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Abstract In the present study, we investigate the existence of the solutions to a type of uncertain differential equations subject to
nonlocal derivatives. The approach is based on the application of an extended Krasnosel’skii fixed point theorem valid on fuzzy
metric spaces. With this theorem, we deduce that the problem of interest has a fuzzy solution, which is defined on a certain interval.
Our approach includes the consideration of a related integral problem, to which the above-mentioned tools are applicable. We finish
with some physical motivations.

1 Introduction

Uncertainty quantification is a quantitative characterization that tries to reduce the ambiguities in mathematical, computational and
real-world applications.

Uncertainty appears in mathematical models and experimental measurements due to various sources. Uncertainty principle is
important, for instance, in quantum theory [1].

In [2], the author studied the Dirac equation in the context of generalized uncertainty principle, and, in [3], it has been introduced
a new generalized momentum operator taking into account, among others, the extended uncertainty principle.

On the other hand, the importance of nonlocal derivatives has been increasing in the last years as a consequence of the interest
and power of its applications in the construction of models for complex phenomena in relation with different fields of science
and engineering. Some well-known examples of proposed applications are, for instance, the study of electromagnetic or control
processes, diffusion processes through heterogeneous media, biologic problems, or electrical circuits [4, 5].

In 2010, the concept of solution to uncertain differential equations with nonlocal derivatives of fractional type (which we denote
as UFDEs) is presented by Agarwal et al. [6]. As we have already mentioned, the operators of arbitrary (non-necessarily integer)
order are adequate for the study of phenomena under the influence of memory effects [7–11]. The type of equations proposed in [6]
exhibits an interesting behavior, since they combine the introduction of uncertainty and nonlocal effects both together. This work
has leaded to the establishment of a new kind of hybrid operators [4], that collect the particularities of both uncertain equations and
equations of arbitrary order. It is in this framework that several researchers have been making contributions in the recent years. In
particular, many researchers have investigated UFDEs and some related integro-differential problems by considering the notions
of differentiability by Riemann–Liouville or Caputo [12–15]. To mention one of the contributions, Arshad and Lupulescu [16, 17]
have deduced certain results concerning the existence and the uniqueness problems for the solutions to UFDEs by considering the
Riemann–Liouville derivative.

One usual approach in the study of the solutions to differential problems consists on the transformation into an integral problem
and the definition of a mapping to which fixed point theory is applicable. Therefore, different types of fixed point results have
proved its usefulness for the research work in the field of arbitrary-order differential equations. For instance, [18] is devoted to
the existence of solutions for implicit differential equations including Caputo-Fabrizio operators through the application of Banach
and Krasnosel’skii fixed point results, analyzing also some stability properties. An analogous study for equations with Caputo-
Hadamard derivative is made in [19]. On the other hand, systems of fractional functional differential equations under Caputo
operators are analyzed in [20] under Krasnosel’skii’s fixed point theorem, and [21] also deals with the existence of positive solutions
for arbitrary-order differential equations of Caputo-type with the help of Guo-Krasnosel’skii fixed point theorem. The same result,
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Guo-Krasnosel’skii fixed point theorem, is also the main tool used in [22] to analyze fractional equations with p-Laplacian. In the
very recent work [23], the authors apply Banach contraction principle and Leray–Schauder alternative to study equations under
Riemann–Liouville perspective.

In the context of UFDEs, the development of new extensions of fixed point results is relevant, this fact is motivated by the
special particularities found in the spaces of fuzzy sets and functions. An interesting example is the extension of Schauder fixed
point theorem by Agarwal et al. [6]. In their research work, the classical fix point result is generalized to semilinear spaces with the
cancellation property. This extension allows to study the existence of solutions to UFDEs. Using this theorem, the authors in [24]
have considered UFDEs and analyzed the existence of solutions. Other generalized fixed point results have been given in [9], where
the authors have proved Krasnosel’skii fixed point result in the context of semilinear Banach spaces of general type, and applied it
in order to deduce some existence theorems for UFDEs.

