
Akinbi, A and Ojie, E

 Forensic analysis of open-source XMPP multi-client social networking apps
on iOS devices

http://researchonline.ljmu.ac.uk/id/eprint/18828/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Akinbi, A and Ojie, E (2021) Forensic analysis of open-source XMPP multi-
client social networking apps on iOS devices. Forensic Science
International: Digital Investigation, 36. ISSN 2666-2817

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Forensic analysis of open-source XMPP multi-client social

networking apps on iOS devices

Alex Akinbi a, Ehizojie Ojie b

a Department of Computer Science, Liverpool John Moores University, 3 Byrom Street, Liverpool,

L3 3AF, UK
b Department of Computer Science, University of York, Heslington, York, YO10 5DD, UK

Abstract

In this paper, we present forensic analysis of Monal and Siskin IM, two decentralized open-

source XMPP multi-client social networking apps on iOS devices that provide anonymity and

privacy using OMEMO end-to-end encryption. We identified databases maintained by each

app and storage locations within the iOS file system that stores the local copies of user

information and metadata. We analyzed the databases and storage locations for evidential

data of forensic value. The results in this paper show a detailed analysis and correlation of

data stored in each app’s database to identify the local user’s multiple IM accounts and

contact list, contents of messages exchanged with contacts, and chronology of conversations.

The focus and main contributions of this study include a detailed description of artifacts of

forensic interest that can be used to aid mobile forensic investigations.

Keywords: Mobile forensics; iOS forensics; Monal; Siskin IM; Instant messaging; XMPP;

OMEMO; social networking

1. Introduction

The popularity of social networking and instant messaging (IM) apps available to smartphone

users to communicate online with friends, family, and colleagues continues to grow as they

provide more features and functionalities such as real-time messaging, voice, and video calls.

Based on the number of active users in 2019, the most widely used apps include WhatsApp,

Facebook Messenger, WeChat, QQ Mobile, Telegram, and Snapchat (Clement, 2019). Since

Edward Snowden’s revelations, the popularity of messaging apps such as Signal and

Telegram that offer end-to-end encryption (E2EE) to the general public has been prominent.

To better protect users from marketing companies who increasing try to track users, deny

access to private exchanged messages by governments and malicious hackers who could hack

and leak chat sessions stored on provider servers online through a successful hack, the use of

E2EE messaging apps have also increasingly gained popularity among smartphone users

(David Nield and Brian Turner, 2020).

Although the reasons listed provide legitimate uses for E2EE IM apps, they are increasingly

being used by extremist groups and organized criminals to communicate and coordinate

without interception (Hexegic, 2020). This has created challenges for law enforcement

authorities as they have little means of intercepting such communications unless the user’s

smartphone is obtained, and IM apps installed on the smartphone are analyzed for traces of

forensic artifacts. Moreover, the storage capacity of smartphones is increasing significantly,

and there are generally many apps installed on smartphones, it is increasingly difficult for

investigators to identify data related to crimes for investigation (Kim and Lee, 2020).

Although secure private communication can be guaranteed with the use of E2EE IM apps,

maintaining anonymity is still a challenge for its users. Secure messaging apps like Signal

and Telegram still require a user to provide a valid phone number to sign up, route encrypted

messages over centralized servers and it is also difficult to hide IP addresses through

anonymity services like VPNs or Tor when using them (Express VPN, 2019). These mean

users can still be identified as well as those they are communicating with. Therefore, open-

source Extensible Messaging and Presence Protocol (XMPP) multi-client IM applications

combined with E2EE protocols that can provide both anonymity and privacy using a

decentralized architecture is considered a better option amongst many users. XMPP was

originally developed in the Jabber open-source community to provide an open, decentralized

alternative to the closed instant messaging services at that time. The decentralized

architecture of the XMPP network is like email; as a result, anyone can run their own private

XMPP server, enabling individuals and organizations to take control of their

communications experience (XMPP Standards Foundation (XSF), 2020a).

Since its inception, many improvements have been implemented to the protocol and development

of mobile apps (Gultsch, 2016). There are several notable XMPP multi-client IM apps available

on iOS, macOS, Android, Linux, and Windows platforms. Two popular ones on iOS are Monal

and Siskin IM apps with 3.4 and 3.5 ratings respectively on the App store (at the time of writing).

They are both lightweight XMPP clients that support the use of Multi-End Message and Object

Encryption(OMEMO), an open standard based on a Double Ratchet and PEP for secure multi-

client end-to-end encryption (XMPP Standards Foundation (XSF), 2020b). They are also public

projects, which means their source code can be audited, can be routed over Tor network, support

the use of decentralized authoritative private servers, and support the use of multiple accounts by

a single user. Therefore, given these characteristics, interest in forensic analysis of these

applications is imperative (Anglano et al.,

2

2017; Kim and Lee, 2020; Wu et al., 2017). This prompts this study into the

identification, recovery, and analysis of artifacts relating to the usage of Monal and Siskin

XMPP multi-client IM apps on iOS.

In this paper, the focus and contributions include dealing with the forensic analysis of both

Monal and Siskin apps running on an iOS (iPhone) device. We demonstrate the recovery of

forensic artifacts relating to local copies of exchanged messages and files, evidence of

deleted messages and files, local user’s multiple IM accounts and contact lists, and

chronology associated with these events from the main storage locations on each app. Other

contributions in our analysis include the recovery of artifacts associated with deleted contacts

and associated metadata. To ensure results from our analysis are realistic and can be

reproduced, we describe our analysis methodology which includes the creation of user-

profiles and the exchange of messages in an investigative scenario using physical iOS devices

that are not jail-broken.

