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Abstract

In this work we present a framework for the construction of robust a posteriori

estimates for classes of finite difference schemes. We are motivated by the relative

lack of such frameworks compared to existing ones for other numerical discretisation

methods, such as finite elements and finite volumes.

The framework we propose is based on the use of reconstructions, which are

obtained by post-processing the finite difference solution. The post-processed object

is a key ingredient in obtaining a posteriori bounds using the relevant stability

framework of the problem. The resulting bounds are fully computable and allow us

to establish a posteriori error control over the problem at hand.

In the first part of the thesis we motivate and investigate the behaviour of our

framework using model ODE, elliptic and hyperbolic problems. We use our frame-

work to obtain reconstructions which are used to compute a posteriori error esti-

mates. We validate the numerical behaviour of these estimates using solutions of

varying regularity.

In the second part of the thesis we focus on hyperbolic conservation laws in one

spatial dimension and we deal with scalar problems as well as systems. Hyperbolic

conservation laws are widely used in the modelling of physical phenomena. The

numerical modelling of conservation laws, which arises due to the frequent lack

of explicit solutions, is challenging, largely due to the complex behaviour these

problems exhibit, such as shock formation even with smooth initial conditions.

In this setting, we present a framework which is applicable to general non-linear

conservation laws. We investigate its numerical behaviour and showcase our results

by using popular finite difference discretisations for a range of problems.

We demonstrate that the the framework can produce optimal estimates, capable

of tracking features of interest and act as refinement/coarsening indicators.
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Chapter 1

Introduction

Partial Differential Equations (PDEs) are one of the most versatile and indispensable

tools in the scientific arsenal. It is impossible to overstate their importance on

account of their utility in virtually all aspects of science and engineering which

underpin modern human society.

Despite their widespread applicability and the extensive study that they were

the subject of, several PDEs elude analytical solutions to this day. The importance

of these problems has been a motivating factor for finding alternative methods for

approximating their solution, thereby motivating and establishing the numerical

approximation of PDEs as a rich field of mathematical research.

Several numerical solution approaches evolved over the year. Finite Differences

(FD), Finite Volume (FV) and Finite Element (FE) methods are but a few such

methodologies. These methods make it possible to simulate PDEs on computers

and use them to model situations of high industrial and scientific interest, such as

stresses in structures and fluid flows around aircraft wings and in reactors to name

but a few.

In all matters of numerical approximations of PDEs it is important and in-

deed useful to have an indication of the error incurred in the approximation proce-

dure. The importance of knowledge of the error is self-explanatory: we cannot know

whether the numerical method is performing correctly otherwise. The reason that

knowledge of the error is useful, especially if it is local, robust and available in real

time, is that it can be used to increase the approximating power of the numerical

approximation where it is most necessary. This last consideration motivates the
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study of a posteriori error estimation.

A posteriori error estimates are error statements which can be computed without

knowledge of the true solution and which give an indication of the error behaviour.

If they are local in nature, they can be used to refine or coarsen the resolution

of the approximation. They are particularly useful in flow-related problems and

generally in problems where solutions demonstrate a complex structure locally. In

such cases a posteriori error estimates can automate the procedure of detecting high

errors and modifying the approximation structure appropriately to accommodate

local behaviour.

Our interest in this thesis is a posteriori error estimation in the context of Finite

Difference (FD) methods. Amongst the three aforementioned numerical approxima-

tion methods, FD methods were the earliest to appear. They involve the approxi-

mation of derivatives using difference quotients. They are not as flexible as FV or

FE methods if domains are geometrically complex. However, they are still widely

used in many problems of practical importance.

Relevantly to our interests, FD methods, on account of a lack of a variational

formulation of the problem and the point-wise nature of the FD solution, do not

receive as much interest with regard to a posteriori error estimation, often relying

on heuristics (e.g. gradient indicators or a priori physical knowledge of the problem)

in order to define/detect regions of interest in the solution’s domain.

The main contribution from this work is a framework for facilitating a posteriori

error estimation for classes of frequently used FD schemes. One of the main tools in

this endeavour is the reconstruction of the numerical solution (see [Mak07, GMP15,

GP17]). This is a post-processing of the point-wise FD solution that performs two

key functions in our case. Firstly, it facilitates an alternative error interpretation

which is more amenable to a posteriori error control and secondly, it enables us to

utilise the stability framework of the PDE in deriving an a posteriori error bound.

In this way we are able to derive optimal error bounds for classes of frequently used

FD schemes for a variety of problems as well as to utilise existing a posteriori bounds

from the literature.

This thesis is broadly divided in two parts. In the first part we motivate, with

illustrative examples, the framework for obtaining a posteriori error estimates using
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the reconstruction approach. The model problems we present as examples include

an ODE, an elliptic PDE and a linear hyperbolic PDE. In each case we use recon-

structions to post-process the point-wise FD solution to facilitate a posteriori error

control using the stability framework of the underlying problem. We then bench-

mark the behaviour of the resulting a posteriori error estimate and where possible,

we compare it with existing estimates from the literature.

The first part leads us conveniently into a discussion on a framework for obtaining

and using reconstruction-based a posteriori error bounds. This is largely our interest

in the second part, with the focus shifted entirely to application on hyperbolic

conservation laws. In particular, in the second part, we start with a discussion

on a framework for obtaining optimal a posteriori error estimates for hyperbolic

conservation laws and we test our framework with scalar problems as well as systems,

in a linear as well as in a non-linear setting, in one spatial dimension.

Hyperbolic conservation laws are widely used in several scientific and engineering

disciplines, such as electromagnetics, civil, aeronautical and mechanical engineering

to name but a few areas. The frequent lack of analytical solutions means that

numerical approximation is the only avenue for treating these problems. In this

context, there are significant challenges that must be addressed, especially in the

non-linear cases. The key reason for this is the rich and complex solution features

that they exhibit, such as propagating discontinuities, and their tendency to form

shocks in finite time and even with smooth initial conditions. This behaviour must

be accounted for in deriving appropriate numerical schemes to avoid artificial and

spurious numerical behaviour.

In the spirit of deriving schemes, an important concern is the accurate description

of this highly localised behaviour whilst ensuring the economical use of computa-

tional resources. In this regard, the numerical analyst is also incentivized to allocate

computational resources optimally in the domain of interest. This is how a poste-

riori error estimation arises in importance as a driver for facilitating adaptivity in

hyperbolic problems
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1.1 Literature review

In this section we will provide the context in which we place our contributions in a

chapter-based literature review format.

1.1.1 Chapter 2: A posteriori analysis for conservative lin-

ear multistep methods

Differential Equations (DEs) are an important mathematical tool in numerous as-

pects of science and engineering ([FLQ03], [Chr09], [vRC15], [HPC+00]) as well as

in the social sciences ([Bro07]), finance ([EKPQ97]), epidemiology ([Het00], [LM95])

and economics. They form the basis for large areas of research for their own sake but

also with respect to their applications ([Eva10], [Olv00], [Arn74]) . However, it often

happens in problems of substantial interest, such as the Navier Stokes equations,

that explicit/analytical solutions are unavailable.

