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The Anderson single impurity model, including its Kondo limit, can be seen as the hydrogen atom for
correlated systems. Its most striking feature is the universal scaling of its low-energy properties governed by the
appearance of a single emergent scale, the Kondo temperature TK . In this work, we demonstrate the emergence
of a second independent energy scale in a quantum impurity model, the interacting resonant level model, which
is equivalent to the anisotropic Kondo model. We study the local density of states at the impurity site in the
ground state (zero temperature limit) of the model. We see collapse of data onto universal curves at low energies,
however this is only achieved by defining a second low-energy scale with a different power law dependence on
model parameters than the Kondo temperature. We provide an exact expression for this second critical exponent.
We also report on a splitting of the central resonance as the interaction strength is increased in the absence of
any external magnetic field in the model.

DOI: 10.1103/PhysRevB.105.075116

I. INTRODUCTION

Since the times of Kondo [1] and Anderson [2], physicists
have been fascinated by the possible effects of embedding a
correlated quantum impurity in a metallic host [3–6]. As a
consequence of the interaction between the impurity and the
surrounding electrons, an emergent low-energy scale appears:
in the Anderson and Kondo models, this scale is the Kondo
temperature TK , which dominates all low-energy properties of
the system: physical observables in these models show uni-
versal results when scaled against TK . It is however not clear if
such a universal scaling paradigm, with TK as the only relevant
low-energy scale, is expected to hold for all observables in
quantum, single impurity models. In the case of multiorbital
impurities or impurity lattice models (like in the Kondo lattice
model), an interplay between multiorbital interactions and
Kondo physics is expected to break such a single energy
picture, leading to the appearance of distinct energy scales, for
instance, when considering spin-spin interactions along with
multiorbital interactions; however this is not expected when
only a single impurity is present, especially if spin degrees of
freedom are not accounted for. Most known single impurity
models have reported the appearance of a single energy scale,
in accordance with the exact solutions found by Bethe ansatz
[5,7–10]. While static ground state properties like the impurity
susceptibility are expected to follow such scaling, observables
depending on excited states of the spectrum are subjected to
strong correlation effects that can potentially break the univer-
sal picture. Yet, these strong correlations can ultimately lead
to the appearance of additional low-energy scales that restore
universal results.

Recently, a lot of work in the area of quantum impurity
models has concentrated around the interacting resonant level

model (IRLM) [11–26]; first introduced in 1978 [11] as for-
mally equivalent to the anisotropic Kondo model, it gained a
lot of interest in its own right since various exact solutions
out of equilibrium were proposed for it [7,17–19,27]. Despite
a lot of progress being made on nonequilibrium transport
in the IRLM [12–26], there remains open questions about
equilibrium properties.

Previous studies in the IRLM [11,26,28–31] have shown
that certain ground state properties such as the local suscep-
tibility depend on a single energy scale, the equivalent of
the Kondo temperature. This energy scale has a power law
dependence on the hybridization between the impurity and the
leads; in a recent work [32] we showed that this power can
be calculated exactly, even for strong interactions. We also
showed that the shape of this susceptibility as a function of
a local field only varies slightly as a function of interaction,
through a formula originally given in previous works [10,33],
with the profile shape being a Lorentzian. In this work, we
concentrate on the local density of states (LDOS) of the IRLM
in the ground state, which unlike the susceptibility, depends
on excited states of the spectrum. While in the absence of
interactions these two properties are identical, we will show
that in the presence of interactions, the local density of states
depends on an additional (emergent) energy scale with a dif-
ferent critical exponent than that of the susceptibility.

II. MODEL

The interacting resonant level model consists of a one-
dimensional noninteracting lead of spinless fermions coupled
to a single level via a weak hybridization t ′ and an interaction
U . The lead is modeled as a tight binding chain with hopping
energy t . The Hamiltonian for the single lead IRLM is written
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FIG. 1. Spectral function evolution with interaction U for a fixed
value t ′ = 0.05, showing the appearance of Hubbard bands in the
high-energy region as spectral weight at lower energies is lost. For
the Hubbard bands resolution, standard Lorentzian broadening has
been used. NRG data correspond to � = 1.3, with SK = 1000 states
kept after truncation and a system of N = 92 sites.

in second quantized notation as

H = −t
N−1∑
n=0

c†
n+1cn + H.c. + ε0d†d + t ′(c†

0d + H.c.)