This paper is organized as follows. In Section 2, we discuss existing literature, while in

Section 3, we describe the analysis methodology and the tools used in our experiments. In

Section 4, we discuss the investigative scenario. Forensics analysis and findings of Monal

and Siskin IM apps including artifacts recovered are presented in Section 5 and Section 6

respectively. In Section 7, we conclude the paper.

2. Related Literature

Forensic analysis of social networking and IM apps including those that support E2EE has

been extensively studied especially on Android compared with iOS platforms (Akbal et al.,

2019; Alyahya and Kausar, 2017; Anglano, 2014; Anglano et al., 2017; Dargahi et al., 2017;

Hintea et al., 2018; Jadhav Bhatt et al., 2018; Mahajan et al., 2013; Norouzizadeh Dezfouli et

al., 2016; Ovens and Morison, 2016; Shortall and Azhar, 2015; Sudozai et al., 2018; Wu et

al., 2017). There is limited study on the forensic analysis of open-source XMPP multi-client

IM apps that supports E2EE. One recent study is the forensic analysis of ChatSecure instant

messaging application (Anglano et al., 2016). However, the study focused on the analysis of

the app on Android and not iOS. Before this study, Wouter S. van Dongen (van Dongen,

2007) conducted a forensic analysis of Pidgin Messenger 2.0 on the Linux platform. Based

on the recent market share on Android devices (Statista, 2020), Android’s popularity has

attracted several researchers to focus on investigating different aspects of Android which

includes social networking apps’ forensics (Dargahi et al., 2017; Norouzizadeh Dezfouli et

3

al., 2016) creating the need for more forensic analysis of social networking and IM apps on

iOS platforms. Therefore, by focusing on XMPP multi-client apps that support E2EE on the

iOS platform, we make the most of the potential investigative impact of our work. To the best

of our knowledge, no study has focused on Monal and Siskin IM apps on iOS.

3. Analysis methodology and tools

The forensic analysis methodology required a set of separate controlled experiments carried

out for both Monal and Siskin IM apps. According to Anglano et. al (Anglano et al., 2017,

2016): “Given that the goal of any forensic analysis is to allow the analyst to obtain the

digital evidence generated by the applications under consideration, the methodology used to

carry it out must exhibit three unique properties”, which are described as follows.

• completeness : the identification of all the data generated by the application under

analysis by carrying out all relevant functionalities of the application;

• repeatability : the possibility for a third party to replicate experiments under the same

operational conditions, and to obtain the same results;

• generality: the results hold for many (possibly all) iOS smartphones and versions.

Therefore, we created an investigative scenario followed by subsequent phases, “Installation

of application” and “Design of experiments” respectively for each application. In

the“Installation of Application” phase, we installed and ran both Monal v. 4.5 and Siskin IM

v. 5.8.1 apps (recent versions at the time of writing) on three iOS devices (not jailbroken) and

created multiple user profiles (roles). We then created multiple XMPP accounts and assigned

roles to each device (e.g. sender or recipient of a message, group chat leader, etc.). Since both

apps only support iOS platforms, the realistic scenario was to install both apps on two of the

devices to serve as the test local user’s contacts in the experiments. Table 1 summarizes the

profiles and test devices that were used. In the “Design of experiments” phase, we define a

set of experiments that includes one-to-one chats between a local user and other users in the

contacts list, exchange of multimedia files, blocking and deleting contacts, group creation and

chats etc. to generate as many forensic artifacts as possible, and demonstrates a typical user’s

realistic interaction has happened. The device representing the test local user’s profile was

then analyzed for forensic artifacts by first conducting an advanced logical acquisition of the

iOS internal memory which was followed by the analysis of the logical image using

Cellebrite UFED Physical Analyzer v. 7.31 (Cellebrite, 2020).

4

Table 1. Test Devices

Device OS Version Model Profile

iPhone 6s 13.3.1 A1688 Local user

iPhone 6s Plus 13.3.1 A1634 Contact

iPhone 6s Plus 13.3.1 A1634 Contact

Cellebrite UFED Physical Analyzer’s iOS advanced logical acquisition relies on the iTunes

backup and uses Apple’s backup infrastructure to create a logical image that includes a robust

copy of data including SMSs, text messages with attachments, multimedia files, call logs

contact lists, application data, etc from the iOS device. It can decode the extractions from the

logical image in a simple graphical user interface which makes it easy to identify various files

of interests relating to the installed applications’ data. However, Cellebrite UFED Physical

Analyzer v. 7.31 could not decode app activity for both the Monal and Siskin IM apps.

Therefore, once these files of interest were identified, we then conducted a manual in-depth

analysis of each one for information of interest related to our corresponding experiments.

Alternative advanced logical acquisition of the iOS device was conducted using Cellebrite’s

file system extraction that fully integrates the checkm8 and checkra1n exploits to extract a

file system image of the iOS device in a forensically sound manner. The results from the

forensic extraction, files of interests, and evidential data recovered were the same as the

iTunes backup. Therefore, we decided to stick to the advanced logical acquisition which

relies on iTunes backup because checkm8 and checkra1n exploits currently support iOS

devices (iPhone 5s through iPhone X) which use the A9 64-bit ARM-based system-on-chip

and lower (“checkra1n,” 2020). This may not be the case for many iOS devices examined by

forensic analysts in the field.