The lack of explicit/analytical solutions motivates, in large part, the research

interest behind numerical methods for approximating DEs, leading to a number of

different techniques for the numerical solution of DEs. Since the historic publication

of the paper by Courant, Friedrichs and Lewy on partial difference equations for

mathematical physics in 1928 (see [CFL67] for a 1967 re-publication), the field of

numerical analysis of DEs has flourished and enriched with numerous techniques

(see [Tho90] for a historical account).

Numerical methods for the approximation of DEs include Finite Difference (FD)

methods ([RM94], [MM05]), Finite Volume (FV) methods ([L+02], [VM07]) and

Finite Element (FE) methods ([Arg54], [ZTZ05],[Joh12]) to name but a few. Nat-

urally, an important concern in the process of approximating the DE is the error

incurred in the process. It is imperative that a user of a numerical method has some

guarantee (e.g. a set of conditions for instance) that the error incurred in approxi-

mating some data or a differential operator will remain bounded. If not, the results

produced by the numerical method are not reliable. It is not surprising then that

error control constitutes an active area of mathematical research in its own right.

Early considerations on error control were concerned with roundoff error, which

is a concern whenever we approximate using a computer. An important paper in
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this area was a 1947 paper of von Neumann and Goldstine (see [VNG47]), which

is concerned with error control for the inversion of matrices. Although this is not

related to this chapter, it serves as a detailed account of the importance of error

control in numerical methods, particularly those implemented on early machines.

An example of such a machine is the differential analyser.

The differential analyser is a mechanical device/analogue computer which was

used to solve differential equations by integration. Naturally, research pertaining to

solution of DEs using such machines was also concerned with the error incurred in

the process of approximation using difference operators. We note the 1910 paper

by L.F. Richardson ([Ric11]) and the 1937 paper of Hartree and Womersley on the

mechanical solution of certain PDEs ([HW37]). These works informed later attempts

for analytical treatments of errors which are still in use today. In particular, we

refer to the 1947 paper by Crank and Nicolson on the numerical treatment of errors

incurred in the FD approximation of heat conduction type (PDEs) ( [CN47]), and the

1950 paper of Charney, Fjortoff and von Neumann on the numerical integration of

baroclinic vorticity equations [CFVN90]. Both of these papers voice concern over the

fact that error in one time-step may propagate, increase and pollute computations

at later time-steps. Both papers included analytical treatments of the error incurred

in a FD approximations of the underlying problem. The work in the latter served

as the foundation for what eventually became known as as von Neumann stability

Analysis.

Statements which provide some sort of guarantee on the behavior of a numerical

algorithm without requiring the evaluation of quantities produced by the algorithm

are called a priori. These statements are useful in having peace of mind with re-

gard to properties such as stability, convergence, constistency and error bounds.

They inform the user whether the algorithm is even worth running in the first place.

However, they are not of practical importance once the algorithm runs. In partic-

ular, they often cannot be evaluated as they involve the exact solution and/or its

derivative and limits as the step-size goes to zero.

A user of the numerical algorithm may often want to have an indication of the

behaviour of the error, potentially at a local level. This is particularly the case

if the solution has local features, such as shocks, steep gradients, or oscillatory
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behaviour. If such features are of smaller scale than the initially specified time-step,

this behaviour may go unnoticed. Alternatively, choosing very small time-steps for

problems which do not feature steep gradients or erratic behaviour for the most part

may lead to large computational expense. This is the motivation behind a posteriori

error control.

A posteriori error bounds are error statements which make use of quantities

which are explictly computable at run-time. They give the user an indication of

the behaviour of the error possibly at a local level, during run-time. This facilitates

adaptive control of the step-size.

Adaptive methods and a posteriori error control is of research interest also for

ordinary differential equations for their own sake, for their applications and also

as a conceptual step in adaptive error control for PDEs, especially where evolution

problems are concerned. The intent, as described by [EEHJ95], is to use feedback

from computations to inform adaptive methods in an effort to: 1) estimate and

control different sources of error - in particular data, modelling and computation

errors - 2) improve precision where necessary 3) make efficient use of computational

resources. In that work, the authors introduce a framework based on Finite Elements

(FE) for the adaptive control of error. They then apply this framework to obtain a

posteriori error estimates on a range of ODE and PDE problems.

The literature on a posteriori error estimation for ODEs is extensive and stems,

as noted above, from a wide variety of motivations. We note, as an example, [Est95],

who constructs a rigorous theory of global error control by combining a priori and a

posteriori bound. The author states that the main source of motivation behind this

paper is a wider effort to construct a theory of adaptive control for approximations

of PDEs. This paper is one of many that are part of this project, which includes

[Joh88], [EJ87], [EJ91] and subsequently [EL93], [EJ95b] and[EJ95a]. This work

is largely concerned with adaptive time-step control and error estimates for ODEs

(stiff problems) as well as adaptive error control for parabolic problems. [EL93] was

an example of using a posteriori error estimation for ODEs as a stepping stone for

a posteriori error control for PDEs.

In the context of ODEs we note a sequence of works on multi-adaptive Galerkin

methods for ODEs (continuous and discontinuous Galerkin) for ODEs in [Log03],

6



[Log04a], [Log04b],[JL04]. As an example of application for such methods, the

author notes the problem of modelling multiple bodies in orbit (comets, planets,

satellites etc.) with different orbit durations, hence requiring various time steps of

different size.

The work described so far caters to a posteriori error estimation for FE discreti-

sations, which do possess a variational formulation, unlike FD discretisations. In

addition to this challenge, a posteriori error estimation for FD techniques also has

to address the pointwise nature of the discrete solution. In Chapter 2 we obtain

an a posteriori error bound for an ODE problem using energy arguments, with the

bound being independent from a specific choice of discretisation. In order to address

the issues we identified we use the reconstruction technique.

In summary, the reconstruction is a means to obtain a ’post-processed’ form

of the numerical solution, endowing it in the process with desirable characteris-

tics. In our case it also enables the calculation of a posteriori bounds. The char-

acteristics one desires from a reconstruction vary but in general they involve the

restoration of optimality to suboptimal error estimates. It is used with precisely

this intent i.e to restore optimality to the suboptimal posteriori error estimates for

FE semi-discretisations of parabolic problems in [MN03]) and for fully discrete lin-

ear parabolic problems in [LM06]. Since then, the reconstruction technique has

been used in multiple works to obtain optimal a posteriori error estimates (see e.g.

[GMP15], [GP17], [LP12], [AMN06], [MN06]; see also [Mak07] for a review).

It is worth briefly commenting upon the use of the reconstruction technique in

the aforementioned works and the work of Zadunaisky in [Zad76] (see also associated

works: [Zad66b], [Zad66a], [Zad70] and [Zad72]).

Briefly, [Zad76] is concerned with the errors propagated due to integration of sys-

tems of ODEs in the context of astronomy problems. A polynomial is constructed

over consecutive time intervals using the approximate solution, which is subsequently

used to formulate a ”pseudo-problem” - essentially a perturbed version of the original

problem which possesses a known solution. The integration routine for the origi-

nal problem is applied to the pseudo-problem instead, obtaining pseudo-numerical

solution. The author, assuming that the numerical solutions to the original and

pseudo-problems are ”close” expects that the errors incurred in the two problems
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will likewise be close. With this justification, they adopt the pseudo-error as a good

approximation to the error in the original problem.

