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A B S T R A C T   

Industrial regions and relevant infrastructures are known to contribute to air pollutant emissions; thus, a detailed 
investigation of the air pollutant concentrations of a region based on specific land uses, with spatial reasoning, 
can support smart regional planning. However, the current knowledge about the spatial patterns that indicate the 
relationship between the anthropological or environmental features and the air pollutant concentrations in in-
dustrial regions is limited. Thus, in this study, we aimed to identify the factors that affect air-pollutant con-
centrations due to local spatial impacts in industrial regions across Australia. Considering the large spatial scale, 
the impact of a global factor can be overwhelmed by another factor due to local spatial impacts, and the phe-
nomenon is a kind of spatial disparity. We developed a novel set of methods, including a point-of-interests-based 
spatial identification method and geographically weighted regression (with standardised coefficients), to: (i) 
identify the industrial regions in the study area, (ii) collect the remote sensing factors, and (iii) identify the 
factors that affect the spatial disparity of air-pollutant concentrations in industrial regions. The results indicated 
a significant spatial disparity in the air pollutant concentrations in the industrial region, at a continental scale. 
Anthropogenic factors significantly affected the spatial patterns of air pollutant concentrations in the industrial 
regions that were remote to cities, whereas meteorological and topographical factors had significant impacts on 
the air pollutant distributions in urban industrial regions. Furthermore, within the nationwide industrial lands, 
drives of the relatively high concentrations of ozone and sulphur dioxide, the drivers of the air pollutant con-
centrations were environmental factors; high concentrations of nitrogen dioxide were more associated with the 
topographical features of the region. The methods proposed in this study can serve as a reliable framework for 
analysing the air quality of industrial regions and can also, supplement future studies on emissions reduction in 
industrial parks.   

1. Introduction 

Air pollutants are detrimental to the natural environment (Wang 
et al., 2021); of note, in recent times, human health (Pope et al., 1995) 
and air-pollution monitoring have become a critical environmental 
justice issue (Xie et al., 2017; Cai et al., 2020). It is a known fact that 
industrial regions and relevant infrastructures contribute to air pollutant 
emissions, and the related spatial studies imply that air pollutant in-
vestigations, with specific industrial land use as the geographical 
boundaries (rather than administrative boundaries), can be accurate 
(Satterthwaite, 2008). Thus, a detailed study that investigates the air 

pollutant concentrations of a region based on specific land uses, with 
spatial reasoning, can support smart regional planning with a clear 
focus. In case of the Australian industrial region, factories, and in-
frastructures, three key industries, i.e. manufacturing, mining, and 
utility supply and waste services, are highly relevant to air pollutants, 
including carbon monoxide (CO), ozone (O3), nitrogen dioxide (N O2), 
and sulphur dioxide (S O2) (Department of the Environment and Energy, 
Australian Government, 2021). 

The concentrations of air pollutants have long been monitored using 
remote sensing and earth observations (Akinwumiju et al., 2021; Roy, 
2021). Factor analysis is one of the most important topics in air pollutant 
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investigations and is supported by remote sensing techniques. Several 
relevant previous studies analysed air pollutant concentration from the 
socioeconomic and environmental perspectives (Shmool et al., 2014; 
Fang et al., 2015). These studies demonstrated that a few spatial factors 
can lead to a high air-pollutant density (Gómez-Losada et al., 2019). 
From an environmental interaction perspective, meteorological factors, 
including precipitation and wind speed (Hu et al., 2021), vegetation 
greenness (Wang et al., 2020), and topography (Sabrin et al., 2020), are 
closely related to air pollutant concentrations. From an anthropological 
perspective, road development (Dons et al., 2013), population growth 
(York et al., 2003), urbanisation (She et al., 2017), and industrialisation 
(Cheng, 2016) can increase air pollution significantly. 

The relationship between the air pollutant concentrations and the 
characteristics of industrial regions can be determined using traditional 
statistical methods (Yang et al., 2019). Furthermore, advanced machine- 
learning algorithms, including support vector machines and random 
forests, were developed to measure industrial air-pollutant concentra-
tions (Ju et al., 2023). However, the current knowledge about the spatial 
patterns that indicate the relationship between the anthropological or 
environmental features and the air pollutant concentrations in industrial 
regions is limited. Currently, the spatial disparities of the factors that 
affect air pollutant concentrations, which indicate the internal charac-
teristics of industrial regions, remain undiscovered. Spatial association 
modelling is an effective approach to examine relationships between 
spatial variables and it has been widely implemented in geographical 
factor exploration and spatial prediction (Luo et al., 2022; Song et al., 
2021; Song, 2022a, 2022b). To explore such spatial relationships, 
geographically weighted regression (GWR) is a suitable method 
(Fotheringham, 2002). In previous studies, this method has been applied 
to identify the spatial heterogeneity in the relationship between air 
pollutants and their driving factors (Tian et al., 2019; Guo et al., 2021). 
The practical feasibility of applying the GWR method to such industrial 
land-use studies has been proven in previous works (Fotheringham 
et al., 2003; Tu et al., 2021). 

