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Abstract: With the popularization of humans working in tandem with robots and artificial intelligence
(AI) by Industry 5.0, ultrasonic non-destructive testing (NDT)) technology has been increasingly used
in quality inspections in the industry. As a crucial part of handling ultrasonic testing results–signal
processing, the current approach focuses on professional training to perform signal discrimination
but automatic and intelligent signal optimization and estimation lack systematic research. Though
the automated and intelligent framework for ultrasonic echo signal processing has already exhibited
essential research significance for diagnosing defect locations, the real-time applicability of the
algorithm for the time-of-flight (ToF) estimation is rarely considered, which is a very important
indicator for intelligent detection. This paper conducts a systematic comparison among different
ToF algorithms for the first time and presents the auto-diagnosis of the ToF approach based on
the Defect Peaks Tracking Model (DPTM). The proposed DPTM is used for ultrasonic echo signal
processing and recognition for the first time. The DPTM using the Hilbert transform was verified
to locate the defect with the size of 2–10 mm, in which the wavelet denoising method was adopted.
With the designed mechanical fixture through 3D printing technology on the pipeline to inspect
defects, the difficulty of collecting sufficient data could be conquered. The maximum auto-diagnosis
error could be reduced to 0.25% and 1.25% for steel plate and pipeline under constant pressure,
respectively, which were much smaller than those with the DPTM adopting the cross-correlation. The
real-time auto-diagnosis identification feature of DPTM has the potential to be combined with AI in
future work, such as machine learning and deep learning, to achieve more intelligent approaches for
industrial health inspection.

Keywords: intelligent algorithm; smart manufacturing; time-of-flight; NDT; ultrasound transducer;
pipeline inspection

1. Introduction

With the aging of urban buildings, the demand for automated non-destructive testing
(NDT) of pipelines and facilities is increasing [1,2], leading to the increasing amount
and complexity of data [1]. Among the NDT techniques, ultrasound is one of the cost-
effective inspection technologies. Nevertheless, the current method used in the industry
is still mainly based on manual identification, which requires high professional skills for
operation and analysis [3–6]. Manual data identification could lead to data inconsistencies,
especially in the case of a large amount of complex data [7]. Thus, automated NDT systems
with high reliability are desired [7–9].

Urban underground pipelines are divided into natural gas pipelines, sewage pipelines,
water pipelines, gas pipelines, heat pipelines, oil and gas pipelines, industrial pipelines, etc. [10].
The pipelines are continuously eroded by corrosive liquids or gases over the years, leading
to the structural weakening of the pipeline and the high possibility of deformation and
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fracture [10,11]. In addition, due to subjective factors, the operators may misjudge the
position and dimensions of defects, resulting in the accumulation of hidden safety hazards
in pressure pipelines [12,13]. Therefore, NDT would be an indispensable part of pipeline
maintenance in the future.

Based on the propagation and reflection of acoustic waves, the ultrasonic inspection
can detect the size, nature, and location of internal defects in the target material. In general,
there are two categories of inspection methods depending on how the waves are trans-
mitted and received: (1) transmit the wave using an ultrasonic transducer while receiving
the signal using the other one [14,15]; (2) detect and receive the signal using the same
ultrasonic transducer [14,15].

There are many types of ultrasonic transducers such as a straight transducers, angular
transducers, curvature transducers, surface wave transducers, double crystal transducers,
high-temperature transducers, etc. [15,16]. The probe used in this work was a single-chip
vertical 5-MHz ultrasonic probe, which generated the longitudinal wave perpendicular
to the target surface [16]. Researchers have studied and compared the transducers in
terms of center frequency and materials for pipe detection. However, there is a lack of
sufficient research on how to process the pipeline echo data in real time. Signal processing
is crucial for extracting useful information from the raw data in either the time domain or
frequency domain [17,18].