In this contribution, we consider a family of nonlinear differential equations subject to uncertainty and nonlocal derivatives that
constitutes a class of equations larger than that in [24]. The main mathematical tool for the study is the application of a fixed point
result of Krasnosel’skii type available in the context of fuzzy metric spaces. With this result, we provide the existence of at least
one solution to each of the equations of interest, provided that some sufficient conditions hold. Our aim is to present a result that
extends the results in [25] to the case of uncertain differential equations. Hence, the original contribution of the paper is providing
a new proof for a fixed point result of Krasnosel’skii type for fuzzy metric spaces by using the particular cone structure of the base
space and H-differences. With this result, on the existence of at least a fixed point for mappings being the addition of a compact
mapping and a contractive mapping, several results on the existence of solutions to arbitrary-order uncertain differential equations
are deduced, covering more general situations than the ones in [24], which was based on a fixed point result in abstract spaces valid
just for compact mappings.

2 Basic notions

To establish the problem of interest and the main results, we first need to introduce several concepts and useful notations. For details,
we refer to [26, 27].

In this study, we denote by E the space of fuzzy intervals. The α-cuts of an element x ∈ E are defined as

[x]α :� {t ∈ R | x(t) ≥ α}, for α ∈ (0, 1],

and the support of x is

[x]0 :� cl{t ∈ R | x(t) > 0}.
The notation for the α-cuts of x

[x]α � [xα, xα]

will be also useful.
Given two elements x, y ∈ E and a scalar λ ∈ R, we define the sum x + y and the product by scalar λx by using, respectively,

the expressions

[x + y]α � [x]α + [y]α, and [λx]α � λ[x]α,

for all α ∈ [0, 1]. As we have observed, these notions are based on the classical sum of real intervals and the product of a real
interval by a scalar, respectively.

The space E is easily endowed with a metric D : E × E → R+ ∪ {0}, based on the Pompeiu–Hausdorff distance between the
α-cuts, as follows:

D(x, y) :� sup
α∈[0,1]

dH ([x]α, [y]α) � sup
α∈[0,1]

max{|xα − yα|, |xα − yα|}, x, y ∈ E .

The above-mentioned distance satisfies some interesting properties, including the invariance by translations and the positive homo-
geneity:

D(x + z, y + z) � D(x, y), for all x, y, z ∈ E,

D(kx, ky) � |k|D(x, y), for all k ∈ R, and x, y ∈ E,

D(x + y, z + s) ≤ D(x, z) + D(y, s), for all x, y, z, s ∈ E, D(λx, μx) � |λ − μ|D(x, 0̃), for all λ,μ ≥ 0, and x ∈ E, and
the metric space (E, D) is complete.

The space E is not a vector space, so traditional fixed point results on Banach spaces are not useful to tackle problems in this
context. To this purpose, we recall the concept of semilinear Banach space, which formalizes a framework to include the collection
of all fuzzy intervals. The notion of semilinear space received attention in previous research works, see, for instance, [28]. We say
that U is a semilinear metric space if U is a semilinear space endowed with a metric d : U ×U → R+ satisfying
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• d(α, β) � d(α + γ, β + γ ), (translation invariant)
• λd(α, β) � d(λα, λβ), being λ ≥ 0, (positively homogeneous)

for every α, β, γ ∈ U. Let 0̃ be the zero element in U. A norm on U is defined by considering ||x ||:� d(x, 0̃). Concerning the
behavior of the operations on semilinear metric spaces, it is possible to prove that the sum and the multiplication by a fixed scalar
are continuous mappings. If the semilinear metric space U is a complete metric space, then U is called a semilinear Banach space.
For instance, since E is not a linear space, then it is impossible for E to be a Banach space. If α + β � γ + β implies that α � γ for
every α, β, γ ∈ U, then the semilinear space U is said to have the cancellation property.