This study was designed to identify the factors that affect the air 
pollutant concentrations, due to the local spatial impacts in industrial 
regions, at a continental level. In this study, we identified nationwide 
industrial regions, based on a spatial methodology framework, and 
demonstrated the spatial patterns of the factors that affect air pollutant 
concentrations in industrial regions, using the GWR with standardised 
coefficients. In this study, we also explored the spatial impacts of various 
remote-sensing factors on air pollutant concentrations in detail. 

2. Study area and data 

2.1. Study area 

In this study, we focused on the industrial regions that support key 
industry activities across Australia. As of 2020, Australia comprised 
eight states or territories and had a population of 25 million. According 
to the remoteness structure defined by the Australian Statistical Geog-
raphy Standard (ASGS), approximately 20,000 km2 (accounting for 
0.26% of the country) of the nations’ total area is covered by major 
cities. Approximately 70% of the national population resides in major 
capital cities (Geoscience Australia, 2014; Australian Bureau of 

Statistics, 2021a). 

2.2. Data 

2.2.1. Data for industrial region identification 
We identified the industrial regions in the country using land-use 

polygons and points of interest (POI). The industrial land use polygons 
were acquired from the OpenStreetMap (OSM) software (Geofabrik and 
OpenStreetMap contributors, 2020). The polygons, tagged as industrial 
areas, delineated the areas designed for relevant industrial activities. 
Note that the industrial polygons from OSM met the definition of areas 
for manufacturing, mining, utility supply, and waste services. The POI 
data, acquired from the National Pollutant Inventory (NPI) data, 
included all the officially registered locations of facilities built for 
manufacturing, mining, utility, and waste services listed in the NPI 
(Department of the Environment and Energy, Australian Government, 
2020). 

The raw OSM industrial polygons were coarse in size and needed to 
be processed prior to computation. According to the ASGS, polygons 
covering an area of 5000 m2 should be the minimal resolution of a re-
gion having at least one functional facility, which also holds true for 
maintaining the same spatial granularity for an area having an infra-
structure that supports the daily activities of a society (Hadjisophocleous 
and Chen, 2010; Yamaguchi et al., 2012). Therefore, land use polygons 
of areas less than 5000 m2 were considered as points, rather than re-
gions. Thus, extremely small land-use polygons were converted into 
points and treated as supplementary POI. Table 1 presents a general 
description of the spatial data used for industrial region identification. 

2.2.2. Air pollutant and explanatory-factor data 
In this study, the air pollutants were studied by investigating the air 

pollutant concentrations measured by satellites. Air pollutant concen-
trations, including the column densities of CO, O3, N O2, and S O2 , were 
considered as response variables in this study (Table 2). These remote 
sensing data were accessed from the Sentinel-5P mission carried out by 
the European Space Agency (ESA), and acquired from the Google Earth 
Engine (GEE) (Google Developers and the European Space Agency, 
2020). 

The explanatory factors for air pollutant density can be categorised 
into anthropological and environmental factors (Table 2). For 
anthropogenic-activity data, the night-time light (NTL) data and esti-
mated population were accessed from GEE, and road density was ob-
tained from OSM. The NTL data used in this study were monthly 
radiance composite images from the visible infrared imaging radiometer 
suite (VIIRS) day/night band information provided by the Earth 
Observation Group (Google Developers and Earth Observation Group, 
2020). The population data were sourced from the Real-WorldPop 
Global Population Project of GEE (Google Developers and Worldpop, 
2020). The road data were obtained from OSM open-access Big Data 
(Geofabrik and OpenStreetMap contributors, 2020). The size of the in-
dustry was represented by the total number of factories and employees 
within an industrial region. The factory counts and employee numbers 
were acquired from the government’s open-access database (Depart-
ment of the Environment and Energy, Australian Government, 2020). 

The environmental factor data consisted of remote sensing data 
accessed from the GEE, including the digital elevation model (DEM), 
normalised difference vegetation index (NDVI), precipitation, and wind 
speed. The Australian DEM provided by Geoscience Australia, with 
geomorphological information, was acquired from GEE (Google De-
velopers and Geoscience Australia, 2010). Note that Landsat-8 remote 
sensing products (Google, 2020) were the primary source of NDVI in-
formation, owing to their high spatial resolution. The moderate reso-
lution imaging spectroradiometer (MODIS) NDVI products (Google 
Developers and the United States Geological Survey, 2020) provided the 
information that was missing in the data acquired from Landsat-8. The 
precipitation and wind speed data were accessed from the TerraClimate 

Table 1 
Description of the spatial vector data used for industrial region identification.  

Type of vector data Count Rural Urban Source 

Industrial land use polygon 6237 2869 3368 OSM 
POI for utility and waste services 1237 841 396 NPI 
POI for manufacturing 1225 576 649 NPI 
POI for mining 711 647 64 NPI 
POI supplement utility and waste services 1076 1011 65 OSM 
POI converted from land-use polygons 1221 708 513 OSM  
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datasets, which provide the monthly climate information on global 
terrestrial surfaces (Google Developers and University of California 
Merced, 2020). 

