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Abstract— In this paper, an arbitrage strategy is proposed for
renewable-based microgrids (MGs) to overcome the volatile behavior
of renewable energy sources (RESs) such as photovoltaic and wind in
a newly emerged business space in which peer-to-peer (P2P) energy-
trading in transactive energy markets (TEMs) set up between a day-
ahead market (DAM) and real-time markets (RTMs). To identify
arbitrage opportunities created from the price difference between
the P2P and real-time trades, a bi-level risk-constrained stochastic
programming with interval coefficients (BRSPIC) is presented. In
the first stage of the decision-making, scenarios are employed to deal
with the DAM prices uncertainties. In the second stage, P2P energy-
trading competition is modelled by a bi-level programming based on
non-cooperative leader-follower games. While the social welfare of
peers is maximized at the lower level, the MG maximizes its profit
at the upper level. By getting closer to real-time, interval coefficients
are considered in the third stage to cope with the uncertainties of
RESs and loads, as well as RTM prices. The conditional value-at-risk
(CVaR) is enforced the model to control the risk of profit variability.
By using Karush-Kuhn-Tucker (KKT), the BRSPIC is transformed
into a single level optimization. Then, it is linearized and solved by
a mixed-integer linear programming (MILP) solver. By evaluating
the proposed model on a test system, it is evident that the MG
increases more than 3.1% of its profit by the arbitrage strategy. By
considering CVaR, a fully risk-averse decision decreases the profit
of MG by 27%, although it would be so conservative decision.

Index Terms—Renewable energy, Microgrid, arbitrage strategy,
peer-to-peer, Risk control.

NOMENCLATURE

Indices and sets
t/T Index/set of time period
dg/SDG Index/set of DG units
str/SSTR Index/set of ESS units
dr/SDR Index/set of flexible demands
d/SFD Index/set of non-flexible demands
r/O Index/set of opponent peers in the TEM
p/P Index/set of price scenarios
Parameters
β Risk-aversion parameter
α Confidence level
λDAt,p The DAM price forecast (in $/MWh)
ρRt Retail price (in $/MWh)
Cdg, Cdr, Cstr Cost coefficients of DERs (in $/MWh)
P dg,Min/P dg,Max Min/max capacity of DGs (in MW)
MUTdg/MDTdg Minimum up/down time of DGs (in hour)
RUdg/RDdg Ramp up/down rate of DGs (in MW/hr)
P dr,Min
t /P dr,Max

t Min/max capability of DR (in MW)
LDRdr/LPRdr Pick-up/drop rate of DRs (in MW/hr)
Edr,Max Maximum energy of DRs (in MWh)
SOCstr,Init Initial SOC of ESSs (in MWh)
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P ch−Max
str /P dch−Max

str Maximum charging/discharging capability
of ESSs (in MW)

Estr,Max/DODstr Max/min stored energy in ESSs (in MWh)
ηchstr/η

dch
str ESSs Charge/discharge energy efficiency

P r,TE−max/P r,TE−min Maximum and minimum bid/offer
quantity of rival peers in the TEM (in
MWh)

πp The probability of scenario p occuring.
Prediction intervals
[αr,TE−LBt,p , αr,TE−UBt,p ] Offering and bidding price of rival peers

in the TEM (in $/MWh)
[λRT−LBt,p , λRT−UBt,p ] The RTM price forecast (in $/MWh)
[DLB

d,t , D
UB
d,t ] Net Demand (in MWh)

Free variables
PDAt,p Bidding quantity to the DAM (in MWh)
PRTt,p Bidding quantity to the RTM (in MWh)
PTEt,p Bidding quantity to the TEM (in MWh)
P r,TEt,p Bidding quantity of rivals to the TEM (in

MWh)
λTEt,p P2P energy-trading price in the TEM (in

$/MWh)
υar Auxiliary variable for calculating CVaR
Positive Variables
PDGdg,t,p Energy production of DGs (in MWh)
PDRd,t,p Energy consumption of DR (in MWh)
P chstr,t,p/P

dch
str,t,p ESSs charge/discharge rate (in MWh)

SOCSTRstr,t,p ESSs state of charge (in MWh)
Sp Auxiliary variable for calculating CVaR in

scenario p
Binary variables
Idgt,p Commitment status of DGs
Jdgt,p/K

dg
t,p Start-up/Shut-down status of DGs

I. INTRODUCTION

A. Aim and Scope

THE newly emerged transactive energy (TE) technology facil-
itates the energy-trading in order to improve the competition

level in the retail domain, and to increase the rate of uptake of
renewable energy sources (RESs) [1]–[3]. The TE establishes a
set of control and economic mechanisms to provide the required
energy and ancillary services to keep the balance of the demand
and supply [4], [5]. Instead of using the traditional tariff-based
mechanisms, the TE enables the direct peer-to-peer (P2P) trades
between the existing agents at the distribution level, in a decen-
tralized manner [6]. Therefore, the TE changes the business model
of distribution systems from a cost-based (or better to say tariff-
based) to a value-based (i.e. market-based) [7].

There are three types of transactive energy markets (TEMs)
including full P2P, community-based, and hybrid P2P markets
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[8]. Under the hybrid P2P market framework, microgrids (MGs)
inherit autonomy and scalability from full P2P and community-
based models, respectively [8]. In such a new space, MGs
can be engaged in both intra-community and inter-community
P2P energy-trading with other peers (i.e. producers, consumers,
prosumers and other MGs). Since the market clearing of P2P
markets is based on consensus on a specified price and quantity
[8], price-maker MGs can affect the price of P2P trades.

In this newly emerged business model, the P2P energy-trading
sets up between a day-ahead market (DAM) and real-time mar-
kets (RTMs) [9]. By the price differences of the P2P energy-
trading, prosumers can benefit from arbitrage opportunities [10].
Moreover, based on the arbitrage definition “any activity that
tries to buy a commodity under-priced and to sell it over-priced
in purpose of gaining profit” [11], MGs can buy/sell energy
at a specified price in a P2P manner, and sell/buy it with a
higher/lower price of the RTM in purpose of gaining profit. Thus,
the existence of different prices between P2P trades and RTMs
creates some arbitrage opportunities. Hence, MGs can identify
these opportunities in its bidding strategy as an extra income. It
should be noted that the other type of arbitrage opportunity is
reached by energy storage systems (ESSs), which stores energy
during lower-priced hours and releases it during higher-priced
hours. Hence, identifying these opportunities, which is called
“arbitrage strategy”, can affect the bidding strategy of MGs.

