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We present a new mechanism for generating exponential hierarchies in four-dimensional field theories
inspired by Anderson localization in one dimension, exploiting an analogy between the localization of
electron energy eigenstates along a one-dimensional disordered wire and the localization of mass
eigenstates along a local “theory space” with random mass parameters. Mass eigenstates are localized
even at arbitrarily weak disorder, with exponentially suppressed couplings to sites in the theory space. The
mechanism is quite general and may be used to exponentially localize fields of any spin. We apply the
localization mechanism to two hierarchies in standard model parameters—the smallness of neutrino masses
and the ordering of quark masses—and comment on the possible relevance to the electroweak hierarchy
problem. This raises the compelling possibility that some of the large hierarchies observed in and beyond
the standard model may result from disorder, rather than order.
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Introduction.—Large hierarchies among the parameters
of a quantum field theory invite a deeper underlying
explanation [1,2]. In the context of the standard model,
considerable effort has been correspondingly devoted to
assigning dynamical explanations to observed hierarchies
in couplings and scales, such as those observed among
fermion masses or in the Higgs sector. Even when
hierarchies are rendered technically natural by symmetries,
as is the case for standard model flavor hierarchies, a truly
natural explanation still requires an underlying explanation
for the symmetry and the associated dynamical symmetry
breaking mechanism.
There are several known mechanisms for generating

exponentially suppressed effective couplings or scales in
theories without small fundamental parameters. Most
notable among these is dimensional transmutation and
its higher-dimensional geometric counterparts, which
explain the smallness of the proton mass relative to the
Planck scale and form the basis for theories of the
electroweak scale [3,4] and models of flavor in warped
extra dimensions [5,6], among other things. Four-dimen-
sional theory spaces [7]—also called quivers [8], ormooses
[9]—provide another fruitful context for generating large
hierarchies. Such theory spaces consist of a series of sites
denoting gauge or global symmetry groups under which
different fields of the theory transform. The sites are
connected by links consisting of fields transforming under

adjacent groups, which give rise to a notion of locality in
the theory space in terms of the number of links separating
different sites. Such theory spaces can provide a latticized
description of higher-dimensional theories, a phenomenon
known as dimensional deconstruction [10,11]. Examples
of hierarchies arising in theory spaces include four-
dimensional analogues of volume suppression in flat extra
dimensions [10,11] and wave function overlap or coupling
dilution in warped extra dimensions [12–15], as well as
more exotic phenomena such as clockwork [15–18]. But it
is notable that generating exponential hierarchies of cou-
plings in theory space typically involves either elaborate
order or exponential hierarchies in the fundamental param-
eters. Given the absence of experimental evidence thus far
for elaborate order underlying the structure of the standard
model, it is natural to wonder if hierarchies of the standard
model might instead have a more disordered origin.
In this work we present a new mechanism for generating

exponential hierarchies in four-dimensional field theories
closely related to the phenomenon of Anderson localization
[19] in one-dimensional systems. In particular, we exploit
an analogy between the localization of electron energy
eigenstates along a one-dimensional wire in the presence of
disorder, and the localization of mass eigenstates along a
local theory space with random mass parameters on each
site. (Similar analogies have been made for inflation
[20,21] and gravity [22].) All mass eigenstates are expo-
nentially localized, and can thus have exponentially sup-
pressed couplings to sites in the theory space—the lightest
(and heaviest) eigenstates especially so. In contrast to
other mechanisms for generating exponential hierarchies
in theory space, such as clockwork, all of the symmetries of
the quiver are broken, so that this localization mechanism
does not guarantee an exactly massless zero mode, but can
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guarantee light localized modes if desired. (In the case of
the model of the following section, a sufficiently large
number of sites can generate an arbitrarily light mode with
arbitrarily suppressed couplings, with arbitrarily high con-
fidence.) Also, unlike other theory space constructions, the
coupling suppression is achieved without elaborate order
across the quiver—indeed, it is the very lack of order that
leads to exponential hierarchies. This raises the compelling
possibility that some of the large hierarchies observed in
nature may result from disorder, rather than order.
We demonstrate Anderson localization in theory space

with a simple toy model for the localization of scalar fields,
although the underlying mechanism is suitable for fields
of any spin. We then construct two models in which the
resulting exponential hierarchies explain small parameters
of the standard model, namely, neutrino masses and the
quark flavor hierarchy. The mechanism is quite general and
may be readily applied in a variety of contexts for physics
beyond the standard model.
A toy model for the localization of scalar fields.—