3. Methods 

Fig. 1 presents a flowchart of the method applied in this study. We 
adopted three major steps: industrial region identification, air pollutant 
and factor data processing, and air pollutant determinant factor explo-
ration. Details of the study methods are explained in the following 
sections. 

3.1. Industrial region identification 

3.1.1. Definition of industrial regions 
We redefined the industrial regions serving three key industrial land 

use: mining, manufacturing, and utility supply and waste services 
(Australian Bureau of Statistics, 2021b). The definition and spatial 
boundary properties of the industrial regions applied in this study were 
consistent with the concept of functional areas adopted by the Austra-
lian Bureau of Statistics (Australian Bureau of Statistics, 2021c). Thus, 
industrial regions should have a dense infrastructure and must be large 
enough to preserve the industrial functions by providing utility and 
waste services and manufacturing or mining products. Note that a single 

Table 2 
Satellite measurements and raster data summary.  

Category Data Spatial resolution 
(m) 

Temporal 
resolution 

Statistics Unit Provider 

Air pollutant 
concentrations 

Column densities of CO, O3, N O2, and S 
O2 

1113 Daily Yearly 
average 

mol/m2 Sentinel-5P 

Socio-economic NTL 464 Monthly Yearly 
average 

nanoWatts/ 
cm2/sr 

VIIRS  

Population 100 Yearly – count WorldPop 
Geography DEM 31 – – m Geoscience 

Australia 
Vegetation NDVI 30 18 days Yearly 

average 
– Landsat8  

NDVI 500 16 days Yearly 
average 

– MODIS 

Meteorology Precipitation 4638 Monthly Yearly sum mm TerraClimate  
Wind speed 4638 Monthly Yearly 

average 
m/s TerraClimate  

Fig. 1. Research workflow and detailed process. (a) Research workflow. (b) A demonstration of the industrial region identification process. (c) Details of remote 
sensing data collection. 
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industrial region should be equivalent to the industrial functional area of 
Statistical Area Level 2 (SA2). 

3.1.2. Industrial region identification 
In this study, the industrial regions were a combination of industrial 

land use and industrial areas with a high density of infrastructure. A 
demonstration of the industrial region-identification process is shown in 
Fig. 1(b). The industrial regions were determined based on the OSM 
polygons and POI. Note that POI and OSM have been used previously for 
similar purposes in studies on urban planning (Li et al., 2019; Tu et al., 
2020). A spatial methodology framework for region identification, 
based on POI and OSM, through kernel density estimation (KDE) and the 
use of geographic information systems (GIS) was adopted in previous 
studies (Li et al., 2018; Song et al., 2018). 

The industrial polygons acquired from OSM were a part of the in-
dustrial regions. Areas with high densities of industrial infrastructure 
were also considered to be industrial regions. The POI representing the 
facilities that supported the three key industries listed in Table 1 were 
used to identify he regions with high densities of industrial infrastruc-
ture, by KDE. In general, the KDE method is used to estimate the density 
of infrastructure within an area defined by a searching radius for a given 
kernel shape. The geographic boundary between the highly dense and 
non-dense areas, determined using KDE, can be identified when the 
cumulative density function (CDF) change is sufficiently small. An 
Epanechnikov kernel was used for the KDE function, while considering a 
theoretically lower mean square error than that of the Gaussian and 
uniform kernels (Chen, 2017). The KDE function was processed with a 
search radius of 1000 m, equivalent to the size of the SA2 functional 
area. The pixel size of the KDE was set at 194 m, equivalent to the finest 
spatial granularity of the ASGS products (Zhang et al., 2022). After 
processing the KDE function, the threshold value used to determine the 
boundaries of areas with high densities of infrastructure was 0.5%; the 
feasibility and effectiveness of this threshold value has been previously 
proven (Song et al., 2018). 

Finally, the industrial land use polygons and the areas having dense 
infrastructure were merged. Small-sized industrial regions were filtered 
after the merging process. Accordingly, the merged industrial regions 
of<0.4642 km2—the size of which was equivalent to the smallest 
recorded SA2 functional areas—were not regarded as valid functional 
industrial regions and were, therefore, filtered. The final products of 
industrial regions were large enough to be functional areas and have 
dense industrial infrastructures. 