In the proposed framework of this paper, while MGs are
able to participate in both existing markets (i.e. the DAM and
RTM) and P2P TEM, they should optimally operate their DERs
(i.e. their community) in order to fulfill their commitments in
the aforementioned markets. Also, the MG should deal with
all the uncertain parameters associated with the RESs power
generation, loads, rivals’ bid and offer in TEM, and prices of the
RTM and DAM. Although forecasting of uncertain parameters
is beyond the scope of this paper, it would be important to
consider which types of forecasting (scenario-based or interval-
based) in the model. Since the profit of MGs is very sensitive to
the types of forecasting, it leads to a hybrid scenario/interval based
model. Due to the aforementioned uncertainties, the possibility of
experiencing unfavorable profit is increased, which conducts to a
risk-constrained model.

This paper is aimed to assist MG’s operators to derive arbitrage
strategy via P2P energy trades, whereas they can control the
risk of experiencing non-desired profit. Noteworthy, the arbitrage
opportunity of ESSs is also considered in this work.

B. Literature Review and Research Gaps

The bidding problem of MGs in the traditional markets, where
P2P trades are not enabled, has been widely studied [1], [12]–
[15]. In this regime, MGs are able to integrate the distributed
energy resources (DERs) into a centralized DAM. Then, due to the
uncertainty of RESs and loads, MGs should balance their supply
and demand by participation in an RTM [1]. To solve the bidding
strategy of MGs with the prices uncertainty and RESs fluctuations,
a hybrid stochastic/interval optimization (HSIO) is proposed in the
Ref. [1]. In [12], a hybrid stochastic/robust optimization (HSRO)
model is proposed to solve the bidding problem of MGs. In
this paper, the robust optimization is deployed to minimize the
energy imbalance in the RTM. Optimal offering strategy of an

aggregated PV power plant based on a stochastic bi-level model
in the day-ahead, intra-day and balancing markets, is presented
in [13]. To model the risk averseness of MGs in the DAM, risk-
constrained stochastic programming (RSP) is proposed in the [14],
[15]. Although the risk-averseness of MGs is considered in these
two recent works, P2P trades and arbitrage strategies are not
investigated in all of aforementioned papers.

P2P energy-trading can be categorized into two group: 1)
intra-community P2P energy-trading (P2P trades inside of an
MG, which is called a community MG), 2) inter-community
P2P energy-trading (P2P trades between a community like an
MG with other peers) . In the first group, the interactions of
producers, consumers and prosumers, which are embedded inside
of a community MG, are investigated. These interactions can be
cooperative or non-cooperative [16].

A cooperative energy management system (EMS) inside of a
community is proposed in [10], [17]. A P2P distributed EMS for
a single hour-ahead is proposed in [10]. Although the differences
between the price of P2P trades make some arbitrage opportunities
in this work, the arbitrage opportunities between the real-time
prices and P2P trades are not considered. Also, participation of
prosumers in the existing markets (i.e. the DAM or the RTM) are
not investigated. A synergy framework is presented to integrate
a community of houses equipped with battery storage (or better
to say a community of prosumers) into the existing day-ahead
and intra-day markets in [17]. Using a two-stage stochastic pro-
gramming approach, P2P trading can integrate prosumers in day-
ahead and intra-day markets. Firstly, the community participate
in the DAM based on a forecast of the own RESs. Secondly,
the prosumers balance their deviation from day-ahead decisions
by P2P trades and battery storage systems utilization .Thus,
community of prosumers can only benefit from the arbitrage
opportunities by the storage. Since the interaction of peers is
cooperative, the P2P trade prices are set by the community
manager in [10] and [17]. Therefore, the pricing mechanism is
not investigated in these two works.

A non-cooperative EMS inside of a community is proposed in
[18]–[20]. In all of these work, since the interaction of peers
is non-cooperative, the P2P trade prices are obtained by the
consensus, which is modelled by game-theoretic approaches. The
energy trading interactions between producers and consumers
inside of an MG is modeled by a Stackelberg game in which
producers lead and consumers follow in [18]. In [19], there are
two types of competitions during the trade. The sellers compete
on the offered price, and the buyers compete on the selection of
the sellers. The price competition among the sellers is modeled as
a non-cooperative game. The evolutionary game is used to model
the dynamics of the buyers for selecting sellers. In [20], a novel
non-cooperative EMS for energy sharing of community prosumers
is proposed. In order to consider the uncertainties of household
loads and solar generations in the real-time, two-stage dynamic
prices (i.e. day-ahead prices and real-time prices) are considered
which is proportional to the community net demands in day-ahead
stage and real-time stage respectively. Therefore, each prosumer
can share energy in the day-ahead stage, and then minimize its
energy cost by considering the real-time uncertainties. The risk
of solar generation loss takes into account by the RSP model.
However, risk of experiencing unfavourable profit is not consid-
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ered. Although the strategic interactions of the prosumers inside of
the community are considered in [18]–[20], the inter-community
interactions with existing the DAM and RTM, and with peers
outside the community are not investigated simultaneously.

In the second group, the interaction of MGs with other peers
are investigated. Like the first group, these interactions can be
categorized into cooperative and non-cooperative. A cooperative
community of MGs inside a distribution system is proposed in
[21]. An optimal operation of multiple MGs is investigated in this
paper. Since the interaction of MGs is cooperative, the P2P trade
prices are set by the distribution system. Therefore, the pricing
mechanism is not considered in this work. A non-cooperative
approach based on Stackelberg game is proposed in [2]. By the
emergence of the TEM, MGs can balance their deviation from
the DAM commitments by the P2P trades, where prices would
be more favorable than the RTM [2]. In [2], the bidding strategy
of MG is presented in the TEM in which market participants can
trade energy in a P2P manner. Although the MG can provide
flexible resources for balancing applications in a P2P manner, the
arbitrage strategy through P2P energy trades as well as the risk
of experiencing non-desired profit are not considered in [2].