Let a > 0 be fixed. We define C([0, a], E) as the set of all continuous fuzzy-interval valued functions defined on the compact
interval [0, a]. The space C([0, a], E) is, in relation with the concepts exposed, a semilinear space and has the cancellation property.
Besides, it is known that the metric

ρ0(x, y) :� max
t∈[0,a]

D(x(t), y(t)), x, y ∈ C([0, a], E),

gives the space a structure of complete space [27], so we have an example of semilinear Banach space.
The elements in E are not necessarily continuous with respect to the degree of membership α. If we consider the set of all the

fuzzy intervals x ∈ E such that the mapping α �→ [x]α is continuous on [0, 1] (considering the Pompeiu–Hausdorff metric on the
set of compact intervals), then this space of continuous fuzzy intervals is denoted by Ec. Taking the same metric D, (Ec, D) has also
the structure of complete metric space [29].

Definition 2.1 [29] Let M ⊆ Ec. We say that M is compact-supported provided that there exists a real compact subset N with
[x]0 ⊆ N , ∀x ∈ M .

Definition 2.2 [29] Let M ⊆ Ec. If, for every ε > 0, there exists δ > 0 such that

|α − α0|< δ implies D([x]α, [x]α0 ) < ε,∀x ∈ M,

then we say that M is level-equicontinuous at α0 ∈ [0, 1].

We say that M is level-equicontinuous on [0, 1] if the property explained in Definition 2.2 is valid at every α ∈ [0, 1].

Theorem 2.3 [29] Suppose that M is a compact-supported subset of Ec. The set M is relatively compact in (Ec, D) if and only if it
is level-equicontinuous on [0, 1].

Next, we recall the extension of the famous Schauder fixed point theorem to semilinear spaces as presented in [30].

Theorem 2.4 Let U be a semilinear Banach space with the cancellation property. Suppose that S is a nonempty, bounded, closed,
and convex subset of U. Let P : S → S be a compact mapping. Then P has (at least) a fixed point in S.

In [9], Long et al. have presented an extension of the Krasnosel’skii fixed point result for a class of spaces called generalized
semilinear Banach spaces. In the following, we present a similar result in the fuzzy context, with a slightly different proof by using
H-differences.

Theorem 2.5 (Fixed point result of Krasnosel’skii type for fuzzy metric spaces) Let M be a non-empty, closed and convex subset
of C(I, Ec) and suppose that A and B map M into S and

(i) A is continuous and compact,
(ii) Ax + By ∈ M, for every x, y ∈ M,

(iii) B is a contraction mapping.

Then, there exists a fixed point for A + B in M, that is, there is y ∈ M for which Ay + By � y.

Proof: For every arbitrarily fixed element y ∈ M, we define a self-mapping Q : M → M as

x → Q(x) :� Ay + Bx .

We check that Q satisfies the condition of contraction mapping

ρ0(Q(x), Q(z)) � ρ0(Ay + Bx,Ay + Bz) � ρ0(Bx,Bz) ≤ κρ0(x, z),

where 0 ≤ κ < 1, and we also know that M is a complete metric space. Then, considering the equation z � Ay + Bz, we can
deduce the existence of a unique solution in M. For y fixed, let ψ(y) ∈ M be the unique solution of this equation in M, i.e.,
ψ(y) � Ay + Bψ(y). Then, (I � B)ψ(y) � Ay. Thus, I � B : ψ(M) → C(I, Ec) exists and A(M) ⊆ (I � B)(ψ(M)). We prove
that it is injective so that

(I � B)−1 : (I � B)(ψ(M)) → ψ(M)
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exists and, therefore, ψ(y) � (I �B)−1Ay. Now, we show that I �B : ψ(M) → C(I, Ec) is continuous. Let x̂, x̄ ∈ M fixed, and
consider ψ(x̂), ψ(x̄) ∈ ψ(M). Then, we obtain

ρ0(ψ(x̂), ψ(x̄)) � ρ0((I � B)ψ(x̂) + Bψ(x̂), (I � B)ψ(x̄) + Bψ(x̄))