Hence, our analysis methodology provides the possibility for the experiments to be

generalized, replicable and reproduced by a third party under the same operational

conditions, and to obtain the same results regardless of the iOS version and iPhone model.

4. Investigative Scenario

The test scenario which was used to demonstrate the forensic analysis in this paper is

described as follows: A user (local user) with an iOS device as presented in Table 1 is

being investigated. Forensic examiners found both Monal and Siskin IM apps installed on

the seized device and are keen to answer the following questions:

5

i. How many distinct XMPP IM accounts associated with the local user was

configured and used with the Monal and Siskin IM apps?

ii. Who are the local user’s contacts on each app? Are there indications of any

blocked or deleted contacts?

iii. What messages have been exchanged with the above contacts and when did

each communication occur on each app?

iv. Did the local user exchange files with contacts and can encrypted

messages, deleted data, and files be recovered from each app?

In the following sections, we present the forensic analysis of Monal and Siskin IM apps

respectively.

5. Forensic analysis of Monal app

Monal is a decentralized open-source XMPP multi-client IM app designed for iOS and

macOS platforms. It uses OMEMO by default for encrypting conversations between verified

users only (Anu, 2019). Users need to verify, and trust encryption keys used by both parties

before encryption is enabled. To encrypt conversations, a user needs to add a contact by

accepting a notification request, verify the identity, and trust the contact’s encryption key. A

user is also able to send messages to another user’s IM account without verifying and trusting

keys. However, the conversations will not be encrypted. Users can also toggle between

sending messages unencrypted or encrypted using a security feature on the app. In our

investigative scenario, we exchange several messages encrypted and unencrypted to conduct

a comprehensive forensic analysis of artifacts that can be recovered.

5.1. Installation of Monal app and account configuration On

installation of Monal, the app places user data in the directory

“/private/var/mobile/Containers/Data/Application/G7YU7X7KRJ.SworIM” on the iOS

device. The directory contains the artifacts that would be of most interest to a forensic

investigator. The local user is required to register an account or use an existing XMPP IM

account to sign in. Registering an account with a chosen username creates an XMPP IM

account with the @yam.ix domain. A user can then add multiple accounts to communicate

with contacts. In our scenario, we registered an account and then added a second existing

XMPP IM account (@xabber.org) to the local user’s profile. Similar configurations were

repeated for the other contact profiles. Details of these profiles and accounts are presented in

Table 2.

6

Table 2. Monal local user’s and contacts’ XMPP IM accounts

Local user’s XMPP IM accounts on analyzed iPhone 6s behemoth@yax.im

 behemoth02@xabber.org

1
st

 Contact’s XMPP IM accounts on other iPhone 6s Plus devices added to local user’s alice.behemoth@yax.im

contacts list alice.behemoth@tigase.im

2
nd

 Contact’s XMPP IM accounts on iPhone 6s Plus devices added to local user’s contacts eve01@yax.im

list bobuser@xabber.org

XMPP IM account of the deleted contact bobuser@xabber.org

5.2. Design of experiments

As discussed in Section 5.1, once the local user and contact accounts have been

created, the next step of the investigative scenario consists in the design of a set of

experiments aimed at reconstructing the actions and activities carried out by the local

user and contacts using the Monal app. In Table 3, we present descriptions of the

actions and steps performed in our experiments. The goal of the design of these

experiments was aimed at answering the questions set out in the investigative scenario

by recovering relevant forensic artifacts to achieve completeness, repeatability and

generality from the detailed forensic analysis.

Table 3. Experiments concerning dialogues, files exchanges and deletions between contacts.

Description Steps

Regular chat 1. The local user creates several regular chat messages

 (OMEMO encryption disabled) with 1
st

 and 2
nd

 contacts

 2. The local user creates several regular chat messages

 (OMEMO encryption enabled) with 1
st

 and 2
nd

 contacts

 3. 1
st

 and 2
nd

 contacts send messages to the local user

 4. The local user deletes some chat messages exchanged

 with the 1
st

 and 2
nd

 contacts

 5. The local user deletes one of the 2
nd

 contact’s IM

 account

File exchange 1. The local user sends an image to 1
st

 contact

 2. The local user receives an image from 1
st

 contact

 3. Local user deletes image received from 1
st

 contact

7

5.3. Location of Monal app artifacts

Data of conversation records and configuration files when using the app are stored in two

main subdirectories (“Documents” and “Library”) of the “G7YU7X7KRJ.SworIM” main

folder (see Figure 1).

Figure 1: The main folder structure of the Monal app

The main database “sworim.sqlite” and other forensic artifacts of interests are in Documents

subdirectory. Raw copies of images are stored in the “imagecache” subfolder while the

Library subdirectory contains various default configuration and property list(plist) files. All

files in the Library subdirectory which include the plist files were not significant artifacts.

The sworim.sqlite SQLite database is the most important evidential data of forensic interest.

This database maintains a record of messages exchanged, information associated with the

local user and contacts’ XMPP IM accounts, the chronology of messages and files

exchanged, etc. (See Figure 2). From our findings, only 11 out of these 23 tables contain

information of forensic interest namely, account, activechats, blockList,buddy_resources,

buddylist, imageCache, message_history, muteList, signalContactIdentity, sqlite_sequence,

and subscriptionRequests. To answer the questions from our investigative scenario, we

discuss the details of the contents of these tables, their analysis, and interpretation as follows.