According to the above discussion, there is a need for an EMS
to consider intra-community and inter-community interactions of
MGs simultaneously. In addition to participate in the triple mar-
kets (i.e. the DAM, TEM and RTM), the MG should operate DERs
in an optimal and reliable fashion. Moreover, the EMS should be
able to identify various arbitrage opportunities. especially, lack of
identifying the arbitrage between the existing RTM and the P2P
energy-trading is felt. Finally, it is required to control the risk
of experiencing unfavorable profit in each one of triple markets.
In response to these requirements, the arbitrage strategy of MGs
via a joint cooperative and non-cooperative P2P energy-trading
system is investigated in this paper.

For the sake of clarity, the features of our proposed model are
compared with the relevant literature in Table I.

C. Contributions and Approaches

Although the most recent works focus either on intra-
community [10], [17]–[20] or inter-community P2P energy-
trading [2], [21], this paper presents the arbitrage strategy of
MGs via a joint cooperative and non-cooperative EMS, which
considers intra-community P2P energy-trading inside the MG in
a cooperative manner, and inter-community P2P energy-trading
outside the MG in a non-cooperative manner. By the cooperative
EMS, the MG operates its DERs in an optimal and reliable
fashion. By the non-cooperative EMS based on game-theoretic
approach, it can compete with rivals via a Stackelberg game.
By enabling arbitrage opportunities of the MG in the newly-
established business model, it can simultaneously trade (bid and
offer) energy in different markets (i.e. the TEM and RTM) to
earn much more profit from differences between the prices of
two markets. In confronting profit variability, the degree of risk
aversion is measured by the conditional value at risk (CVaR).

To identify the arbitrage opportunities of MGs and oncurrently
to control the risk of profit variability on the other, a bi-level
risk-constrained stochastic programming with interval coefficient
(BRSPIC) is proposed, which considers competitive behaviour of
MGs in the level of the TEM by the bi-level programming. In the

first stage of decision making, the price uncertainty involved with
the DAM is handled by a scenario-based stochastic programming
approach. In the second stage, the rivals’ offer uncertainty is
considered as an interval coefficient. In the third stage, the
uncertainties of the RESs, loads and RTM prices are modelled by
interval coefficients. Noteworthy, the CVaR is deployed to control
the risk of profit variability.

To solve the bi-level problem as a single level problem in the
TEM, the lower-level problem is replaced with Karush-Kuhn-
Tucker (KKT) conditions. Thus, the bi-level programming is
transformed to a mathematical problem with equilibrium con-
straints (MPEC). Then, the non-linearities of the KKT conditions
and the complementary conditions are linearized by the strong
duality theorem and the variable substitution, respectively. Hence,
the BRSPIC model is transformed to a single level linear model
to solve by an MILP solver.

The main contributions of this paper can be summarized by the
following:

1) Presenting a joint cooperative and non-cooperative EMS for
MGs to manage intra-community and inter-community P2P
energy-trading;

2) Proposing arbitrage strategy of MGs through P2P energy-
trading to cope with the volatility of the generation of RESs;

3) Deriving MGs decision-making structure based on a bi-level
risk-constrained three-stage stochastic programming with an
interval coefficients model.

D. Paper Organization

The paper is organized as follows. In section 2, participation
of MGs in electricity markets is given. The decision-making
frame work of the MG is investigated in section 3. The problem
formulation is described in section 4. Finally, numerical analysis
is explored in section 5.

II. PARTICIPATION OF MICROGRIDS IN ELECTRICITY
MARKETS

In the wholesale domain, existing electricity markets including
the DAM and the RTM operate in a centralized manner by the
independent system operator (ISO) [22]. In the retail domain,
the TEM is a decentralized market based on the P2P energy-
trading. In contrast with the centralized markets, decentralized
TEM is proposed to allow P2P energy-trading without requiring
third-party supervision (i.e. ISO) [8]. Blockchain smart contracts
facilitate the P2P energy trading in such a decentralized structure,
so there is no centralized market operator in the TEM [23].

This paper presents the arbitrage strategy of MGs via a joint
cooperative and non-cooperative EMS, which considers intra-
community P2P energy-trading inside the MG in a cooperative
manner, and inter-community P2P energy-trading outside the MG
in a non-cooperative manner. By the cooperative EMS, the MG
operates its DERs in an optimal and reliable fashion. By the
non-cooperative EMS based on game-theoretic approach, it can
compete with rivals via a Stackelberg game. Principally, when two
energy markets are cleared with a few minutes’ delay, arbitrage
opportunities between these two markets can be identified [11].
In terms of optimization, they can be co-optimized in a stage
[11]. Thus, it is assumed that the P2P trades can be made near
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TABLE I
FEATURES OF THE PROPOSED MODEL AND THE OTHER RELEVANT WORKS
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[1] X × × X × X × × × × Scenario&Interval Two-stage HSIO
[2] X × × × X X × × × X Interval BPIC

[12] X × × X × X × × × × Scenario&Robust Two-stage HSRO
[13] X × × X × X × × × × Scenario Three-stage SP
[14] X × X X × X × × × × Scenario Two-stage RSP
[15] X × X X × X × × × × Scenario Two-stage CSP
[10] × X × × X × X × × × - Distributed optimization
[17] × X × X X × X × × × Scenario Two-stage SP
[18] × X × × X × × X × × - game-theoretic
[19] × X × × X × × X × × - game-theoretic
[20] × X X × X × × X × × Scenario stochastic game-theoretic
[21] × X X × X × × × X × - SOCP

This paper X X X X X X X × × X Scenario&Interval Three-stage BRSPIC
HSIO: Hybrid stochastic/interval optimization; HSRO: Hybrid stochastic/robust optimization; RSP: Risk-constrained stochastic programming BPIC: Bi-level programming

with interval coefficient; SOCP: Second order cone programming; BRSPIC: Bi-level risk-constrained stochastic programming with interval coefficient

the RTM. By enabling arbitrage opportunities of the MG in the
newly-established business model, it can simultaneously bid and
offer energy between the different markets (i.e. the TEM and
RTM) to earn much more profit from differences between the
prices of two markets.

