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1 Introduction

Abundant expectations for physics beyond the Standard Model are being confronted by

the lack of evidence (thus far) for direct production of new states at the LHC. This tension

motivates the further development of effective field theory techniques to characterize the

imprint of partially decoupled new physics on experimental data, particularly in light of

the discovery of the Higgs boson. Significant progress along these lines has been made

within the framework of the Standard Model Effective Field Theory (SMEFT), which

extends the Standard Model with irrelevant operators for which the electroweak symmetry

is linearly realized (see e.g. [1] for a recent review). Within this framework, new physics

contributions to experimental observables (or their close relatives) are encoded by Wilson

coefficients for irrelevant operators, of which there are finitely many at a given operator

dimension. In SMEFT at dimension six there are 59 such (baryon-preserving, single-flavor)

non-redundant operators, leading to an effective theory of the form

Leff = LSM +
1

M2

59∑
i=1

ciOi (1.1)

where M is the scale of new physics, ci are the Wilson coefficients, and Oi are the irrelevant

operators in a given non-redundant operator basis. Here we have taken the Wilson coef-

ficients to be classically dimensionless. In order to minimize potentially large logarithms,

Wilson coefficients ci computed at the matching scale M can be evolved to lower scales

µ < M (perhaps where observables are computed) at one loop using the appropriate matrix

of anomalous dimensions γij ,

ci(µ) = ci(M) +
1

16π2

∑
j

γijcj(M) log
µ

M
. (1.2)
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The full dimension-6 SMEFT matrix of anomalous dimensions in a complete, non-

redundant basis (the Warsaw basis [2]) was computed in [3–6].

The precision achievable in SMEFT continues to develop at a rapid rate. The effec-

tiveness of SMEFT is being advanced on one hand by improving the precision with which

Wilson coefficients in SMEFT are mapped onto observables, and on the other hand by

improving the precision with which the Wilson coefficients are themselves computed. The

former has been the subject of much recent development; see e.g. [7, 8] for reviews. The

latter — which motivates the current work — is possible when the specific UV completion

in question is weakly coupled, so that matching can be performed in perturbation theory

at the scale M . Although the calculation of observables in this case can in principle be

carried out directly in the UV theory, the EFT framework is valuable insofar as it separates

the matching calculation from the mapping calculation and facilitates the resummation of

large logarithms.

Recently, considerable progress has been made in improving the precision of matching

calculations in perturbative UV completions, including the presentation of a complete tree-

level dictionary [9] and the development of master formulae at one loop. In particular, the

calculation of Wilson coefficients for perturbative matching has been significantly simpli-

fied by the advancement of Covariant Derivative Expansion (CDE) methods [10] building

on earlier covariant functional techniques [11–13]. The CDE master formula for degener-

ate heavy particles presented in [10] was later generalized to accommodate non-degenerate

heavy particles [14], dubbed the Universal One-Loop Effective Action (UOLEA). As ini-

tially formulated, the CDE methods of [10, 14] did not accommodate mixed diagrams in

which both heavy and light particles run in the loop [15] (see also [16]), leading to a variety

of improvements aimed at capturing these contributions [17–21]. Although this expanded

CDE approach captures the majority of one-loop contributions in a matching calculation, it

remains incomplete in the sense that no existing master formula accommodates all possible

combinations of statistics and open derivatives in mixed diagrams. While such a master

formula is likely to emerge soon, in the meantime the computation of the complete set of

Wilson coefficients arising at one loop and dimension 6 in SMEFT for a specified, pertur-

bative UV theory entails at least partial use of traditional Feynman diagram techniques.

The potential relevance of various possible contributions to a one-loop matching cal-

culation is a matter of some debate [17]. Given a one-loop matching calculation at the

scale M , Wilson coefficients ci(µ) at a scale µ < M can be decomposed into four schematic

contributions, namely

ci(µ) = c
(0)
i (M) + c

(1)
i,heavy(M) + c

(1)
i,mixed(M) +

1

16π2

∑
j

γijc
(0)
j (M) log

µ

M
(1.3)

Here c
(0)
i (M) represents tree-level contributions at the scale M ; c

(1)
i,heavy(M) represents one-

loop contributions at the scale M from diagrams in which only heavy particles run in the

loop; c
(1)
i,mixed(M) represents one-loop contributions at the scale M from mixed diagrams

in which both heavy and light particles run in the loop; and c
(0)
j (M) represent tree-level

contributions at the scale M that feed into ci at one loop via running between M and µ.
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As we will see, while it is tempting to isolate some terms at the expense of others when

performing a matching calculation, various combinations of these four terms may constitute

the leading contribution to Wilson coefficients and, ultimately, to physical observables.

This makes it worthwhile to compute the full set of one-loop contributions to Wilson

coefficients in a given matching calculation.

In this work, we compute for the first time the full set of Wilson coefficients arising at

one loop and dimension 6 in SMEFT for one of the most common EFT matching bench-

marks: the real singlet scalar. The extension of the Standard Model by a real singlet scalar

arises in a variety of motivated examples, including models addressing dark matter [22–27],

baryogenesis [28–34], and the electroweak hierarchy problem [35, 36]. The singlet scalar’s

signatures have been extensively studied at the LHC beginning with [37–42], and its im-

pact on the properties of the Higgs boson have made it a central target of recent EFT

studies [10, 15, 43–50]. This strongly motivates improving the precision of the matching

calculation between SMEFT and the Standard Model augmented by a real singlet scalar.