8

Figure 2: Structure of the main sworim.sqlite database

5.4. Recovering account information (Monal app)

i. The accounts table contains information associated with the local user’s distinct

XMPP IM accounts. Each account is assigned a unique identifier and stored in the

“account_id” field which is the (primary key) for this table. The two accounts

associated with the local user from our scenario named behemoth@yax.im and

behemoth02@xabber.org are stored in the table. Each account username and

XMPP server domain name are stored in the “account_name” and “server” fields

respectively (See Figure 3).

Figure 3: accounts table

9

ii. The activechats and buddylist tables (See Figure 4) jointly store records associated

with the local user’s contacts. The activechats table stores record of contacts that are

active (not deleted or blocked) in the “buddy_name” field. It also stores a record of

the date and time the last message was exchanged between the local user and each

contact in the “lastMessageTime” field. However, information associated with both

active and deleted contacts is stored in the buddylist table. The XMPP IM account

associated with the deleted contact bobuser@xabber.org was seen in this table. The

“account_id” field appears to be a foreign key in the buddylist table which shows the

relationship between the activechats and buddylist tables. The field indicates the

distinct local user IM account that was used to exchange messages with a specific

contact. Information associated with blocked and muted contacts is stored in the

blockList and muteList tables respectively. Pending request notifications by new

contacts are stored in the subcriptionsRequests table, the signalContactIdentity table

shows all active verified and trusted contacts, while the buddy_resources table

shows the iOS device names of all active contacts.

Figure 4: activechats and buddylist tables

10

5.5. Recovering chronology of chat logs, message contents, and deleted files (Monal app)

iii. Information associated with messages and multimedia files exchanged between the

local user and contacts (buddylist) is stored in the message_history table. This table

contains the record of messages sent and received including the textual content of

each message body, the contact associated with each exchanged message, date and

time a message was exchanged, and a status flag which indicates whether the message

exchanged is encrypted (encrypted =1) or unencrypted (encrypted =0). Each message

is assigned with a unique identifier stored in the “message_history_id” field and the

local user account associated with each exchanged message can be identified by the

“account_id” (foreign key). All messages sent (encrypted and unencrypted) is stored

in plaintext in the table. However, information associated with deleted messages

exchanged with both active and deleted contacts is not stored. The timeline of

messages exchanged can be reconstructed using the information stored in this table. In

Table 4, we present a detailed interpretation of the relevant fields from the

message_history table of the sworim.sqlite database.

Table 4. Structure of the message_history table

Field Role Type Meaning

message_history_id Primary int unique identifier of the message

 Key

message_from - string contact user/ local user IM account message was sent from

message_to - string contact user/ local user IM account message was sent to

timestamp - string the date and time a message was sent or received

message - string body of the message

unread - boolean flag indicating whether content of a message is unread (unread=0) or read

 (unread=1)

delivered - boolean flag indicating whether content of a message is delivered (delivered =1)

 or undelivered (delivered=0)

messageType string flag indicating whether a message type (messageType = Text) or

 (messageType =Image)

received - boolean flag indicating whether a message was received (received=1) or not

 received (received=NULL)

encrypted - boolean flag indicating whether a message is encrypted (encrypted=1) or

 unencrypted (encrypted=0)

In Figure 5, we show a record of 21 messages exchanged. From the figure, we see the

first record in the field named “message” corresponds to an unencrypted message

11

(encrypted = 0) sent from the contact alice.behemoth@yax.im on the 29
th

 Apr. 2020

at 3:40 pm UTC and the “messageType” field indicates the body of the message is

text (messageType=Text). The 16
th

 record from this figure also shows an encrypted

(encrypted = 1) message (messageType = Image) sent from the local user IM account

behemoth@yax.im to the contact alice.behemoth@yax.im on the 29
th

 Apr. 2020 at

9:35 pm UTC. The sqlite_sequence table log and store information associated with

the total number of messages exchanged (including deleted ones), number

subscription requests by contacts (including rejected ones), and the total number of

contacts (including deleted ones). It is well known that remnants of deleted data from

SQLite databases are kept in unallocated cells in the file corresponding to the

database, from which they can be recovered(Anglano et al., 2016; Jeon et al., 2012).

However, our attempts to recover deleted data from the database using Undark v 0.6

(Daniels, 2015) and Cellebrite Physical Analyzer SQLite recovery tools were

unsuccessful as the fields containing deleted data had been overwritten with null

bytes upon deletion. This confirms that the VACUUM command is used within the

main sworim.sqlite database of the Monal app.

Figure 5: message_history table

iv. A record of each multimedia (image) file exchanged is stored as a relative URL path

in the message field. If a file is shared with OMEMO encryption turned off, a copy

12

file can be recovered directly from the XMPP server by entering the URL link in a

browser, for example (https://upload.yax.im/upload/<file-hash>.jpg). However, if a file

is shared with encryption turned on, a random key and IV are generated and the file is

then encrypted with AES-256 in Galois/Counter Mode (GCM) (XMPP, 2018). This

converts the HTTPS URL to an aesgcm:// URL as shown in the 16
th

 record in Figure 5. A

copy of the encrypted file is stored on the XMPP server and when received is decrypted

locally on the device using a symmetric key sent with the secure message body. In our

investigative scenario, we were able to recover all files exchanged including raw copies

of deleted ones. Each file is stored with a hash value file name and information for all

files exchanged including URLs and relative paths is stored in the imageCache table

(Figure 6). Raw copies of each file are stored in the imageCache subdirectory of the app’s

main folder located in the

/private/var/mobile/Containers/Data/Application/G7YU7X7KRJ.SworIM/Documents/i

magecache subdirectory in the iOS file system. It is worth noting that if a contact uses an

XMPP IM account such as Xabber (@xabber.org) which supports only end-to-end

message encryption with Off-the-Record Messaging (OTR) but not OMEMO, the

messages and files exchanged using the Monal client app are not encrypted.