The settlement mechanism of P2P market is based on con-
sensus. By consensus on a specified price and quantity, a P2P
trade is made between two peers. Noteworthy that the P2P market
design is based on decentralized structure in which peers directly
negotiate with each other on a certain amount of energy and
price [8]. Although all involved peers focus only on solving their
own local profit maximization (or cost minimization) problem
without considering overall social welfare, solving their own local
problem will yield maximum social welfare solution by reaching
consensus (or better to say by reaching equilibrium point, which
is converged on a certain amount of energy and price without
centralized supervision). In other words, the equilibrium point of
centralized and decentralized approaches are the same in terms
of solutions [8]. Since the equilibrium of the decentralized P2P
energy-trading in the TEM is converged to the centralized one, the
clearing problem of the TEM can be considered as a social welfare
maximization problem. In the process of consensus, the strategic
interaction between peers (i.e. P2P energy-trading) leading to a
leader-follower game-theoretic model [18]–[20]. Thus, a leader-
follower game is needed to investigate the strategic interaction of
the MG and the other involved peers in the P2P energy trading
. Therefore, the MG should maximize its profit while maximizes
overall social welfare to consider the consensus problem in a
leader-follower approach. Since peers reach a consensus on a
certain amount of energy and price during P2P process, the
payment balance and the trading fairness are guaranteed by
the convergence of negotiation process [24]. By considering
decentralized P2P market, trust concerns among market players
(including truthfulness, malicious behavior and cyber security)
increases, which they affect the payment balance and the trading
fairness. These topics open for future works.

In addition to participate in the TEM, an MG can participate

in the DAM and RTM. The DAM clears 6 hours before the
delivery time for the 24-hour ahead. Although the P2P energy-
trading can take place in the DAM and the RTM, the P2P energy-
trading (or better to say the TEM) sets up between a DAM and
RTMs to provide adjustment opportunities in this paper [22].
Finally, the RTM clears half-hour before the delivery time for
the next hour. The settlement mechanism of the DAM and RTM
is categorized into the one-price and two-price systems [9]. The
two-price system is a common settlement scheme in Europe [25].
The two-price system, in which the stochastic prosumers (like
MGs) are settled at unfavorable prices in the RTM, is investigated
in this paper. For the sake of clarity, in Fig. 1, the participation
of MGs in threefold electricity markets is shown.
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Fig. 1. Participation of microgrids in electricity markets.
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III. UNCERTAINTY MANAGEMENT VIA THREE-STAGE
HYBRID STOCHASTIC-INTERVAL DECISION MAKING

FRAMEWORK

In this paper, the MG is faced with various uncertainties
including RESs production, loads consumption, prices of the
DAM, Prices of the RTM, and the bidding and offering prices
of rival peers in the TEM. Such a large number of uncertainties
can be handled by the HSIO, which takes the advantage of the
cost-effective solution from the SP, and the reliable solution with
computational simplicity from the interval optimization [1]. The
HSIO advantages and applicability can be found in the authors’
previous work [1].

In the HSIO, the uncertainty of the first-stage is considered by
the scenarios. Thus, the DAM price is modeled by scenarios in
this paper. Scenario generation process is based on auto regressive
models, and then the generated scenarios are reduced by using
the probability distance [26]. It should be noted that the MG
profit is very sensitive to the DAM price. Therefore, the main
benefit of the DAM price scenarios is that it is applied by the
SP whose solution is cost-effective from an economic point of
view. The other stage uncertainties are considered with prediction
intervals. Therefore, interval predictions are considered for RESs
production, loads consumption, prices of the DAM, Prices of the
RTM, and the bidding and offering prices of rival peers in the
TEM. Finally, these interval predictions substitute to the sets of
critical scenarios and inter-scenario constraints, which they model
the worst-case realization of the uncertainties. This means that
the MG will maximize its minimum expected profit, although
realizing the worst-case of the uncertainties can be conservative.

It should be noted that the P2P market design is based on
peers directly negotiating with each other. Hence, two peers
can consensus on a certain amount of energy and price without
centralized supervision [8]. In order to consider the impact of the
P2P trading on the bidding strategy of MGs in the DAM, MGs
should anticipate the bidding and offering prices of rival peers.
This anticipation can be provided by prediction intervals. By
historical data, Prediction intervals can provide a feeling about the
level of price uncertainty for MGs. Generally, prediction intervals
define with a central forecast and a coverage rate [22]. As interval
prediction is outside the scope of this paper, the central forecast
of the P2P price can be simply predicted by the auto-regressive
models and, the coverage rate can be estimated by the statistical
methods [27].

In such a market structure mentioned in Section II, the MG
should submit its bids appropriate to the gate-closure time of the
markets. Therefore, the MG is faced with a three-stage decision-
making problem. In the first stage, it is faced with the price
uncertainty of the DAM prices. Hence, it should forecast the
prices of the DAM by a scenario generation process to make
an optimal decision on the bidding problem of the MG in this
market. In the second stage, the MG competes with rivals (or
better to say other peers) in the TEM. Thus, the MG confronts a
bi-level optimization in which it maximizes its profit in the upper
level in the TEM, and it models the behaviour of other peers by
solving the clearing problem of the TEM in the lower level. After
the realization of the net demands and the RTM prices, the MG
balances its energy imbalances as a last resort of balancing energy
in the third stage. In order to control the risk of experiencing non-

desirable profits, CVaR is applied to the model.The risk analysis
and risk measures under uncertainty condition have been widely
investigated in [22] and [26]. In Fig. 2, the decision-making
framework of the MG is given. The nodes indicate decision states
(i.e. the decision-making point). In a scenario tree, the branches
represent different realizations of the random variables [26].
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Fig. 2. The decision-making structure of the MG

IV. MODEL FORMULATION

A. Risk-Constrained Stochastic Bi-Level Programming with In-
terval Coefficients

By the following, the mathematical model of bidding problem
in the DAM is given.