3.2. Air pollutants and factors data processing 

Remote sensing factors, including air pollutants, NTL, population 
densities, DEM, NDVI, precipitation, and wind speed, were collected 
from the GEE. Note that in this study, we aimed to investigate how 
remote sensing and spatial factors affected the air pollutant concentra-
tions in the industrial regions of Australia in 2020. Spatial factors, 
including road density and industrial size, were computed using the GIS 
data with the OSM or NPI vector data. The detailed process of remote 
sensing factor generation is shown in Fig. 1(c). Various remote-sensing 
factors for industrial regions were calculated using two different 
methods. The first category of factors, including air pollutant concen-
trations, NTL, NDVI, and wind speed, were represented by a spatio-
temporal average for each industrial region. After accessing the remote 
sensing datasets, we computed the temporal average of the pixels at the 
same location for the entire year and obtained the yearly average of the 
remote sensing factor at that location. Then, we estimated the spatio-
temporal average of that factor within the industrial region by 
computing the mean value of all the temporally averaged pixels inside 
the industrial region. The population, DEM, and precipitation factors 
were treated differently. The population was the spatial sum of all the 
pixels within the area, DEM was the spatial average of all the values 
inside the area, and yearly precipitation was the spatial average of the 

sum of monthly precipitation. 
For the NDVI images acquired from Landsat 8, <0.1% of the pixels 

were not sampled, and these missing values were estimated and inter-
polated using the MODIS NDVI products at the same location. Thus, a 
data fusion method, based on cubist regression, was used to estimate the 
missing Landsat-8 NDVI values, using MODIS NDVI values with high 
accuracy, as proven by previous studies (Filgueiras et al., 2020). To 
maintain consistency with the homoscedasticity assumption in the 
regression, we calculated the logarithms for the CO, O3, and N O2 values, 
prior to presenting the final results. 

When the factor data were processed, we standardised all the factors. 
The standardisation process enabled the variables to be unitless and 
comparable. Thus, the coefficients from the regression models were 
standardised coefficients, and the absolute value of the standardised 
coefficients implied the strength of the impacts of different factors on the 
air pollutant concentrations in the industrial regions (Wu et al., 2021). 
Furthermore, we used the Pearson’s correlation coefficient to indicate 
the relationships between the standardised response and the explana-
tory variables. Then, a multi-collinearity test was performed to remove 
the variables containing multi-collinearity, using a variance inflation 
factor (VIF) threshold of 2.5. 

3.3. Multiple regression and GWR with standardized coefficients 

Multiple regression and GWR were applied to quantitatively measure 
the factors that affected the air pollutant concentrations in the industrial 
regions, based on the factors selected in the previous process. A multiple 
regression model, as shown in Eq. (1), was utilised to quantify the 
relationship between the standardised air pollutant densities and the 
potential determining factors (Shmool et al., 2014). 

Yi = β0 +
∑n

j=1
βjXij + εi (1) 

where Yi is the air pollutant density at location i, and βj are the 
standardised coefficients of the selected influential factors computed 
using ordinary least squares (OLS). The absolute value of the stand-
ardised coefficient indicates the influence of air pollutant concentra-
tions. Xij refers to the j-th influential factor value at location i, and εi is 
the error term. 

A GWR with an adaptive kernel was applied to quantify the rela-
tionship between the air pollutant concentrations and the selected 
influential factors, while considering spatial non-stationarity (Fother-
ingham et al., 2003). The GWR model is shown in Eq. (2). 

Yi = β0(ui, vi)+
∑n

j=1
βj(ui, vi)Xij + εi (2) 

where Yi refers to the four types of air pollutants, Xij is the selected 
anthropogenic or environmental influential factor, and Îµi is the error 
term. βj(ui, vi) denotes the local standardised coefficients for the influ-
ential factors; a higher absolute coefficient value indicates a stronger 
impact of the potential factors on the air pollutant concentration. 

The values of βj(ui, vi) were computed using Eqs. (3) and (4). In our 
study, the industrial regions were sparsely distributed. Therefore, an 
adaptive kernel using the k-nearest neighbour (KNN) was chosen to 
compute the weight matrix. The bandwidth selection function was used 
to determine the final bandwidth value by minimising the model root 
mean square error value (Fotheringham et al., 2003). 

β(ui, vi) = (XT W(ui, vi)X)− 1XT W(ui, vi)Y (3)  

Wij =

⎧
⎨

⎩

e−
1
2(

dij
b )

2
, if dij < b

0,Otherwise
(4) 

The Gaussian weight kernel shown in Eq. (4) was applied to compute 
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the spatial matrix. The adaptive bandwidth was determined using KNN. 
dij refers to the distance between the two industrial regions. Notably, we 
used an R-language-based “spgwr” package, to determine the optimal 
bandwidth value, and analysed the datasets using GWR. 

In this study, spatial disparity refers to the phenomenon in which the 
strength of the global influential factor is overwhelmed by another 
factor owing to local spatial impacts. The key results, including the 
spatial pattern and statistical distribution of the factors affecting air 
pollutant concentrations, were mainly generated and interpreted, using 
the GWR method (with standardised coefficients), as shown in Fig. 1(a). 

The input factors for both the global regression model [Eq. (1)] and the 
local spatial regression [Eq. (2)] were standardised. Thus, the strength of 
the factors could be compared using the absolute value of the stand-
ardised coefficients from both the models, as these coefficients were 
unitless and at the same scale. The global and local predominant factors 
had the greatest absolute value of standardised coefficients, as indicated 
by the standardised OLS and GWR results. Finally, the local spatial re-
sults were compared with the global outcomes to identify the places 
where the global factors were overwhelmed by other factor(s). 