In our case, we aim at obtaining optimal order a posteriori bounds and at ex-

tending these results to PDEs. We note that we demonstrate optimality numerically

rather than prove it in this chapter. In addition, we emphasize that we desire local

control over the error. Therefore, the reconstruction must be constructible using lo-

cal considerations our construction procedure reflects these considerations (see also

[AMN09, §1] and [MN06, §1] for discussions on the same issue). We also note that

we do obtain reconstructions with WENO-based techniques (see [Shu98]), which

actually utilize wider stencils.

In particular, we examine a reconstruction for a model second order IVP problem,

discretised using the well-known Leapfrog scheme. Briefly, the Leap-frog scheme is

an explicit, two-step method that is popular for use with (amongst other things)

for second order wave-type PDEs. This method is also known by other names in

other fields. In molecular dynamics, where it is popular in its use as an integration

scheme, it is known as the Verlet method ([Ver67]). It is also known as the Störmer

method, because variants of it have been used by Carl Störmer to calculate the

trajectories of ionized particles in the Earth’s magnetic field ([Stö07]). In fact, the

leapfrog method has been in use since earlier than these works and examples can

even be found in Newton’s Principia. A more thorough historical account of the

method can be found in [HLW03].

The Leapfrog integration method posesses favourable long-term numerical prop-

erties. Specifically, it conserves first integrals (e.g. total linear and angular mo-

mentum in N-body systems) and features linear error growth (see [HLW03, §5: Fig.

5.3]) (see [HLW03] for a detailed discussion). In addition to these properties, as

explained by [GLMV16], the Leapfrog scheme is the only explicit, two-step, second-

order accurate method for the time integration of second order problems.

Briefly, in [GLMV16] the authors perform an a posteriori analysis of second order

implicit and explicit two-step schemes for wave-type problems. They derive optimal

a posteriori estimates for controlling the error of the temporal discretization. In

this chapter, we follow their work closely and we compare our results with those

obtained using their method, applied to a second order ODE model problem.
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1.1.2 Chapter 3: Simple a posteriori control of finite differ-

ence discretisations of elliptic problems

In this section we review FD methods and variations thereof for elliptic problems,

with a focus of different a posteriori error estimation techniques. We emphasize

that, although we do not use the methods we review, we nonetheless feel that it

is necessary to include pertinent material, especially with regard to a posteriori

error estimation for variations of FD methods, in order to endow the reader with a

comprehensive picture of the field and, therefore, of the context of our contribution.

Finite differences date back centuries - they were introduced by Brook Taylor

in 1717 (see [Tay17]). FD discretisations of elliptic problems are correspondingly

widespread and they constitute part of many undergraduate and graduate curricula

on numerical methods for differential equations. However, a posteriori error control

for elliptic problems discretised using classical FD methods has not received as

much attention compared to the FE counterparts. This is in part is due to the

lack of a variational structure of FD methods and the pointwise nature of the FD

approximation.

The popularity of the FD approximations warrants an in-depth look into a pos-

teriori error estimation for such methods. To this extent, in this section, we will

present a brief overview of work that resulted in different versions of FD methods,

with the emphasis of our review placed upon a posteriori error bounds.

Mimetic Finite Difference (MFD) method

The MFD method is used to produce discrete approximations to PDEs on unstruc-

tured polygonal and polyhedral meshes. An aim of the method is that the obtained

discretisations preserve or, more appropriately, ”mimic” important properties of

the underlying mathematical and physical systems which they approximate (see

[LMS14]).

The properties depend on the underlying problem. On the mathematical side,

these properties include symmetry, positivity, duality and self-adjointness of the dis-

crete operators, maximum principles and asymptotic limits amongst others. On the

physical side, amongst other properties, for fluids problems, the MFD method aims

to conserve discrete analogies of energy, mass on momentum and, for incompressible
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flows, to preserve divergence free conditions.

A posteriori error estimates for the MFD method for elliptic problems were

derived in [dV08], [BdVM08] and [AdVLV13]. We briefly summarise the results of

these works.

In [dV08] a local, residual-based posteriori error indicator for the MFD method

is derived and presented for diffusion-type problems on polyhedral meshes. This

estimate incorporates a post-processing scheme for the scalar variable (which is the

pressure in the model problem treated in this paper) in order to show convergence

in a stronger norm. Addtionallly, the post-processed variable features in the a

posteriori bound. This is related to what we introduce in Chapter 3, as, conceptually,

we also use a post-processed numerical solution in order to improve convergence

behaviour, and ultimately state bounds.

In [BdVM08], the framework of [dV08] is used to develop an error estimate

for elliptic (steady diffusion) problems in mixed form with homogeneous and non-

homogeneous Dirichlet boundary conditions. The error estimate is used to imple-

ment adaptive refinement. The obtained error indicator resulted in optimal rates of

convergence in a mesh-dependent norm (see [BdVM08, §2 and §4]).

In [AdVLV13], a hierarchical-type a posteriori error estimator is presented for

the MFD discretisation of elliptic problems (see [AO11, ZGK83, Ban96, DLY89] for

more information on hierarchical a posteriori estimators). The posteriori estimate

is optimal with respect to the discrete energy norm for the tested problems (see

[AdVLV13, §4,5]).

Lastly, it is worth noting the use of reconstructions as a post-processing tool

in the context of the MFD method. Briefly, reconstructions in the MFD method

map mesh functions to continuum functions and enable the use of Finite Element

machinery with MFD discritezations. It can be used in posteriori error estimates to

improve convergence behaviour ( see [dVLM14, Ch.5]) and as a post-processing tool

to improve accuracy of the numerical approximation to the solution (see [CM08] for

an example based on a diffusion problem in mixed form).
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Generalised Finite Difference (GFD) method

The GFD method is an evolution of the traditional FD method that can be applied

to irregular grids of points. The evolution of the use of FD methods for approximat-

ing PDEs on irregular grid started from the 50s. In [Jen72], a basis was proposed

for a practical (i.e. practically possible given the computational capabilities of the

time) FD method on irregular grids. This work addressed challenges related to

approximating PDEs in non-rectangular domains and in particular, the problems

of obtaining difference coefficients and implementing the boundary conditions on

curved boundaries. The proposed method, based on a six-point scheme (star), ob-

tained FD formulas for approximating up to second order derivatives.

A series of ensuing works were aimed at addressing the two main disadvantages

from the approach of [Jen72]; namely, singular derivative coefficient matrices and

limited accuracy of the obtained derivatives (see e.g. [PK75], [WTDS75], approaches

and references therein). Interested readers are also advise to check [LO80] and [Lis84]

for improvements and important contributions to the method.

These advances enabled the implementation of adaptivity in the context of the

GFD method. In particular, we note the work of [Ork98] on an adaptive multi-

grid GFD method (see also references on related work of Orkisz in [BUGA03]. In

[BUGA03], an h adaptive method is described for second order PDEs. The adaptive

method therein, is facilitated by an a posteriori error estimate (see [BUGA03, eq.