The relative simplicity of this scenario also makes it an ideal setting for illustrating various

subtleties associated with NLO matching and mapping.

We carry out the full one-loop matching calculation using a combination of CDE and

Feynman diagram techniques in DR and MS. It bears emphasizing that the matching

calculation is done off-shell, in order to extract the maximum amount of physical infor-

mation, and reduced to operator coefficients in a redundant basis of dimension-6 SMEFT

operators. For the sake of definiteness, we refer to this redundant basis generated by the

matching procedure as the “Green’s basis.” To convert operator coefficients in the Green’s

basis to a non-redundant basis, we first canonically normalize the fields (which typically

accumulate finite wavefunction renormalization at one loop in our renormalization scheme)

and then use equations of motion to eliminate redundant operators. In doing so we must

additionally keep track of any tree-level shifts in Standard Model couplings associated with

matching, which can influence one-loop Wilson coefficients when equations of motion are

employed. Ultimately, for the sake of completeness and convenience we present the Wilson

coefficients in both the Green’s basis and the Warsaw basis.

The one-loop Wilson coefficients in this specific example also serve to illustrate a vari-

ety of general features in NLO matching to SMEFT at dimension 6. The one-loop structure

of SMEFT possesses a variety of novel properties, including a surprising pattern of cancella-

tions [51] appearing in the one-loop renormalization of dimension-six operators [3–6, 52–54].

These cancellations can be understood via non-supersymmetric non-renormalization theo-

rems controlling the running of higher-dimension operators in four-dimensional quantum

field theories [55]. Unsurprisingly, the non-renormalization theorems necessarily extend to

the logarithmic dependence of Wilson coefficients in a perturbative matching calculation,

which we illustrate explicitly in the case of NLO matching for the singlet scalar. The non-

renormalization theorems also have novel implications for the size of various contributions

to Wilson coefficients at scales µ < M . In particular, they signal the existence of cases in

which mixed diagrams make the leading contribution to a Wilson coefficient or observable,

creating a loophole in the general arguments of [17] and highlighting the value of comput-

ing all contributions to matching at a given order even in the presence of arbitrary scale

separation µ�M .
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Although our interest is primarily focused on complete one-loop matching in a specific

UV completion, such data is most useful when coupled with a complete one-loop mapping

to observables. To highlight some of the subtleties involved in mapping to observables

at NLO, we compute the one-loop mapping to the T parameter in the EFT obtained by

integrating out the singlet scalar. While the T parameter is not itself an observable, it

nonetheless illustrates key aspects of NLO mapping and provides a non-trivial cross-check

of our results.

The paper is organized as follows: in section 2 we set notation for the UV extension

of the Standard Model by a real singlet scalar and lay the groundwork for matching to

SMEFT at dimension 6. In particular, we define the germane dimension-6 SMEFT opera-

tors in both the Warsaw and Green’s bases, and compute the tree-level Wilson coefficients

in agreement with the literature. We then determine the full set of one-loop Wilson co-

efficients in section 3 using a mix of CDE and Feynman diagram techniques, presenting

them in the Green’s basis for completeness. These results highlight the novel interplay be-

tween non-supersymmetric non-renormalization theorems, the logarithmic dependence of

Wilson coefficients, and the relevance of mixed diagrams, which we explore in section 4. In

section 5 we highlight some of the subtleties involved in mapping to observables at NLO by

mapping the singlet scalar EFT to the not-quite-observable T parameter. Our conclusions

are summarized in section 6, and we present the full set of one-loop Wilson coefficients in

the Warsaw basis in appendix A.

2 The model and tree-level matching

Our primary goal is to compute the complete set of Wilson coefficients in the Standard

Model EFT generated at dimension six, and up to one loop, by integrating out a heavy

real singlet scalar φ. Gauge invariance and Lorentz invariance permit this scalar to couple

to the Standard Model exclusively through the Standard Model Higgs doublet H at the

renormalizable level. The admissible Lagrangian density for φ (up to tadpoles) is

L ⊃ 1

2
(∂µφ)2 − 1

2
M2φ2 −A|H|2φ− 1

2
κ|H|2φ2 − 1

3!
µφ3 − 1

4!
λφφ

4 − 1

2
λh|H|4 . (2.1)

We further define our conventions for the Standard Model couplings in appendix A.

In general the interactions of φ can lead it to acquire a vacuum expectation value,

particularly when the coupling to the Higgs is taken into account. In what follows we

take (2.1) to be the Lagrangian expanded about the vacuum of φ, without requiring any

specific relations between the couplings A, κ, µ, and λφ. The common-considered special

case of a Z2 symmetry acting on φ corresponds to A = µ = 0.

Integrating out φ at one loop will lead to nonzero Wilson coefficients for a redundant

set of operators. Although we will present the full set of redundant coefficients in terms

of operators in the Warsaw basis (table 1) and additional operators (table 2) that are

distinguishable at the level of Green’s functions, we will ultimately reduce to the Warsaw

basis to consider their impact on S-matrix elements. This is done with an eye towards
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OH = (H†H)3 OHW = (H†H)W a
µνW

aµν

OH� = (H†H)�(H†H) OHB = (H†H)BµνB
µν

OHD = (H†DµH)∗(H†DµH) OHWB = (H†σaH)W a
µνB

µν

OuH = (H†H)(q̄uH̃) OHe = (H†i
↔
DµH)(ēγµe)

OdH = (H†H)(q̄dH) O(1)
Hq = (H†i

↔
DµH)(q̄γµq)

OeH = (H†H)(¯̀eH) O(3)
Hq = (H†i

↔
Da
µH)(q̄γµσaq)

OHu = (H†i
↔
DµH)(ūγµu) O(1)

H` = (H†i
↔
DµH)(¯̀γµ`)

OHd = (H†i
↔
DµH)(d̄γµd) O(3)

H` = (H†i
↔
Da
µH)(¯̀γµσa`)

Table 1. The relevant subset of dimension-6 SMEFT operators in the Warsaw basis generated

by integrating out a heavy singlet scalar at one loop. Here the σa are the Pauli matrices, and
↔
Da
µ ≡

↔
Dµσ

a.