4. Results 

4.1. Identified industrial regions at a continental scale 

The regions with POI density values greater than 1.95 were selected 
as the potential industrial regions. The details of the KDE industrial 
boundary selection are presented in Table 3. The top 2.5% of the regions 
with high POI density values, covering an area of 326 km2 across the 
whole nation, was a part of the study area. 

Notably, we identified 755 industrial regions across Australia. The 
industrial regions covered an area of 1827 km2, which occupied 0.025% 
of the total Australian land area. The size of the industrial regions of 
interest in major cities ranged from 0.46 to 51 km2. The industrial region 
size in other areas were up to 107 km2. Fig. 2 portrays the size and 
spatial distribution of the identified industrial regions. According to the 
statistical distribution by state, New South Wales (NSW) had the most 
industrial regions (in terms of counts; 226). Queensland (QLD) had 192 
industrial regions (ranking second), followed by Victoria (VIC; 150). 

Table 3 
Summary of kernel density estimation (KDE) industrial boundary threshold se-
lection based on points of interest (POI) density cumulative density function 
(CDF).  

POI density range KDE pixel count CDF value (%) Change of CDF (%) 

…… …… …… …… 
(1.45, 1.55] 2842 94.45 0.82 
(1.55, 1.65] 2753 95.25 0.79 
(1.65, 1.75] 2505 95.97 0.72 
(1.75, 1.85] 2224 96.61 0.64 
(1.85, 1.95] 1938 97.17 0.56 
(1.95, 2.05] 1140 97.50 0.32 
(2.05, 2.15] 778 97.72 0.22 
(2.15, 2.25] 722 97.93 0.21 
(2.25, 2.35] 667 98.12 0.19 
…… …… …… …… 
(34.65, 34.75] 1 100 – 
Total 346,906    

Fig. 2. Identified industrial regions in Australia and comparison with spatial distributions of major cities and Statistical Area Level 3 (SA3) boundaries. (a) Spatial 
distribution of industrial regions, main capital cities, and Australian state boundaries. Industrial regions in (b) Brisbane, (c) Sydney, (d) Perth, (e) Adelaide, and 
(f) Melbourne. 
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Western Australia (WA) contained 94 industrial regions and ranked 
fourth, almost equal to the total count in Tasmania (TAS), South 
Australia (SA), and Northern Territory (NT). According to the ASGS 

remoteness definition, 322 of these regions were clustered within major 
cities. 

4.2. Correlation test, influential factor selection, and multi-collinearity 
test 

The correlation test results are shown in Fig. 3. According to the 
factor selection process, NTL, DEM, NDVI, precipitation, and wind speed 
were the influential factors selected for the CO density analysis. Road 
density, NDVI, precipitation, wind speed, manufacturing factory count, 
and mining employee scale were considered as influential factors for O3 
density. N O2 density had nine influential factors: NTL, population 
density, road density, DEM, precipitation, utility and waste service 
represented by the factory and employee scale, respectively, 
manufacturing factory count, and mining factory count. The S O2 den-
sity was influenced by road density, population density, DEM, precipi-
tation, wind speed, utility and waste service employee scale, 
manufacturing employee scale, and mining factory count. In terms of the 
multi-collinearity test, the VIF values for the selected variables (listed in 
Table 4) were all less than 2.5, which is generally acceptable for the 
regression models. 

4.3. Air pollutant determining factor exploration 

4.3.1. Analysis results from multiple regression and GWR with standardized 
coefficients 

In this study, we determined the general air pollutant determining 
factors using OLS multiple regressions, as shown in Table 4. The deter-
mining factor for each air pollutant density was the factor with the 
greatest absolute value of the standardised coefficient in multiple re-
gressions. In general, meteorological factors affected the air pollutant 
concentrations in the region more than anthropogenic activities. Wind 
speed was a global determining factor for CO, O3, and S O2, while road 

Fig. 3. Correlation test results.  

Table 4 
Multiple regression statistical results.   

CO O3 N O2 S O2 

NTL 0.107 (***) – 0.182 
(***) 

– 

Road density – 0.264 
(***) 

0.233 
(***) 

0.079 (*) 

Population density – – 0.128 
(***) 

0.113 (*) 

DEM − 0.458 
(***) 

– − 0.111 
(***) 

0.090 (*) 

NDVI − 0.199 
(***) 

0.289 
(***) 

– – 

Precipitation 0.229 (***) − 0.274 
(***) 

0.226 
(***) 

0.209 
(***) 

Wind speed ¡0.556 
(***) 

0.351 
(***) 

– 0.218 
(***) 

Utility and waste factory 
count 

– – − 0.109 
(**) 

– 

Utility and waste 
employee 

– – 0.154 
(***) 

0.129 
(***) 

Manufacturing factory 
count 

– 0.092 (**) 0.179 
(***) 

– 

Manufacturing 
employee 

– – – 0.099 (**) 

Mining factory count – – − 0.083 
(**) 

− 0.064 (.) 