Maximize ULOF︸ ︷︷ ︸
Profitt,p,η,Sp

= (1− β)
∑
p

πp
∑
t

Profitt,p (1)

+ β

(
υar − 1

1− α

(∑
p

πpSp

))
Subject to :

Profitt,p = λDAt,p P
DA
t,p + λTEt,p P

TE
t,p + λRTt,p P

RT
t,p

+
∑

d∈SFD

ρtD
d
t +

∑
dr∈SDR

CdrP drt,p −
∑

dg∈SDG

CdgP dgt,p

−
∑

str∈SSTR

Cstr
(
P str,cht,p + P str,dcht,p

)
(2)∑

dg∈SDG

P dgt,p +
∑

str∈SSTR

(
P dcht,p − P cht,p

)
−

∑
dr∈SDR

P drt,p −
∑

d∈SFD

Dd
t − PDAt,p

− PTEt,p − PRTt,p = 0,∀t, p (3)

|PDAt,p + PTEt,p + PRTt,p |≤ PPCC ,∀t, p (4)
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P dg,Min ≤ P dgt,p ≤ P dg,Max,∀dg, t, p (5)

Jdgt,p −K
dg
t,p = Idgt,p − I

dg
t−1,p,∀dg, t, p (6)

Jdgt,p +Kdg
t,p ≤ 1,∀dg, t, p (7)

MUTdg∑
l=1

Idgt+1,p − 1 ≥MUTdg,∀Jdgt,p = 1,∀dg, t, p (8)

MDTdg∑
l=1

1− Idgt+1,p ≥MDTdg,∀Kdg
t,p = 1,∀dg, t, p (9)

P dgt−1,p − P
dg
t,p ≤ RDdg,∀dg, t, p (10)

P dgt,p − P
dg
t−1,p ≤ RUdg,∀dg, t, p (11)

P dr,Min ≤ P drt,p ≤ P dr,Max,∀dr, t, p (12)

P drt−1,p − P drt,p ≤ LDR
dr,∀dr, t, p (13)

P drt,p − P drt−1,p ≤ LPR
dr,∀dr, t, p (14)∑

t∈T

∑
dr∈SDR

P drt,p ≤ Edr,max,∀dr, p (15)

SOCstrt,p = SOCstr,Init,∀str, p, t = 0 (16)

P str,cht,p ≤ P str,ch−Max,∀str, t, p (17)

P str,dcht,p ≤ P str,dch−Max,∀str, t, p (18)

SOCstrt,p ≤ SOCstr,Max,∀str, t, p (19)

SOCstrt,p ≥ DODstr,∀str, t, p (20)

SOCstrt,p = (21)

ηchstrP
str,ch
t,p −

P str,dcht,p

ηdchstr

+ SOCstrt−1,p,∀str, t, p

υar −
∑
p

πp
∑
t

Profitt,p ≤ Sp (22)

Minimize LLOF︸ ︷︷ ︸
PTE

t,p

= αTEt,p P
TE
t,p +

∑
r∈O

αr,TEt,p P r,TEt,p (23)

Subject to :

PTEt,p +
∑
r∈O

P r,TEt,p = 0 : λTEt,p ,∀t, p (24)

PTEt,p ≤ PTE−max
t,p : µmax

t,p ,∀t, p (25)

PTEt,p ≥ PTE−min
t,p : µmin

t,p ,∀t, p (26)

P r,TEt,p ≤ P r,TE−max : µr,max
t,p ,∀r, t, p (27)

P r,TEt,p ≥ P r,TE−min : µr,min
t,p ,∀r, t, p (28)

The upper level objective function (ULOF) is formulated in
Equation (1). In the first term of the ULOF, the profit of MG
is maximized, which is expanded in detailed in Equation (2). To
manage the risk of experiencing unfavourable profit, the CVaR
risk measure is maximized in the second part of the OF. Where
β ∈ (0,∞) is a parameter to characterize the tradeoff between
the risk-neutral and risk-averse decision making. By neglecting
the CVaR in the ULOF (i.e. β = 0), a risk-neutral decision is
made by the MG. By increasing β, the CVaR term becomes
more significant with respect to the profit term, which makes the
decision risk-averse.

In Equation (2), the first term is involved with the bidding of
MG in the DAM. The second and third terms are involved with the

offer income and the bid cost in the TEM, respectively. The fourth
term is the balancing cost of MG in the RTM. It should be noted
that the uncertainty of the RTM price (i.e. λRTt,p ) is modelled as a
prediction interval (i.e.

[
λRT−LBt , λRT−UBt

]
). It should be noted

that PDAt,p , P
TE
t,p andP

RT
t,p are free variables. The positive values

show selling energy to the markets, and negative values indicates
buying energy from the markets. Noteworthy that the uncertainty
of net demand appears as an interval coefficient. Since the retail
pricing is considered by the net-metering scheme, the 5th term
of the Equation (2) shows the real-time revenue of the MG from
the net-metering scheme. In this scheme, the differences between
the consumption of non-flexible demands and the production of
RESs (i.e. net loads) are payed to the MG at retail rates (ρt) by
the consumers, producers and prosumers. It is worth mentioning
that the uncertainty of net load (i.e. Dd

t ) appears as an interval
coefficient (i.e.

[
Dd,LB
t , Dd,UB

t

]
) in the ULOF. The MG makes

energy supply contracts with flexible demands. Thus, the 6th term
is the revenue of the MG earned by flexible demands. The 7th
and 8th terms are the real-time operation cost of DGs and ESSs,
respectively.

The constraints of MG bidding problem are given in Equations
(3)-(28). Equation (3) is enforced the supply-demand constraint
of MG. The net demand is modelled as an interval prediction
(i.e.
[
Dd,LB
t , Dd,UB

t

]
) in this equation. The power exchanged with

the upstream network is limited by the point of common coupling
(PCC) capacity, which is enforced by Equation (4). Equations (5)-
(21) are enforced the constraints of DERs. Equation (22) enforces
that the difference between the value-at-risk (υar) minus the profit
of each scenario realization should be less than the auxiliary
continuous non-negative variable (Sp).

In Equations (23)-(28), the clearing problem of the TEM is
modelled as the lower level problem, which determines the P2P
energy-trading price. As mentioned previously in Section III,
the lower level objective function (LLOF), Equation (23), is
maximizing the social welfare. In the LLOF, the uncertainty of
rivals’ offer (i.e. αr,TEt ) is considered by the interval coefficient
(i.e. [αr,TE−LBt , αr,TE−UBt ]). Equation (24) is the energy balance
of the TEM. The Equations (25)-(28) enforce the quantity limits
of offering and bidding in the TEM. In the lower level problem,
the dual variables of constraints are shown after the colon symbol.