The intelligence in NDT—radiographic testing (RT), ultrasonic testing (UT), magnetic
particle testing (MT), and liquid penetrant testing (PT)—is gradually becoming a future
trend with the proposal of Industry 5.0. The earliest research was performed from the
perspective of the classification of defect categories. The image processing combined with
artificial neural networks was proposed and successfully applied to the RT-based method
on welds [19]. With the advancement of deep learning and equipment, convolutional neural
networks are applied to analyze signals by the specific film scanner to acquire images for
industrial and medical applications, in which optimized recognition of images based on
deep learning would be the focus of research [7]. The research on intelligence in MT was
proposed in 1994. An analog VLSI architecture combined with neural networks for image
processing was implemented and validated in the industry; nevertheless, the combination
with other imaging devices became a necessary precondition such as cameras according
to the imaging limitations of MT [20]. Since the technology of magnetic particle imaging
(MPI) was introduced in 2005, reconstruction algorithms based on voltage-response signal
imaging have become a hot research topic [21–23]. Improvements in the accurate models
for system matrix (SM)-based and x-space-based algorithms combined with deep learning
are the focus of future research [24–26]. The PT approach relies heavily on the penetrant
and manual operation, so there has still been relatively little research on the intelligence in
LT [27]. The intelligence of UT is mainly divided into the intelligent design of ultrasonic
transducer and the intelligent processing of imaging and signals. The neural network model
and modified particle swarm optimization algorithm were applied for the optimization of
ultrasonic transducer matching layer thickness and the quantitative effect of the matching
layer on the transducer performance [28]. The selection of the matching layer material
and the effect of the transducer structure on the evaluation of the application performance
based on neural network models will be one of the future development directions [29,30].
Ultrasound image and signal processing have always been the focus of optimization. The
approach of combining neural networks for ultrasonic NDT was first proposed in 1999,
however, it could only be used to assist in identifying the type of defect on the steel plate [31].
The classifications of porosity, unfused, tungsten inclusions, and non-defects were achieved
after being implemented by combining wavelet filtering with backpropagation neural
networks [31]. Artificial intelligence (AI) with a novel code containing a decision tree
was proposed and verified for characterizing single large planar cracks recently, which
demonstrated the feasibility of explainable AI in industrial NDE [32]. A new approach for
locating defects by inputting the probability matrix of ToF into a neural network for training
as an input layer has been proposed, but the accuracy was not good enough to be applied
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in practical engineering with fuzzy probability and the uncertainty of neural networks [33].
Subsequently, image and signal optimization for ultrasonic detection combined with deep
learning has become a trend [34–36].

Overall, neural networks are essentially nonlinear optimization algorithms with uncer-
tainty such that the combination of neural networks and ultrasonic NDT would sacrifice the
localization accuracy of detection in the absence of a large amount of training data, making
it difficult to apply to real applications [36–38]. Thus, the accuracy of defect positioning in
the current approaches needs to be improved. There is still a lack of in-depth research on
the accuracy improvement of automatic extraction and identification for signals, which is
essential for the intelligent application of ultrasonic NDT.

This paper presents and implements the cross-correlation method, the threshold de-
tection method, and the envelope method in detail, which provides a comprehensive
perspective for later studies and thus accelerate the research progress about the intelligent
NDT. This work investigates how to detect and locate the defects of the pipeline automati-
cally based on signal processing technology. In this study, intelligent thickness estimation
without a preset range is achieved for the first time by conducting the auto-diagnosis of
the core parameter, ToF, in ultrasonic inspection with high accuracy. Combined with the
proposed defect peaks tracking model (DPTM), the auto-diagnosis of ToF estimation is
achieved without setting the thickness range in advance based on the Hilbert transform
and wavelet filtering. With the proposed approach, higher accuracy is realized when
compared to the conventional method, with errors of 1.25% and 0.25% for pipelines and
304SS, respectively. The proposed approach does not have strict specific requirements of
hardware devices compared to the conventional method.

In this paper, Section 2 introduces the experimental equipment designed to validate
the proposed method. Section 3 describes the DPTM for the auto-diagnosis of ToF. Section 4
verifies the accuracy of the proposed approach based on the DPTM experimentally and
demonstrates the feasibility of the defective pipeline. Section 5 discusses the strengths and
weaknesses of the approach. Section 6 summarizes the research and provides a prospect
for future work.

2. Experimental

In this section, the devices and approaches used to acquire the data for defect detection
are described. To ensure the reliability of data acquisition, a pulser–receiver, CTS-9009PLUS
(Shantou Institute of Ultrasonic Instruments Co., Ltd., Shantou, Guangdong, China), with
a sampling rate of 264 MHz was employed to guarantee the signal integrity and meet the
requirements of signal processing.

2.1. Transducer Fixture

A 5-MHz transducer fixture shown in Figure 1 was designed for structural health
monitoring of pipelines, which was a standard single-element crystal probe for vertical flaw
inspection consisting of the piezoelectric wafer, sound-absorbing material, metal housing,
etc. The overall size of the fixture was 94.5 mm × 51.5 mm × 51.5 mm. The fixture was
designed to fix the ultrasonic transducer on a lifting arm and optimize the surface-fitting
conditions, which could adapt to an inclined surface and provide a controllable pressing
force to the transducers.