OK4 = �H†�H OHW = ig(DµH)†σa(DνH)W a
µν

OR = H†HDµH†DµH OHB = ig′(DµH)†(DνH)Bµν

OH = 1
2(∂µ(H†H))2 OW = ig

2 (H†σa
↔
DµH)DνW

µν,a

OT = 1
2(H†

↔
DµH)2 OB = ig′

2 (H†
↔
DµH)∂νB

µν

O
(1)′
Hq = (H†H)(q̄i

↔
/Dq) O′Hu = (H†H)(ūi

↔
/Du)

O
(3)′
Hq = (H†σaH)(q̄i

↔
/Daq) O′Hd = (H†H)(d̄i

↔
/Dd)

O
(1)′
H` = (H†H)(¯̀i

↔
/D`) O′He = (H†H)(ēi

↔
/De)

O
(3)′
H` = (H†σaH)(¯̀i

↔
/Da`)

Table 2. The additional dimension-6 SMEFT operators, produced by integrating out a real singlet

scalar, that are in the Green’s basis, but not the Warsaw basis. For consistency we use the sign

and normalization conditions of [56].

section 4, which explores features of the Wilson coefficients as they relate to the structure

of the matrix of anomalous dimensions in SMEFT computed in the Warsaw basis.1

The real singlet scalar is a particularly useful case for exploring the structure of match-

ing at one loop because it generates only two Wilson coefficients at tree level, with a much

larger set of Wilson coefficients generated at one loop. The two tree-level Wilson coef-

ficients are simply obtained from the classical equation of motion, yielding the familiar

1Note that in a full Green’s basis there are 4 operators that contain four Higgs fields and two derivatives.

Between tables 1 and 2 we define 5 such operators: this is purely for convenience in the matching calculation.

OH� and OH are trivially related by integration by parts.
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results

c
(0)
H =

µA3

6M4
− κA2

2M2
, (2.2)

c
(0)
H� = − A2

2M2
, (2.3)

in addition to a contribution to the Higgs quartic of

δλh = − A
2

M2
. (2.4)

In the following, we define the Higgs quartic in the EFT as λ ≡ λh + δλh.

At the level of tree-level observables, the two dimension 6 pieces respectively lead to

shifts in the Higgs self-coupling and the universal suppression of all Higgs couplings. If (2.1)

results from the spontaneous breaking of a Z2-symmetric potential, then µ, κ, and A are

related in such a way as to set cH = 0 [44]. In the case of an unbroken Z2 symmetry acting

on φ, all tree-level effects vanish and the leading contributions to SMEFT first appear at

one loop.

3 One-loop matching

We now move to the Wilson coefficients at one loop, using a combination of the UOLEA

and conventional Feynman diagram techniques. Using the UOLEA we are able to obtain

a subset of the one-loop Wilson coefficients, not all of which are in the Warsaw basis. Op-

erators not in the Warsaw basis are denoted by Oi, rather than Oi, and the corresponding

coefficients are denoted by κi. As we will see, it is useful to retain possible logarithmic

dependence of the Wilson coefficients on the renormalization scale µ, although in matching

to SMEFT one typically chooses µ = M to minimize these logarithms.

The one-loop corrections to the tree-level Wilson coefficients for cH and cH� can be

computed directly using the UOLEA, yielding

16π2δcH =−κ
3

12
+
−48A2κλ+36A2λ2+22A2κ2−2A2κλφ−Aκ2µ

4M2

+
39A4κ−3A4λφ+36A3µλ−30A3κµ+2A3µλφ

6M4

+
−8A6−18A5µ+12A4µ2+7A3µ3

12M6
+

[
36A2κλh−36A2λ2−12A2κ2+A2κλφ

4M2

+
−18A4κ−A3µλ+12A3κµ−A3µλφ+6A2κµ2

12M4
+

2A5µ−3A3µ3

4M6

]
log

M2

µ2
,

(3.1)

16π2δcH�=−κ
2

24
+
−27A2λ+34A2κ−6A2λφ−5Aκµ

12M2
+

26A4−32A3µ−A2µ2

24M4

+

[
A2λ−4A2κ+A2λφ

2M2
+
A2µ2−2A4

2M4

]
log

M2

µ2
, (3.2)

as were first computed in [21].
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The Wilson coefficients readily extracted from the UOLEA for operators first generated

at one loop are

16π2κK4 =
1

6

A2

M2
, (3.3)

16π2cHW =
1

16

A2

M2
g2, (3.4)

16π2cHB =
1

16

A2

M2
g′2, (3.5)

16π2cHWB =
1

8

A2

M2
gg′, (3.6)

16π2κR =
A3µ

2M4
− 3A2κ− 9A2λ

2M2
− A2λ

M2
log

M2

µ2
, (3.7)

16π2κHW = − 1

12

A2

M2
, (3.8)

16π2κHB = − 1

12

A2

M2
, (3.9)