B. Single Level Hybrid Stochastic-Interval Optimization

1) Substitution of Interval coefficients with equivalent scenar-
ios: To solve the risk-constrained stochastic bi-Level program-
ming with interval coefficients, the interval coefficients should
be handled by the features of interval optimization provided
by [1]. The interval coefficients exist in the ULOF, LLOF
and supply-demand constraint of the MG (i.e. Equations (1),
(23) and (2), respectively). Generally, an interval prediction
is defined by a most probable scenario (i.e. central forecast
(CF) and symmetric values around the CF which are called
upper bound (UB) and lower bound (LB) [27]. Since the net
load in the objective function is not involved with any of
the decision variable, this part of the objective function can
be replace with the three equi-probable scenarios (i.e. ω =
{LB,CF,UB}) in interval optimization [1]. Accordingly, an
additional dimension is added to the all of decision variables
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involved with the second and third stages of decision-making (i.e.
{P dgt,p,ω, P

str,dch
t,p,ω , P str,cht,p,ω , P drt,p,ω, P

RT
t,p,ω, P

TE
t,p,ω, P

r,TE
t,p,ω , λ

TE
t,p,ω,

µmax
t,p,ω, µ

min
t,p,ω, µ

r,max
t,p,ω , µ

r,min
t,p,ω , Sp,ω}). So, dimension of ω is added

to all of Equations (1)-(28). On the other hand, when the interval
coefficient is associated with a positive variable, the worst-case of
an interval in the objective function of a maximization problem is
resulted by the realization of the LB of the prediction interval, and
in the objective function of a minimization problem is resulted by
the realization of the UB [1]. The RTM price and the TEM rivals’
offer are interval coefficients associated with unrestricted-sign de-
cision variable (i.e. PRTt,p,ω and PTEt,p,ω) ). To employ the mentioned
principle for extracting the worst-case, the power associated with
the RTM and the TEM are decomposed into two positive variables
(i.e. PRTt,p,ω = PRT−buyt,p,ω − PRT−sellt,p,ω and PTEt,p,ω = PTE−buyt,p,ω −
PTE−sellt,p,ω ). The worst-case of the ULOF and the LLOF can be
obtained by this variable decomposition. Therefore, PRTt,p,ω and
PTEt,p,ω are substituted by λRT−LBt,p PRT−sellt,p,ω − λRT−UBt,p PRT−buyt,p,ω

and αr,TE−UBt,p P r,TE−sellt,p,ω − αr,TE−LBt,p P r,TE−buyt,p,ω , respectively.
In addition, interval coefficient exists in supply-demand equal-

ity constraint (i.e. Equation (3)). In case of an equality constraint,
the worst-case happens when the constraint equals either to the LB
or UB [1]. Therefore, the worst-case of the supply-demand equal-
ity constraint will happen when the net demand equals either to
the LB or the UB. By considering three-fold scenarios and inter-
scenario constraints of DERs, it guarantees that the DER outputs
of any two critical scenarios in two consecutive time are enforced
by the DER constraints, [1]. The critical scenarios are shown by
set of Ω = {(CF,CF ), (CF,LB), (UB,LB), (CF,UB)}. Each
one of subsets show a pair of critical scenario which should be
considered in DERs constraints. In other words, Therefore, these
inter-scenario constraints guarantee that any two critical scenarios
(i.e. subsets of the Ω) in two consecutive time are enforced by the
ramp up and ramp down of DGs, by the Pick up and drop rate
of flexible loads, and by the charge and discharge rate of ESSs,
respectively.

2) Mathematical Problem with Equilibrium Constraints: By
replacing the KKT conditions of the lower-level problem, the bi-
level optimization transforms into a single level problem [28].
Equations (29) and (30) are the stationary conditions. feasibility
of the primal problem is enforced by Equation (31). Finally, Equa-
tions (32)-(37) are complementary conditions (0 ≤ x⊥y ≥ 0).

αTEt,p,ω − λTEt,p,ω + µ−max
t,p,ω − µ−min

t,p,ω = 0,∀t, p, ω (29)

αr,TEt,p,ω − λTEt,p,ω + µr,max
t,p,ω − µ

r,min
t,p,ω = 0,∀r, t, p, ω (30)

PTEt,p,ω +
∑
r

(P r,TEt,p,ω = 0,∀t, p, ω (31)

0 ≤ (PTEt,p,ω − PTE−min
t,p )⊥µmin

t,p,ω ≥ 0,∀t, p, ω (32)

0 ≤ P r,TE−sellt,p,ω ⊥µr,sellmin
t,p,ω ≥ 0,∀r, t, p, ω (33)

0 ≤ P r,TE−buyt,p,ω ⊥µr,buymin
t,p,ω ≥ 0,∀r, t, p, ω (34)

0 ≤
(
PTE−max
t − PTEt,p,ω

)
⊥µmax

t,p,ω ≥ 0,∀t, p, ω (35)

0 ≤
(
P r,TE−sell−max
t − P r,TE−sellt,p,ω

)
⊥µr,sell−max

t,p,ω ≥ 0,∀r, t, p, ω
(36)

0 ≤
(
P r,TE−buy−max
t − P r,TE−buyt,p,ω

)
⊥µr,buy−max

t,p,ω ≥ 0,∀r, t, p, ω
(37)

By the following, An MPEC casts by using Equations (29)-(37):

Maximize {
∑
ω

πωULOFω}

Subject to :

Constraints (2)− (28) with adding ω dimension

Inter − scenario constraints

KKT Conditions (29)− (37)

3) Problem Linearization: The non-linearity, which is imposed
on the problem by λTEt,p,ωP

TE
t,p,ω , can be linearized by the strong

duality theorem [28]. Regarding strong duality, the objective
function of the primal and dual problems are equal at the op-
timal point. Therefore, the non-linear expression in the objective
function can be replaced by Equation (38):

λTEt,p,ωP
TE
t,p = −

∑
r

αr,TE−sellt P r,TE−sellt,p,ω

+
∑
j

αr,TE−buyt P r,TE−buyt,p,ω −
∑
r

µr,buy−max
t,p,ω P r,TE−buy−max

t

−
∑
j

µr,sell−max
t,p P r,TE−sell−max

t (38)