The fixture was mainly constructed in three PLA 3D-printed parts: a container, a base,
and a housing. The container held the transducer, and the housing was fixed on the lifting
arm. The container, a compression spring, and a base were assembled into the housing in
order, and then the base was locked at the assigned position in the housing with screws and
nuts. As the housing limits the movement of the container, the spring was in compression.
A narrow chamber was designed to allow little movement of the container, in which the
transducer could tilt with a maximum of 10◦ against the inclined surface and an altitude
mismatch of ±4 mm against the lifting arm.
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Figure 1. Isotropic cross-section view of the transducer fixture.

The pressing force could be adjusted by the specifications of the spring. A steel alloy
spring with a free length of 40 mm and a spring rate of 2.0 N/mm was selected for this
work to ensure full contact between the transducer and the testing object. The fixture was
tuned to provide a pressing force of 50 ± 8 N.

2.2. Data Acquisition

The experimental settings for ultrasonic signal detection in the pipeline are shown in
Figure 2. Cast iron pipes are widely used in water supply and drainage due to their excellent
anticorrosion performance, good ductility, and good sealing effect [19,20]. Therefore, the
cast iron pipeline was adopted in this work. The wall thickness and radius of the pipeline
were 7 mm and 170 mm, respectively. The pulser–receiver (CTS-9009PLUS) was used to
trigger the ultrasonic transducer that was in contact with the inner surface of the pipeline
and collect the data from the transducer. Matlab R2021a was used to process the signal.
The measurements were taken multiple times at each point, while data processing and
estimation results were displayed in real-time.
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3. Defect Peaks Tracking Model (DPTM)

The DPTM adopted the Hilbert transform, the envelope method, and the quadratic
spline interpolation for the first time, which realized the automatic estimation of the time-of-
flight (ToF) signal. DPTM enables auto-diagnosis through signal eigenvalues to accurately
estimate ToF, which is of great significance for the realization of Industry 5.0.
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3.1. ToF Estimation Algorithm

Nowadays, the manufacturing industry tends to be automated. As an important means
for structural health monitoring, ultrasonic NDT should also be evolved into intelligent
and automated technology [39,40]. ToF is a key parameter in ultrasonic NDT for damage
detection, which will be elaborated on in this section [39]. Though there have been quite
a few methods for the ToF determination, the ultrasonic signal estimation algorithm has
not been optimized for industrial health monitoring.

Conventional methods for determining the ToF collected from the transducer include
the cross-correlation method, the threshold detection method, and the envelope method [41].
The ToF evaluation processes are shown in Figure 3.
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The cross-correlation algorithm determines the ToF by estimating the similarity of echo
signals from two individual transducers, which is currently the most widely used method
to measure the relative time delay of two ultrasonic transducers [42,43]. Nevertheless, the
cross-correlation algorithm is easily affected by the noise and reverberation environment
such that the requirements on the instrument are strict for processing the real-time estima-
tion [44]. In real applications, a single transducer for NDT would be preferred in terms of
cost and flexibility. This work realizes the cross-correlation ToF estimation using a single
ultrasonic probe by the DPTM for the first time.

X and Y represent the signal needed to be compared, where µ and υ represent the
average value of X and Y. η is the correlation among representative signals, such that the
ToF between X and Y can be calculated when η reaches the maximum. The core formulas
of the cross-correlation algorithm is shown as Equations (1) and (2).

cov(X, Y) = E(X− µ)(E(Y− υ)) = E(X·Y)− υ·µ (1)

η =
cov(X, Y)√

var(X)·var(Y)
(2)

The threshold detection method is to detect specific echo signals by setting a threshold
voltage [39,45,46]. Its advantage is a simple operation, but the detectable ranges of defects
and thicknesses are limited [47]. Though there have been many threshold methods such
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as the dynamic threshold method, double threshold method, and variable ratio threshold
method [47], noise can easily affect the received echo signal threshold, and the adjustment of
gain also determines the voltage threshold with great uncertainty [48]. Since the measured
ToF would change along with the measurement conditions, the intensity of the ultrasonic
echo signal would also change. Therefore, it is not realistic to set a certain threshold value
in the real ultrasonic measurement process [45].