(16)]) which is obtained for a given node in a stencil by calculating ( a weighted com-

bination of the) additional Taylor expansion terms relative to those used to obtain

the scheme. Specifically, an extra, fourth order Taylor expansion is used to obtain

the estimate by calculating its difference with the original, second order Taylor ex-

pansion used to obtain the scheme. Then, additional nodes are added/subtracted

from the stencil accordingly. The reader should note that these estimates are indi-

cators/estimators of the errors and not necessarily error bounds like they are in our

case.

The concept of obtaining posteriori estimates using a higher order Taylor expan-

sion compared to the one used for the scheme is also used extensively in the GFD

literature. In [UBAG05], it is used to to obtain a posteriori estimate for a 3D prob-

lem. In [BUGA08] the estimate of [BUGA03] is compared with earlier work from
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[Ork98] on the basis of adaptivity for an elliptic problem and found to be of similar

efficiency but better computationally. In [UBU+18] the estimate of [BUGA03] is

used to drive h-adaptivity in 2D and 3D second order PDEs. In [GUB+18] adap-

tive refinement is used to improve the solutions of GFD approximations for elliptic

problems.

Virtual Element Method

The Virtual Element Method (VEM) is a numerical framework for approximating

PDEs. We include the VEM in this review section because it can be regarded as an

evolution of the MFD method (see [BdVBC+13] for the basic principles of VEM and

its connection to MFD). Nevertheless, it should be noted that in its latest iterations,

the VEM grew to more closely resemble FE methods rather than FD method.

In particular the VEM resembles a generalisation of FE methods on polygons. It

can be used with general polygonal/polyhedral elements ([BdVBMR14], [BdVBMR16],

[BFM14] [CMS17]) and it utilises approximation spaces of arbitrary global regularity

(see [dVM14]).

The mesh flexibility allowed by the VEM with makes it attractive for the im-

plementation of adaptivity, as [CGPS17, §1]) explain. This is because of the ease

with which refinement, coarsening and mesh distortion are treated by the VEM. We

will briefly summarise these. Firstly, since general polytopal meshes are admissible

on account of the polynomial subspaces included in the VEM space, unlike stan-

dard FE methods, maximum angle conditions or mesh-distortion considerations are

not problematic. Furthermore, there is no need to introduce additional degrees of

freedom for hanging nodes resulting from the refinement of neighbouring elements.

This is because co-planar element interfaces are acceptable and therefore hanging

nodes are treated as new nodes. Coarsening is also trivial.

A residual-based posteriori error estimate is developed in [DVM15] for a VEM

approximation of the Poisson problem with (piecewise) constant coefficients. In

[CGPS17], an a posteriori error analysis is presented for the VEM applied to general

elliptic problems from [CMS17]. The resulting error estimate is of residual type and

relies on the degrees of freedom and the element-wise polynomial projection of the

VEM solution. The estimate is shown to be equivalent to the error between the true
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solution and the VEM approximation in the energy norm.

In [BdVCN+21], the foundation was constructed for building a rigorous theory for

Adaptive Virtual Element Methods (AVEMs). The analysis pertains to triangular

meshes in 2D with a systematic refinement procedure such that shape regularity and

optimal complexity are preserved. This work focuses in addressing the presence of

the stabilisation term which prevents the equivalence of the residual error estimator

with the error estimate in the energy norm. The authors demonstrate that, under a

set of appropriate assumptions, the stabilisation term can be made arbitrarily small

relative to the error estimate (see [BdVCN+21, §1,4]). The estimate is found to

behave optimally (see [BdVCN+21, §8]).

1.1.3 Chapter 4: Automated Error control for the transport

equation

A posteriori error estimates for linear hyperbolic problems

This chapter is intended as a motivation for obtaining a general framework of a

posteriori error estimates for FD schemes for hyperbolic conservation laws. In this

context, it is useful to include some material on a posteriori error estimation, even

for other numerical methods (e.g. FV or FE). We do this for two reasons.

Firstly, a posteriori error estimation for FD schemes is ultimately the end purpose

for which we are intending the material in this chapter. Secondly, the inclusion of

material from FE and FV a posteriori error estimation enables as to set the tone for

the chapter itself.

A posteriori error estimates for hyperbolic conservation is, justifiably, a large area

of research. Hyperbolic conservation laws are widely used in practice. They feature

solutions which can develop discontinuities in finite time and it is in this context

that a posteriori error estimates are particularly useful: they inform the user where

the approximability of the underlying numerical scheme must be improved locally

in order to better capture the effect of the discontinuity.

A posteriori error estimates for evolution problems (including conservation laws)

are generally obtained using duality and energy methods as [MN06, §1] notes. We

note that while a posteriori estimates do not necessarily have to be produced with
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a particular numerical method in mind (see e.g. [CG95]), it is often the case that a

posteriori error estimates have been produced for specific numerical method.

Briefly, the duality methods rely on the stability of a backward dual problem (see

[JS95]; see also [SH96] for a review for duality based estimates for the FE method).

In [HS01] and [BO96] the authors consider a posteriori error analysis for hp-dG

FE approximations to first order hyperbolic problems see also [HRS00] for work on

a posteriori error analysis of stabilised finite element approximations of transport

problems.

Energy methods involve testing the error representation formula with the error

(or some integral/derivative of the error) and deriving an a posteriori error bound

using the stability framework of the PDE (see e.g. [NSV00] for a discussion in

the context of evolution equations in general and [LP12] for energy estimates for

parabolic problems).

In [MN06], an a posteriori error estimate is constructed for time discretisations

by the dG method for both linear and non-linear evolution problems. In this work,

the a posteriori error analysis relies on the reconstructions to derive optimal order a

posteriori error estimates. In [GHM14] an a posteriori error bound is presented for

a first order linear hyperbolic problem, discretized by the dG method. In this case,

the a posteriori error bound is based on a reconstruction in the spirit of [MN06].

It is worth noting that both these works use the concept of reconstruction in the

derivation of a posteriori estimates. A discussion of reasons for using reconstructions

in the context of evolution problems can be found in [Mak07].

In our case, the reconstruction facilitates an alternative error interpretation

which allows us to compare a post-processor of the numerical solution with the

exact solution. In turn, this error interpretation allows us to use the PDE’s sta-

bility framework; something we could not have done otherwise on account of the

point-wise nature of the FD method. This enables us to produce optimal order a

posteriori estimates for the problems under consideration.

It is interesting to compare our use of reconstructions with the work of [GM00]

as this work is also concerned with a posteriori error estimates for FD schemes for

scalar conservation laws. In this case the numerical approximation produced by the

FD scheme is interpreted to be constant between interval mid-points. In a sense one

14



may describe this as an implicitly defined piece-wise constant reconstruction

In [BCL13] the authors present a unified approach for constructing local a poste-

riori error estimates for FE approximations, including conforming, non-conforming

and DG. Their approach is based on Hdiv(Ω)-reconstructed fluxes, an idea first pro-

posed in [LW04], where it is presented in the context of conforming Raviart-Thomas

elements.