+U (d†d − 1/2)(c†
0c0 − 1/2).

The c and d operators are of fermionic nature: d is the reso-
nant level annihilation operator, and cn are (spinless) fermion
annihilation operators at a site n on the lead. The impurity
level is resonant if its energy ε0 is equal to the Fermi level on
the lead; in this case both will be zero.

Local density of states

The main object of study in this work is the local density
of states at the impurity site, defined by

A(ω) = Im

[
i

π

∫ ∞

0
dteiωt 〈d (t )d†(0) + d†(0)d (t )〉

]
. (1)

This quantity is a measure of excitations in the ground state
of the system, and may be directly measured in scanning
tunneling microscopy experiments [34]. In the noninteract-
ing system (U = 0), this is given by a Lorentzian with T0 =
πν(t ′)2 representing the resonance width, with ν = 1/πt be-
ing the bulk density of states in the wide band limit of the
uniform chain. To study the change in the resonance shape as
interaction is increased we use the numerical renormalization
group (NRG). For details on the method we refer the reader to
the literature review [6].

In Fig. 1 we plot A(ω) for different vales of U over a large
energy range. The main thing to notice is that the spectral
weight shifts from the central resonant peak towards high
energies. These side peaks appearing at roughly ω = ±U/2
are equivalent physics to the Hubbard bands in the Anderson
impurity model [6]; similar physics has also been previously
seen in a two-lead version of the interacting resonant level
model [27]. We now concentrate on the evolution of the

FIG. 2. Scaled plot for the evolution of the LDOS for different
values of g and t ′ showing universal behavior when both energy
scales TA and TK are considered. NRG parameters are � = 1.5 with
SK = 800 states kept after truncation, and a system size of N = 92
sites.

low-energy resonant peak for ων � 1, always keeping in
mind that for large interactions, most spectral weight is both
in the Hubbard bands and the low-energy sector.

III. RESULTS

A. Resonant peak

For an analytical treatment of low-energy properties, it is
more convenient to use the following dimensionless coupling
g rather than the bare interaction U :

g = 2δ

π
= 2

π
arctan

(
Uπν

2

)
, g ∈ [0, 1] ↔ U � 0. (2)

In this expression, δ represents the scattering phase shift of
fermions at the Fermi level when reaching the lead boundary
[26,28,29,32], which is given by the above expression for a
tight-binding lead. For leads with a different band structure or
field theories with a different regularization, the relationship
between g and U would change, however the low-energy
physics for a given phase shift is universal.

If scaled correctly, the low-energy shape of the spectral
function is independent of the hybridization between the im-
purity and the leads, t ′. The resonance width TK [equivalent
to the Kondo temperature and known from previous works
[32]—we define it precisely later in Eq. (3)] defines a natural
dimensionless variable ω/TK . We define another energy scale
as TA = 1/A(ω = 0), meaning that the scaled spectral function
is always 1 at zero energy. If we look at data plotted in Fig. 2,
we see that this scaled quantity A(ω)TA for different values
of t ′ collapse onto universal curves dependent only on the
interaction strength g.

We defer analysis on the scaling behavior for the next
section; for now we concentrate on the most obvious feature
of this plot which is that the (low-energy) central peak splits
in two as interaction strength is increased. We stress that this
splitting is not related to the Hubbard bands in Fig. 1 which
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FIG. 3. Density plot of the evolution with interaction of the spectral function normalized to its maximum value. Local maxima (black up
triangles) and minima (blue down triangles) have been extracted numerically. The green dashed line at gc1 ≈ 0.454 and red dashed line at
gc2 ≈ 0.463 separate three different regions: a region for g < gc1 where there is a central maximum at ω ∼ 0; a region with gc1 < g < gc2,
where the splitting of the central resonance gives two side peaks at ω ∼ ±TK , but maintains the local maxima at ω ∼ 0, consequently having two
local minima; the g > gc2 region, where the central local maxima at ω ∼ 0 has turned to a local minima between ω = ±TK . NRG parameters
correspond to � = 1.2 with SK = 1200 and a chain of N = 182 sites. The discretization due to the NRG is more apparent in the position of
the minima in the right figure.

occur at much larger energy—this is an intrinsic splitting of
the low-energy resonant peak. We also emphasize that unlike
previous work on the splitting of the resonance peak in the
Kondo model [35–38], this occurs without an external field
splitting the energies of the resonant level, or coupling to
any other degree of freedom. Another aspect that makes this
evolution particularly surprising is that it is not seen in the sus-
ceptibility χ = −(∂〈d†d〉/∂ε0) which remains approximately
in Lorentzian shape for all values of interaction [32].