Figure 6: imageCache table

6. Forensic analysis of Siskin IM app

Siskin IM app by Tigase, Inc. is a lightweight and decentralized open-source XMPP multi-

client for iOS platforms(Tigase, 2020). Like many social networking apps, Siskin IM allows

users to exchange text messages and multimedia files, make audio and video calls using

Voice over IP (VoIP). It supports the use of OMEMO for secure end-to end-encryption

13

communication. However, the feature is not enabled by default. The user can toggle between

sending messages unencrypted or encrypted in the app’s chat settings. Users can also create

groups, join public and private chat rooms.

6.1. Installation of Siskin IM app and account configuration

The Siskin IM app follows a different file structure in the iOS file system compared to most

social networking apps. Identifying the location of these files and folders along with their

usage can be important for an investigator (Sudozai et al., 2018). On installation, user data is

placed in three main folders “/private/var

/mobile/Containers/Data/Application/org.tigase.messenger.mobile”, “/private/var

/mobile/Containers/Shared/AppGroup/group.siskinim.shared” and

“/private/var/mobile/Containers/Shared/AppGroup/group.TigaseMessenger.Share” on the

iOS file system. Like many XMPP multi-client apps, a user can sign in using an existing

XMPP account or register one on the Tigase domain (@tigase.im) and then proceed to add

multiple accounts. In our scenario, we registered an account and added an existing Xabber

(@xabber.org) IM account. Similar configurations were repeated for the other contact

profiles. Details of these profiles and accounts are presented in Table 5. We then proceeded

to add the contacts by sending and accepting requests, verifying user identities, and trusting

encryptions keys for each user. It is worth noting that for a comprehensive forensic analysis,

we exchanged some messages without OMEMO encryption enabled. Also, the local user and

contact’s Xabber accounts only support OTR end-to-end encryption. Therefore, messages

exchanged between these accounts are not encrypted.

Table 5. Siskin local user’s and contacts’ XMPP IM accounts

Local user’s XMPP IM accounts on analyzed iPhone 6s behemoth@tigase.im

 behemoth02@xabber.org

1
st

 Contact’s XMPP IM accounts on other iPhone 6s Plus devices added to alice.behemoth@yax.im

local user’s contacts list alice.behemoth@tigase.im

2
nd

 Contact’s XMPP IM accounts on iPhone 6s Plus devices added to local eve01@tigase.im

user’s contacts list bobuser@xabber.org

XMPP IM account of the deleted contact alice.behemoth@yax.im

XMPP IM account of blocked contact bobuser@xabber.org

14

6.2. Design of experiments

Similar to the Monal app, once the local user and contact accounts have been created

on the Siskin IM app, the next step of the investigative scenario consists in the design

of a set of experiments aimed at reconstructing the actions and activities carried out

by the local user and contacts. In Table 6, we present descriptions of actions and steps

performed in our experiments. The goal of the design of these experiments was aimed

at answering the questions set out in the investigative scenario by recovering relevant

forensic artifacts to achieve completeness, repeatability and generality from the

detailed forensic analysis.

Table 6. Experiments concerning dialogues, files exchanges and deletions between contacts.

Description Steps

Regular chat 1. The local user creates several regular chat messages

 (without encryption enabled) with 1
st

 contact and 2
nd

 contact

 2. The local user creates several regular chat messages

 (encryption enabled) with 1
st

 contact and 2
nd

 contact

 3. 1
st

 and 2
nd

 contacts send messages to the local user

 4. The local user deletes some chat messages exchanged

 with the 1
st

 and 2
nd

 contacts

 5. The local user deletes one of the 2
nd

 contact’s IM

 accounts

 6. The local user blocks one of the 1
st

 contact’s IM

 accounts

File exchange 1. The local user sends an image to 1
st

 contact

 2. The local user receives an image from 1
st

 contact

 3. Local user deletes image received from 1
st

 contact

Private chat group 1. The local user creates a private group

 2. The local user invites 2
nd

 contact to join the group

 3. 2
nd

 contact accepts invite and joins the group

 4. The local user sends a textual message to group

 members

 5. 2
nd

 contact send message to group members

 6. The local user removes 2
nd

 contact

 7. The local user deletes the group

6.3. Location of Siskin IM app artifacts

As mentioned earlier, Siskin IM app store user data in three main folders

(org.tigase.messenger.mobile , group.siskinim.shared and group.TigaseMessenger.Share) on

15

the iOS file system. The most crucial forensic artifacts of interest are stored in the

siskinim_main.db SQLite database located in the group.siskinim.shared folder. Forensic

artifacts associated with raw copies of images received by the local user are the only

significant artifacts in the org.tigase.messenger.mobile folder, while the

group.TigaseMessenger.Share folder contains several configurations and plist files with no

forensic significance (see Figure 7).