Parasitic waves

Parasitic waves are numerical artefacts that arise when a solution to an evolution

problem travels over an abrupt change in the underlying numerical model. They

manifest as high frequency numerical dispersion with wavelengths comparable to the

local grid size. Various types of changes in the underlying numerical discretisation

or in the PDE itself may cause parasite generation. Examples include, step changes

in mesh resolution, step changes in PDE coefficients or changes in the PDE model

itself (e.g. from advection to advection-diffusion).

In this area, it is worth making a note of the works of Robert Vichnevetsky.

Firstly, in [Vic81b], the author studies the spurious reflection phenomena that arise

at the mesh-size change interface for numerical approximation of hyperbolic conser-

vation laws using finite differences. In this work, the author uses the time-Fourier

transform of the numerical solution (see also [Vic81a, Vic87]) to obtain an analytical

solution of the reflection that occurs at the fine-coarse mesh interface. The author is

also able to derive other useful properties using the Fourier transform, such as phase

and group velocities for the actual and the parasitic components of the solution. A

dedicated study on the propagation properties of semi-discretisations of hyperbolic

equations by the same author can be found in [Vic80], while the Fourier analysis

aspect of numerical approximations to hyperbolic equations is treated in [VB82].

The behaviour of parasitic waves is also investigated in [Tre82] in the context of a

broader study of the importance of group velocity in FD schemes for time-dependent

problems. Specifically, the author studies the generation and propagation of par-

asitic waves by FD schemes and in particular, their generation and transmission

at interfaces. In the numerical experiments presented in [Tre82, §3], the genera-

tion of parasitic waves arising from coefficient change is demonstrated. The author
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used the concept of group velocity to obtain useful descriptions of their propagation

characteristics, such as the speed at which they propagate.

On the topic of parasites, more recent attempts include that of [FR04] and

[LT11]. In [FR04], the authors address the issue of spurious modes excited at the

interface of non-uniformities in the context of the advection and wave equations. For

the advection equation in particular, they compare the dispersion relations between

the central difference and box-scheme spatial semi-discretisations (see [AM04] for

details on the box scheme). They show that the box-scheme does not suffer from

the same spurious modes at mesh interfaces that the central difference scheme does

on account of its monotonic dispersion relation with respect to the wave-number.

In [LT11], the authors investigate the propagation behaviour for central differ-

ence schemes on non-uniform staggered grids and extend results to shallow water

equations. They show that, asymptotically, there is no reflection in the limit as

the grid becomes slowly varying as long as the waves of the relevant frequencies

are well-resolved. In addition, they propose how to tailor the difference scheme to

minimise spurious wave reflections.

1.1.4 Chapter 5: Postprocessing in finite difference schemes

A posteriori error estimation for FD schemes for conservation laws

Hyperbolic conservation laws ubiquitously arise in many physical applications. In-

viscid compressible flows are well described by Euler’s equations which have meteoro-

logical applications, for example. A major difficulty in designing numerical schemes

for hyperbolic conservation laws is that they can form shocks in finite time. There

has been considerable activity in this area based on various numerical techniques,

such as finite difference, volume and element approaches [CCL95, KR94, L+02]. The

formation and tracking of these discontinuities is a significant challenge.

A substantial body of work has accumulated over the years in applications of

FD schemes for hyperbolic problems, resulting in several noteworthy contributions

(see [LeV92], [JT97] for overviews). Early examples include Godunov’s scheme

([God59]), the Lax-Friedrichs (LxF) scheme ([Lax54]), the two-step Lax-Wendroff

scheme (see the recent work of [LVW21]), as well as the works of van Leer (see

([VL73], [VL74], [VL77a], [VL77b] and [VL79])). The works of [NT90], who use
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the LxF solver in conjunction with MUSCL-type interpolants to compensate for the

excessive LxF viscosity are also of note. Two classes of FD schemes that are of

particular importance in the context of hyperbolic conservation laws are the Essen-

tially Non-Oscillatory schemes (see [HEOC87], [SO88], [SO89]) and the Weighted

ENO schemes ([LOC94], [JS96], [JT98]; see [Shu98] and references therein for an

overview). ENO and WENO schemes combine high orders of approximation in

smooth regions and non-oscillatory behaviour in the vicinity of discontinuities.

A posteriori error estimation aims to provide the user with local computational

control over the error incurred in approximating a partial differential equation (PDE)

with a given numerical scheme. A posteriori error estimates for hyperbolic problems

have received considerable attention, particularly for discontinuous Galerkin (dG)

finite element methods [Joh90, JS95, DMO07, GMP15, GP17, DGPR19, AO11,

Ver13] and finite volume (FV) methods [CCL94, CG14, BHO18, SCR16, SL18].

(see also [GHM14]; see also [SH96],[HS01] for relevant material)

By comparison, finite difference (FD) schemes have seen less interest with regard

to a posteriori estimates. This is predominantly due to the problem lacking a vari-

ational structure, something quite crucial for typical a posteriori techniques to be

applied. Indeed, goal-oriented a posteriori estimates have been derived for the Lax-

Wendroff scheme by proving the method is equivalent to a finite element scheme

[CET14]. It is worth noting that there are the approaches that work for general

numerical schemes approximating scalar conservation laws [CG95] and a posteriori

estimates derived for FD schemes with local error estimation based on Richardson

extrapolation [BO84, ABF88]. The estimates are used to facilitate mesh adaptivity.

ENO and WENO schemes

Although the WENO scheme itself is not the focal point of this chapter, it is nec-

essary to make a special note for this scheme as WENO interpolating polynomials

are key to our reconstruction procedure for general non-linear hyperbolic conserva-

tion laws. Additionally, ENO and WENO schemes are a cornerstone in the area of

numerical approximation of hyperbolic conservation laws.

Essentially Non-Oscillatory schemes were first designed in [HEOC87]. The work

in [HEOC87] was set in a FV context. Since then, this area of research expanded

17



significantly. In [SO88] and [SO89] the ENO schemes were extended to FD methods

and since then they became widely used. At the heart of ENO schemes there is

an automatic stencil selection procedure, whereby intervals are successively added

to the computational stencil. The selection of additional intervals is based on the

local smoothness of the relevant function: if an interval contains a discontinuity,

then it is not selected. It is this procedure that ensures uniformly high orders of

accuracy in smooth regions and sharp, essentially-non oscillatory transition over the

discontinuity.

Despite their utility and widespread usage, ENO interpolation and reconstruction

have a few shortcomings (see [Shu20, §3]) for a detailed discussion). Very briefly,

some of these shortcomings are the following. Firstly, while many candidate stencils

are considered, ultimately, only one is chosen. This is a sensible approach near

discontinuities but in smooth regions, the other candidate stencils can be put to

good use to help increase the order of accuracy. Secondly, the divided difference

approach may result in a left-biased stencil. This could be the case, for example, for

functions whose derivatives are strictly monotonically increasing since their divided

differences will reflect this behaviour. This bias can result in stability and accuracy

issues in solving time-dependent hyperbolic problems (see [RM90]). Thirdly, from

a computational perspective, the procedure for the adaptive stencil choice in ENO

schemes contains several if statements which are inefficient on certain machines.