≤ ρ0((I � B)ψ(x̂), (I � B)ψ(x̄)) + ρ0(Bψ(x̂),Bψ(x̄))

≤ ρ0((I � B)ψ(x̂), (I � B)ψ(x̄)) + κρ0(ψ(x̂), ψ(x̄)),

where we have used that B is a contraction. Therefore,

ρ0((I � B)ψ(x̂), (I � B)ψ(x̄)) ≥ (1 − κ)ρ0(ψ(x̂), ψ(x̄)). (2.1)

The inequality (2.1) proves that I �B is injective on ψ(M). Thus, I �B is bijective and continuous from ψ(M) to (I �B)(ψ(M)).
This proves that (I � B)−1 exists from (I � B)(ψ(M)) to ψ(M). Moreover, from the inequality (2.1), (I � B)−1 is continuous on
(I � B)(ψ(M)). Indeed, we get

ρ0((I � B)−1(I � B)ψ(x̂), (I � B)−1(I � B)ψ(x̄)) � ρ0(ψ(x̂), ψ(x̄))

≤ 1

1 − κ
ρ0((I � B)ψ(x̂), (I � B)ψ(x̄)).

Now, we use that ψ(y) � (I � B)−1Ay and that, by hypothesis, (I � B)−1A is continuous and compact, then using Theorem 2.4,
ψ has a fixed point y0 in M, which satisfies ψ(y0) � y0. Since, ψ(y0) is the unique solution to z � Ay0 + Bz, then, we have
y0 � Ay0 + By0. �

In the following, we set V :� C((0, a], E) ∩ L1((0, a], E).

Definition 2.6 Let y ∈ V . The fuzzy Riemann–Liouville fractional (arbitrary order) integral of order ν > 0 of y, for t ∈ (0, a), is
defined by

I ν y(t) � 1

�(ν)

∫ t

0
(t − s)ν−1y(s)ds,

assuming that the integral at the right is well-defined on the interval (0, a).

Definition 2.7 [30] Let y ∈ V and ν ∈ (0, 1). Let t �→ ∫ t
0 (t − s)−ν y(s)ds be a Hukuhara differentiable fuzzy function on the

interval (0, a]. The fuzzy Riemann–Liouville fractional (arbitrary order) derivative of order ν of y at t is defined by

Dν y(t) � 1

�(1 − ν)

d

dt

∫ t

0
(t − s)−ν y(s)ds,

which is, according to the assumption, a fuzzy interval Dν y(t) ∈ E .

3 Uncertain differential equations of nonlocal type

Next, we consider a class of uncertain differential equations whose nonlocal behavior is given by fractional (arbitrary order) operators,
as follows,

Dνx � f (t, x) + g(t, x), (3.1)

where the order of derivation is 0 < ν < 1, the fuzzy function f : [0, a]×Ec → Ec is continuous and compact, and g : [0, a]×Ec →
Ec satisfies

D(g(t, x), g(t, y)) ≤ LD(x, y), x, y ∈ Ec, for some L ≥ 0. (3.2)

Next, we recall the concept of solution to (3.1).

Definition 3.1 [24] We say that the fuzzy function x ∈ V is a solution to (3.1) if:

• There exists the fractional derivative Dνx of x on (0, a] and it is continuous.
• Dνx(t) � f (t, x(t)) + g(t, x(t)), ∀t ∈ (0, a].

The next remark gives us a procedure to obtain solutions to the equation (3.1) through the solutions of a related arbitrary-order
integral equation.

Remark 3.2 [24] Suppose that x ∈ C([0, a], Ec) is a solution to the following fuzzy arbitrary-order integral equation

x(t) � I ν( f (t, x(t)) + g(t, x(t))),

and that f (·, x(·)), g(·, x(·)) ∈ V . Then x is a solution to the uncertain differential equation of nonlocal type (3.1).
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At this point, we present the essential elements that will allow to prove the main existence results.
Let Iδ0 :� [0, δ0], where δ0 ≤ a, and r0 > 0 be such that

R :� sup
{
D(0̃, f (t, x)) | t ∈ Iδ0 , D(x, 0̃) ≤ r0

}
< +∞.

