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Abstract
Physical activity is deemed critical to successful ageing. Despite evidence and progress, there is still a need to determine more 
precisely the direction, magnitude, intensity, and volume of physical activity that should be performed on a daily basis to effectively 
promote the health of individuals. This study aimed to assess the clinical validity of new physical activity phenotypes derived from 
a novel distributional functional analysis of accelerometer data in older adults. A random sample of participants aged between 65 
and 80 years with valid accelerometer data from the National Health and Nutrition Examination Survey (NHANES) 2011–2014 
was used. Five major clinical phenotypes were identified, which provided a greater sensitivity for predicting 5-year mortality and 
survival outcomes than age alone, and our results confirm the importance of moderate-to-vigorous physical activity. The new clini-
cal physical activity phenotypes are a promising tool for improving patient prognosis and for directing to more targeted intervention 
planning, according to the principles of precision medicine. The use of distributional representations shows clear advantages over 
more traditional metrics to explore the effects of the full spectrum of the physical activity continuum on human health.
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Introduction

Physical activity is one of the most successful non-pharma-
cological interventions to promote the health of individuals, 
including the prevention and management of morbidity [1], 
and risk of early mortality [2]. Physical activity is also key to 
maintain an optimal functioning in older adults. Ultimately, 
engaging in recommended levels of physical activity is central 
to successful ageing [3].

Medical guidelines have traditionally promoted standard 
doses of moderate and vigorous intensity physical activity rang-
ing from 150 to 300 min [4]. Recent advances in continuous 
monitoring technology (e.g., accelerometers) allow the record-
ing, at a high level of resolution (e.g., second by second or min-
ute by minute), of the amount and intensity of physical activity 
performed by an individual in a given period of time (e.g., a day 
or a week). Capitalizing on these advances, several epidemio-
logical studies are yielding new findings with important clinical 
implications. For example, several studies have now revealed 
the role of light intensity physical activity in lowering the risk 
of early death and increasing the lifespan of the general popula-
tion [2, 5–7]. Despite progress, there is still a need to determine 
more precisely the direction, magnitude, intensity, and volume 
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of physical activity that should be performed daily to effectively 
promote the health of individuals [8–10].

Precision medicine is based on the idea of defining clini-
cal phenotypes [11] or clusters of people who share a similar 
prognosis or response to treatments or other clinical events. 
These patient phenotypes are also helpful to define the differ-
ent transitions of changes in individual health characteristics 
and classify the expected patient evolution more accurately. 
Unfortunately, to date, a few contributions that propose physi-
cal activity phenotypes using accelerometer data exist [12]. A 
better understanding of the health consequences of individual 
profiles of physical activity, using the full spectrum of accel-
erometry intensity across the day, would arguably help inform 
public health recommendations to promote the health of the 
population.

Benefiting from the abundant and unique information pro-
vided in the 2011–2014 National Health and Nutrition Exami-
nation Survey (NHANES) study, including the availability of 
high resolution accelerometry data, the current work aimed to 
define new physical activity phenotypes using an unsupervised 
clustering analysis in people aged 65–80 years. The second-
ary aim of this study was to ascertain the prospective associa-
tions of these phenotypes with 5-year survival probability and 
mortality. To achieve these aims, we capitalized on recently 
proposed distributional representations of accelerometry-based 
physical activity, which allows the quantification of time spent 
across the full spectrum of physical activity intensity without 
limiting to collapse the whole information into a few intensity 
intervals, as previously done using more traditional composi-
tional metrics [13].

Methods

Sample

We used data from the NHANES waves 2011–2014. The 
NHANES aims at providing a broad range of descriptive 
health and nutrition statistics for civilian non-institutionalized 
population of the U.S. [14]. Data collection consists of an inter-
view and an examination; the interview gathers person-level 
demographic, health, and nutrition information; the examina-
tion includes physical measurements, such as blood pressure, 
a dental examination, and the collection of blood and urine 
specimens for laboratory testing. Additionally, participants 
were asked to wear a physical activity monitor, starting on the 
day of their exam, and to keep wearing this device all day and 
night for seven full days (midnight to midnight) and remove it 
on the morning of the 9th day. The device used was the Acti-
Graph GT3X + (ActiGraph of Pensacola, FL).

A total of 2021 older adults aged 65–80 years (with physical 
activity monitoring available at least 10 h per day for 4 days) 
were included in the analysis. For the multivariate analysis, 

supported by additional biochemical, grip strength and comor-
bidities variables, 1064 participants were included due to miss-
ing data on covariates. In both cases, specific re-weight tech-
niques on raw NHANES survey data were applied to properly 
handle the specific sampling mechanisms. The flow of partici-
pation in the current study is provided in the supplementary 
material.