For a complete list of issues associated with ENO procedures, the reader is directed

to [Shu98, §2.2.2].

WENO schemes are an extension of the Essentially Non-Oscillatory (ENO) pro-

cedure. WENO schemes seek to maintain the advantages of the ENO procedure,

such as uniformly high order accuracy and non-oscillatory transitions over disconti-

nuities, while simultaneously addressing the shortcomings. The key idea in WENO

schemes is to use a convex combination of candidate stencils by assigning a weight to

each stencil (termed a non-linear weight) and then combining all stencils to obtain

the result. This is in contrast with the ENO procedure where only one stencil is

chosen.

There are two important considerations when choosing the weights. Firstly, it

must be ensured that, when the solution is smooth in all candidate stencils, the

18



weights are worked out such that they highest possible order of accuracy is obtained

for the combined stencil. Secondly, when one candidate stencil out of a set contains

a discontinuity while the rest do not, then the weight for this stencil should be very

small so its effect on the combined approximation to the numerical flux is small.

These two considerations ensure the uniformly high order and the non-oscillatory

behaviour for WENO schemes.

WENO procedures were introduced in the context of FV schemes for hyperbolic

conservation laws in [LOC94]. In this work a (k + 1) th order WENO scheme was

produced from the same stencils that would produce a kth order ENO scheme. In

[JS96] a general framework was presented for constructing (2k − 1) th order WENO

approximations from a kth order ENO stencil. In the same paper, a fifth order FD

WENO scheme was constructed for multi-dimensional conservation laws using this

framework. This scheme has been been very popular ever since.

ENO and WENO schemes have been extensively implemented in several and

diverse fields. These include simulations of turbulent flows ([SZA+19]), studies

of shock waves, explosive flows and chemically reactive flows, respectively [OZ19],

[WSHN13], [CSKO19], aerodynamics and magnetohydrodynamics, [LRKK19] and

[FIDSG19], atmospheric and climate sciences ([LC19]) and fluid structure interac-

tion ([NBOT19]).

In this work we are interested in the application of FD WENO schemes on non-

uniform grids. In this regard, we make extensive use of the results of [JSB+19],

where the WENO approximation is extended to non-uniform grids. In this chapter

we present this procedure in the context of an interpolant of functions of vary-

ing regularity and in the following chapters we use this strategy to facilitate mesh

adaptivity in hyperbolic conservation laws.

1.1.5 Chapter 6: Automated error control for linear hyper-

bolic systems

Systems of hyperbolic conservation laws are of high importance in the physical

sciences (fluid mechanics, electromagnetics, acoustics, earthquake engineering to

name but a few). In cases where the perturbations that are being propagated are

small, these are modelled by linear systems (see [LeV07, §10]). The frequent lack of

19



analytical solutions of hyperbolic problems makes their numerical approximation an

important field of study. In addition, because these problems often possess features

such as complex solution structures and shocks, an important consideration is to

ensure that computational resources be used optimally and focused in parts of the

numerical domain where such features are present. In turn, this makes a posteriori

error estimates, which are often used to drive adaptivity, an important field of study

in the context of hyperbolic conservation laws in and of itself.

A posteriori error estimation for hyperbolic conservation conservation laws is

perhaps not as developed as the corresponding areas for elliptic PDEs (see e.g.

[SH03] for a discussion on potential explanations).

Linear systems

In this chapter we are interested in symmetric positive linear systems. These sys-

tems, which are also known as Friedrichs systems (see [Fri58]) cover a wide class of

problems (wider than we consider here). This class of problems includes not only

hyperbolic systems but also symmetric elliptic problems. The treatment of these

problems together did not arise as an intention to treat them both in the same

framework, but rather to treat problems which may change from one type of PDE

to the other. In the words of the author of the paper (K.O. Friedrichs) which later

gave this class of problems their name, a unified treatment of these problems poses

challenges as they use different tools. An example of a problem which changes from

one to the other type is the modelling of transonic flow (see [W+95]). Briefly, in

regions of the domain where the flow is subsonic, the PDE that governs the flow is

elliptic whereas in regions where the flow becomes supersonic, the PDE is hyperbolic.

Numerical schemes

There is a rich literature of FD, FV and FE schemes for hyperbolic conservation laws

(see [Swe84, Swe89, CJST06, LeV92, L+02, SH96]). The methods involved for non-

linear problems certainly work for linear ones as well. In the case of linear problems,

aside from high approximability, an important consideration is the behaviour of the

numerical method in the case of discontinuous solutions.

Numerical methods which would work well with smooth solutions may blow up
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in the presence of discontinuities. Numerical artefacts such as diffusion (first order

methods) and dispersion (numerical oscillations) may be exacerbated in the presence

of discontinuities. Furthermore, even if there is convergence this may be of lower

order than the formal order of convergence for the method. An example is the

Lax-Friedrichs FD scheme, which is formally first order accurate but converges as

O
Ä
h1/2

ä
to the exact solution for the advection equation with a discontinuous initial

condition.

A posteriori error estimation

A posteriori error estimates for systems of linear conservation laws can follow as

corollaries from a posteriori estimates for non-linear problems, particularly in the

context of FE (both cG and dG) and FV discretisations. We are reviewing these in

the next chapter so in this chapter we will focus towards results obtained specifically

for linear systems and in particular on Friedrichs system.

Interest in the a posteriori error analysis of Friedrichs systems arises naturally

from a need to drive adaptivity and to ensure economical use of computational

resources in such problems (see [SH96], [AABM00]).

We note in particular work of [HMSW99], in which local and global a posteriori

error bounds are obtained for a steady problem. An overview of a posteriori error

analysis for FE approximations to hyperbolic problems, including for linear systems,

can be found in [SH03], in which a discussion is presented on a posteriori error

estimates based on hyperbolic duality arguments. This work includes a summary

of the Johnson paradigm of a posteriori error estimation (see [Joh93],[EEHJ95]; see

also [JS95]).

1.1.6 Chapter 7: A posteriori error analysis for non-linear

hyperbolic problems

A note on non-linear hyperbolic problems

In this chapter we consider the Cauchy problem for non-linear scalar conservation

laws and systems of conservation laws in one spatial dimension. The mathematical

treatment of these problems has to account for two difficulties (see also [Daf05, §4]):
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shock formation and non-uniqueness of weak solutions.

Firstly, the solutions to these problems form shocks in finite time: if one visualizes

the solution as a propagating wave, then the wave profile would grow steeper in

time and eventually form discontinuities which would propagate. Therefore, such

solutions are examined in a weak sense rather than in the classical sense.

Secondly, weak solutions are not necessarily non-unique - in fact a problem may

have infinitely many of them (see [Daf05, §4.4]). This means that appropriate admis-

sibility criteria must be established to eliminate undesirable or physically irrelevant

weak solutions from consideration. Briefly, the matter of existence and uniqueness

of weak solutions has been settled for non-linear scalar problems in many spatial

variables and partially for systems in one spatial variable. Two widely used admis-

sibility criteria for weak solutions stem from the notions of entropy and vanishing

viscosity.