Figure 7: Main folders of the Siskin IM app

The siskinim_main.db store records and information of chat messages, user and contact

account information, metadata of files exchanged include time and dates in the order of their

occurrence. The database contains 15 different tables that store the listed information.

However, from our findings, only 8 out of these 15 tables contain artifacts of forensic

interests namely chat_history, chats, omemo_identities, omemo_sessions,

omemo_signed_pre_keys, roster_items, sqlite_sequence, and vcards_cache. We proceed to

discuss the contents of these tables in the database to answer questions from our investigative

scenario.

6.4. Recovering account information (Siskin IM app)

i. Information associated with the distinct local user’s accounts created during

installation and used to communicate with contacts are stored in the

omemo_signed_pre_keys table (Figure 8). However, the table appears to have

duplicate copies of one of the IM accounts with no unique identifier (primary

key) defined in the table.

16

Figure 8: omemo_signed_pre_keys table

ii. The omemo_sessions table store records of conversation sessions with active

contacts (not deleted or blocked) that support and use OMEMO encryption.

Account information of all active IM accounts which includes that of the local

user is stored in the omemo_identities table. Both tables are linked together

through the “device_id” which is the unique identifier associated with encryption

keys used to exchange messages between the local user and specific contact (See

Figure 9). Information associated with subscription requests to add and verify a

contact identity is stored in the roster_items table. The table shows the date and

time each request was made. However, information associated with deleted

contacts is not stored in the table. The vcards_cache table holds information

about each active contact. A request query can be sent to the hosting XMPP

server that hosts the account information for details of the contact store in the

vCard entry (XMPP, 2013). The sqlite_sequence table logs and store information

associated with the total number of chat messages exchanged (including deleted

ones), and the total number of contacts vcards.

17

Figure 9: Tables omemo_identities and omemo_sessions

6.5. Recovering chronology of chat logs, message contents, and deleted files (Siskin IM

app)

i. Information association with messages exchanged with all contacts including deleted

chat messages (active, blocked, and deleted) are stored in the chats, chats_read, and

chat_history tables. The chats table store the date and time when a message was first

exchanged with each contact while the chats_read table shows the last time a

message received was read. The chat_history table is the main table in the

siskinim_main.db database. It contains a detailed record of all textual

messages(encrypted and unencrypted) exchanged, group chats, chronological timeline

of each conversation, and associated metadata. Each record in the table is assigned a

unique identifier stored in the “id” field. The local user IM account name is stored in

the “account” field and corresponding contact’s IM account name is stored in the

“jid” field. In Table 7, we present a detailed interpretation of the relevant fields from

the chat_history table of the siskinim_main.db.

18

Table 7. Structure of the chat_history table

Field Role Type Meaning

id Primary Key int unique identifier of the message

account - string local user IM account

jid - string contact user IM account message is exchanged with

author_jid - string chat group administrator’s IM account

author_nickname - string IM account used to send messages within the chat group

timestamp - int the date message was been sent or

 received (13-digits Unix epoch format)

item_type - boolean flag indicating whether content a message is text (item_type=0) or

 image file (item_type=1)

data - string body of the message

state int flag indicating whether a message was received (state= 0) or sent

 (state=9 or 1)

encryption - boolean flag indicating whether a message is encrypted (encryption=1) or

 unencrypted (encryption=0)

appendix - json contains file size, mime type and name of file attachments sent or

 received.

To demonstrate the chronology of messages exchanged with each one of the

contacts from our experiments, we present some of the contents of the first 22

messages exchanged and stored in this table as shown in Figure 10.

From the figure we see all messages exchanged between each distinct local user’s

IM account with each contact. From the first record in the figure, an encrypted

(encryption=1) text message (item_type=0) stored in the “data” field was sent (state

=9) from behemoth@tigase.im to contact eve01@tigase.im on the 29
th

 Apr. 2020

11:29:08 pm UTC (Unix time stamp = ‘1588202948571’). The 4
th

 record shows an

image file (item_type =1) was received (state = 0) from the contact eve01@tigase.im

on the 29
th

 Apr. 2020 at 11:31:31 pm UTC (Unix time stamp = ‘1588203091298’).

Both the 9
th

 and 19
th

 records in the figure show information associated with

unencrypted messages exchanged with the blocked contact (bobuser@xabber.org)

and deleted contact (alice.behemoth@yax.im) respectively.

19

Figure 10: chat_history table

Moreover, the 51
st

 - 53
rd

 records as shown in Figure 11, show contents of encrypted

messages in plaintext (encryption=1) sent (state = 9) to the deleted contact

(alice.behemoth@yax.im) on the 1
st

 May 2020 at 11:35:55 pm UTC, 11:36:05 pm

UTC and 11:36:49 pm UTC respectively (Unix time stamp = ‘1588376155096’,

‘1588376165590’ and ‘1588376209615’) stored in the table.

Figure 11: chat_history table (encrypted messages stored in plaintext)

ii. Record of group creation and messages exchanges with members within a group

are stored in chat_history table. To show records of group creation, the

chronology of messages exchanged and participants in group chats, we present

some of the contents of the messages exchanged and stored in this table as

shown in Figure 12. From the 61
st

 record in the figure, we see the local user

20

(behemoth@tigase.im) creates a private group on the 18
th

 of Dec 2020 at 8:39:21

pm UTC (Unix time stamp = ‘1608323961348’) with the message

(data=‘Welcome! You created new Multi User Chat Room. Room is locked now.