Consider a quadratic Lagrangian of N real scalars πi in
3þ 1 dimensions,

Lπ ¼
1

2

XN
i¼1

ð∂πiÞ2 − 1

2

XN
i¼1

ϵiπ
2
i −

1

2

XN−1

i¼1

tðπi − πiþ1Þ2: ð1Þ

When viewed as a theory space lattice, the constant t
mediates mixing between adjacent sites, whereas the ϵi are
site mass terms drawn randomly from a uniform distribu-
tion over the interval ½0;W�. (Here the interval ½0;W� is
chosen for simplicity to ensure that all masses squared are
positive, thereby avoiding questions of vacuum stability
and facilitating generalization to higher spins. However, the
localization effects of interest are insensitive to the choice
of interval, and one could equally consider site mass terms
drawn from a uniform distribution over ½−W=2;W=2� so
that the average site mass is zero, in direct analogy with
Anderson localization.) The combined mass matrix has N
positive eigenvaluesm2

n, whose corresponding eigenvectors
vnj are exponentially localized. To wit, away from the site j0
where a given eigenvector has its greatest support, its jth
components are well fit by the functional form jvnj j ∝
exp ½ð−jj − j0j=LnÞ� for some localization length Ln. While
the exponential localization of the eigenvectors is perhaps
unsurprising forW ≫ t, it persists even in the limitW ≪ t.
Moreover, the localization mechanism of Eq. (1) is

robust both to turning on disorder in the hopping terms
(even at the expense of turning it off in the site terms), and
also to changing the distribution from which the random
parameters are drawn. Any symmetric tridiagonal matrix
Mi;j ¼ ϵiδi;j þ tiðδiþ1;j þ δi;jþ1Þ, where the pairs (ϵi, ti) are
drawn independently from a two-dimensional distribution,
will generically have localized eigenstates [23], although
there exist limiting cases where a measure-zero set of the

eigenstates may be extended (see, e.g., Ref. [24]). This is in
contrast to when the values ϵi and ti are entirely deter-
ministic. Absent some particular ordering of these param-
eters across the quiver, the eigenvectors will typically
approximate the completely delocalized Bloch wave states
obtained when there exists an exact cyclic symmetry, i.e.,
when ∃k, ∀ i, j, Mi;j ¼ Miþk;jþk.
One such “particular ordering” is a clockwork

Lagrangian, which for N scalars has quadratic part
L ¼ 1

2

P
N
i¼1ð∂πiÞ2 − 1

2
m2

P
N−1
i¼1 ðπi − qπiþ1Þ2. Assuming

q > 1, there exists one localized massless state with
localization length ln q, and N − 1 delocalized massive
states. We compare this to the behavior of Eq. (1) below.
By working in the large N limit, and considering an

ensemble of the mass matrices [Eq. (1)], we may define an
average localization length Lðm2

i ; t;WÞ as a function of the
eigenvalue and the Lagrangian parameters

Lðm2
i ; t;WÞ ¼ lim

N→∞

2

N

Xj¼N

j¼N=2

ln

���� vj
vjþ1

����; ð2Þ

where we average over the logarithmic ratio of adjacent
components of one half of the corresponding eigenvector vj
[25]. Note that the mass matrix of Eq. (1) is purposefully
almost identical to the Hamiltonian of the Anderson tight-
binding model [19],