Mining employee – − 0.070 (*) – – 
p-value for F-statistic <0.001 <0.001 <0.001 <0.001 
R squared value 0.436 0.282 0.387 0.185 

*Note: Determining factors in global multiple regressions were bold fonts. 
Significance code: (***) p < 0.0001, (**) p < 0.001, (*) p < 0.01, (.) for p < 0.05. 
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density was the determining factor for N O2. Topography was the second 
determining factor for CO density, and NDVI was the second deter-
mining factor for O3 concentration. Precipitation was the second most 
influential factor on N O2 and S O2. Additionally, anthropogenic activity 

indicators (i.e. NTL, road density, and population density) and 
manufacturing industry scales were positively related to air pollutant 
density. 

The spatial disparities of the determining factors, on a continental 
level, were identified by GWR models, as shown in Fig. 4 and Table 5. 
Fig. 4 portrays a statistical summary of the GWR-significant coefficients 
of the four air pollutant density models used in this study. Evidently, 
NTL, population density, and manufacturing industry scales were posi-
tively related to the air pollutant concentrations across the study area; 
these factors had disparities in their strength. However, road density and 
other environmental factors had spatial disparities in both their influ-
ential strengths and directions. Table 5 provides the supplementary in-
formation regarding the significant coefficient statistics and the 
determining factor statistics. Table 5 summarises the number of indus-
trial regions, where the impact of each spatial factor was statistically 
significant, and the number of industrial regions, where the absolute 
value of the regression coefficient of each spatial factor, was statistically 
significant. A spatial factor was known to be predominant in an indus-
trial region, when the absolute value of the standardised regression 
coefficient was larger than other factors; the standardised coefficient 
should be statistically significant at the 0.05 level. For CO density, 
topography was the most common influential factor in the Australian 
industrial regions, followed by precipitation and wind speed. For O3 
density, precipitation and wind speed were the two key determining 
factors, at a similar level (in terms of count). For N O2 density, precip-
itation, topography, and NTL were the most significant determining 
factors. For S O2 density, precipitation was the primary determining 
factor, followed by wind speed and manufacturing employee scale. From 
Tables 4 and 5, the spatial disparities of the air-pollutant-determining 
factors across the whole nation were apparent. Although wind speed 
and road density appeared to be the determining factors for air pollutant 
densities in global models, in our study, the predominant factors varied 
significantly. 

The multiple regression and GWR model performance are listed in 
Table 6. By comparing all air pollutant models, we concluded that the 
GWR had better Akaike information criterion (AIC) and residual sum of 
squares (RSS) values than the multiple regression. The figures in Table 6 
indicate that the GWR model had a better goodness-of-fit and model 
quality. That is, the GWR method provided a better explanation of the 
air-pollutant-determining factors on a continental level by considering 

Fig. 4. Statistical summary of GWR significant coefficient for (a) CO model, (b) O3 model, (c) N O2 model, and (d) S O2 model.  

Table 5 
Counts of geographically weighted regression (GWR) significant coefficient and 
determining factor.   

Count of the industrial region where this factor is 
statistically significant and predominant / Count of 
industrial regions where the factor is statistically 
significant  

CO O3 N O2 S O2 

NTL 6 / 43 – 112 / 
434 

– 

Road density – 21 / 119 28 / 171 0 / 109 
Population density – – 7 / 231 0 / 105 
DEM 198 / 

272 
– 166 / 

406 
20 / 284 

NDVI 9 / 66 23 / 114 – – 
Precipitation 64 / 158 153 / 

259 
226 / 
355 

317 / 
385 

Wind speed 95 / 185 154 / 
254 

– 136 / 
372 

Utility and waste factory 
count 

– – 18 / 100 – 

Utility and waste employee – – 37 / 210 17 / 210 
Manufacturing factory count – 6 / 89 11 / 124 – 
Manufacturing employee – – – 65 / 98 
Mining factory count – – 35 / 132 7 / 72 
Mining employee – 1 / 43 – – 
Quasi-global R squared value 0.899 0.958 0.856 0.847 

*Note: The top three determining factors for each model in terms of count are 
bold fonts. 

Table 6 
Model comparison.   

CO O3 N O2 S O2  

OLS GWR OLS GWR OLS GWR OLS GWR 

AIC value 1768 660 1957 − 152 1841 850 2059 878 
RSS value 436 77 555 32 474 111 630 118  
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their spatial disparities. 

4.3.2. Air-pollutant-determining factor mapping: Which factor is more 
influential and at which location? 

Generally, the SA3 areas are higher-level spatial areas that enable a 
global view of regional planning (Australian Bureau of Statistics, 
2021b). This study provides planning and management evidence for 
stakeholders based on the spatial patterns summarised at the SA3 level. 
In terms of count, the most frequent determining factor for industrial 
regions inside the same SA3 area was regarded as the determining factor 
of this SA3 region. The spatial patterns of factors affecting air pollutants 
are summarised at the SA3 level and are shown in Fig. 5. The spatial 

disparities of factors affecting air pollutant concentrations across the 
nation are obvious and are summarised as follows. 