The envelope method is to take the envelope of the signal employing interpolation,
which is easy to find the peak value and calculate the ToF [49]. However, the echo signal pro-
cessed by the envelope usually encounters the loss of part of the original data information.
To resolve the problem, the present work employs the machine learning approach to learn
the characteristics of the original signal, process the signal through the Hilbert transform,
and estimate the accuracy of the pipeline defect detection algorithm by connecting the
transducer in real time.

3.2. Hilbert Transform in Defect Peaks Tracking Model (DPTM)

Empirical mode decomposition (EMD) can decompose multiple intrinsic mode func-
tions (IMFs) from low frequency to high frequency from the signal x(t) [50].

x(t) = rn(t) + ∑n−1
i=1 ci(t) (3)

where rn(t) is a residual function representing the average changing trend of the signal,
and ci is an IMF, containing components at different temporal feature scales of the signal.
Hilbert transform is performed on the IMF component and the instantaneous parameter
spectrum di(t) of the signal can be obtained as follows:

di(t) =
1
π

∫ +∞

−∞

ci(τ)

t− τ
dτ (4)

An analytical signal di(t) can be constructed as follows, which only involves the
positive frequency part from the frequency domain:

Ai(t) = ci(t) + jdi(t) = ai(t)ejθi(t) (5)

ai(t) =
√

c2
i(t) + d2

i(t)

θi(t) = arctan

(
di(t)

ci(t)

)

fi(t) =
1

2π

dθi(t)
dt

(6)

Each IMF component corresponds to the following equation the Hilbert transform:

x(t) = Re ∑n−1
1=1 ai(t)ejθi(t) = Re ∑n−1

1=1 ai(t)ej2π
∫

fi(t)dt (7)

Re means to take the real part, and the reason for omitting the residual function rn(t)
is that the residual function mainly represents the average changing trend of the signal,
which has no effect on the frequency characteristics of the signal. fi(t) represents the
instantaneous frequency. The Hilbert amplitude spectrum is:

H( f , t) = Re ∑n−1
1=1 ai(t)ej2π

∫
fi(t)dt (8)

Since the function of EMD is to decompose the parts with different frequencies in
the original signal, the timing for when to perform EMD decomposition on the signal
plays a crucial role in the accuracy of the final signal. In this work, the best time of EMD
processing in the actual ultrasonic signal estimation is compared and discussed, and the
obtained results are compared with the signal without involving the processing of EMD.
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The Hilbert transform is applied for achieving both the acquisition of the single-sided
spectrum and the integrity of the signal information.

In addition, wavelet denoising was used to reduce noise interference during the
measurement process. Based on the wavelet decomposition, the signal and noise show
different characteristics at different scales—as the scale increases, the wavelet coefficients
of the actual signal and noise would gradually increase. In the practical application of
defect detection, in addition to removing the noise interference in the signal, the denoising
algorithm also needs to preserve the singularity of the fault signal. In contrast to the Fourier
transform using an infinitely long trigonometric function as the basis, the wavelet transform
adopts a finite-length decaying wavelet basis as follows:

WT(a, τ) =
1√
a

∫ +∞

−∞
f (t) ∗ ψ

(
t− τ

a

)
dt (9)

ψa,τ(t) =
1√
a

ψ

(
t− τ

a

)
(10)

where WT(a, τ) represents the signal obtained after wavelet filtering, and a and τ are scale
and translation, respectively. The scale a controls the scaling of the wavelet function, while
the translation τ controls the translation of the wavelet function. ψa,τ(t) represents the
wavelet base.

3.3. Ultrasonic Signal Smoothing Algorithm in DPTM

Signal smoothing will be a crucial step to obtain accurate ToF results in fully automatic
and intelligent ultrasonic inspection systems in the future. In the process of real-time
intelligent estimation, fewer glitches and oscillations could reduce the probability of errors.
This work compares quadratic spline interpolation and cubic spline interpolation for
intelligent calculation.

After obtaining the Hilbert-transformed envelope, there are still glitches in the enve-
lope. The spline interpolation method for smoothing curves is the first option for processing
ai(t) in Equation (6). On a given signal interval [a, b], a function S(x) is a spline function
that satisfies the following equations:

xm
+ =

{
xm, x ≥ 0
0, x < 0

(m = 0, 1, 2 · · ·) (11)

x0
+ =

{
1, x ≥ 0
0, x < 0

(m = 0) (12)

where xm
+ is the power function, which is a unit jump function when m = 0.