16π2κW =
1

6

(
−7

3
+ log

M2

µ2

)
A2

M2
, (3.10)

16π2κB =
1

6

(
−7

3
+ log

M2

µ2

)
A2

M2
. (3.11)

At one loop there is also a correction to the Higgs kinetic term, δZhD
µH†DµH, of

16π2δZh =
1

2

A2

M2
, (3.12)

which, after the field redefinition H → (1 − 1
2δZh)H, gives an additional one loop contri-

bution to the coefficients of the tree level operators OH and OH�:

16π2δcH
∣∣
shift

= − 3A2

2M2
c

(0)
H , (3.13)

16π2δcH�
∣∣
shift

= − A
2

M2
c

(0)
H�. (3.14)

The UOLEA given in [21] does not include results associated with open derivatives and

mixed statistics. In our situation this means that contributions from loops with fermions

and gauge bosons are not included, and so we match at the level of Feynman diagrams in

these cases. Diagrams with fermions running in the loop give rise to the following additional

Wilson coefficients

16π2cHu =

(
5

8
− 1

4
log

M2

µ2

)
A2

M2
y†uyu, (3.15)

16π2κ′Hu =

(
1

8
− 1

4
log

M2

µ2

)
A2

M2
y†uyu, (3.16)

16π2cHd =

(
−5

8
+

1

4
log

M2

µ2

)
A2

M2
y†dyd, (3.17)
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16π2κ′Hd =

(
1

8
− 1

4
log

M2

µ2

)
A2

M2
y†dyd, (3.18)

16π2cHe =

(
−5

8
+

1

4
log

M2

µ2

)
A2

M2
y†eye, (3.19)

16π2κ′He =

(
1

8
− 1

4
log

M2

µ2

)
A2

M2
y†eye, (3.20)

16π2cuH =

(
1− log

M2

µ2

)
A2

M2
yuy
†
uyu, (3.21)

16π2cdH =

(
1− log

M2

µ2

)
A2

M2
ydy
†
dyd, (3.22)

16π2ceH =

(
1− log

M2

µ2

)
A2

M2
yey
†
eye, (3.23)

16π2c
(1)
Hq =

(
− 5

16
+

1

8
log

M2

µ2

)
A2

M2
(yuy

†
u − ydy

†
d), (3.24)

16π2c
(3)
Hq =

(
5

16
− 1

8
log

M2

µ2

)
A2

M2
(yuy

†
u + ydy

†
d), (3.25)

16π2κ
(1)′
Hq =

(
1

16
− 1

8
log

M2

µ2

)
A2

M2
(yuy

†
u + ydy

†
d), (3.26)

16π2κ
(3)′
Hq =

(
− 1

16
+

1

8
log

M2

µ2

)
A2

M2
(yuy

†
u − ydy

†
d), (3.27)

16π2c
(1)
Hl =

(
5

16
− 1

8
log

M2

µ2

)
A2

M2
(yey

†
e), (3.28)

16π2c
(3)
Hl =

(
5

16
− 1

8
log

M2

µ2

)
A2

M2
(yey

†
e), (3.29)

16π2κ
(1)′
Hl =

(
1

16
− 1

8
log

M2

µ2

)
A2

M2
(yey

†
e), (3.30)

16π2κ
(3)′
Hl =

(
1

16
− 1

8
log

M2

µ2

)
A2

M2
(yey

†
e), (3.31)

whereas diagrams with gauge bosons running in the loop give rise to

16π2κH =

(
5

8
− 3

4
log

M2

µ2

)
A2

M2
g2, (3.32)

16π2κR =

(
−5

4
+

3

2
log

M2

µ2

)
A2

M2
g2, (3.33)

16π2κT =

(
5

8
− 3

4
log

M2

µ2

)
A2

M2
g′2. (3.34)

This represents the complete set of Wilson coefficients generated at one loop and

dimension six in SMEFT from integrating out a real singlet scalar. For convenience, the

coefficients are reduced to coefficients entirely contained in the Warsaw basis in appendix A.

There are a variety of useful cross-checks for these results. The coefficients of terms

logarithmic in the renormalization scale µ can be checked by appropriate comparison with

known entries in the SMEFT matrix of anomalous dimensions, and agree with expressions

– 8 –
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appearing in the literature. Also of interest are Wilson coefficients that are entirely inde-

pendent of the renormalization scale µ at one loop, whose properties will be discussed in

the next section.

4 Mixed diagrams and non-renormalization theorems

The majority of the Wilson coefficients computed above come from mixed diagrams, in

which both heavy and light particles run in the loop. As emphasized in [17], these mixed

diagrams arise only when there is a nonzero tree-level Wilson coefficient, since the mixed

diagram can be thought of as arising from the one-loop dressing of a tree-level diagram

involving the exchange of a heavy particle. The tree-level Wilson coefficient then typically

contributes to the same Wilson coefficient as the mixed diagram through one-loop running

in SMEFT. Consequently, in exploring the practical relevance of mixed diagrams, [17]

identify four cases of interest for the calculation of Wilson coefficients:

1. There are no tree-level diagrams, in which case there are no mixed diagrams and the

leading effects come from loop diagrams involving only heavy particles. In this case

c
(1)
i,heavy(M) is the leading contribution in (1.3).

2. There is a nonzero tree-level coefficient c
(0)
j that feeds into ci at one loop through the

matrix of anomalous dimensions, but there is also a tree-level contribution to ci, i.e.,

nonzero c
(0)
i . In this case c

(0)
i is the leading contribution in (1.3).