Note that it is also possible to choose δ0 small enough such that
Rδν

0
�(ν+1) ≤ r0. Define the set


 :�
{
x ∈ C(Iδ0 , Ec) | D(0̃, x(t)) ≤ r0, for all t ∈ Iδ0 , and x(0) � 0̃

}
.

We can easily check that 
 ⊆ C(Iδ0 , Ec) is bounded, closed, and convex. Besides, recall thatC(Iδ0 , Ec) is a semilinear Banach space.
On the set 
, we consider two mappings related to functions f and g, respectively. First, we consider the mappingT : 
 → C(Iδ0 , Ec)
defined by

(T x)(t) � 1

�(ν)

∫ t

0
(t − s)ν−1 f (s, x(s))ds, for t ∈ Iδ0 . (3.3)

To simplify the procedure, we fix some notations referring to some restrictions on the function f appearing in the nonlinearity of the
equation.

We introduce the condition (H) for the function f ∈ C([0, a] × Ec, Ec) consisting on the restriction: for every pair of points
(t, x), (t, y) ∈ [0, a] × C([0, a], Ec), the following inequality holds

D( f (t, x(t)), f (t, y(t))) ≤ p(t)w(ρ0(x, y)), (3.4)

where w is a real continuous function on [0,∞) and such that w(0) � 0, and p : [0, a] → R
+ satisfies I ν p(t) < N , for every

t ∈ [0, a].

Lemma 3.3 Let f satisfy (H) on [0, a] × Ec. Then, the following assertions are satisfied:

• T is well-defined on C(Iδ0 , Ec).
• T is a continuous mapping on C(Iδ0 , Ec).

Proof First, we prove that the mapping T is well-defined. By definition, it is obvious that (T x)(0) � 0̃, for every x ∈ 
.

Now, for fixed x ∈ 
, we show that T x ∈ C(Iδ0 , Ec). Moreover, we show that T x is a uniformly continuous function on the
interval Iδ0 . We take fixed t, t ′ ∈ Iδ0 , with t < t ′. For these elements, we deduce

D((T x)(t), (T x)(t ′))

� 1

�(ν)
D

(∫ t

0
(t − s)ν−1 f (s, x(s))ds,

∫ t ′

0
(t ′ − s)ν−1 f (s, x(s))ds

)

� 1

�(ν)
D

( ∫ t

0
(t − s)ν−1 f (s, x(s))ds,

∫ t

0
(t ′ − s)ν−1 f (s, x(s))ds

+
∫ t ′

t
(t ′ − s)ν−1 f (s, x(s))ds

)

≤ 1

�(ν)

[
D

(∫ t

0
(t − s)ν−1 f (s, x(s))ds,

∫ t

0
(t ′ − s)ν−1 f (s, x(s))ds

)

+D

(∫ t ′

t
(t ′ − s)ν−1 f (s, x(s))ds, 0̃

)]

≤ 1

�(ν)

[∫ t

0
D((t − s)ν−1 f (s, x(s)), (t ′ − s)ν−1 f (s, x(s)))ds

+
∫ t ′

t
(t ′ − s)ν−1D( f (s, x(s)), 0̃)ds

]

≤ R

�(ν)

[∫ t

0
|(t − s)ν−1 − (t ′ − s)ν−1|ds +

∫ t ′

t
(t ′ − s)ν−1ds

]

≤ R

�(ν + 1)
(2(t ′ − t)ν + tν − t ′ν)

≤ 2R

�(ν + 1)
(t ′ − t)ν .
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Therefore, D((T x)(t), (T x)(t ′)) → 0, when |t − t ′| tends to zero, so T x is a continuous function on the interval Iδ0 , for x ∈ 
. We
also have

D((T x)(t), 0̃) ≤ 1

�(ν)

∫ t

0
D((t − s)ν−1 f (s, x(s)), 0̃)ds ≤ Rδν

0

�(ν + 1)
≤ r0,

for every t ∈ Iδ0 . Therefore, T is a self-mapping T : 
 → 
.