Sociodemographic and clinical data

Age (both as a categorical and continuous variable), race, gen-
der, diagnosis of cancer or diabetes (as categorical variables), 
and blood pressure, combined grip strength measure, body 
mass index (BMI), and biochemical biomarkers, including 
cholesterol and triglycerides (as continuous variables), were 
considered in the analysis. Age was divided into three ranges 
(65–70, 70–75 and 75–80, respectively) for age-stratified analy-
sis. Race variable was coded as 1 = Mexican American; 2 = 
Other Hispanic; 3 = Non-Hispanic white, 4 = Non-Hispanic 
black; 5 = Non-Hispanic Asian; and 6 = Other Race, including 
multi-racial.

Physical activity monitoring

Physical activity signals were pre-processed by staff from the 
National Center for Health Statistics (NCHS) to determine sig-
nal patterns that were unlikely to be a result of human move-
ment. Then, acceleration measurements were summarized at 
the minute level using Monitor-Independent Movement Sum-
mary (MIMS) units, an open-source, device-independent uni-
versal summary metric [15].

Here, we adopt a novel representation of the resulting data 
that extends previous compositional metrics to a functional set-
ting [16], aimed at overcoming their dependency on certain 
physical activity intensity thresholds. This approach also over-
comes some previously known limitations of more traditional 
approaches.

Given a series of acceleration data [(tj, xj)]nj=1 recorded in the 
interval [0, T] over different monitoring periods, we propose 
to utilize a cumulative distribution function F(x) . Formally, 
consider a latent random process Y(t) , such that xj = Y

(

tj
)

 , 
j = 1,… , n , and define F as

We define the inactivity condition as Pinactive = F(0) , whilst 
Factive(x) = F(x) − F(0)  f o r  x > 0  .  H e n c e , 
F(x) = Pinactive + ∫ x

0
factive(s)ds , where factive = F�

active(x) . 
Thus, the continuous gait time is modeled through a density 
function, whilst inactivity time is modeled as a proportion. 
They can be easily computed from sample data in a two-step 
estimation procedure: first, the proportion of inactivity time is 

F(x) =
1

T �
T

0

1(Y(t) ≤ x)dt, for x ≥ 0.
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estimated as P̂inactive =
ninactive

n
 , where ninactive =

∑n

j=1
1{xj=0}

 ; 
second, the continuous physical activity profile is approached 
through a kernel density estimation

where kh(s) =
1

h
k
(

s

h

)

 is a non-negative real-valued integrable 
function, h > 0 is a smoothing parameter and 
nactive =

∑n

j=1
1{xj>0}

 . In the present analysis, the Gaussian ker-
nel was used for kh(s) and the smoothing parameter was selected 
through Silverman’s “rule of thumb” [17]. We finally used the 
quantile function estimator Q̂(p) = inf

{

x ∶ p ≤ F̂(x)

}

 , since 
they have proven to be particularly suitable for distributional 
modelling.

This new distributional representation allows us to meas-
ure the difference between physical activity profiles of dif-
ferent individuals by quantifying more comprehensively the 
amount of movement (i.e., acceleration, which resonates energy 
expenditure) over a given period and across the full spectrum 
of physical activity intensity.

Mortality and survival

NHANES data can be linked to the National Death Index 
(NDI), enabling the study of the association between accelera-
tion data, mortality status, and survival time. To this end, we 
accessed the 2015 Public-Use Linked Mortality Files [18], and 
included a binary variable indicating survival (or death) 5 years 
later, and the censored time to death.

Statistical analysis

The primary goal was to identify a reduced set of clinically rel-
evant phenotypes of physical activity supported by the new dis-
tributional representation and evaluate their impact on health. 
To this aim, we performed a clustering analysis using the kernel 
k-group algorithm [19]. To select the number of clusters, we 
used the well-established elbow rule [20]. According to this 
criterion, we estimated the within cluster sum of squares using 
the Gini mean difference for a different number of clusters, and 
we plotted the results. The number of clusters was then selected 
where there was a change in slope from steep to shallow (an 
elbow); in this case, k = 5.