3. There is a nonzero tree-level coefficient c
(0)
j that feeds into ci at one loop through

the matrix of anomalous dimensions, there is no tree-level contribution to ci, c
(0)
i =0,

and the separation of scales is large, µ � M . Then there is a nonzero mixed co-

efficient c
(1)
i,mixed, but the logarithmically-enhanced correction 1

16π2 γijc
(0)
j (M) log µ

M is

the leading contribution in (1.3).

4. There is a nonzero tree-level coefficient c
(0)
j that feeds into ci at one loop through the

matrix of anomalous dimensions, there is no tree-level contribution to ci, c
(0)
i = 0,

and the separation of scales is not large, µ ∼ M . Then the mixed diagram c
(1)
i,mixed

could be a leading contribution in (1.3).

Only in the fourth case do mixed diagrams seem to play a practically significant role at one

loop. This would seem to relegate mixed diagrams to a relatively limited set of cases, and

precisely those cases (µ ∼M) in which the validity of the dimension-6 SMEFT truncation

is itself questionable.

There is, however, a very interesting fifth possibility beyond those considered in [17].

While Wilson coefficients arising from mixed diagrams typically receive one-loop, logarith-

mically enhanced contributions from tree-level Wilson coefficients via running between M

and µ in SMEFT, this is not always the case. Famously, there are surprising zeroes in the

SMEFT matrix of anomalous dimensions [51] — surprising in the sense that there appear

to be one-loop diagrams that could contribute to the anomalous dimensions in question,
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but these diagrams turn out not to be logarithmically divergent. The pattern of these

surprising zeroes was understood from the perspective of helicity selection rules in [55].

Thus the fifth possibility:

5. There is a nonzero tree-level coefficient c
(0)
j , but it does not feed into ci at one loop

through the matrix of anomalous dimensions because γij = 0 despite the existence of

relevant one-loop diagrams. Then the mixed diagram c
(1)
i,mixed is a leading contribution

in (1.3), regardless of the separation of scales.2

The fifth possibility defines an interesting set of cases in which mixed diagrams com-

prise the leading contribution to Wilson coefficients, intimately connected to the pattern

of surprising zeroes in the SMEFT matrix of anomalous dimensions. Moreover, these cases

are of more than academic interest, in that the Wilson coefficients arising predominantly

from mixed diagrams are often also the leading contributions to specific observables.

This is illustrated nicely in the case of the Wilson coefficients arising from integrat-

ing out a real singlet scalar. Only two coefficients are generated at tree-level: cH�, the

coefficient of the two-derivative, four-scalar operator OH� (schematically in the category

of φ4D2 operators in the notation of [55]), and cH , the coefficient of the six-scalar op-

erator OH (schematically the sole member of the category of φ6 operators). From the

helicity selection rule argument in [55], we expect SMEFT operators in the φ4D2 cate-

gory to renormalize operators in the categories ψ2φ3 and ψ̄2φ3 (two-fermion, three-scalar

operators); ψ̄ψφ2D (one-derivative, two-fermion, two-scalar operators); φ4D2; and φ6 at

one loop. We do not expect operators in φ4D2 to renormalize a host of other operators

(three-field-strength operators F 3, F̄ 3; one-field-strength, two-fermion, one-scalar opera-

tors Fψ2φ, F̄ ψ̄2φ; and four-fermion operators ψ4, ψ̄4, ψ̄2ψ2) because there are no diagrams.

More interestingly, there are diagrams that could potentially allow φ4D2 operators to renor-

malize two-field-strength, two-scalar operators F 2φ2 and F̄ 2φ2, but these diagrams do not

contain logarithmic divergences on account of Standard Model helicity selection rules. For

SMEFT operators in the category φ6, the situation is far simpler: φ6 operators can only

renormalize operators in the same category at one loop, and there are no diagrams that

could possibly allow the renormalization of operators from other categories.

In the case of the singlet scalar, we thus expect that one-loop mixed diagrams con-

tributing to Wilson coefficients for operators in the F 2φ2 and F̄ 2φ2 categories provide the

leading contribution to these coefficients at a scale µ ≤ M . And, indeed, this is what we

observe. Working in the Warsaw basis, the leading contributions to the Wilson coefficients

for OHW ,OHB, and OHWB at the scale M come from mixed diagrams. The only operators

with tree-level Wilson coefficients are OH and OH�, which do not renormalize OHW ,OHB,

or OHWB at one loop, and so the mixed diagram contribution to OHW ,OHB, and OHWB

is the dominant one-loop contribution at any scale µ < M .

This pattern of renormalization in SMEFT also has interesting implications for the

structure of the Wilson coefficients themselves. If a one-loop mixed diagram gives the

2Note, however, that in the one-loop mapping to observables, there are contributions of size comparable

to c
(1)
i,mixed from the finite one-loop graph containing an insertion of c

(0)
j .
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F 3 F 2φ2 Fψ2φ ψ4 ψ2φ3 F̄ 3 F̄ 2φ2 F̄ ψ̄2φ ψ̄4 ψ̄2φ3 ψ̄2ψ2 ψ̄ψφ2D φ4D2 φ6

(w, w̄) (0, 6) (2, 6) (2, 6) (2, 6) (4, 6) (6, 0) (6, 2) (6, 2) (6, 2) (6, 4) (4, 4) (4, 4) (4, 4) (6, 6)