The physics of this splitting is relatively straightforward
to see in the strong interaction g → 1 (U → ∞) limit, where
the resonant level and the final site of the lattice must contain
exactly one electron between them at low energy to avoid pay-
ing the high interaction cost U . The effective model consists
of a two-level system weakly coupled to the rest of the lead;
however this two-level system is not resonant as the energies
are split by the hybridization t ′ (which is equivalent to TK

in the strong interacting limit [32]). This accounts for the
splitting in the strong coupling limit.

To investigate the splitting numerically, we have plotted the
scaled spectral function A(ω/TK , g)T̃A(g) in Fig. 3 as a density
plot, with T̃A(g) ≡ max[A(ω, g)] [39]. We superimpose on top
of the density plot the locations of local minima and maxima
as a function of ω for a given interaction strength. This shows
a somewhat surprising feature—the central peak does not in
fact split. Rather, side peaks appear at ω ∼ ±TK at some
critical interaction strength gc1 ≈ 0.454, with the central peak
turning into a local minimum at a slightly higher interaction
gc2 ≈ 0.463.

This supports a scenario of a general shape of the spectral
function consisting of one peak centered on ω = 0 with an-
other two centered at ω ∼ ±TK . As interaction is increased,
the relative weight of the central peak (corresponding to the

weak-coupling resonant dot) decreases, while that of the side
peak (corresponding to the strong-coupling off-resonant ef-
fective dot) increases. In this sense, the transitions should be
thought of more as a crossover, with there being no particular
significance to gc1 or gc2. The detail for the crossover between
the weak and strong coupling limits in the ω ∼ 0 region is
represented in Fig. 4. Over this range of intermediate interac-
tions, the coefficient of the ω2 term in the spectral function
is much smaller than would be expected by the width of the
resonance (i.e., the scale TK ). It is an open question how this
region with relatively incoherent electronic excitations would
manifest itself in other observable properties.

FIG. 4. A zoom in the ω > 0 region of Fig. (3) where the side
peak starts to develop. Notice the change in the curvature with
increasing interactions.
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FIG. 5. The scaling exponent γ associated to the energy scale TA

Eq. (3) for different NRG parameter sets. The α exponent curve is
included for comparison.

B. Energy scales

We move now to the scaling analysis. In previous works
on thermodynamic quantities, it has been observed that TK is
the only low-energy scale in the system, with a collapse of
data for different values of t ′ so long as energies are scaled
by TK [32,40]. Numerical studies have even shown the sin-
gle energy scaling for nonequilibrium steady state transport
[16,21,25], subleading corrections to full-counting statistics
[41,42], quenches [20], and out-of-equilibrium entanglement
entropy growth [43].

We will show, however, for the spectral function, one needs
to define two distinct energy scales which depend on the
hybridization t ′ in different ways. To be precise, these are
defined as

T −1
K = χ (ε0 = 0), T −1

A = A(ω = 0). (3)

The scale TK is given by a power law in the hybridization TK ∼
(t ′)α , where α = 2 for the noninteracting case, while previous
work [32] has given an exact expression α = 2/(1 + 2g − g2)
when interactions are present. We use the known expression
for TK from previous works [44], which collapses multiple
data sets for different hybridizations t ′ onto single curves.

If one tries to scale the vertical axis with the same TK how-
ever, one does not get collapse. Defining TA as in Eq. (3), we
can extract this scale from NRG simulations [45] for multiple
values of t ′ and fit TA = C(t ′)γ for each value of interaction.
The results are shown in Fig. 5 where empirically, we can fit

γ = α(1 − g2) = 2(1 − g2)

1 + 2g − g2
. (4)

In Fig. 6, we show that even for small interactions, we numer-
ically distinguish between the two exponents.