Configure it please!’). From the 63
rd

, the local user/administrator(

author_nickname = PrivateGroup1) sends (state=1) a message (item_type=0) to

members in the group on the 18
th

 of Dec 2020 at 8:39:30 pm UTC (Unix time

stamp= ‘1608323970852’). From the 64
th

 record in the table, local user receives

(state= 0) a message (item_type=0) from group member

(author_nickname=alice.behemoth@yax.im) on the 18
th

 of Dec 2020 at 8:41:53

pm UTC (Unix time stamp= ‘1608324113848’). These records remain in the

database upon deletion of messages, group members and the chat group.

Figure 12: chat_history table (group messages exchanged)

iii. Record of multimedia files exchanged is stored in the “data” field of the

chat_history table. Like the Monal app, the relative URL path of an image exchanged

without OMEMO encryption turned on can be retrieved by just entering the URL

link stored in the field in a browser. For example,

(https://sure.im:8443/upload/<hash-value>/image.jpg). However, only the relative

path of files sent using encryption is stored in this field and cannot be retrieved. Raw

copies of files received and downloaded on the iOS device by the local user are

stored in the “/private/var

/mobile/Containers/Data/Application/org.tigase.messenger.mobile/Library/Applic

ation Support/download” directory of the iOS file system. However, if the local user

clears the download cache by clicking on the “Clear download cache” feature on the

app, all downloaded files are deleted from this directory.

21

6.6. Limitations

Siskin IM app provides VoIP features that allow users to make audio and video calls. In our

experiment, we initiated both audio and video calls between the local user and contacts.

However, from our analysis, there was no record of call logs stored in the main

siskinim_main.db database or in any of the user data locations on the iOS file system

associated with the app. An indication of this was observed in the app’s chat window as

there was no record of calls made, received, or missed displayed. We conducted a further

analysis using Cellebrite’s file system extraction that fully integrates the checkm8 exploit to

extract a file system image of the iOS device. However, data recovered from the database

and file system did not include records of call logs. Similar to the Monal app, attempts to

recover missing data from the database using Undark v 0.6 (Daniels, 2015) and Cellebrite

Physical Analyzer SQLite recovery tools were unsuccessful as the fields did not show

records of call logs within the main siskinim_main.db database of the Siskin IM app.

7. Conclusion

In this study, mobile device forensics analysis on the Monal and Siskin IM secure XMPP

apps installed and running on iOS was conducted. The focus of the study was to identify and

analyze artifacts of forensic interests stored on the iOS file system and application’s main

folders. We were able to identify artifacts left behind on each app and have presented how

they can provide detailed information of investigative value.

In our analysis of the Monal app, we were able to access the database maintained by the app.

All useful information associated with the local user and contacts stored in plaintext were

recovered. Critical information which includes all messages exchanged (encrypted and

unencrypted) is stored in plaintext, a chronology of these messages and URL links

containing all images exchanged without OMEMO encryption were shown. However,

information associated with deleted messages exchanged with both active and deleted

contacts was not found or recovered from the app’s main database. We were able to recover

all multimedia files exchanged including raw copies of deleted ones stored in the image

cache folder of the application’s main folder.

In our analysis of the Siskin IM app, we were able to access the main database maintained by

the app. We identified, analyzed, and recovered information associated with the local user’s

multiple IM accounts, information associated with all contact IM accounts (active and

22

deleted), and textual content of all messages both exchanged whether they were sent

encrypted or not. Multimedia files that have not been cleared from the app’s image cache

were also shown. As discussed in Section 6.6, there was no record of call logs in any of the

database entries.

This study can assist forensic investigators to interpret Monal and Siskin IM apps artifacts

retrieved from iOS devices. It can also be of value to developers of forensic tools in

developing software applications that can decode all relevant data related to these apps and

similar multi-client XMPP IM apps to help reconstruct past communications.

Acknowledgments

This research did not receive any specific grant from funding agencies in the public,

commercial, or not-for-profit sectors.

Conflict of Interest

None.

References

Akbal, E., Baloglu, I., Tuncer, T., Dogan, S., 2019. Forensic analysis of BiP Messenger
on android smartphones. Aust. J. Forensic Sci. 1–20.
https://doi.org/10.1080/00450618.2019.1610064

Alyahya, T., Kausar, F., 2017. Snapchat Analysis to Discover Digital Forensic Artifacts on
Android Smartphone. Procedia Comput. Sci. 109, 1035–1040.
https://doi.org/10.1016/j.procs.2017.05.421

Anglano, C., 2014. Forensic analysis of WhatsApp Messenger on Android smartphones.

Digit. Investig. 11, 201–213. https://doi.org/10.1016/j.diin.2014.04.003

Anglano, C., Canonico, M., Guazzone, M., 2017. Forensic analysis of Telegram
Messenger on Android smartphones. Digit. Investig. 23, 31–49.
https://doi.org/10.1016/j.diin.2017.09.002

Anglano, C., Canonico, M., Guazzone, M., 2016. Forensic analysis of the ChatSecure
instant messaging application on android smartphones. Digit. Investig. 19, 44–59.
https://doi.org/10.1016/j.diin.2016.10.001

Anu, 2019. Monal Has Omemo [WWW Document]. monal.im. URL
https://monal.im/blog/monal-has-omemo/ (accessed 4.29.20).

Cellebrite, 2020. Cellebrite UFED 4PC and Physical Analyzer.

checkra1n, 2020.