Hi;j ¼ ϵiδi;j − tðδiþ1;j þ δi;jþ1Þ; ð3Þ

with ϵi drawn from a uniform distribution over
½−W=2;W=2�. Indeed, in the large N limit, solutions of
the Schrödinger equation Hi;jψ j ¼ Eψ i map to eigenstates
of the mass matrix of Eq. (1) under E → m2

n − 2t −W=2
and ψ j → vnj . (The sole discrepancies lie in the i ¼ j ¼ 1

and i ¼ j ¼ N components, whose effects may be
neglected as N → ∞.) The mixing terms between sites
correspond to hopping terms in the tight-binding model,
while the random site mass terms correspond to local defect
potentials. We recycle analytic expressions for L from the
tight-binding model literature [25].
We identify two limiting behaviors of the Lagrangian

Eq. (1). One, the strong localization regime whenW ≫ t. If
t ¼ 0, the eigenvalues are uniformly distributed over the
interval ½0;W�, and each eigenvector is perfectly localized.
Perturbing about the t ¼ 0 state yields

Lðm2
i ; t;WÞ ∼

�
ln
W
2t

− 1

�
−1
: ð4Þ

Two, the weak localization regime, when W ≪ t. If
W ¼ 0, the eigenstates are admixtures of delocalized plane
waves, with a sinusoidal dispersion relation distributing
eigenvalues over a mass-squared band ½0; 4t�. Turning on
W, each plane wave is modulated by an exponential
envelope, of size
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Lðm2
i ; t;WÞ ∼

( ð t
WÞ

2
3 if 2t−j2t−m2

nj
W

4
3t−

1
3

≪ 1;

24
W2 (4t2 − ðm2

n − 2tÞ2) otherwise:

ð5Þ
Note the anomalously strong localization of the states on
the band edges.
Numerically we find that the above expressions for L are

Oð1Þ correct even for relatively small N ≈ 10. To give an
impression of the finite N behavior of Eq. (1), for each
eigenvector we plot the smallest of vn1 and vnN against the
corresponding mass m2

n, shown in Fig. 1 for N ¼ 35, t ¼ 1
and a range of W values. When W ¼ 0, there is no
localization, and all states (including one massless state,
and possibly several nearly massless states) have
O½ð1= ffiffiffiffi

N
p Þ� overlaps with the end sites. Turning on W,

the masses squared shift by OðWÞ and a mass gap appears.
The end site overlaps of the lightest modes decrease: in the
weak localization regime, the strongest effects are at
the edge of the “band.” Further increasing W, all of the
couplings descend markedly as the strong localization
regime sets in. In black, Fig. 1 also shows the equivalent
spectrum for a clockwork Lagrangian of q ¼ 2 and
m2 ¼ t=3: there exists one localized massless state with
∼q−N overlap with one end of the lattice, and N − 1 largely
delocalized states in a band beginning at mass ∼mðq − 1Þ.
The above example may be cast in the more familiar

language of a theory space with global symmetries asso-
ciated to each site by beginning with N complex scalars Φi
and quadratic Lagrangian

LΦ ¼
XN
i¼1

j∂Φij2 −
1

4

XN
i¼1

ϵiΦ2
i −

XN−1

i¼1

tΦ†
iΦiþ1 þ H:c:þ…;

ð6Þ
where the … include potential terms that preserve the
underlying Uð1ÞN global symmetry, while the terms
proportional to ϵ and t softly break Uð1ÞN → ∅ and