S(x) = a0 + ∑n−1
j=1 β j

(
x− xj

)0
+

(13)

a = x0 < x1 < · · · < xn = b (14)

The value at the critical point during the auto-diagnosis process would cause serious
distortion of the signal and make the ToF estimation inaccurate. Thus, the smoothing step
by the interpolation method is necessary for reducing the error.

To simplify the calculation process and achieve a better filtering effect, the quadratic
spline interpolation algorithm is adopted in this work using the polynomial least squares
method to approximate the sampling points shown as Equations (15)–(18).

i = 3, 4, · · · , m− 2 (15)

yi =
1
5
(xi−2 + xi−1 + xi + xi+1 + xi+2) (16)
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ym−1 =
1

10
(xm−3 + 2xm−2 + 3xm−1 + 4xm) (17)

ym =
1
5
(−xm−3 + xm−2 + 2xm−1 + 3xm) (18)

The cubic spline interpolation is suitable for processing both time domain and fre-
quency domain signals. The smoothing method of time domain data can reduce the mixing
of high-frequency random noise and vibration signals, which also converts the frequency
domain data into smooth spectral curves to suit the needs of modal parameter identification.
The cubic spline interpolation algorithm is as follows:

yi =
1
35

[−3(xi−2 + xi+2) + 12(xi−1 + xi+1) + 17xi] (19)

ym−1 =
1
35

[−8xm−3 + 12xm−2 + 27xm−1] (20)

ym =
1

70
(−xm−4 + 4(xm−3 + xm−1)− 6xm−3 + 69xm) (21)

The purpose of DPTM (Figure 4) is to speed up the estimation process and reduce the
estimation error rate. Therefore, the following core formulas were designed to find peaks
and reduce errors in DPTM:

[xi, yi] = ∂
[
xmp, ymp

]
(22)

e =
α(xi − xi−1)

fsample
(23)

t =
1
µ ∑i=j

i=1
(xi − xi−1)

fsample
(24)

where xmp represents the sampling time points found based on the voltage peak point
ymp, xi and yi represent the sampling time points and the voltage values of adjacent
peaks according to the sorting coefficient α, respectively, µ represents the correction factor,
which is the number ToF values, e is the minimum time error of sampling that is used to
judge whether the final calculated value is reasonable, and fsample represents the sampling
frequency. If the final t value is less than e, the value will be removed from the final
averaged sum calculated by Equation (22).

Figure 4 shows the flowchart of the DPTM process, in which wavelet denoising
was used to remove noise from the signal so that the denoised signal will not produce
“Mode mixing” during the EMD decomposition of the signal at different frequencies.
The Hilbert transform was then used to simplify the signal in the time and frequency
domains, and the smoothing algorithm was used to smooth the signal and thus reduce the
error of auto-diagnosis. Finally, the system automatically would compare the errors and
determine the final ToF value according to Equations (22)–(24). Figure 5 shows the flow
chart of the adjustable defect estimation algorithm based on the DPTM. CTS-9009PLUS
will be controlled and excited by the computer through TCP/IP protocol in real time.
The ultrasonic echo data was processed by wavelet filtering, the Hilbert transform, then
smoothing by the interpolation method will be performed, and finally, the estimation result
will be obtained by DPTM.

The DPTM is proposed and applied to the estimation of ToF for the first time, which can
improve the accuracy of estimation results and avoid serious estimation errors. However,
the DPTM lacks autonomous learning capability when the signal is seriously overwhelmed
by noise for intelligent detection. Thus, future work is to address the shortcoming of the
Backpropagation (BP) neural network.
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4. Results

A 10 mm-thick plate made of 304 stainless steel (304SS) was used for the basic perfor-
mance evaluation of the proposed DPTM. Linear regression was used for the calibration
of the longitudinal acoustic velocity of 304SS (5978 m/s). To ensure the intelligent real-
time ToF estimation of the algorithm, the calculation process should abandon the manual
signal-selection process. Instead, all the algorithm programs should be run automatically
by Matlab programs. Figure 6 shows an example of 50 sets of data obtained under constant
pressure with a pulse voltage of 300 V and a pulse width of 200 ns and a gain of 60 dB to
verify the algorithm. Fifty sets of data should be good enough for verification because of
having subtle differences due to the instrument sampling rate and noise. The statistics of
ultrasonic echo signals are shown in Figure 7, showing that even slight changes in the signal
could be captured. The horizontal axis in Figure 7 represents the number of single-point
tests, while the vertical axes represent the standard deviation (SD), sum and mean of the
echo data, respectively, collected each time.

