ��.��× 154.68 ��.��× 91.98 ��.��×

Eiras 64050.72 1965.72 ��.��× 100.33 ��.��× 56.56 ��.��×

Ermidas 83036.34 2323.07 ��.��× 108.18 ��.��× 57.31 ��.��×



1 3

A hybrid CUDA, OpenMP, and MPI parallel TCA‑based domain…

of hardware available in the heterogeneous nodes of a supercomputer are applied. In particu-
lar, a multi-node, multicore, and multi-GPU implementation is presented and tested over real 
datasets captured by the MicaSense RedEdge sensor onboard drones. The whole procedure 
requires two stages: training and testing. The testing is the stage mainly affected by the reduc-
tion in execution time provided by the parallel execution, in particular, the steps devoted to 
TCA filter application, feature extraction, and classification by SVM. Speedups up to 40.53× 
are achieved when the code is executed over nodes of the Finisterrae III supercomputer. The 
size of the matrices involved in the operations of TCANet increases with the number of TCA 
iterations (equivalent to the number of layers in a standard CNN). This fact limits the depth 
of TCANet when it is applied in a single processor and could limit the performance for some 
datasets. The presented parallel implementation could be scaled to larger images and for more 
complex DA cases, making the application to real scenarios possible.

Acknowledgements  The authors want to acknowledge Centro de Supercomputación de Galicia (CESGA) for pro-
viding access to the supercomputer Finisterrae III, and to RSiM group from TU Berlin.

Author contributions  Conceptualization and methodology FA and DBH; software and experimentation ASG; vali-
dation ASG, FA, DBH, and BD; writing ASG, DBH, and FA. All authors have read and agreed to the published 
version of the manuscript.

Table 6   Execution times in seconds (training and test stages) and classification accuracy for the Ermidas 
dataset

MATLAB OMP OMP OMP OMP OMP
1 thread 16 threads 32 threads 64 threads GPU

MPI

Training
Patch Extr. 8.07 0.02 0.01 0.01 0.01 0.01
TCA iteration 1
⋅ Steps I and II 7.58 8.28 2.99 2.78 2.50 2.46
⋅Step III 2.60 0.33 0.04 0.04 0.02 0.02
TCA iteration 2
⋅ Steps I and II 30.72 35.95 13.07 11.26 9.43 9.99
⋅ Step III 419.25 0.42 0.05 0.05 0.04 0.04
Feature Extr. 412.54 0.04 0.01 0.01 0.01 0.01
Classification 24.70 15.24 16.54 17.01 16.58 16.76
Test
Patch Extr. 728.98 1.87 0.59 0.55 0.57 0.65
TCA iteration 1
⋅ Steps I and III 3679.39 67.59 5.35 3.54 ` 1.06
TCA iteration 2
⋅ Steps I and III 38302.26 238.45 40.80 28.21 18.47 5.96
Feature Extr. 36834.32 22.20 4.51 3.78 4.09 1.41
Classification 2585.93 1932.68 139.12 115.31 54.24 18.94
Total 83036.34 2323.07 223.08 182.55 108.18 57.31
Overall accuracy 88.88 %



	 A. S. Garea et al.

1 3

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This 
work was supported in part by the Ministerio de Ciencia e Innovación, Government of Spain (grant numbers 
PID2019-104834GB-I00 and TED2021-130367B-I00), the Consellería de Educación, Universidade e Formación 
Profesional (grant number 2019–2022 ED431G-2019/04 and 2021–2024 ED431C 2022/16), and by the Junta de 
Castilla y León (project VA226P20 (PROPHET II Project)). All are co-funded by the European Regional Develop-
ment Fund (ERDF). Alberto S. Garea acknowledges USC for its “Convocatoria de Recualificación do Sistema Uni-
versitario Español - Margarita Salas” postdoctoral fellowship under the “Plan de Recuperación y Transformación” 
program funded by the Spanish Ministry of Universities with the European Union’s NextGeneration funds.