φ4D2 (4, 4) × † × × X × † × × X ×† X X X

φ6 (6, 6) × × × × × × × × × × × × × X

Table 3. Interplay between the SMEFT matrix of anomalous dimensions and the renormalization

scale dependence of Wilson coefficients for the real singlet scalar. The rows correspond to opera-

tor categories with tree-level Wilson coefficients for the real singlet scalar, which may or may not

renormalize the operator category indicated in each column at one loop. The (w, w̄) refer to the

‘holomorphic weights’ defined in [55]. The shaded entries indicate cases where the operator category

in question is not renormalized by one of the tree-level operators due to the non-renormalization the-

orems of [55], in agreement with [51]. The × labels indicate cases where the operator in question is

not renormalized by one of the tree-level operators because there are no diagrams [57]. These general

results are consistent with the logarithmic renormalization scale dependence of Wilson coefficients

for the singlet scalar: the X labels denote operator categories with one-loop Wilson coefficients that

depend logarithmically on the renormalization scale, while the † labels denote operator categories

with one-loop Wilson coefficients that are strictly independent of the renormalization scale. The

entry marked ‘×†’ refers to the case where there is no one-loop diagram in the EFT; however, there

may still be a finite one-loop contribution to the operator coefficient from a mixed diagram in the

UV theory, cf. our discussion at the end of section 4.

leading contribution c
(1)
i,mixed to the Wilson coefficient of the operator Oi, then the Wilson

coefficient c
(1)
i,mixed must be independent of the renormalization scale µ at the same order.

This is not the case, of course, for one-loop Wilson coefficients of operators with either a

corresponding tree-level contribution or a one-loop contribution from a different tree-level

contribution via the matrix of anomalous dimensions. Thus the surprising zeroes in the

matrix of anomalous dimensions necessarily signal the existence of one-loop Wilson coeffi-

cients that are independent of the renormalization scale µ. Indeed, this is what is observed

for the real singlet scalar: the Wilson coefficients OHW ,OHB, and OHWB are independent

of µ at one loop. The interplay between the SMEFT matrix of anomalous dimensions and

scale dependence of Wilson coefficients is illustrated schematically in table 3, and highlights

the sense in which the renormalization of operators in SMEFT also governs the properties

of Wilson coefficients in a perturbative matching calculation.

In rare cases, the leading contribution to a given Wilson coefficient comes from a one-

loop mixed diagram with only one light particle in the loop. In such a case, the Wilson

coefficient is necessarily independent of µ, for there will be no possible diagram through

which any tree level coefficient may renormalize it. This is the case for the ψ̄2ψ2 operators

(O2y in appendix A) in the singlet example, which arise from OK4 after applying EOM.

5 Mapping to observables

Of course, computing the full set of one-loop Wilson coefficients at the matching scale is but

one step towards the calculation of observables at one loop. The one-loop SMEFT matrix

of anomalous dimensions allows these Wilson coefficients to be run to some lower scale µ

at which observables are to be computed, but it then remains to map onto the appropriate
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observables in the EFT at one loop as well. Here we illustrate some of the subtleties

associated with the one-loop mapping to observables by considering the real singlet scalar

contributions to the T parameter.3 This may be computed directly at one loop in the full

theory after electroweak symmetry breaking in the mass eigenbasis, giving [41]

∆Tfull = − 3

16πs2
W

sin2 θ

([
1

c2
W

m2
2

m2
2 −M2

Z

log
m2

2

M2
Z

− m2
2

m2
2 −M2

W

log
m2

2

M2
W

]
−m2 → m1

)
.

(5.1)

Here θ is the mixing angle between the singlet and the Higgs after electroweak symmetry

breaking and m2,m1 are the mass eigenvalues; we identify m1 = mh as the SM-like Higgs

mass. We expect agreement with the dimension-6 EFT result only to combined second

order in the ratios x = v/M, y = mh/M . Expanding (5.1) to this order gives

∆Tfull =

(
3A2(g′2 + g2) log y

8πg2M2
+O(y2)

)
x2 +O(x3) . (5.2)

In the EFT, it is helpful to compute ∆T in a particular non-redundant operator basis.

In the Warsaw basis, the T parameter is simply related to our Wilson coefficients at tree

level via

∆T
(0)
EFT =

v2

αM2

(
−1

2
cHD +

g′2

2
cHJB

)
, (5.3)

where cHJB is the coefficient of the operator combination [56]4

OHJB ≡
ig′

2
(H†

↔
DµH)JµB (5.4)

=
1

2
g′2
(
Yq[O(1)

Hq]ii + Yl[O
(1)
Hl ]ii + Yu[OHu]ii + Yd[OHd]ii + Ye[OHe]ii

)
. (5.5)

In practice, cHJB appears in ∆TEFT upon elimination of the operator OB, which also gives a

compensating contribution to the coefficient cHD. Matters are somewhat simpler in e.g. the

SILH basis, where OT is retained, and the contribution to ∆TEFT is just proportional to

κT in (3.34). In either case, matching at µ = M , we obtain

∆T
(0)
EFT =

5

32

A2(g′2 + g2)

πg2M2

v2

M2
. (5.6)

However, care must be taken at one loop, where there are two additional contributions

from loop-level processes involving an insertion of the tree-level coefficient cH�. The first

is the one loop running of Wilson coefficients between M and lower scales proportional to

cH�. In principle, the SMEFT RGEs could be used in this case to resum the potentially

large logarithm between M and mh. In practice, here we are just interested in agreement

with the fixed-order calculation in the full theory, so we could equally capture the leading

logarithmic behavior by simply leaving the renormalization scale µ unfixed in the expression

for κT in (3.34). Including this contribution gives

∆T
(1a)
EFT =

(
5

32
− 3

8
log

M

µ

)
A2(g′2 + g2)