23

Clement, J., 2019. Most popular messaging apps 2019 | Statista [WWW Document].

statista.com.

Daniels, P., 2015. Undark - a SQLite deleted and corrupted data recovery tool.

Dargahi, T., Dehghantanha, A., Conti, M., 2017. Forensics Analysis of Android Mobile
VoIP Apps, in: Contemporary Digital Forensic Investigations of Cloud and Mobile
Applications. Elsevier, pp. 7–20. https://doi.org/10.1016/B978-0-12-805303-4.00002-2

David Nield, Brian Turner, 2020. Best encrypted instant messaging apps 2020 for Android

[WWW Document]. Techradar.com. URL https://www.techradar.com/uk/best/best-

encrypted-messaging-app-android#4-threema (accessed 4.30.20).

Express VPN, 2019. How to keep your messages private and anonymous [WWW
Document]. URL https://www.expressvpn.com/blog/anonymous-chat-
services/ (accessed 4.18.20).

Gultsch, D., 2016. The State of Mobile XMPP in 2016 [WWW Document]. gultsch.de.
URL https://gultsch.de/xmpp_2016.html (accessed 4.30.20).

Hexegic, 2020. The Rise of Instant Messaging Apps and their use by Extremist Groups
[WWW Document]. hexegic.com. URL https://www.hexegic.com/blog/the-rise-
of-instant-messaging-apps-and-their-use-by-extremist-groups/ (accessed 4.30.20).

Hintea, D., Sangins, A., Bird, R., 2018. Forensic analysis of the telegram instant messenger
application on android devices, in: European Conference on Information Warfare and
Security, ECCWS.

Jadhav Bhatt, A., Gupta, C., Mittal, S., 2018. Network Forensics Analysis of iOS

Social Networking and Messaging Apps, in: 2018 Eleventh International

Conference on Contemporary Computing (IC3). IEEE, pp. 1–6.
https://doi.org/10.1109/IC3.2018.8530576

Jeon, S., Bang, J., Byun, K., Lee, S., 2012. A recovery method of deleted record for SQLite

database. Pers. Ubiquitous Comput. https://doi.org/10.1007/s00779-011-0428-7

Kim, D., Lee, S., 2020. Study of identifying and managing the potential evidence
for effective Android forensics. Forensic Sci. Int. Digit. Investig. 200897.
https://doi.org/10.1016/j.fsidi.2019.200897

Mahajan, A., S. Dahiya, M., P. Sanghvi, H., 2013. Forensic Analysis of Instant
Messenger Applications on Android Devices. Int. J. Comput. Appl. 68, 38–44.
https://doi.org/10.5120/11602-6965

Norouzizadeh Dezfouli, F., Dehghantanha, A., Eterovic-Soric, B., Choo, K.-K.R., 2016.

Investigating Social Networking applications on smartphones detecting Facebook,

Twitter, LinkedIn and Google+ artefacts on Android and iOS platforms. Aust. J.

Forensic Sci. 48, 469–488. https://doi.org/10.1080/00450618.2015.1066854

Ovens, K.M., Morison, G., 2016. Forensic analysis of Kik messenger on iOS devices.
Digit. Investig. 17, 40–52. https://doi.org/10.1016/j.diin.2016.04.001

Shortall, A., Azhar, M.A.H. Bin, 2015. Forensic Acquisitions of WhatsApp Data on
Popular Mobile Platforms, in: 2015 Sixth International Conference on Emerging
Security Technologies (EST). IEEE, pp. 13–17. https://doi.org/10.1109/EST.2015.16

24

Statista, 2020. Share of global smartphone shipments by operating system from 2014 to 2023

[WWW Document]. Statista.com. URL

https://www.statista.com/statistics/272307/market-share-forecast-for-smartphone-

operating-systems/ (accessed 4.18.20).

Sudozai, M.A.K., Saleem, S., Buchanan, W.J., Habib, N., Zia, H., 2018. Forensics study
of IMO call and chat app. Digit. Investig. 25, 5–23.
https://doi.org/10.1016/j.diin.2018.04.006

Tigase, 2020. Siskin IM [WWW Document]. siskin.im. URL https://siskin.im/
(accessed 4.30.20).

van Dongen, W.S., 2007. Forensic artefacts left by Pidgin Messenger 2.0. Digit. Investig. 4,
138–145. https://doi.org/10.1016/j.diin.2008.01.002

Wu, S., Zhang, Y., Wang, X., Xiong, X., Du, L., 2017. Forensic analysis of WeChat on
Android smartphones. Digit. Investig. 21, 3–10.
https://doi.org/10.1016/j.diin.2016.11.002

XMPP, 2018. OMEMO Media sharing [WWW Document]. xmpp.org. URL

https://xmpp.org/extensions/inbox/omemo-media-sharing.html (accessed 4.30.20).

XMPP, 2013. XEP-0292: vCard4 Over XMPP [WWW Document]. xmpp.org.
URL https://xmpp.org/extensions/xep-0292.html (accessed 4.28.20).

XMPP Standards Foundation (XSF), 2020a. An Overview of XMPP [WWW Document].
About XMPP. URL https://xmpp.org/about/technology-overview.html (accessed
4.18.20).

XMPP Standards Foundation (XSF), 2020b. XEP-0384: OMEMO Encryption [WWW

Document]. URL https://xmpp.org/extensions/xep-0384.html (accessed 4.18.20).

25