Let us make some comments here: TA is an energy scale,
and the ratio TK/TA ∼ (t ′)α−γ can be made arbitrarily small
by changing t ′ for any finite interaction. In the noninteracting
system, however, the susceptibility is equal to the density
of states, TA = TK —and while there is no reason to expect
this expression to hold for finite interactions, the fact that
they have different exponents indicates that the IRLM is

FIG. 6. NRG data for the weak coupling sector, showing the
deviation of data points from the α curve at [O(g2)] in the interaction.

fundamentally a nonperturbative problem [46]. Second, there
is precedent for the height of a spectral function to scale
differently from the width—indeed, in the Anderson impurity
model in the Kondo regime, the Langreth theorem [47] states
that A(ω = 0) is unrenormalized by the on-site interaction
U . In this case however, one has the emergent Kondo scale
and the original bare energy scale, rather than two-different
emergent low-energy scales. Finally, we note that multiple
exponents have been mentioned before in the IRLM [48],
however these have all been with Luttinger liquid leads—a
second distinct exponent was not expected with noninteract-
ing leads as in this case.

This second exponent (4) can also be derived analytically,
see Appendix B for details. The derivation relies on a pertur-
bative diagrammatic expansion to second order in interaction
[31], however, as seen in Fig. 5, it gives a result that appears to
be numerically correct for any interaction strength, including
the strong interaction regime where the spectral function at
low energy seems to bear no resemblance to a Lorentzian
shape. It is somewhat surprising that this perturbative method
appears to give an exact result even for strong interactions.
The exact calculation of the exponent by using nonpertur-
bative techniques such as bosonization is an open question,
however, it seems likely that in this case, the equivalence to the
sine-Gordon model that works so well for the susceptibility
[32] as well as steady-state transport [21] cannot be applied.

IV. SUMMARY

To summarize, we have studied the impurity spectral func-
tion of the interacting resonant level model over the full range
of interactions from weak to strong. Our two main results are
as follows:

(i) As interaction is increased, the spectral function begins
to deviate significantly from a Lorentzian shape, eventually
splitting into two separate peaks at ω ∼ TK for interactions
Uν ∼ 1. This splitting occurs in the absence of any external
magnetic field.

(ii) The height of the spectral function A(ω) defines a new
energy scale TA which scales with the hybridization t ′ with a
different exponent than TK . The expression for the exponent

075116-4
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which is obtained from perturbative RG appears to work for
all interaction strengths.

It is an open question whether such features of the spectral
function would also manifest in any other observable quan-
tities either in equilibrium or out. Finally, due to the exact
mapping between the IRLM and the anisotropic Kondo model
[11], we believe that such features should emerge in the case
of strong Sz interaction with perturbative Sxy exchange. While
this is a rather unusual limit to explore in the context of Kondo
physics, such results could be observed directly when com-
puting crossed correlations of the spin operator representing
the impurity; in particular the ground-state averaged correlator
given by

G−+(t ) = −i〈S−(t )S+(0) + S+(0)S−(t )〉 (5)

in the anisotropic Kondo model is directly related to the spec-
tral function of the IRLM [compare Eq. (1)], due to the exact
relation existing between the two models [4,5,11]. An exact
bosonization mapping between the two models can also be
found in [32]. It is an interesting question in which situations
this limit of the Kondo model might arise naturally, allowing
for experimental realization of the physics described here.
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APPENDIX A: NRG

The NRG method was originally developed by Wilson
[49]. The method is quite standard, with many good reviews
existing in the literature; here we refer the reader to the liter-
ature [6] for details on the method. For convenience we used
a tight binding model for the lead; in the ideal case the lead is
uniform tn ≡ t and semi-infinite N → ∞ (see Fig. 7). Numer-
ics are performed using the numerical renormalization group
(NRG) [49] which has finite N and introduces a logarithmic
discretization of the lead band by taking hopping amplitudes
tn depending on � as tn ∼ �−n/2 where � is the discretization
parameter; the uniform lead limit corresponds to � → 1. This
logarithmic discretization of the band is suitable to capture all
low-energy properties of the original tight binding Hamilto-
nian. The main property of the lead relevant for this work is

FIG. 7. Schematic NRG approach for the IRLM. Adding a new
site to the existing chain of N sites + impurity enlarges the Hilbert
space at lower energy scales, from which only the lowest SK energy
states are kept after truncation.

the density of states at the Fermi level ν ∼ t−1, which corre-
sponds to a bandwidth of 2t in the uniform lead. Throughout
this work, we have focused on the repulsive regime U � 0 of
the interaction.