Uð1ÞN → Uð1Þ, respectively. Assuming the Uð1ÞN pre-
serving potential generates nonzero vacuum expectation
values (VEVs) hΦii at each site, then to quadratic order the
Lagrangian of the pseudo-Goldstone bosons arising from
Eq. (6) is simply Eq. (1). The ϵ and t may be viewed as
spurions of the above symmetry breaking, arising from the
VEVs of additional scalar fields charged appropriately
under Uð1ÞN. The ϵ and t may be the only such terms
arising from renormalizable interactions of the additional
scalar fields, thereby enforcing the locality of interactions
along the quiver, and the tridiagonality of the ensuing mass
matrix of the π s.
While we have illustrated the localization phenomenon

for a toy model of scalar fields, analogous effects are
possible for fermions and vector bosons. As we will
demonstrate in the next section, for fermions both the
hopping terms and the site masses may simply arise as
terms in a Dirac mass matrix. For vector bosons, both
hopping terms and site masses may arise from the vacuum
expectation values of scalars transforming as bifundamen-
tals and fundamentals, respectively. In each case, the
localization properties of the eigenstates are akin to those
of the scalar toy model.
Anderson neutrino masses.—As a first application of

Anderson localization in theory space to hierarchies in the
standard model, we construct a model for realistic neutrino
masses involvingOð1Þ couplings andOðTeVÞ scales in the
underlying theory. This is in contrast to conventional see-
saw models in which small neutrino masses arise from a
product of Yukawas y and Majorana neutrino masses M
satisfying y2v=M ∼ 10−11, implying a large input hierarchy
of scales and/or couplings.
Consider a lattice of N left-handed and N right-handed

Weyl fermions Li and Ri with Dirac mass matrix Eq. (3).
Much like the “clockwork WIMP” model of Ref. [26], a
left-handed standard model (SM) neutrino ν and right-
handed Weyl fermion Ψ mix through couplings at opposite
ends of the lattice:

Lmass ¼ −kL̄1Ψ − L̄iHi;jRi − kν̄RN −WΨΨþ H:c:

¼ −
X
n

ðkvn1ψ̄n
LΨ −mnψ̄

n
Lψ

n
R − kvnN ν̄ψ

n
RÞ

−WΨΨþ H:c: ð7Þ

Via diagonalization of the matrix Hi;j, we have written
the Li and Ri as N Dirac fermions ψn, masses mn, each
comprising a component vn1 of L1 and a component vnN of
RN . For k sufficiently small, ν acquires a Majorana mass in
a see-saw-like manner: diagrammatically, the νmixes into a
ψn, which mixes into Ψ before returning to ν via another
ψm. The neutrino mass

mν ∼
�XN

n¼1

kvnNkv
n
1

mn

�2
1

W
∼
�XN

n¼1

k2

mn
e−

N
Ln

�2
1

W
; ð8Þ

FIG. 1. The masses and smallest end-site overlaps of the light
eigenmodes of Eq. (1) when N ¼ 35 and t ¼ 1. Shaded regions
show typical values over an ensemble of matrices with given W,
whereas points show masses and overlaps for a specific instance
thereof. For comparison, black crosses show the masses and
couplings of an N ¼ 35 “clockwork” Lagrangian.
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where Ln is the localization length of the nth mode. If the ϵi
are drawn uniformly from ½−W;W�, and t ¼ 3

10
W,

k ¼ 1
10
W, then 30% of N ¼ 35 lattices yield mν <

0.1 eV when W ¼ 2 TeV. Thereby, a reasonably generic
set of OðTeVÞ parameters can frequently generate an
Oð eVÞ scale.
The masses of the other fermion states of the lattice lie in

a band ∼½0.2 TeV; 2 TeV�, some of which have Oð1Þ
Yukawa couplings to the Higgs boson and left-handed
leptons of the standard model, once electroweak symmetry
is restored. These states may thus give (lepton number
conserving) signatures in sterile neutrino searches at
collider experiments. In contrast to analogous models of
neutrino masses in more orderly frameworks such as
clockwork and warped extra dimensions, the couplings
of these heavy states to the standard model can vary
randomly from state to state within the expected envelope.
A similar setup may be used to construct an Anderson