The non-linearity involved with the complementary conditions
0 ≤ x⊥y ≥ 0 can be transformed by the equivalent linear equa-
tions by Equations (39). Complementary conditions imply that
the product between x and y is equal to 0 [22]. Hence, the value
of either x or y should be equal to zero. By using binary variable
ψ, one of the right-hand sides of x ≤ ψMx or, y ≤ (1 − ψ)My

is enforced to zero, and the other one is relaxed to the big value
(i.e. Mx or My). Noteworthy that Mx and My should select big
enough to lead the proper solution [28].

x, y ≥ 0, ψ ∈ {0, 1} , x ≤ ψMx and, y ≤ (1− ψ)My (39)

V. NUMERICAL ANALYSIS

A. Input Data

A modified IEEE 33-bus distribution test system illustrated in
Fig. 3 is applied for the MG [29]. The MG test system including
one ESS, one DR with the capability of load shifting, and four
DGs are considered for testing the proposed model. Technical
and economic characteristics of dispatchable and renewable-based
intermittent generators are given by Table II. An ESS with 95%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19

20

21

22
23 24 25

26 27 28 29 30 31 32 33

DG4
RES3

ESS1

DR1

RES4

RES1 DG1 RES2 DG2

DG3

PCC

Flexible demand

Dispatchable DG

Intermittent DG

Energy storage  

system

Distribution node
Point of common 

coupling

Intermittent DG

Fig. 3. Test system of the MG

efficiency in energy conversion with a maximum capacity of 2
MWh and charging/discharging rate of 1 MW/h is considered.
Noteworthy that the depth of discharge is equal to 0.1 MWh. The
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TABLE II
CHARACTERISTICS OF DGS AND RESS

Unit Type Cost Coefficients
($/MWh)

Min-Max
(MW)

Ramp Rate
(MW/h)

DG1 Dispatchable 27.7 1-5 2.5
DG2 Dispatchable 39.1 1-5 2.5
DG3 Dispatchable 61.3 0.2-3 0.5
DG4 Dispatchable 125.6 0.2-3 3
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Fig. 4. Input data; (a) Prediction interval of the Loads consumption, (b) Prediction
interval of the RESs production, (c) The prediction interval associated with the
DAM and RTM prices, (d) Prediction interval of rivals’ offer

DR should consume energy minimum of 3 MWh for the 24-hour
time horizon. its pick-up and drop rate is equal to 1 MW/h. Also,
it can consume energy between 0.5 MW and 2.4 MW in each
hour. Moreover, the prediction interval of load consumption and
RESs production are given by Fig. 4(a) and (b), respectively. It
should be noted that the maximum variability of consumption and
production are equal to 10% of the central forecast. The prediction
intervals involved with the DAM and RTM prices are given by
Fig. 4(c). Noteworthy that all of the generated scenarios of The
DAM prices are laying in its prediction interval. It should be noted
that 10 scenarios are applied to the proposed model. Finally, the
prediction interval of the rivals’ offer in TEM is given in Fig. 4(d).
It is assumed that the rivals’ offer to the TEM for every 4 hours.
Also, six rival peers are considered in the numerical analysis,
which the first three are buyer and others are seller. The proposed
model is simulated and run using CPLEX 12.7 under the GAMS
environment [30]. All cases are implemented on a computer with
a 3.2 GHz Intel Core i5 processor and 4 GB RAM.

B. Arbitrage Strategy of the MG

To evaluate the arbitrage strategy, the CVaR is not considered
in this section. The results are given in Fig. 5. In Fig. 5(a), the

standard deviation and the average of the energy traded in the
DAM, TEM, and RTM, are given. By considering the DAM, the
MG prefers to buy the most of its requirement during the hours
1-10, when the DAM prices are very low (i.e. lower than 30
$/MWh). By increasing the DAM prices to the highest level (i.e.
higher than 120 $/MWh), the MG decreases buying energy during
the hours 11-23. Finally, when the net demand decreases, it can
sell energy during the hour 24.

Since the MCPs of the TEM (see Fig. 5(b)) are lower than that
of the RTM (see Fig. 4(c)) during the hours 1-16, the MG play
as a buyer in the TEM as it is shown in the Fig. 5(a). Since the
MCPs of the TEM are greater than that of the RTM during the
hours 17-24 (compare Fig. 5(b) to Fig. 4(c)), the MG play as a
seller in the TEM; see Fig. 5(a). As the last resort, the MG buys
or sells its energy requirements by the RTM.

To evaluate the arbitrage opportunities of MG, the results
without considering the TEM is given in Fig.4 (a). By comparing
both curves (i.e. ‘DAM’ and ‘DAM-WO-TEM’), the MG buys
less energy in the DAM in case of considering TEM during the
hours 1-16, when the MG buys energy from the TEM. Conversely,
the MG buys more energy in the DAM in case of considering
TEM during the hours 17-24, when the MG sells energy to the
TEM. Thus, during the hours 17-24, the MG buys energy in the
DAM with the prices (i.e. in the range of [56.29,126.25] $/MWh;
see Fig. 4(c)) lower than that of the TEM, and then it sells energy
by the prices (i.e. in the range of [85, 110] $/MWh; see Fig. 5(b))
higher than that of the DAM. Hence, the MG can decrease its cost
from $6309.6 to 6112.2$ (i.e. increase more than 3.1% in the MG
profit) by the arbitrage opportunity through P2P energy-tradings.

In Fig. 4(c), the production of DGs are illustrated. During the
hours 1-9, the lowest production cost of DGs (i.e. DG1=27.7
$/MWh) is lower than the DAM prices. Therefore, none of the
DGs produces energy during these hours. By increasing DAM
prices, the production of DGs is increased based on the production
cost of each DG (i.e. DG1, DG2, DG3 and DG4 have the lowest
production cost, respectively).

The energy consumption of DR is given in Fig. 5(d). When
the cost of DR (i.e. 95 $/MWh) is greater than DAM prices (i.e.
during the hours 1-15 and 23), the DR consumes its maximum
capability (i.e. 2.4 MWh). However, by increasing the DAM
prices, the DR decreases its energy consumption during the hours
16-22 and 24.

The SOC of the ESS is shown in Fig. 5(e). During the hours
1-5,7-11, 15-16, and 23, the prices of DAM are lower than the
prices during hours 6, 12-14, 17-22, and 24, respectively. when
the prices of DAM are low (i.e. during the hours 1-5,7-11, 15-16,
and 23), the energy is stored in the ESS. In contrast, when the
prices of DAM are high (i.e. during hours 6, 12-14, 17-22, and
24), the stored energy is released to the MG.