Availability of data and materials  Supplementary data is available at https://​gitlab.​citius.​usc.​es/​hiper​espec​tral/​tcanet_​
jos_​2022.

Declarations 

Conflict of interests  The authors have no competing interests as defined by Springer, or other interests that might be 
perceived to influence the results and/or discussion reported in this paper.

Ethical approval  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Mehmood M, Shahzad A, Zafar B, Shabbir A, Ali N (2022) Remote sensing image classification: a comprehen-
sive review and applications. Math Problems Eng. https://​doi.​org/​10.​1155/​2022/​58809​59

	 2.	 Cheng G, Han J, Lu X (2017) Remote sensing image scene classification: benchmark and state of the art. Proc 
IEEE 105(10):1865–1883

	 3.	 Chutia D, Bhattacharyya D, Sarma KK, Kalita R, Sudhakar S (2016) Hyperspectral remote sensing classifica-
tions: a perspective survey. Trans GIS 20(4):463–490

	 4.	 Benediktsson JA, Chanussot J, Moon WM (2012) Very high-resolution remote sensing: challenges and opportu-
nities [point of view]. Proc IEEE 100(6):1907–1910

	 5.	 Maxwell AE, Warner TA, Fang F (2018) Implementation of machine-learning classification in remote sensing: an 
applied review. Int J Remote Sens 39(9):2784–2817

	 6.	 Tong X-Y, Xia G-S, Lu Q, Shen H, Li S, You S, Zhang L (2020) Land-cover classification with high-resolution 
remote sensing images using transferable deep models. Remote Sens Environ 237:111322

	 7.	 Jensen RR, Hardin PJ, Yu G (2009) Artificial neural networks and remote sensing. Geogr Compass 3(2):630–646
	 8.	 Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H (2018) State-of-the-art in artificial neu-

ral network applications: a survey. Heliyon 4(11):00938
	 9.	 Cheng G, Xie X, Han J, Guo L, Xia G-S (2020) Remote sensing image scene classification meets deep learn-

ing: challenges, methods, benchmarks, and opportunities. IEEE J Sel Topics Appl Earth Observ Remote Sens 
13:3735–3756. https://​doi.​org/​10.​1109/​JSTARS.​2020.​30054​03

	10.	 Hu W, Huang Y, Wei L, Zhang F, Li H (2015) Deep convolutional neural networks for hyperspectral image 
classification. J Sens

https://gitlab.citius.usc.es/hiperespectral/tcanet_jos_2022
https://gitlab.citius.usc.es/hiperespectral/tcanet_jos_2022
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5880959
https://doi.org/10.1109/JSTARS.2020.3005403


1 3

A hybrid CUDA, OpenMP, and MPI parallel TCA‑based domain…

	11.	 Yue J, Zhao W, Mao S, Liu H (2015) Spectral–spatial classification of hyperspectral images using deep convo-
lutional neural networks. Remote Sens Lett 6(6):468–477

	12.	 Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral 
images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251

	13.	 Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification 
performance. Int J Remote Sens 28(5):823–870

	14.	 Quinonero-Candela J, Sugiyama M, Schwaighofer A, Lawrence ND (2008) Dataset shift in machine learning. 
The MIT Press, Cambridge

	15.	 Jia G, Hueni A, Schaepman ME, Zhao H (2017) Detection and correction of spectral shift effects for the air-
borne prism experiment. IEEE Trans Geosci Remote Sens 55(11):6666–6679

	16.	 Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote 
Sens Environ 37(1):35–46

	17.	 Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, He Q (2020) A comprehensive survey on transfer 
learning. Proc IEEE 109(1):43–76

	18.	 Tuia D, Persello C, Bruzzone L (2016) Domain adaptation for the classification of remote sensing data: an 
overview of recent advances. IEEE Geosci Remote Sens Mag 4(2):41–57