Now, we show that T is a continuous mapping. Let yn, y ∈ 
, n � 1, 2, ... such that yn −→
n→∞ y, with convergence in the space

C([0, a], Ec), i.e, satisfying ρ0(yn, y) −→
n→∞0. In consequence, for every t ∈ J :� [0, a], we deduce that

ρ0(T yn, T y)

� sup
t∈J

D((T yn)(t), (T y)(t))

� sup
t∈Iδ0

D

(
1

�(ν)

∫ t

0
(t − s)ν−1 f (s, yn(s))ds,

1

�(ν)

∫ t

0
(t − s)ν−1 f (s, y(s))ds

)

≤ 1

�(ν)
sup
t∈Iδ0

∫ t

0
(t − s)ν−1D( f (s, yn(s)), f (s, y(s)))ds

≤ 1

�(ν)
sup
t∈Iδ0

∫ t

0
(t − s)ν−1 p(s)w(ρ0(yn, y))ds

≤ sup
t∈Iδ0

I ν p(t) w(ρ0(yn, y)).

Since, by the specifications in (H), w(0) � 0 and w is continuous on its domain [0,∞), it is clear that w(r )−→
r→0+

0. Due to

ρ0(yn, y) −→
n→∞0 and the estimate I ν p(t) < N , we conclude that T yn → T y as n → ∞, i.e., T is continuous. �

Theorem 3.4 Consider a fixed ν ∈ (0, 1) and suppose that the fuzzy function f : [0, a] × Ec → Ec is continuous and compact,
satisfying (H), and assume that g : [0, a] × Ec → Ec satisfies (3.2). Under these assumptions, the uncertain differential equation
of nonlocal type (3.1) has (at least) one solution defined on the interval [0, δ0], which is a continuous function, being δ0 a suitable
positive number with δ0 < a.

Proof By Remark 3.2, we are reduced to study the uncertain integral equation

x(t) � 1

�(ν)

∫ t

0
(t − s)ν−1 f (s, x(s))ds +

1

�(ν)

∫ t

0
(t − s)ν−1g(s, x(s))ds.

Lemma 3.3 provides the proper definition of the mapping T , given by Eq. (3.3), and also its continuity on the space C(Iδ0 , Ec).
In the following, we justify that T is a compact mapping. Take an arbitrarily fixed x ∈ 
, and let t, t ′ ∈ Iδ0 with t ≤ t ′, then

D((T x)(t), (T x)(t ′))

� 1

�(ν)
D

(∫ t

0
(t − s)ν−1 f (s, x(s))ds,

∫ t ′

0
(t ′ − s)ν−1 f (s, x(s))ds

)

≤ 1

�(ν)
D

(∫ t

0
(t − s)ν−1 f (s, x(s))ds,

∫ t

0
(t ′ − s)ν−1 f (s, x(s))ds

)

+
1

�(ν)
D

(∫ t

0
(t ′ − s)ν−1 f (s, x(s))ds,

∫ t ′

0
(t ′ − s)ν−1 f (s, x(s))ds

)

≤ R

�(ν + 1)
(tν − t ′ν + 2(t ′ − t)ν).

This implies that T (
) is equicontinuous in C(Iδ0 , Ec).
Next, to show the relative compactness of T (
)(t) in Ec, we use Theorem 2.3, hence, equivalently, we show that T (
)(t) is

compact-supported and level-equicontinuous in Ec.

Fix t ∈ [0, δ0], we check that T (
)(t) ⊆ Ec. For every v ∈ T (
)(t), it is possible to write

v � 1

�(ν)

∫ t

0
(t − s)ν−1 f (s, y(s))ds, for some y ∈ 
.