For CO concentrations, wind speed remained a dominant factor in 
the inner SA, WA, NT, and northern QLD. However, CO density was 
dominated by topography in most parts of the continent, from the 
eastern coast to the inner NSW and from the southern coast to the 
northwest regions. The CO density was determined by precipitation and 
NTL in the inner WA and northern NT. For O3 concentrations, wind 
speed dominated the northern WA and the inner parts of the other six 
states, or territories. Nevertheless, precipitation was more influential on 
the southern coast of WA and SA, northeast of NSW, and northern coast 
of NT and QLD. Vegetation greenness was dominant in central WA. Road 
density was dominant in a minor area of the QLD. For N O2 concen-
trations, road density only dominated the inner NT and northern QLD, 
although it worked as a determining factor in the global regression. 
Precipitation was more influential in most parts of the continent. The 
manufacturing factory scale had a significant impact on northern WA. A 
variety of factors, including NTL and utility industry scales, dominated 
the coast of the QLD. For S O2 concentrations, wind speed had an impact 
on central WA, inner NT, and a minor region of SA and VIC. However, 
precipitation was more influential in southern WA and most parts of SA, 
VIC, and NSW. Furthermore, the number of manufacturing employees 
was an important factor influencing the S O2 concentrations in the 
northern part of the continent. 

The factors affecting the air pollutants in the capital cities of 
Australia are summarised in Table 7. From a spatial perspective, mete-
orological factors and topography were the common attributes of air 
pollutants. Vegetation greenness also influenced the CO concentrations 

Fig. 5. Determining factors of air pollutant distributions in different SA3 areas: determining factor map for (a) CO, (b) O3, (c) N O2, (d) S O2. “*” denoted a global 
factor not affected by local spatial impacts. 

Table 7 
Determining factors of air pollutant distributions in five major cities.   

CO N O2 S O2 

Sydney Precipitation, Wind 
speed 

DEM Precipitation, Wind 
speed, Mining 
factory 

Melbourne DEM, NDVI, 
Precipitation, Wind 
speed 

NTL, DEM, 
Precipitation, 
Mining factory 

Precipitation 

Brisbane DEM NTL, DEM, 
Precipitation 

– 

Perth DEM Precipitation Wind speed 
Adelaide DEM DEM – 

*Note: No significant determining factors for O3 density in all five major cities.  
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in Melbourne, and the NTL and mining factory scale had an impact on 
the suburbs of Melbourne. NTL also influenced the N O2 concentrations 
in the suburbs of Brisbane. 

The distributions of the factors affecting the air pollutant concen-
trations in the study area are shown in Fig. 6. The scatter plots in Fig. 6 
portray the distribution of various predominant factors in ascending 

Fig. 6. Distributions of predominant factors under the rank of air pollutant concentrations and the rank of industrial region size. Distribution of factors affecting (a) 
CO, (b) O3, (c) N O2, (d) S..O2 

Fig. A1. Residuals vs. fitted plots for GWR models. (a) Residual plot of CO density. (b) Residual plot of O3 density. (c) Residual plot of N O2 density. (d) Residual plot 
of S O2 density. Note: GWR made estimations on log-transformed CO, O3, and N O2 density. 
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ranks of their influence on air pollutant concentrations and the indus-
trial region size. The levels of air pollutant concentrations predomi-
nantly effective in industrial regions are summarised in the scatter plots. 
Evidently, environmental factors, especially meteorological factors, 
influenced the higher concentrations of O3 and S O2 in industrial re-
gions. More than 90% of the higher air-pollutant concentrations in the 
industrial regions were affected by non-anthropogenic factors. In terms 
of the concentrations of N O2, the topographic factors were more 
strongly associated with the air pollutant concentrations in the indus-
trial regions. 

5. Discussion 

5.1. Spatial factors affecting air pollutant density at a continental scale 

In this study, we investigated the spatial disparities in the factors that 
affected the air pollutant concentrations in the industrial regions of 
Australia. The case study demonstrated evident spatial disparities in the 
determining factors. Meteorological attributes and topography were the 
dominant factors that influenced the air pollutant densities in most in-
dustrial regions; however, the information on anthropogenic factors and 
their spatial patterns is non-negligible. Note that this study is the first 
study to determine the factors of air pollutant concentrations in indus-
trial regions at a continental scale. 

General findings include the unitary relationships between air 
pollutant densities and anthropogenic factors. Notably, the study in-
dicates that anthropogenic activities, including NTL and population 
density, and the industry scales of manufacturing, utility supply, and 
waste services are positively related to the air pollutant concentrations. 
These positive relationships were statistically significant in both the 
nationwide and the local industrial areas, mostly coinciding with the 
outcomes of studies on urban industrial regions. During urban expan-
sion, NTL (Yue et al., 2020), population density (Liu et al., 2016; Borck 
and Schrauth, 2021), and industrial land-use scales (Cai et al., 2020) are 
positively related to air pollutant densities. As part of human settle-
ments, industrial regions follow a similar pattern. 