πg2M2
x2 . (5.7)

3While oblique parameters are not themselves observables, the T parameter is nonetheless a useful case

study for mapping at one loop in SMEFT.
4Yf is the hypercharge of the fermion f .
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The second effect involves one-loop corrections to (5.3) proportional to tree-level Wil-

son coefficients, namely cH�. The effect of this operator can be most easily seen by going

to unitary gauge. In the broken phase, this includes a term − v2

M2 cH�(∂h)2. After the

redefinition of the Higgs field h→ (1 + v2

M2 cH�)h, the contribution to T from the Standard

Model sector is modified. In unitary gauge, the modification is to the vacuum polariza-

tion diagrams involving two hV V vertices that are changed by the field redefinition. The

leading contribution from this part is

∆T
(1b)
EFT = −v2A2/M4TSM

=
A2(g′2 + g2)

πg2M2

(
− 5

32
+

3

8
log

mh

µ
+O(y3)

)
x2 +O(x3) . (5.8)

Adding these corrections, the combined expression in the EFT at one loop is

∆TEFT =

(
3A2(g′2 + g2) log y

8πg2M2
+O(y3)

)
x2 +O(x3) , (5.9)

in perfect agreement with the full theory to the appropriate order in v/M . It bears empha-

sizing that simply applying tree-level relations between SMEFT operators and precision

electroweak observables does not yield a consistent result if the Wilson coefficients appear-

ing in these relations are generated at one loop, while other Wilson coefficients arise at tree

level. This illustrates some of the subtleties involved in making use of a full NLO matching

calculation in mapping to observables at NLO.

6 Conclusion

The precision calculation of Wilson coefficients in matching calculations between perturba-

tive UV completions of the Standard Model and the Standard Model EFT is a key step in

maximizing the utility of the EFT framework. In this work we have presented, for the first

time, the complete one-loop matching (in DR and MS) between the real scalar extension

of the Standard Model and the dimension-6 SMEFT. Our calculation uses a combination

of UOLEA and Feynman diagram techniques. The complete one-loop calculation involves

a variety of subtleties, including the effects of both tree-level shifts to parameters in the

Standard Model part of the SMEFT Lagrangian and one-loop wavefunction renormaliza-

tion of the Higgs in the unbroken phase. In the interest of completeness, we have presented

results for Wilson coefficients in both the redundant basis (“Green’s basis”) generated by

the matching calculation, and the non-redundant Warsaw basis.

Our results provide a key part of the information necessary for a complete one-loop

EFT calculation of observables arising from the singlet scalar extension of the Standard

Model. In particular, they may be fruitfully combined with the complete dimension-6

SMEFT matrix of anomalous dimensions and the one-loop mapping of SMEFT onto par-

ticular observables to generate partially resummed one-loop predictions for Standard Model

deviations in this scenario.

Apart from their immediate relevance to the precision calculation of observables in

singlet extensions of the Standard Model, our results also illustrate a variety of general
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features of one-loop matching. In particular, we have explored the interplay between non-

supersymmetric non-renormalization theorems, the logarithmic (in)dependence of Wilson

coefficients, and the relevance of mixed diagrams in theories with large separation of scales.

In addition, we have highlighted some of the subtleties involved in computing observables

at next-to-leading order in SMEFT by mapping our results to the T parameter at one loop,

finding agreement with a one loop calculation in the full theory.
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A Warsaw basis

We define the relevant dimension 4 coefficients of the Standard Model in the EFT via the

lagrangian

L =
∑

f=q,u,d,l,e

f̄ i /Df +DµH
†DµH + µ2

hH
†H − 1

4
BµνB

µν − 1

4
W a
µνW

aµν − 1

4
GAµνG

Aµν

− 1

2
λ(H†H)2 −

(
[yu]ij q̄iH̃uj + [yd]ij q̄iHdj + [ye]ij ¯̀iHej + h.c.

)
, (A.1)

where the covariant derivative Dµq = (∂µ − 1
2 igsλ

AGAµ − 1
2 igσ

aW a
µ − 1

6 ig
′Bµ)q for the

hypercharge Yq = 1
6 left-handed quark, expressed in terms of the Gellmann λA and Pauli

σa matrices (the covariant derivative is defined mutatis mutandis for the other matter

fields). We stress that the EFT values of these coefficients are shifted relative to those of

the UV theory by integrating out the heavy scalar; at tree level,

λ = λh −
A2

M2
. (A.2)

Excepting the correction to the wavefunction renormalization of the Higgs in (3.12), the

one loop shifts of the dimension 4 parameters of the EFT relative to their UV counterparts

are unnecessary for the purposes of the one-loop matching and mapping to dimension 6

observables in the EFT.
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Linear combinations of operators that are proportional to marginal equations of motion

(in the EFT) do not contribute to S-matrix elements at dimension 6 order. Combining such

EOM relations with IBP and Fierz relations, we arrive at the following operator identities

(we only retain the dimension 6 parts):

OK4 =λ2OH+λ([yu]ij [OuH ]ij+[yd]ij [OdH ]ij+[ye]ij [OeH ]ij+h.c.)+O2y, (A.3)

OH =−1

2
OH�, (A.4)

OR =λOH+
1

2
OH�+

(
1

2
[yu]ij [OuH ]ij+

1

2
[yd]ij [OdH ]ij+

1

2
[ye]ij [OeH ]ij+h.c.