	19.	 Weiss K, Khoshgoftaar TM, Wang D (2016) A survey of transfer learning. J Big Data 3(1):9
	20.	 Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C (2018) A survey on deep transfer learning. In: International 

conference on artificial neural networks. Springer, Berlin, pp 270–227
	21.	 Tuia D, Persello C, Bruzzone L (2021) Recent advances in domain adaptation for the classification of remote 

sensing data. arXiv preprint arXiv:​2104.​07778
	22.	 Glorot X, Bordes A, Bengio Y (2011) Domain adaptation for large-scale sentiment classification: a deep 

learning approach. In: Proceedings of the 28th international conference on machine learning (ICML-11), pp 
513–520

	23.	 Sun B, Feng J, Saenko K (2016) Return of frustratingly easy domain adaptation. In: Proceedings of the AAAI 
conference on artificial intelligence, vol 30

	24.	 Song S, Yu H, Miao Z, Zhang Q, Lin Y, Wang S (2019) Domain adaptation for convolutional neural networks-
based remote sensing scene classification. IEEE Geosci Remote Sens Lett 16(8):1324–1328

	25.	 Hecht-Nielsen R (1992) Theory of the backpropagation neural network. In: Neural networks for perception. 
Elsevier, Amsterdam, pp 65–93

	26.	 Chan T-H, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) Pcanet: a simple deep learning baseline for image clas-
sification? IEEE Trans Image Process 24(12):5017–5032

	27.	 Fauvel M, Chanussot J, Benediktsson JA (2009) Kernel principal component analysis for the classification of 
hyperspectral remote sensing data over urban areas. EURASIP J Adv Signal Process 2009:1–14

	28.	 Garea AS, Heras DB, Argüello F (2019) TCANet for domain adaptation of hyperspectral images. Remote 
Sens 11(19):2289

	29.	 Pan SJ, Tsang IW, Kwok JT, Yang Q (2010) Domain adaptation via transfer component analysis. IEEE Trans 
Neural Netw 22(2):199–210

	30.	 Lee CA, Gasster SD, Plaza A, Chang C-I, Huang B (2011) Recent developments in high-performance com-
puting for remote sensing: a review. IEEE J Sel Topics Appl Earth Observ Remote Sens 4(3):508–527

	31.	 Riedel M, Sedona R, Barakat C, Einarsson P, Hassanian R, Cavallaro G, Book M, Neukirchen H, Lintermann 
A (2021) Practice and experience in using parallel and scalable machine learning with heterogenous modu-
lar supercomputing architectures. In: 2021 IEEE international parallel and distributed processing symposium 
workshops (IPDPSW). IEEE, pp 76–85

	32.	 Cavallaro G, Heras DB, Wu Z, Maskey M, Lopez S, Gawron P, Coca M, Datcu M (2022)High-performance 
and disruptive computing in remote sensing: Hdcrs—a new working group of the GRSS earth science infor-
matics technical committee. IEEE Geosci Remote Sens Mag

	33.	 Plaza A, Du Q, Chang Y-L, King RL (2011) Foreword to the special issue on high performance computing in 
earth observation and remote sensing. IEEE J Sel Topics Appl Earth Observ Remote Sens 4(3):503–507

	34.	 Ma Y, Wu H, Wang L, Huang B, Ranjan R, Zomaya A, Jie W (2015) Remote sensing big data computing: 
challenges and opportunities. Futur Gener Comput Syst 51:47–60

	35.	 Liu Y, Xie Y, Yang W, Zuo X, Ge Q, Zhou B (2020) Target classification and recognition for high-resolution 
remote sensing images: using the parallel cross-model neural cognitive computing algorithm. IEEE Geosci 
Remote Sens Mag 8(3):50–62

	36.	 Haut JM, Gallardo JA, Paoletti ME, Cavallaro G, Plaza J, Plaza A, Riedel M (2019) Cloud deep networks for 
hyperspectral image analysis. IEEE Trans Geosci Remote Rens 57(12):9832–9848