We assessed the clinical relevance of these phenotypes to 
predict 5-year mortality and survival, and compared their clini-
cal sensitivity and accuracy with age. We performed logistic 
and Cox regression on survey data. We then implemented the 
Kaplan–Meier estimator and included the phenotype as a cat-
egorical predictor. Odds ratios and hazard ratios, and graphical 

�factive(x) =
(

1 − �Pinactive

)

1

nactive

∑n

j=1
kh
(

x − xj
)

1{xj>0}
,

survival plots were used to quantify the prospective associa-
tions of these phenotypes on mortality and survival in the study 
sample.

Then, to remove the effect of potential confounding vari-
ables, we fitted again the logistic and Cox regression models 
and included also comorbidities, gender, race, cholesterol, and 
triglycerides as predictors in the models.

All statistical analyses were conducted using R software. 
Cluster analysis was performed using the Energy package, and 
survey analysis was performed using the Survey package.

Results

Physical activity phenotypes

Five clinical phenotypes were identified by means of a cluster 
analysis based on Euclidean energy distance. The optimal num-
ber of clusters was selected according to the rule-of-thumb [20].

Figure 1 displays the mean quantile curves and the standard 
deviation quantile curves for the distributional representation 
of physical activity of each phenotype. The proportion of indi-
viduals who died after 5 years is also shown. We observed three 
phenotypes (Phenotypes 2, 3, and 5) with low mortality rate 
(less than 8%) and two phenotypes (Phenotypes 1 and 4) with 
a mortality rate of 27.3% and 12.8%, respectively.

The average distributional profiles of Phenotypes 1 and 4 
showed a distinctive inactivity pattern: more than 80% of the 
time of participants in these two clusters is spent in sedentary 
behaviors (90% time vs. 80% time), with also important differ-
ences in the proportion of time spent in light and moderate-to-
vigorous physical activity (MVPA) (5% vs. 10% and 2.9% vs. 
6.5% respectively). Participants in Phenotypes 3 and 5 spent 
similar amount of time in sedentary (72% vs. 73%, respectively) 
and in light intensity (10% vs. 8%, respectively) activities, but 
Phenotype 3 had 5% more time in in MVPA. Finally, partici-
pants in the Phenotype 2, with the lowest mortality rate, only 
spent 62% percent of time sedentary, 10% in light intensity, 15% 
in MVPA, and 13% in higher intensities.

Marginal survival analysis

Figure 2 displays a comparison of the survival curves for the 
different phenotypes and for the different age ranges. Partici-
pants in Phenotype 1 (the most inactive group) showed a lower 
survival compared with older individuals (75–80 years old). 
Table 1 shows the 5-year mortality and survival associated with 
each phenotype. Phenotypes 2–5 showed more than 90% less 
risk of mortality compared with Phenotype 1.
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Multivariate analysis

Population-based characteristics of the participants included in 
the multivariate analysis are shown in Table 2. Participants in 
Phenotype 1 were older on average than participants in the rest 
of phenotypes, and had a higher BMI, higher triglyceride level, 
and higher blood pressure. Phenotype 4, the second phenotype 
with more mortality rate, had a higher rate of diabetes and can-
cer, and the second higher BMI and age.

Phenotype 1 (mortality rate of 27.3%) presented sig-
nificant lower values of combined grip strength. However, 

Phenotype 4 (mortality rate of 12.8%) presented similar 
values of combined grip strength than the rest of physical 
activity phenotypes.

Table 3 shows the multivariate estimated coefficients (haz-
ard and odds ratios) for mortality associated with physical 
activity phenotypes. Results remained consistent with univar-
iate models presented in Table 1. Importantly, the confidence 
intervals for odds and hazard ratios do not cross 1, suggesting 
statistical significance.

Fig. 1  Mean and standard 
deviation of distributional repre-
sentation for the five phenotypes 
together with their mortality 
rate
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Discussion

This paper reveals new physical activity phenotypes for the 
U.S. older population using novel distributional representa-
tions of accelerometer-derived physical activity. The new 
clinical phenotypes yield a higher clinical sensitivity for 
predicting 5-year mortality and survival outcomes than age 
alone. Our results show that the most inactive physical activ-
ity phenotype has a much lower survival probability than the 
oldest participants in our sample.

Our findings reinforce the idea that information related 
to physical activity is a key non-pharmacological biomarker 

of functional decline status and general health [21, 22]. Pre-
vious studies [7] have shown the greater clinical sensitiv-
ity of physical activity to predict 5-year mortality with the 
NHANES data 2003–2006 (compared to age), although such 
level of performance was not observed in the UK-Biobank 
study [5]. This discrepancy is likely due to the limitation of 
UK-Biobank study design and the selection bias. Our results 
were confirmed in multivariate analyses adjusting for poten-
tial confounders, such as age, race, sex, comorbidities, or 
biochemical variables, such as cholesterol or triglycerides. 
We also derived specific weights for the sample included in 
the analysis, thereby reinforcing the generalizability of our 
results.