To explore the influence of EMD on the estimation of target thickness, 50 sets of
ultrasonic echo signals obtained at the 10mm position of the steel plate were analyzed by
the following algorithms: Hilbert and EMD analyzed the signals in different orders, while
wavelet and Hilbert analyzed and processed the signals, and the cross-correlation method
was used for signal analysis and processing in the frequency domain. In order to achieve
fully automatic real-time estimation, all these algorithms were performed using the DPTM.
At the same time, this is also the first time to realize the real-time intelligent ToF estimation
by cross-correlation method in the transmitting-receiving mode of a single ultrasonic probe.

EMD analysis was applied to the ultrasonic echo signal in Figure 6 based on
Equations (3) to (7). Figure 8a shows the IMF results of a representative ultrasonic echo
signal extracted from 50 sets in the time domain. IMF2 to IMF6 satisfy the following
two conditions: (1) The number of extreme points and the number of non-zero points
are equal or differ by at most one, and (2) the average value of the upper envelope and
the lower envelope is zero. The conditions are essential for the auto-diagnosis of ToF, as
opposed to the manual adjusted recognition. IMF_7 represents the residual.
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Figure 6. 50 sets of data on a steel plate under constant pressure.
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Figure 8. (a) IMF results of a representative ultrasonic echo signal acquired with a 304SS sample, and
(b) the corresponding frequency spectra(Frequency increases as the red line).
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The appearance of IMF_2 looks the most similar to the original echo signal in Figure 8a,
and the signal frequency of IMF_2 is close to the center frequency of the ultrasonic probe
(5 MHz), which means that IMF_2 best suited for the subsequent signal processing. “Mode
mixing” appeared in IMF_1, as shown in Figure 8a, due to signal interruption caused by
a high-frequency oscillation at a certain point in the raw signal. Therefore, IMF_1 consisted
of signals with many different frequencies as shown in Figure 8b, which cannot be devoted
to signal processing. The sequences of Hilbert and EMD for signal processing are compared
in Figure 9. With the Hilbert transform being performed first, the EMD results were not
ideal due to the oscillation and discontinuity of the processed signal. A specific comparison
of thickness estimation combined with the DPTM will be elaborated in Section 4.
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Figure 9. Comparison sequences of Hilbert_EMD and EMD_Hilbert for signal processing.

Difficulties in signal identification arose due to the superposition of noise and inter-
ference, while discontinuous oscillations in some high-frequency regions would result in
“Mode mixing” during the EMD decomposition process as shown in Figure 8. The wavelet
transform characterizes the features of the signal in both time and frequency domains, and
obtains the corresponding effective information at low and high frequencies of the signal
by adjusting the scale values. As the smoothness and accuracy of the signal reconstruction
are preferred as the evaluation criterion in the selection process, haar and db4 were chosen
as the wavelet bases for comparison and analysis.

As shown in the insets of Figure 10, the signal processing with haar had fewer numbers
of approximation coefficients of cA1(1023), cA2(512), and cA3(256) when compared to those
of db4 (cA1(1026), cA2(516), and cA3(261)), which means that more complete information
can be retained during the reconstructing process of the echo signal with db4. The oscillation
of the signal got substantially less and the real information of the signal was retained
after performing with db4 wavelet filtering as shown in Figure 11. The accuracy and
smoothness of the signal could contribute to a much more accurate and faster estimation
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of the thickness in auto-diagnosis. Moreover, the method of selecting wavelet bases was
adapted to specific requirements.
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Figure 10. Signals processed with wavelet approximation coefficients for (a) db4 wavelet base and
(b) haar wavelet base.
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Figure 11. (a) Original ultrasonic echo signal, and (b) the signal after wavelet filtering.