The vanishing viscosity technique involves the addition of a diffusive term with

a small coefficient to the hyperbolic system. The justification for this is the obser-

vation that the physical problem which induces the conservation law possesses some

degree (however small) of dissipation ([Smo12, §15.D]). Unsurprisingly the exact

structure of the added term is informed from the thermoelastic properties of the

underlying physical system (see [Daf05, §4.6]). In this regard, shocks in physical

systems would in essence manifest as very steep gradients in the considered quan-

tity. Then, assuming that the viscous term was added in such away so as to ensure

well-posedness of the viscous problem, one obtains the solution of the original, non-

dissipative hyperbolic system as the limit of the viscous term tending to zero of the

solutions to the viscous problem. Convergence in this case should be defined in an

appropriate sense. A solution obtained in this way is said to satisfy the viscosity ad-

missibility criterion (see e.g. [DiP83] for a convergence theorem using the vanishing

viscosity method applied to the isentropic equations of gas dynamics).

Entropy-related admissibility conditions trace their physical origin back to the

second law of thermodynamics, which states that entropy of a system must be non-

decreasing with time. Such conditions are used to identify the physically relevant

weak solution (see [LeV92]) by demanding that entropy increases across a physically

admissible shock ([L+02, §11.13]) - a property that can be used to identify such
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shocks. There are a number of entropy conditions, such as, for instance, the Lax

and Oleinik entropy conditions (see [Lax57, Lax73] and [Ole57]; see also [L+02,

§11.13] for a brief review).

An alternative entropy approach is the definition of an entropy function. The

entropy function satisfies a ”companion conservation law”, which becomes an in-

equality -in weak form- in the presence of discontinuities (see [LeV92, §3.8.1]). This

criterion is called the entropy inequality. It should be noted that the existence of an

entropy function is not guaranteed in general: specifically, while in the case of scalar

problems, conveniently, any convex function is an entropy this is not the case for

systems. In general, for systems of conservation laws, the existence of entropy func-

tions is a property of the system and while it is certainly possible to find an entropy

function, it is not as easy as the scalar case [GR13], where every convex function is

an entropy function. A famous example is the family of entropy functions known

as Kruzhkov entropies (see [Kru70]). It should be noted that in [Kru70], the au-

thor gave a characterisation of admissible weak solutions and contributed existence,

uniqueness and stability results. Incidentally, the doubling of variables technique

from that paper provides a natural way of establishing a posteriori error control in

the L1(Ω)−norm for scalar problems in several variables (see [CG95], [Ohl09]).

A note on the numerical discretisation of non-linear problems

The numerical study of non-linear hyperbolic problems is an expansive and impor-

tant field of study that has accumulated over decades. A review of several contri-

butions in the numerical discretisation methods for non-linear hyperbolic problems

can be found in [CJST06] (see also references therein). This work includes reviews

on FD, FV and FE techniques amongst others. The work of [GR13] contains an

extensive exposition of FD and FV schemes of systems of conservation laws with

schemes for up to two spatial variables.

There is a extensive literature with regard to numerical discretisation methods for

hyperbolic problems. While we do not intent by any means to provide an exhaustive

literature review we will refer to some review articles which offer a more thorough

coverage of the subject matter. For the theory of convergence of approximate so-

lutions (using Finite Differences and viscosity solutions) of hyperbolic systems in
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one dimension we refer readers to [GR13] (see also the related work [GR91] by the

same authors on theory for scalar problems). An exposition on FD methods for

hyperbolic conservation laws can be found in [LeV92]; a survey of frequently used

FD schemes for systems of non-linear hyperbolic conservation laws can be found in

[Sod78] (see also references therein). With regard to FV methods for conservation

laws we refer readers to [LeV07] and references therein. Lastly for DG schemes for

hyperbolic problems we refer readers to [HW07, §5], [CKS12] and references therein.

A more recent review of several numerical methods can be found in [Hes17].

A substantial body of work has accumulated over the years in applications of

FD schemes for hyperbolic problems, resulting in several noteworthy contributions

(see [LeV92], [JT97] for overviews). Early examples include Godunov’s scheme

([God59]), the Lax-Friedrichs (LxF) scheme ([Lax54]), the two-step Lax-Wendroff

scheme (see the recent work of [LVW21]), as well as the works of van Leer (see

([VL73], [VL74], [VL77a], [VL77b] and [VL79])). The works of [NT90], who use the

LxF solver in conjunction MUSCL-type interpolants to compensate for the excessive

LxF viscosity are also of note.

We must also refer to high resolution methods. An early work in this area is

the flux-corrected transport method of [BB73], which can also be viewed as a flux-

limiter method. In these methods, the objective is to facilitate high accuracy without

introducing spurious oscillations. This is facilitated by a linear combination of low-

order and a high order flux, with the coefficient of the correction being referred to as

the flux limiter. We also refer readers to the work of [Swe84], where a large class of

these methods is studied and conditions are derived to guarantee the TVD property

and second order accuracy (see also [LeV92, §16]).

Two classes of FD schemes that are of particular importance in the context

of hyperbolic conservation laws are the Essentially Non-Oscillatory schemes (see

[HEOC87], [SO88], [SO89]) and the Weighted ENO schemes ([LOC94], [JS96], [JT98];

see [Shu98] and references therein for an overview). ENO and WENO schemes com-

bine high orders of approximation in smooth regions and non-oscillatory behaviour

in the vicinity of discontinuities.
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A posteriori error estimation for non-linear problems

In the numerical treatment of non-linear hyperbolic problems a major challenge is

the reliable computational representation of the localised structures that we alluded

to previously that typically arise in these problems, such as propagating shocks,

contact discontinuities and rarefactions. These phenomena highlight the need for

efficient, adaptive computational meshes, which ensure the economical allocations

of computational resolution to capture this behaviour. Adaptivity in this context

is driven either by ad hoc heuristics (e.g. by physically motivated considerations,

problem geometry etc.) or -preferably- by rigorous a posteriori error estimates.

A posteriori error estimates for non-linear scalar conservation laws in many di-

mensions were derived in [KO00] in the L1(Ω)−norm for FV schemes (see also

[CH99] for related error estimates using the Kruzkov framework). We also refer to

[GM00] for a one-dimensional scalar problem with results based on Kruzkov-type es-

timates (see [Kru70], [BP98]). A posteriori error estimates for general numerical dis-

cretisations for the non-linear scalar problem are derived in [CG95] (see also [Coc99]

and references therein). We also note the Dual Weighted Residual (DWR) approach

to a posteriori error estimation for hyperbolic problems (see [Sül99, HS01, HH03];

see also [Laf04], [HH03] for non-linear problems).

We note the utility of the doubling of variables technique introduced in [Kru70]

in obtaining error estimates for non-linear scalar conservation laws for Finite Volume

and discontinuous Galerkin schemes (see [Ohl09]). This technique is used both in

a priori and a posteriori error estimates for scalar problems. In the case of a priori

estimates we refer readers to [Vil94, CCL94, CG96, CG97, CGY98], which pertain

to a priori error estimates fof FV methods for scalar multi-dimensional conservation

laws.