Since, by hypothesis, f is a compact mapping, then f (Iδ0 ×
) is a relatively compact set in Ec. By virtue of Theorem 2.3, f (Iδ0 ×
)
is a level-equicontinuous set. Therefore, for all ε > 0, we can affirm the existence of δ > 0 such that
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D([ f (s, y(s))]α1 , [ f (s, y(s))]α2 ) <
�(ν + 1)ε

2δν
0

, ∀(s, y) ∈ Iδ0 × 
,

provided that |α1 − α2|< δ. Therefore, similarly to [30], for |α1 − α2|< δ, we deduce

D([v]α1 , [v]α2 ) � D([T (y)(t)]α1 , [T (y)(t)]α2 )

≤ 1

�(ν)
D

([∫ t

0
(t − s)ν−1 f (s, y(s))ds

]α1

,

[∫ t

0
(t − s)ν−1 f (s, y(s))ds

]α2)

≤ 1

�(ν)

∫ t

0
(t − s)ν−1D([ f (s, y(s))]α1 , [ f (s, y(s))]α2 )ds

≤ ε.

So, T (
)(t) is level-equicontinuous in Ec. Now, according to the relative compactness of f (Iδ0 ×
), we can guarantee the existence
of a compact set M ⊂ R

n with [ f (s, y(s))]0 ⊆ M for every (s, y) ∈ Iδ0 × 
. Therefore, we obtain[
1

�(ν)

∫ t

0
(t − s)ν−1 f (s, y(s))ds

]0

� 1

�(ν)

∫ t

0
(t − s)ν−1[ f (s, y(s))]0ds

⊆ M

�(ν)

∫ t

0
(t − s)ν−1ds � Mtν

�(ν + 1)
.

Therefore, as a subset of Ec, T (
)(t) is compact-supported.
Thus, using the Arzelà-Ascoli theorem, the relative compactness of T (
) in C([0, δ0], Ec) is deduced.
On the other hand, we also consider the mapping T̃ : 
 → C(Iδ0 , Ec) defined by

(T̃ x)(t) � 1

�(ν)

∫ t

0
(t − s)ν−1g(s, x(s))ds, t ∈ Iδ0 . (3.5)

Therefore,

D((T̃ x)(t), (T̃ y)(t)) ≤ 1

�(ν)

∫ t

0
(t − s)ν−1D(g(s, x(s)), g(s, y(s)))ds

≤ L

�(ν)

∫ t

0
(t − s)ν−1D(x(s), y(s))ds ≤ Ltν

�(ν + 1)
ρ0(x, y) ≤ Lδν

0

�(ν + 1)
ρ0(x, y).

In consequence, if δ0 is small enough such that Lδν
0 < �(ν + 1), then the mapping T̃ is contractive. Hence, using Theorem 2.5, the

mapping T + T̃ has at least a fixed point in 
. Therefore, there exists (at least) one continuous fuzzy solution x for (3.1) on Iδ0 , for
a certain 0 < δ0 ≤ a. �

Remark 3.5 In Theorem 3.4, we can relax the compactness condition of f . Let f (Iδ0 ×
) be level-equicontinuous and p be bounded
on Iδ0 , and assume the existence of y0 ∈ Ec with ∪t∈Iδ0

[ f (t, y0)]0 bounded. Consider a bounded set B in Iδ0 × F, where F is a
bounded set in Ec. Now, we check the relative compactness of f (B) ⊆ f (Iδ0 × F).

If t ∈ Iδ0 and y ∈ F, then it is deduced

D([ f (t, y)]0, [ f (t, y0)]0) ≤ sup
α∈[0,1]

D([ f (t, y)]α, [ f (t, y0)]α)

�D( f (t, y), f (t, y0))

≤p(t)w(ρ0(Cy,Cy0 )),

where we consider the auxiliary constant function associated with each z ∈ Ec, given by

Cz : Iδ0 → Ec,

t → Cz(t) :� z.