By performing EMD again after the wavelet transform as shown in Figure 12, the
phenomenon of “Mode Mixing” was eliminated, the original information of the signal was
preserved, and the noise was filtered out. Figure 13a shows that wavelet filtering could
effectively reduce the amplitude of the oscillation after the Hilbert transformation. However,
minor oscillations became apparent, which may increase the computational burden when
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there is a massive amount of data. A quadratic spline interpolation (interpolation 2) and
a cubic spline interpolation (interpolation 3) in Section 3.3 were applied for smoothing the
signal after wavelet filtering, respectively. After smoothing, the final envelope was good
enough to perform an auto-diagnosis as shown in Figure 13b.
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Figure 13. Comparison of signals (a) before and after wavelet filtering, and (b) before and
after interpolation.
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In Figure 14 and Table 1, ‘Hilbert_EMD’ (Approach 1) represents that the echo signal
was firstly processed by Hilbert Transform; then, EMD analysis was used to decompose
the echo signal into a different frequency. ‘EMD_Hilbert’ (Approach 2) represents that
the echo signal was firstly processed by EMD analysis, and Hilbert Transform was then
used to extract the echo signal with certain different frequencies. The DPTM model was
eventually applied in the calculation of ToF. The difference between the two approaches
lies in the order of the EMD analysis, in which the early stage of Hilbert transforma-
tion would cause signal distortion and oscillation on the estimation. ‘Hilbert_DPTM’
(Approach 3) represents that the signal was firstly filtered by wavelet and then subjected to
Hilbert transform, and then, the DPTM was applied. ‘DPTM_Cross’ (Approach 4) repre-
sents that the signal was firstly processed by the DPTM and then subjected to the cross-
correlation method. ‘Hilbert_DPTM_EMD’ (Approach 5) represents that the EMD analy-
sis was performed after the wavelet filtering in ‘Hilbert_DPTM’. ‘DPTM_Interpolation2’
(Approach 6) and ‘DPTM_Interpolation3’ (Approach 7) represent that the echo signal was
processed by a quadratic spline interpolation and a cubic spline interpolation, respec-
tively, after the Wavelet, Hilbert, and DPTM. As shown in Table 1, the ‘DPTM_Cross’ and
‘DPTM_Interpolation2’ were the two most stable approaches.
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Table 1. Comparison of results acquired on a steel plate using different approaches.

Approach Mean
(mm)

Standard
Deviation

Sum
(mm)

Minimum
(mm)

Median
(mm)

Maximum
(mm)

Maximum
Auto-Diagnosis Error

1 Hilbert_EMD 9.84 0.94 492.41 3.90 9.950 12.59 60.93%

2 EMD_Hilbert 9.95 0.19 497.74 9.49 9.963 10.76 0.49%

3 Hilbert_DPTM 9.96 0.00 498.16 9.96 9.963 9.96 0.37%

4 DPTM_Cross 9.95 0.00 497.60 9.95 9.952 9.95 0.48%

5 Hilbert_DPTM_EMD 9.95 0.01 497.56 9.87 9.952 9.96 1.27%

6 DPTM_Interpolation2 9.97 0.00 498.73 9.97 9.975 9.97 0.25%

7 DPTM_Interpolation3 9.96 0.10 498.35 9.96 9.963 9.97 0.37%
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To further investigate the potential of different algorithms for real application, a steel
pipeline with a wall thickness of 7 mm was used as a testbed. Fifty sets of echo data
were acquired in the pipeline under constant pressure at room temperature, as shown
in Figure 15.
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Through the comparison in Figure 16 and Table 2, the estimation accuracy of ‘DPTM_
Interpolation2’ (Approach 6) was still the highest, and the standard deviation of the data
was down to 0.01, indicating that the algorithm was very stable in the process of real-time
estimation even for the actual pipeline.
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Table 2. Comparisons of results in a pipeline obtained using different approaches.

Approach Mean
(mm)

Standard
Deviation

Sum
(mm)

Minimum
(mm)

Median
(mm)

Maximum
(mm)