	37.	 Paoletti ME, Haut JM, Fernandez-Beltran R, Plaza J, Plaza AJ, Pla F (2018) Deep pyramidal residual networks 
for spectral–spatial hyperspectral image classification. IEEE Trans Geosci Remote Sens 57(2):740–754

http://arxiv.org/abs/2104.07778


	 A. S. Garea et al.

1 3

	38.	 Ordóñez Á, Heras DB, Argüello, F (2022) Multi-GPU registration of high-resolution multispectral images 
using HSI-KAZE in a cluster system. In: IGARSS 2022—2022 IEEE international geoscience and remote 
sensing symposium, pp 5527–5530. https://​doi.​org/​10.​1109/​IGARS​S46834.​2022.​98847​17

	39.	 Borgwardt KM, Gretton A, Rasch MJ, Kriegel H-P, Schölkopf B, Smola AJ (2006) Integrating structured bio-
logical data by kernel maximum mean discrepancy. Bioinformatics 22(14):49–57

	40.	 Steinwart I (2001) On the influence of the kernel on the consistency of support vector machines. J Mach Learn 
Res 2:67–93

	41.	 Pan SJ, Kwok JT, Yang Q (2008) Transfer learning via dimensionality reduction. AAAI 8:677–682
	42.	 Ghamisi P, Plaza J, Chen Y, Li J, Plaza AJ (2017) Advanced spectral classifiers for hyperspectral images: a 

review. IEEE Geosci Remote Sens Mag 5(1):8–32
	43.	 Ghamisi P, Maggiori E, Li S, Souza R, Tarablaka Y, Moser G, De Giorgi A, Fang L, Chen Y, Chi M (2018) 

New frontiers in spectral–spatial hyperspectral image classification: the latest advances based on mathemati-
cal morphology, Markov random fields, segmentation, sparse representation, and deep learning. IEEE Geosci 
Remote Sens Mag 6(3):10–43

	44.	 OpenMP Architecture Review Board: OpenMP Website. https://​www.​openmp.​org/ (online). Accessed 8 Mar 
2021

	45.	 NVIDIA: CUDA toolkit Website. https://​devel​oper.​nvidia.​com/​cuda-​toolk​it (online). Accessed 5 Jan 2021)
	46.	 Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 

2:27–12727. Software available at http://​www.​csie.​ntu.​edu.​tw/​~cjlin/​libsvm
	47.	 Fauvel M, Tarabalka Y, Benediktsson JA, Chanussot J, Tilton JC (2012) Advances in spectral–spatial classifi-

cation of hyperspectral images. Proc IEEE 101(3):652–675
	48.	 Richards J, Jia X (1999) Remote sensing digital image analysis: an introduction. Springer, Berlin

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Alberto S. Garea1 · Dora B. Heras1 · Francisco Argüello2 · Begüm Demir3

	 Dora B. Heras 
	 dora.heras@usc.es

	 Francisco Argüello 
	 francisco.arguello@usc.es

	 Begüm Demir 
	 demir@tu-berlin.de

1	 Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de 
Santiago de Compostela, Santiago de Compostela, Spain

2	 Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, 
Santiago de Compostela, Spain

3	 Remote Sensing Image Analysis (RSiM) Group, Technische Universität Berlin, Berlin, Germany

https://doi.org/10.1109/IGARSS46834.2022.9884717
https://www.openmp.org/
https://developer.nvidia.com/cuda-toolkit
http://www.csie.ntu.edu.tw/%7ecjlin/libsvm

	A hybrid CUDA, OpenMP, and MPI parallel TCA-based domain adaptation for classification of very high-resolution remote sensing images
	Abstract
	1 Introduction
	2 TCANet-based classification scheme
	2.1 TCA for domain adaptation
	2.2 TCANet-based classification scheme

	3 Hybrid parallel TCANet-based classification scheme
	4 Experimental results
	4.1 Datasets
	4.2 Results

	5 Conclusions
	Acknowledgements 
	References