WIMP dark matter candidate with an exponentially long
lifetime, in close analogy with the clockwork WIMP [26].
Anderson partial compositeness.—Anderson localiza-

tion in theory space may also be fruitfully applied to
standard model flavor hierarchies. Here we consider a
purely four-dimensional model of partial compositeness
[27] in which intergenerational hierarchies arise from the
exponential profile of a localized scalar.
In partial compositeness models, each SM quark (which

we write in lower case, fqi; ui; dig, with generational
indices i ¼ 1, 2, 3) has a vectorlike partner (upper case
fQi;Ui; Dig) with the same gauge quantum numbers. A
schematic partial compositeness Lagrangian looks like

L ⊃ −Mfðηiqq̄iQi þ ηiuūiUi þ ηidd̄
iDi

þ Q̄iQi þ ŪiUi þ D̄iDiÞ
− Yij

u Q̄iH̃Uj − Yij
d Q̄

iHDj þ H:c:; ð9Þ
where repeated generational indices are summed over. The
entries of the Yukawa matrices Yu and Yd have anarchic
values of order some overall constant Y, and Mf is
OðTeVÞ. We arrange a hierarchy of ηs such that the
following parametric relations are satisfied for the observ-
able masses and mixings of the SM quark sector [28]

mi
u ∼ ηiqη

i
uYv; mi

d ∼ ηiqη
i
dYv; Vij

CKM ∼
ηiq

ηjq
if i < j;

ð10Þ
v being the Higgs VEV.
Such hierarchies are typically explained by dynamics in

the composite sector containing the vectorlike partners.
However, we can instead reproduce the desired pattern of
η’s purely from Anderson localization, using (for example)
the VEV of a quiver of N ¼ 9 SM singlet scalars πi.
Consider the Lagrangian of Eq. (1) with the addition of site
quartic terms

L ¼ Lπ þ λ
X9
i¼1

π4i : ð11Þ

If the quadratic terms of Lπ have negative eigenvalues, the
π’s will acquire a VEV which lies mostly in the direction of
the corresponding localized eigenvectors. To see this, let
hπii ¼

P
9
n¼1 c

nvni , where v
n is a normalized eigenvector of

the πs mass matrix associated with eigenvalue λn. In terms
of the components cn, the stationary points of the potential
are at the roots of

fnðcÞ ¼ cn þ
X
p

NnpðcpÞ3 ¼ 0; ð12Þ

where the matrix

Nnp ¼ 4λ

λn
X
i

vni ðvpi Þ3 ∼str: loc: 4λ

λn
exp

�
−
jn − pj

L

�
ð13Þ

typically has its largest entries on the diagonal (the last
illustrative “∼” is in the strong localization limit of a small
communal localization length L, when the eigenvalues are
ordered such that maxijvni j ¼ vnn). Neglecting the off-
diagonal pieces, the equations fn ¼ 0 separate to yield
the solution cn0 ¼ ð−NnnÞ−1

2θð−λnÞ for a minimum. To
obtain an approximate algebraic expression for the global
minimum, we use the solution c0 as an initial guess for one
iteration of the Newton-Raphson root finding, in which we
expand to first order in the off-diagonal pieces.

cn1 ¼ cn0 −
X
m

�∂f
∂c

�
−1
����nm
c0

fmðc0Þ ð14Þ

¼ −fnðc0Þ þ θð−λnÞ
�
ð−NnnÞ−1

2 þ 3

2
fnðc0Þ

�
ð15Þ

where

fnðc0Þ ¼
X
p≠n

θð−λpÞNnpð−NppÞ−3
2: ð16Þ

Roughly, the significant cn scale as the square root of
(minus) their associated negative eigenvalue. (If there exists
an eigenvalue much closer to zero than the others,
ðNnp=NppÞ ≪ 1, n ≠ p no longer holds, and the algebraic
approximation loses accuracy.) The fact that the VEV
comprises multiple eigenvectors of the mass matrix
means that it is less “localized” than the constituent basis
vectors; the ratio of the largest to smallest VEV along the
lattice scales empirically as hln ½ðmaxihπii=minihπiiÞ�i ¼
3.2þ 0.3ðN − 9Þ for N ≈ 9.
For example, let λ ¼ 1, t ¼ 0.4M2

f and draw ϵi uni-
formly from ½−0.6M2

f; 1M
2
f�, such that about half the time

there is exactly one negative eigenvalue. Couple each SM
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quark and its partner to a different πi via a Yukawa
interaction, such that