Without considering transition between two critical scenarios
(i.e. LB to UB, CF to CF, UB to UB, LB to LB, UB to LB,
CF to LB and CF to UB), the operation costs of the MG are
6069.79$, 6103.63$, 6110.72$, 6111.87$, 6111.99$, 6111.99$,
6112.17$ and 6112.14$, respectively. Without considering the
most critical scenario (i.e. LB to UB), the profit of the MG can
be increased by 0.7%. Although the cost of the MG decreases
without considering each one of critical scenarios, the risk of
exposure to uncertainty increases in the RTM.
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Fig. 5. The proposed model Results; (a) Traded energy in the DAM, TEM, and
RTM, (b) Market clearing prices of TEM, (c) The production of DGs, (d) The
consumption of DR, (e) The SOC of ESS

C. Risk Analysis

In order to analyse the risk involved with the given decision,
the CVaR is investigated in this section. The results of the risk
analysis are given by Fig. 6. The bidding strategy of MG is
evaluated, both for the risk-neutral solution (i.e. setting β = 0)
and risk-averse solution (i.e. increasing β to ∞). The range of
effective β in changing the profit and CVaR is varied case by case.
In Fig. 6(b), it can be seen in our case study (i.e. modified IEEE
33-bus) that the efficient frontier curve of the MG is saturated by
increasing β more than 1. Therefore, the solution associated to
the β = 1 is called the risk-averse solution here. Noteworthy, the
positive and negative values show that the MG offers and bids
energy in the market in Fig. 6(a), respectively. the traded energy
in the DAM as well as the traded energy of the TEM plus the
RTM (i.e. TEM+RTM) for the β = 0 and β = 1 are shown by the
solid and dashed line. By comparing two curves corresponding
to the DAM, the bidding energy associated with the risk-neutral
solution (i.e. β = 0) is less than that of the risk-averse one (i.e.
β = 1) during the hours 1-23. Also, the offering energy associated
with the risk-neutral solution (i.e. β = 0) is more than that of the
risk-averse one (i.e. β = 1) during the hour 24.

By comparing two curves corresponding to the TEM+RTM,

the bidding energy associated with the risk-neutral solution (i.e.
β = 0) is more than that of the risk-averse solution (i.e. β = 1)
during the hours 1-3, 6, 8-9 and 11-12. Also, the offering energy
associated with the risk-neutral solution (i.e. β = 0) is less than
that of the risk-averse solution (i.e. β = 1) during the hours 5, 7,
10 and 13-24. Totally, by considering CVaR, the MG prefers to
bid/offer more/less energy in the DAM, and to bid/offer less/more
energy in the TEM+RTM. In Fig. 6(b), the expected profit in terms

Fig. 6. The risk analysis of the proposed model; (a) Traded energy in the DAM,
TEM and RTM, (b) The efficient frontier

of the CVaR, which is called the efficient frontier, is provided.
Since the MG is an energy buyer during the 1-23 hours (see Fig.
5(c)), the total expected profit and CVaR are negative values. By
the efficient frontier, the MG can select the degree of conservatism
in decision making. By comparing the fully risk-averse with the
risk-neutral decision, the profit of MG can be increased by 27%,
although it would be risky to make a risk-neutral decision.

D. Applicability and Scalability of the Proposed Model

The average of expected costs (ECs), the standard deviation
(SD) of ECs, and the average of computational times are given
in Table III for implementing the models 10 times, in order to
compare the fully SP (FSP) and fully IO (FIO) models (i.e.
existing models) with the BRSPIC model. Since some critical
scenarios would be removed in the scenario reduction process,
the EC of the FSP are the lowest optimistic one ($5956.6). By
considering the whole of interval predictions, the EC of the FIO
is the highest pessimistic one ($6216.6). However, the EC of
the BRSPIC is a middle one, which it shows the advantages of
inheritance from the both FSP and FIO models. The EC of the
BRSPIC is increased in comparison with the FSP to improve the
security of the MG dealing with uncertainties. The SD shows
the sensitivity of the solutions to the scenario generation and
reduction process. Therefore, the sensitivity of the BRSPIC is
decreased in comparison with the FSP (i.e. $89.2 decreases to
$28.1). By comparing the computational time (i.e. 169.6 s against
2.4 s), it is evident that the BRSPIC model significantly decreases
the computational burden of the problem.

To evaluate the scalability of the proposed model, three mod-
ified IEEE 33-bus distribution system are considered as a large
MG, which they are connected at the PCC to each other. The
profit and computational time of the three times larger MG are
$18354.2 and 15.6 s, respectively.
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TABLE III
COMPARISON OF THE COST AND PERFORMANCE WITH EXISTING WORKS

Expected Cost ($) Standard Deviation ($) Time (s)
FSP 5956.6 89.2 169.6

BRSPIC 6088.1 28.1 2.4
FIO 6216.6 0 0.9

VI. CONCLUSION

In this paper, the arbitrage strategy of a MG via P2P energy-
tradings is investigated. To this end, a three-stage decision-making
framework has been developed. In the first stage, a scenario-
based stochastic programming approach has been employed to
deal with the DAM prices uncertainties. In the second stage, the
uncertainty of rivals’ offer has been handled using the interval
coefficients in a leader-follower game-theoretic approach. Finally,
in the third stage, the uncertainties of RESs and loads have been
investigated by the interval optimization. A three-stage single-
level optimization has been proposed by using the KKT conditions
in order to be able to identify the existing arbitrage opportunities.
The results of the presented model prove that:
• In case of considering TEM, an MG is able to buy more

energy in the DAM for selling in the TEM and use the
arbitrage opportunity between DAM and TEM.

• By the realization of excess production or consumption
deficit, the MG tends to sell energy cheaper than the DAM
price in the TEM, instead of selling energy in the RTM with
the lower price.

• An MG can increase its profit by at least 3.1% by using the
arbitrage opportunity between DAM and TEM.

• By comparing the fully risk-averse with the risk-neutral
decision, the profit of MG can be increased by 27%, although
it would be risky to make a risk-neutral decision.

The future research direction can be focused on the grid cost
allocation in such a transactive environment.
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