)
, (A.5)

OT =−2OHD−
1

2
OH�, (A.6)

OHB =OB−
g′2

4
OHB−

gg′

4
OHWB, (A.7)

OHW =OW−
g2

4
OHW−

gg′

4
OHWB, (A.8)

OB = g′2OHD+
1

4
g′2OH�+

1

2
g′2Yq[O(1)

Hq]ii+
1

2
g′2Yl[O

(1)
Hl ]ii+

1

2
g′2Yu[OHu]ii

+
1

2
g′2Yd[OHd]ii+

1

2
g′2Ye[OHe]ii, (A.9)

OW =
3

4
g2OH�+g2λOH+

1

4
g2[O(3)

Hq]ii+
1

4
g2[O(3)

Hl ]ii

+

(
1

2
g2[yu]ij [OuH ]ij+

1

2
g2[yd]ij [OdH ]ij+

1

2
g2[ye]ij [OeH ]ij+h.c.

)
, (A.10)

[O
(1)′
Hq ]ij = [yu]jk[OuH ]ik+[yd]jk[OdH ]ik+h.c., (A.11)

[O
(3)′
Hq ]ij =−[yu]jk[OuH ]ik+[yd]jk[OdH ]ik+h.c., (A.12)

[O
(1)′
Hl ]ij = [ye]jk[OeH ]ik+h.c., (A.13)

[O
(3)′
Hl ]ij = [ye]jk[OeH ]ik+h.c., (A.14)

[O′Hu]ij = [yu]ki[OuH ]kj+h.c., (A.15)

[O′Hd]ij = [yd]ki[OdH ]kj+h.c., (A.16)

[O′He]ij = [ye]ki[OeH ]kj+h.c., (A.17)

where Yf is the hypercharge of the fermion f , and O2y = |ūy†uqβεβα+ q̄αydd+ l̄αyee|2 [56] is

a combination of the ψ̄2ψ2 type operators in the Warsaw basis (we define the Levi-Civita

epsilon to satisfy ε12 = +1). We therefore reduce the redundant set of Wilson coefficients

obtained by integrating out φ exclusively into coefficients of operators in the Warsaw basis:

16π2cH =
λ

18

(
84λ−31g2−27κ+

9Aµ

M2
+(30g2−18λ) log

M2

µ2

)
A2

M2

+16π2(δcH+δcH |shift), (A.18)

16π2cH�=
1

72

(
81λ−93g2−31g′2−54κ+

18Aµ

M2
+(90g2+30g′2−36λ) log

M2

µ2

)
A2

M2

+16π2(δcH�+δcH�|shift), (A.19)
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16π2cHD =
1

18
g′2
(
−31+30log

M2

µ2

)
A2

M2
, (A.20)

16π2cHW =
1

12
g2 A

2

M2
, (A.21)

16π2cHB =
1

12
g′2

A2

M2
, (A.22)

16π2cHWB =
1

6
gg′

A2

M2
, (A.23)

16π2cHu =
1

216

(
−34g′2+135y†uyu+(12g′2−54y†uyu) log

M2

µ2

)
A2

M2
, (A.24)

16π2cHd =
1

216

(
17g′2−135y†dyd−(6g′2−54y†dyd) log

M2

µ2

)
A2

M2
, (A.25)

16π2cHe =
1

72

(
17g′2−45y†eye−(6g′2−18y†eye) log

M2

µ2

)
A2

M2
, (A.26)

16π2cuH =
1

36
yu

(
45y†uyu−31g2−27κ+87λ+9

Aµ

M2

+(30g2−54y†uyu−18λ) log
M2

µ2

)
A2

M2
, (A.27)

16π2cdH =
1

36
yd

(
45y†dyd−31g2−27κ+87λ+9

Aµ

M2

+(30g2−54y†dyd−18λ) log
M2

µ2

)
A2

M2
, (A.28)

16π2ceH =
1

36
ye

(
45y†eye−31g2−27κ+87λ+9

Aµ

M2

+(30g2−54y†eye−18λ) log
M2

µ2

)
A2

M2
, (A.29)

16π2c
(1)
Hq =

1

432

(
−17g′2−135(yuy

†
u−ydy

†
d)

+(6g′2+54(yuy
†
u−ydy

†
d)) log

M2

µ2

)
A2

M2
, (A.30)

16π2c
(3)
Hq =

1

144

(
−17g2+45(yuy

†
u+ydy

†
d)

+(6g2−18(yuy
†
u+ydy

†
d)) log

M2

µ2

)
A2

M2
, (A.31)

16π2c
(1)
Hl =

1

144

(
17g′2+45yey

†
e−(6g′2+18yey

†
e) log

M2

µ2

)
A2

M2
, (A.32)

16π2c
(3)
Hl =

1

144

(
−17g2+45yey

†
e+(6g2−18yey

†
e) log

M2

µ2

)
A2

M2
, (A.33)

16π2c2y =
1

6

A2

M2
. (A.34)

These one-loop coefficients are in addition to the tree-level contributions to cH and cH� de-

tailed in (2.2) and (2.3), respectively. For the sake of conciseness, here δcH , δcH�, δcH
∣∣
shift
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and δcH�
∣∣
shift

refer to the one-loop expressions in (3.1), (3.2), (3.13), and (3.14). In the

fermionic operators’ coefficients, the absence of any flavor structure in a given term (i.e. the

absence of Yukawa matrices) should be read as a Kronecker delta δij in the flavor indices.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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