SinceF is bounded and y ∈ F, then D(y, y0) is bounded and, thus, ρ0(Cy,Cy0 ) is bounded. On the other hand, sincew is continuous,
then w(ρ0(Cy,Cy0 )) is bounded. By hypothesis, since p is bounded on the interval Iδ0 , then D([ f (t, y)]0, [ f (t, y0)]0) is bounded
for all y ∈ F. So, we can affirm the existence of K > 0 with

D([ f (t, y)]0, [ f (t, y0)]0) ≤ K , ∀t ∈ Iδ0 , ∀y ∈ F. (3.6)

Denote f (t, y) �: u, and f (t, y0) �: v. Then, the assumptions allow to guarantee the existence of N > 0 with

[ f (t, y0)]0 � [v0, v0] ⊆ [−N , N ].

So, by (3.6), we have
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D([u]0, [v]0) � max{|u0 − v0|, |u0 − v0|} ≤ K .

Then, |u0 − v0|≤ K and |u0 − v0|≤ K . Therefore, we deduce

u0 ∈ [v0 − K , v0 + K ] ⊆ [−N − K , N + K ],

u0 ∈ [v0 − K , v0 + K ] ⊆ [−N − K , N + K ].

Hence,

[ f (t, y)]0 � [u]0 ⊆ [−N − K , N + K ], ∀t ∈ Iδ0 ,∀y ∈ F.

Therefore, there exists the compact set K0 :� [−N − K , N + K ] with the property [ f (Iδ0 × F)]0 ⊆ K0.

Remark 3.6 If we consider the nondecreasing character of w and the inequality

D( f (t, x), f (t, y)) ≤ p(t)w(D(x, y)), for every t ∈ [0, a], x, y ∈ Ec, (3.7)

the previous results also hold. As remarked in [25] for the classical case, if p(t) � θ, with θ > 0 a constant, then the inequality
(3.7) is in fact the Osgood condition. In particular, if p(t) � θ, with θ > 0, and w(D(x, y)) � D(x, y), that is, w is the identity,
then the inequality (3.7) represents the Lipschitzian character of f in the second variable.

4 Some physical applications

The potential applications of arbitrary-order calculus in physical problems have been highlighted in the literature in a vast way.
In order to provide an example of application of the results of the paper, we will focus on the specific model proposed in [31].

In this reference, it is connected the phenomenon of nuclear magnetic resonance with the Bloch equation, used for modeling of
materials through a simple first-order system of equations. With a fractional generalization of this model, heteorogeneous materials
can be considered. This approach has shown to be appropriate due to the appearance of multiexponential processes in the analysis
of the signal decay. In particular, in [31], a Caputo fractional derivative is used to model a single-spin system in a static magnetic
field at resonance.

Here, we consider an analogous Riemann–Liouville-type equation subject to uncertainty of the form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

σ 1−ν
t

DνMz(t) � A0 � A1Mz(t),

1

σ 1−ν
t

DνMx (t) � B0My(t) � B1Mx (t),

1

σ 1−ν
t

DνMy(t) � (−B0)Mx (t) � B1My(t),

(4.1)

where Mx (t), My(t), and Mz(t) represent the coordinates of the system magnetization and A0, A1, B0, B1 are suitable (uncertain)
constants related with the equilibrium magnetization, the spin-lattice relaxation time, the spin-spin relaxation time, and the resonant
frequency. The parameter σt > 0 is introduced in order to provide consistency with dimensionality (see [32]).

The first equation in this system corresponds to the framework considered. On the other hand, a similar type of results can be
obtained for the space C([0, a], E × E × E) with obvious adaptations; hence, it would be possible to rewrite problem (4.1) as a
higher dimension generalization of problem (3.1), by choosing f ≡ 0 and

g(t, x1, x2, x3) � σ 1−ν
t (B0x2 � B1x1, (−B0)x1 � B1x2, A0 � A1x3),

which satisfy the required conditions as long as g is well-defined.
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