Maximum
Auto-Diagnosis Error

1 Hilbert_EMD 7.16 3.85 358.48 2.34 6.58 21.64 209.25%

2 EMD_ Hilbert 8.99 7.61 449.76 0.03 7.46 23.04 229.15%

3 Hilbert_DPTM 2.70 2.06 132.33 0.97 1.36 6.79 86.14%

4 DPTM_Cross 7.16 0 358.34 7.16 7.16 7.16 2.38%

5 Hilbert_DPTM_EMD 10.63 6.32 531.66 0.71 7.78 21.55 207.86%

6 DPTM_Interpolation2 6.93 0.01 346.88 6.91 6.94 6.96 1.25%

7 DPTM_Interpolation3 6.45 0.91 322.91 1.51 6.79 7.15 78.32%

To investigate the efficiency of the proposed approach for auto-diagnosis of ToF,
various approaches in Table 2 were run 50 times through Matlab and the CPU times
were recorded, respectively, as shown in Figure 17. According to the data analysis in
Table 3, ‘DPTM_Cross’ (Approach 4) consumed the longest CPU time, while Hilbert_DPTM’
(Approach 3) ran the shortest time among the seven approaches. ‘Hilbert_EMD’ (Approach 1)
and ‘EMD_Hilbert’ (Approach 2) consumed a similar amount of CPU time in which the
sums of the CPU time were 12.73 s and 12.39 s, respectively. However, their standard
deviations of the CPU time (0.13, and 0.16) were larger than those of ‘Hilbert_DPTM_EMD’
(Approach 5), ‘DPTM_Interpolation2’ (Approach 6) and ‘DPTM_Interpolation3’ (Approach 7)
(0.06, 0.05, and 0.05). Among the approaches, ‘Hilbert_DPTM_EMD’ (Approach 5) and
‘DPTM_Interpolation2’ (Approach 6) showed the optimal efficiency, which had the same
mean CPU time (0.26 s) while their standard deviation and sum of the CPU time were close.
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Table 3. Comparison of CPU times by Matlab using different approaches.

Approach Mean
(s)

Standard
Deviation

Sum
(s)

Minimum
(s)

Median
(s)

Maximum
(s)

1 Hilbert_EMD 0.25 0.13 12.73 0.12 0.21 0.92

2 EMD_ Hilbert 0.24 0.10 12.39 0.14 0.22 0.71
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Table 3. Cont.

Approach Mean
(s)

Standard
Deviation

Sum
(s)

Minimum
(s)

Median
(s)

Maximum
(s)

3 Hilbert_DPTM 0.22 0.04 11.03 0.14 0.20 0.32

4 DPTM_Cross 1.46 0.21 73.48 0.87 1.46 2.09

5 Hilbert_DPTM_EMD 0.26 0.06 13.40 0.15 0.26 0.42

6 DPTM_Interpolation2 0.26 0.05 13.23 0.17 0.26 0.40

7 DPTM_Interpolation3 0.29 0.05 14.51 0.17 0.29 0.39

5. Discussion

Based on the exploration of current ToF technology and signal processing in the
field of UT, the DPTM-based auto-diagnosis was proposed and validated. Compared to
the state-of-the-art approaches, the proposed intelligent inspection approach exhibits the
following advantages:

(1) No requirement for inputting the estimation range (e.g., thickness range) and de-
tection location in advance, which is significant for achieving the intelligent appli-
cation of ultrasonic NDT without the involvement of professional knowledge and
specialized skills.

(2) Great flexibility in the selection of the number of ultrasonic probes when compared
with the strict requirements of conventional approaches for the equipment, e.g., the
cross-correlation method requires the transceiver mode for real-time detection (at
least a pair of ultrasonic transducers is required), which could greatly reduce the cost
and complexity of detection.

(3) Capable of achieving high accuracy on the thickness estimation for both 304SS plate
and pipeline with defects, which could offer much more accurate defect localization
and detection.

Nevertheless, the stability of the proposed algorithm still needs to improve, which
could be affected by many external factors, such as the roughness of the testing object.
Combining with other intelligent algorithms, such as a neural network, will be the focus of
future work to resolve the issues induced by the roughness, the transducer frequency, the
ambient temperature, and so on.

6. Conclusions

This article proposes a novel concept of realizing non-destructive detection intelligence.
The algorithms for auto-diagnosis of ToF of ultrasonic signals have been investigated. To
be capable of tracking and estimating ToF in real-time, the DPTM has also been proposed
and applied to the ToF estimation for the first time. The experimental results show that the
DPTM cannot only achieve the real-time estimation of ToF in the single-probe receiving
mode in the time domain but also realize the single-probe receiving mode. The work is
highly significant for the intelligent inspection of ultrasonic NDT.

As the actual testing conditions could be quite complicated, the DPTM may not be
capable of encountering uncertainties without a “learning” function. In the future, the main
work will focus on the excitation voltage to establish a neural network model to achieve
a much more accurate and intelligent NDT. The target conditions such as pipeline roughness
will also be added as the neural parameter for more intelligent defect identification on
various testing targets. Neural networks for designing ultrasonic transducers will be further
explored. There is still room for the development and application of neural networks in the
field of ultrasonic NDT. The intelligent recognition of highly accurate and stable signals
could be devoted to realizing unsupervised ultrasonic NDT with the advent of Industry 5.0.
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