In order to compute the spectral function given by Eq. (1),
a broadening procedure must be chosen when computing the
Lehmann representation of A(ω), which is given by

A(ω) = 1

Z (0)

∑
n

|〈GS|d†|n〉|2δ(ω − En)

+ |〈n|d†|GS〉|2δ(ω + En), (A1)

where n labels the eigenstates, |GS〉 refers to the zero tem-
perature ground state of the model, and Z (0) is the partition
function at T = 0.

The delta functions are broadened to give smooth results.
Two common broadening procedures are the log-Gaussian [6]
and the Lorentzian broadenings, which were used in this work

FIG. 8. Scaled figures showing convergence of numerical results
for different values of the broadening parameters b, η employed in
the different broadening procedures (LG stands for log-Gaussian
and L for Lorentzian) used in this work. The values of U = 0, 1.0
have been used (corresponding to g = 0.0 and g ∼ 0.295), which
corresponds to a region before the central splitting occurs. The values
of � = 1.2, t ′ = 0.05, and SK = 1200 were employed, on a lattice
with N = 120 sites.
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FIG. 9. Scaled figures showing convergence of numerical results
for different values of the broadening parameters b, η employed in
the different broadening procedures (LG stands for log-Gaussian and
L for Lorentzian) used in this work. The values of U = 2.0, 4.0
have been used (corresponding to g = 0.5 and g ∼ 0.7), which cor-
responds to a region after the central splitting occurs. The values of
� = 1.2, t ′ = 0.05 and SK = 1200 were employed, on a lattice with
N = 120 sites.

(see Figs. 8 and 9). For the log-Gaussian we used

LG : PLG(ω ± En) = e−b2/4

bEn

√
2π

e−[ln(|ω|/En )]2/b2
(A2)

with b ∈ [0.3, 0.7]. For the Lorentzian broadening, the pa-
rameter η = b/

√
2 specifies the broadening of the Lehmann

representation in Eq. (1). In the main text, the Lorentzian
broadening was used to resolve the Hubbard bands in Fig. 1.
For the rest of the calculations, it is more convenient to employ
the log-Gaussian broadening [6].

We attach a convergence test in terms of the b, η param-
eters used in both broadening procedures. We fix t ′ = 0.05,
� = 1.2, and SK = 1200 for the total number of kept states,
while we use a chain of N = 120 sites. The main results
do not differ in qualitative terms when one stays within the
mentioned range of b. In figures like Fig. 3, a value b ∼ 0.6
was employed.

APPENDIX B: DIAGRAMMATIC RENORMALIZATION
GROUP

Here we show the derivation of Eq. (4) using diagrammatic
renormalization group techniques. Let us write the spectral
function in a general form:

A(ω) = 1

π

h(ω)T (ω)

ω2 + T 2(ω)
. (B1)

At energy scales of the bandwidth, ω ∼ D, we have h(D) = 1
and T (D) = T0, the bare values. According to the renormal-
ization group paradigm, in the presence of interactions these
parameters will flow as energy is lowered, with T being the
(effective) renormalized resonance width, while h is known as
the multiplicative renormalization factor.

These flow equations were derived 40 years ago by
Schlottmann [31], and are given by

dh

d|ω| = g2 h

|ω| + T
,

dT

d|ω| = (−2g + g2)
T

|ω| + T
. (B2)

Our variables g, h, T correspond in Schlottmann’s notation
to γ ρ, d,�. Schlottmann also gives the flow equation for
the vertex function �, however we have trivially eliminated
this from the other two equations using the Ward identity
he derives d (�d )/dω = 0. Integrating the latter of these for
ω � T gives T/T0 = (ω/D)−2g+g2

. The essence of the renor-
malization analysis is that the flow of the resonance width
should be cut off when T (ω) ∼ ω which defines TK . Running
through the calculation gives TK ∼ T α/2

0 with the exponent α

as defined above. Similarly, integrating h from the bandwidth
down to TK where the flow is cut off gives h ∼ T g2

K , which

gives A(0) = T g2−1
K agreeing with Eq. (4) that was demon-

strated numerically.
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