Fig. 2  Kaplan–Meier curves for 
each phenotype and age group 
strata

Table 1  Hazard ratios and Odds 
ratios (with 95% confidence 
intervals) of mortality outcomes 
associated with different 
physical activity phenotypes 
(reference: group 1—inactivity 
phenotype)

Hazard ratio 2.5% 97.5% Odds ratio 2.5% 97.5%

Phenotype 2 0.07 0.02 0.27 0.06 0.02 0.23
Phenotype 3 0.34 0.19 0.59 0.34 0.19 0.62
Phenotype 4 0.54 0.39 0.75 0.52 0.35 0.75
Phenotype 5 0.09 0.04 0.23 0.09 0.04 0.23
Age (years) 1.12 1.08 1.16 1.14 1.09 1.18
Gender 0.86 0.64 1.16 0.87 0.63 1.21
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The introduction of new clinical phenotypes with the 
novel distributional representations allowed us to assess the 
amount of movement along each intensity recorded by the 

accelerometer monitor, unlike other existing compositional 
metrics used in the literature [14]. The summary functional 
curves (mean and variance) derived from the cluster analysis 

Table 2  Summary clinical characteristics of participants in each cluster

In binary variables, we show the rate, and in continuous variables, we show the mean and standard deviation

Phenotype 1 Phenotype 2 Phenotype 3 Phenotype 4 Phenotype 5

Gender (men) 0.65 0.376 0.507 0.633 0.4664
High blood pressure 0.748 0.52 0.62 0.68 0.607
Cancer (yes) 0.273 0.224 0.258 0.286 0.162
Diabetes (yes) 0.531 0.5 0.484 0.591 0.492
No alcohol consume 0.064 0.039 0.095 0.243 0.307
Middle alcohol consume 0.07 0.097 0.175 0.408 0.661
High alcohol consume 0 0 0.008 0.016 0.026
Mexican American 0.042 0.096 0.054 0.042 0.068
Other Hispanic 0.021 0.136 0.072 0.062 0.11
Non-Hispanic white 0.669 0.488 0.552 0.615 0.618
Non-Hispanic black 0.197 0 0.303 0.216 0.126
Non-Hispanic Asian 0.049 0.144 0.014 0.039 0.068
Other race—including multi-racial 0.021 0.136 0.005 0.026 0.01
Age (years) 75.53 ± 4.87 69.38 ± 4.5 72.35 ± 5.21 73.1 ± 5.22 70.65 ± 4.76
BMI (Kg/m2) 29 ± 5.75 26 ± 4.85 28 ± 6.15 29 ± 5.69 28 ± 4.76
Combined grip strength (kg) 50.6 ± 18.9 55.7 ± 15.6 58.2 ± 19.1 59.5 ± 19.5 59.8 ± 18.4
Triglycerides (mg/dL) 1.84 ± 0.93 1.47 ± 0.92 1.59 ± 1.04 1.68 ± 1.06 1.74 ± 0.98
Cholesterol (mg/dL) 181.49 ± 43.88 191.46 ± 38.47 193.75 ± 39.69 179.07 ± 41.28 198.79 ± 43.84

Table 3  Results of logistics and 
Cox survey regression model in 
terms of odds ratio and hazard 
ratio

The interval confidence of coefficients is estimated with a level of 95%. Reference Group 1—inactivity 
phenotype

Hazard ratio 2.5% 97.5% Odds ratio 2.5% 97.5%

Phenotype 2 0.12 0.02 0.66 0.10 0.02 0.62
Phenotype 3 0.29 0.11 0.75 0.30 0.11 0.80
Phenotype 4 0.55 0.31 0.98 0.49 0.25 0.98
Phenotype 5 0.07 0.01 0.61 0.07 0.01 0.62
Age 1.10 1.04 1.17 1.12 1.05 1.19
Gender (woman) 0.92 0.57 1.47 0.99 0.61 1.63
Other Hispanic 0.81 0.14 4.49 0.69 0.11 4.38
Non-Hispanic white 0.79 0.35 1.80 0.60 0.25 1.43
Non-Hispanic black 0.43 0.15 1.21 0.35 0.12 1.05
Non-Hispanic Asian 1.13 0.31 4.12 1.17 0.27 5.06
Other race, including 