Local results from GWR models, indicating non-unitary relationships 

between air pollutants and influential factors, were consistent with 
previous studies. Meteorological factors, including wind speed and 
precipitation, affected the air pollutants in various numerical directions 
at different locations. This local spatial variance was observed in a 
previous study that investigated the correlation between industrial air 
pollutants and their influential factors (Yang et al., 2019). Road density 
was positively related to N O2 density, but not to S O2 density. The 
positive correlation with N O2 density was consistent with the air- 
pollutant monitoring models used in previous studies (Hoek et al., 
2008; Meng et al., 2015; Zhai et al., 2018). The non-unitary relationship 
with S O2 may be due to the Environmental Kuznets Curve (EKC) effect. 
Road density was mainly negatively related to S O2 density in VIC, 
where the road infrastructure was well-developed and denser than that 
in other places (Geofabrik and OpenStreetMap contributors, 2020; 
Vicroads, 2021). Anthropogenic activities at the primary stage can lead 
to environmental degradation, while post-development anthropogenic 
activities, being highly invested, would have the opposite effect (Erdo-
gan, 2020; Guo et al., 2021). Therefore, the EKC hypothesis could be a 
reason leading to the non-unitary road density-S O2 relationship. 

5.2. Necessity of studying air pollutants based on specific industrial land 
uses 

Satterthwaite (2008) regarded industrial land use, rather than 
administrative boundaries, as an exact geographical feature. According 
to the 2020 NPI report, approximately 98% of N O2 and S O2 is emitted 
from industrial regions from three key industries. Previous air pollutant 
monitoring and relevant environmental justice study projects paid more 
attention to urban areas or administrative boundaries (Cooper et al., 
2019; Haddad and Vizakos, 2020). Nevertheless, planning advice based 
on exact emission sources would be effective, and policy-makers, plan-
ners, and study teams are advised to pay more attention to the impact of 
human forces on industrial land use, when monitoring air pollutants, as 
industrial impacts in remote areas are sufficiently large and thus, should 
not be underestimated. 

5.3. Limitations 

This study has some limitations. The first limitation is the existence 
of heteroscedasticity in some measurement data, such as that of S O2. 
Additionally, the potential estimation residuals in the population count 
were difficult to calculate, due to dynamic changes. Considering the 
changes caused by migration, birth, death, and other reasons, the pop-
ulation at a fine spatial granularity would vary in different statistical 
years. Therefore, to estimate the population in industrial regions, future 
studies may use the Real-WorldPop products for the year 2020. 

6. Conclusion 

The association between air pollutant concentration and industrial 
development has been reported in several previous studies. However, 
the spatial patterns of the factors that indicate the internal properties of 
industrial regions, which can affect air pollutant concentration, remain 
unexplored. In this study, we developed a novel set of methods, wherein 
we included a specific land use identification method and GWR with 
standardised coefficients, to identify the industrial regions in Australia 
as the exact study areas, collect the information on potential factors that 
may affect air pollutants (using remote sensing data), and assess the 
spatial disparity of the factors that affect the air pollutant concentrations 
in the industrial regions. Our results demonstrate evident local spatial 
impacts on the air pollutant concentrations in continent-level industrial 
regions. Notably, anthropogenic factors influenced the air pollutant 
concentrations in the remote industrial lands, and meteorological and 
topographical factors significantly impacted the concentrations in urban 
industrial regions. Furthermore, within the nationwide industrial land 
use systems, higher concentrations of O3 and S O2 were more associated 

Table A1 
List of abbreviations.  

Abbreviation Word Abbreviation Word 

AIC Akaike information 
criterion 

NT Northern Territory 

ASGS Australian Statistical 
Geography Standard 

NTL nighttime light 

CDF cumulative distribution 
function 

O3 ozone 

CO carbon monoxide OLS ordinary least square 
DEM digital elevation model OSM OpenStreetMap 
EKC Environmental Kuznets 

Curve 
POI point of interest 

ESA European Space Agency QLD Queensland 
GEE Google Earth Engine RSS residual sum of 

squares 
GIS geographic information 

system 
SA South Australia 

GWR geographically weighted 
regression 

SA2 statistical area level 2 

KDE kernel density estimation SA3 statistical area level 3 
KNN k-nearest neighbor S O2 sulfur dioxide 
MODIS Moderate Resolution 

Imaging 
Spectroradiometer 

TAS Tasmania 

N O2 nitrogen dioxide VIC Victoria 
NDVI normalized difference 

vegetation index 
VIF variance inflation 

factor 
NPI national pollutant 

inventory 
VIIRS Visible Infrared 

Imaging Radiometer 
Suite 

NSW New South Wales WA Western Australia  
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with meteorological factors of the area, while the higher concentrations 
of N O2 were more related to the topographic features of the region. In 
this study, we explored the spatial features of the factors that affect the 
air pollutant concentrations in industrial regions, while providing the 
results for specific land uses. Notably, our study can serve as a reliable 
framework for future studies on the air quality of industrial regions, 
while providing viable suggestions for the environmental and spatial 
management of industrial lands. 
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