ðhπ1i;…; hπ9iÞ ¼ MfðηAu ; ηAd ; ηAq ; ηBu ; ηBd ; ηCd ; ηBq ; ηCu ; ηCq Þ:
ð17Þ

Here fA; B;Cg is a particular permutation of the genera-
tional indices f1; 2; 3g, determined a posteriori from the
sizes of the ηiq. About 5% of the time, the two relations
0.1 < ðη1q=η2qÞ < 0.3 and 0.12 < ðη2q=η3qÞ < 0.32 are simul-
taneously satisfied, approximately reproducing the para-
metric hierarchy of the CKM matrix. These points also
typically reproduce quark masses correct to within an order
of magnitude for Y ∼Oð1Þ. We thus obtain a viable model
of partial compositeness in which the necessary exponential
hierarchies are generated by Anderson localization in
theory space, rather than dynamics of a strongly interacting
composite sector.
In addition to vectorlike fermion states of mass ∼Mf,

there exist physical excitations of the scalar lattice of mass
OðMfÞ, some of which haveOð1Þ flavor-changing Yukawa
couplings to light quarks. The possibility of virtual tree-
level exchange of these scalar particles in kaon mixing sets
a rough phenomenological bound of Mf ≳ 300 TeV.
Discussion and conclusions.—In this work we have

identified a new mechanism for generating exponential
hierarchies in four-dimensional quantum field theories,
via an analogue of Anderson localization in theory space.
In contrast to clockwork or deconstructions of extra-
dimensional theories, exponential localization via disorder
in theory space requires neither an elaborate ordering of
parameters nor exponential hierarchies as inputs. Novel
features include the exponential localization of all mass
eigenstates; the anomalous localization of the lightest and
heaviest mass eigenstates; and the statistical nature of mass
eigenstate couplings to specific sites. We have further
illustrated the potential for Anderson localization in theory
space to explain observed hierarchies in nature by con-
structing simple models for neutrino and quark masses.
There are numerous directions for further inquiry. In this

work we have focused on local theory spaces (i.e., nearest-
neighbor interactions) with diagonal disorder, but it would
be fruitful to explore Anderson localization in more general
theory spaces insofar as localization persists in both local
theory spaces with off-diagonal disorder and classes of
non-local theory spaces. Insofar as we have only sketched
applications of the localization mechanism to neutrino
masses and quark flavor textures, further study of their
phenomenology and experimental signatures is warranted.
Given that the localization mechanism can be applied to
particles of any spin, it should also be possible to develop
applications to a variety of other hierarchies in and beyond
the standard model. As long as exactly massless zero
modes are not required, it should be amenable to many of
the same applications as generalized clockwork [15].

In particular, it is natural to speculate whether this
mechanism might be useful for addressing the electroweak
hierarchy problem. The most obvious application is to a
theory space of spin-two particles [29], thereby realizing
the four-dimensional deconstruction of gravitational
Anderson localization proposed in Ref. [22]. The expo-
nential localization of the graviton zero mode would then
translate to a warp factor controlling the scale of strong
coupling across the theory space. However, the naive
realization of Anderson localization in a spin-two theory
space does not manifestly preserve a massless graviton or
an unbroken diffeomorphism invariance. Given the signifi-
cance of the hierarchy problem and the novelty of the
localization mechanism, further study is clearly warranted.
More broadly, both clockwork and the analogues of

Anderson localization presented in this work underscore
the relevance of lower-dimensional physics to model
building in higher-dimensional field theories. It would
be worthwhile to pursue further analogies between diverse
condensed matter systems and four-dimensional theory
spaces.
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