multi-racial
1.21 0.35 4.14 1.18 0.29 4.76

Blood pressure hight 0.84 0.40 1.80 0.77 0.35 1.71
BMI 0.99 0.93 1.06 0.99 0.93 1.06
Middle Alcohol 0.55 0.33 0.92 0.60 0.33 1.10
High alcohol 0.97 0.12 8.17 1.68 0.15 18.64
Cancer (no) 0.84 0.48 1.47 0.95 0.51 1.75
Diabetes (no) 0.89 0.59 1.35 0.91 0.58 1.44
Triglycerides 0.80 0.54 1.19 0.79 0.54 1.17
Cholesterol 1.00 0.99 1.00 1.00 0.99 1.00
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done in our study show differentiated patterns of physical 
activity, with remarkable differences across the intensity 
spectrum from inactivity; and highlight the need to monitor 
and quantify physical activity more precisely, also to detect 
the impact on health of intensities often hidden in previous, 
threshold-based monitoring of physical activity. The pheno-
types generated in this study may serve as a formal frame-
work to assess activity changes, for example, with an inter-
vention. In this sense, it is worth mentioning that a reduction 
in mortality risk between two of the phenotypes might only 
be due to an increase in the MVPA duration. In addition, 
the generated phenotypes could be used as a prognosis and 
monitoring tool. Our work adds to the (yet scarce) number of 
works that have explored the idea of physical activity pheno-
types as a health monitoring tool [12].

A recent review indicated that there may not exist solid evi-
dence of the benefits of physical activity in patient prognosis 
in some diseases, such as cardiovascular problems [2]. How-
ever, it is remarkable to note the sizeable individual response of 
patients to physical activity and that patients with standardized 
training programs improve fitness and not necessarily maximal 
oxygen uptake [23–25]. Several investigations have shown the 
relationship between maximal oxygen uptake and the prognosis 
of these patients and their survival and risk of mortality [23]. 
Thus, monitoring patient profiles at a high level of resolution 
is essential to ensure the optimal prescription of physical activ-
ity. Indeed, some recent works showed the protective role of 
light intensity activity for longevity [6, 26]. In addition, the 
health impact of the optimal intensity–volume coupling is the 
result of a complex process influenced by many factors, such as 
genetic and environment, which must be considered in exercise 
prescription [8, 9]. In this regard, the new patient stratification 
methods may provide a framework for analyzing these factors 
and guiding training prescription.

The main strength of this study is that the data used are a 
random sample from a complex survey design, unlike a signifi-
cant fraction of physical activity studies that use observational 
data. Thanks to the NHANES survey design, we can obtain 
more general conclusions about the impact of physical activ-
ity on health profiles of the U.S. population. The sample size 
is another strength, although other cohorts, such as the U.K-
Biobank, have a more significant number of participants; yet 
its experimental design has inherent limitations.

Distributional representations provide further advantages 
in statistical modelling, since they intrinsically capture the 
information represented by compositional metrics [16, 27, 
28] and lead to more refined physical activity profiles which 
expand along the continuous spectrum of intensity. In addi-
tion, the new and more sophisticated pre-processing of accel-
erometer data leads to greater sensitivity [15], especially for 

detecting differences in light- and high-intensity physical 
activity.

An inherent limitation of this study is the non-incorpora-
tion of potential confounders, such as genetic variables, but 
this is present also in other observational studies. In addition, 
with a more extensive physical activity monitoring period, we 
could have drawn more reliable conclusions about the impact 
of individual physical activity patterns on health. However, 
in this paper, we analyzed older individuals with lower func-
tional capacity, and this could limit the impact of intraday 
variability in physical activity patterns (i.e., our population 
may show more consistent patterns of physical activity than 
younger and fitter populations). Similarly, the non-inclusion 
of the temporal component of distribution representations is 
another added problem that may lead to new findings of the 
role of physical activity on health. For example, recent stud-
ies have shown the effects of the chronobiology differences 
in physical activity on health [29].

In summary, this study provides new phenotypes in the 
ageing U.S. population and shows their clinical utility to pre-
dict the mortality and survival outcomes in the study sam-
ple. Following the principles of precision medicine [30], and 
according to the phenotypes obtained, differences in light and 
high-intensity physical activity are relevant for health. The 
use of distributional representations could be advantageous 
over more traditional threshold-based analytical approaches 
to explore the effects of physical activity on human health.
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