In the case of a posteriori error estimates for non-linear scalar problems in one or

multiple dimensions we refer readers to the work of [KO00], [OV06] for derivation of

results using FV schemes. We also refer reader to [DMO07] for the derivation of an

a posteriori error estimate for mesh adaptivity with the Runge-Kutta Discontinuous

Galerkin (RK-DG) method (see also [Ohl09] and references therein).

In the context of a posteriori error control for non-linear hyperbolic systems we

note the work of [GMP15], who extended the reconstruction technique of [Mak07],
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originally for parabolic problems, and used it in conjunction with the relative entropy

framework of Dafermos and Diperna to derive optimal a posteriori error estimates

(pre-shock) for a DG discretisation of a one dimensional system of non-linear hyper-

bolic conservation laws - a result we utilize in this chapter (see [Daf78],[Daf79] and

[DiP79]; see also [SV16] on relative entropy for hyperbolic systems). We also note

related work by [GP17], where a posteriori error estimates were derived using the

entropy framework and suitable reconstructions to facilitate model adaptivity, as

well as the work of [DG16], which is based upon and extends the work of [GMP15].

1.2 Thesis structure

The rest of the Thesis is structured as follows. In Chapter 2, inspired by the work

of [GLMV16], we obtain reconstructions using various approaches from the discrete

solution of an ODE problem discretised using a well known multi-step method. We

use these reconstructions to establish a posteriori error control and we compare their

performance on the basis of the convergence behaviour of the estimate. This chapter

is used to motivate and form the basis for the work in later chapters.

In Chapter 3 we use reconstructions to facilitate an a posteriori analysis of a

central difference discretisation of our model elliptic problem. In this regard the

reconstruction facilitates an alternative error interpretation and enables us to use

the underlying stability framework to obtain the a posteriori estimate. We compare

this a posteriori estimate with a classical estimate obtained for a linear Lagrange

finite element discretisation of the same problem.

In Chapter 4 we perform an a posteriori error analysis for finite difference meth-

ods for the transport equation. This chapter sets the tone and motivates the rest of

the thesis by using linear transport to raise the issues that we desire to address in the

subsequent chapters. We use simple reconstruction operators in order to highlight

the issue of optimality. Subsequently, we validate and benchmark the performance

of a reconstruction based a posteriori estimate using several tests.

In Chapter 5 we introduce the numerical schemes we will use for the subsequent

chapters. An important component of this chapter pertains to Weighted Essen-

tially Non-Oscillatory (WENO) schemes. WENO schemes are an important class of
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schemes in the context of hyperbolic conservation laws on account of their desirable

properties, such as high order approximability in smooth regions and non-oscillatory

behaviour in the vicinity of shocks. WENO interpolation, a procedure which is a

part of WENO schemes, is an important component of the framework we present

for obtaining reconstructions of the FD solution. Specifically, it enables us to obtain

reconstructions of high polynomial order.

In this chapter we also perform benchmark tests to evaluate the numerical con-

vergence behaviour of the WENO interpolant, using functions of varying regularity,

in order to demonstrate its suitability as the spatial component of the reconstruc-

tions in subsequent sections.

In Chapter 6 we extend the results of Chapter 4 to linear, symmetric hyperbolic

systems in one spatial dimension. We use the WENO interpolation, presented in

Chapter 5, to obtain a reconstruction for a model problem, which we then use

to facilitate a posteriori error control for the FD discretisation we examine. The

behaviour of the a posteriori error estimate is validated numerically.

In Chapter 7 we examine non-linear conservation laws in one spatial dimension.

We approximate both scalar and systems problems with well-known and frequently-

used FD schemes and we show a posteriori error estimates in different cases. In the

scalar case, we numerically test different a posteriori error bounds with the intention

of combining them into a single bound that is optimal in both the pre-shock and post-

shock regimes. The pre-shock estimate is based on a relative entropy framework,

see [GMP15], while the post-shock bound is based on a Kruzkov framework, see

[CG95] (see also [DMO07, Ohl09] for relevant reviews). In the systems case we use

the relative entropy framework (see [GMP15]) to show a posteriori error bounds for

general systems in the regime prior to shock formation. We also use the residual

obtained from the reconstruction as a refinement criterion in an adaptive setting.

We validate our results using a range of numerical tests.

Finally, in Chapter 8 we conclude the thesis by summarising our contributions

and identifying avenues for further research.
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Chapter 2

A posteriori analysis for

conservative linear multistep

methods

Abstract

In this chapter we perform an a posteriori analysis of a model setup of an ordinary dif-

ferential equation discretised with a well known linear multistep method. We are able

to prove an a posteriori upper bound using the energy norm of the problem and a post

processing of the discrete solution, inspired by [GLMV16]. We compare three different

methods of forming the a posteriori bound introducing appropriate reconstructions of the

discrete solution, forming the basis of the work in the subsequent chapters.

2.1 Introduction

In this chapter we obtain and examine reconstructions of a numerical solution to

a differential equation. Specifically, we present a simple framework for obtaining

reconstructions. We highlight the use of the framework through a reconstruction-

based a posteriori error estimate for an illustrative ODE initial value problem, which

is approximated using linear multistep methods. We assess the behaviour of the

estimator on the basis of convergence characteristics and we compare its performance

with an existing estimate for the same problem from the literature, [GLMV16].
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2.1.1 Motivation

Our motivation in this chapter is the development of a framework for constructing

reliable, optimal, reconstruction based a posteriori error estimates. Let us briefly

expand upon the concepts of reconstructions and a posteriori error estimates for the

sake of clarity of exposition.

Firstly, a posteriori error estimates are computable error bounds that enable the

user to exert local control over the error. The importance of local error control is

that it facilitates the implementation of adaptivity using the a posteriori estimate

as a refinement/coarsening criterion. In addition, global error control enables a

guaranteed use of knowledge of the accuracy of the approximation. Secondly, re-

constructions are mathematical objects that can be viewed as post-processors of the

discrete approximation to the solution. They are constructed such that they have

certain desirable properties (e.g. convergence characteristics). We will expand upon

desirable characteristics in the relevant sections.

The ODE model problem serves as a convenient stepping stone for extending

the framework to PDEs, which we do in later chapters. In particular, it will pave

the way for constructing the temporal component of the reconstructions in PDE

problems in subsequent chapters.

There is extensive research in FD methods for ODEs as well as a posteriori error

control for ODEs. However, there is not as much interest in the intersection of the

two areas. Possible reasons for this may be that FD schemes lack the variational

formulation that finite element schemes possess naturally for example. The second

challenge is that FD approximations are only defined pointwise in the domain of

interest. A lot of the literature on a posteriori error estimates requires globally

defined objects. Because of these two facts, it is difficult to obtain a posteriori error

estimates for FD schemes and the work done usually caters to FE techniques.

In this chapter we endeavour to use reconstructions as an avenue to compute

robust post-processors for FD solutions that are easily usable for establishing a

posteriori error control. We then obtain an estimate using the stability framework

of the underlying problem in the energy norm. We construct different estimators

using our framework and compare them to an existing estimate for this problem

from the literature [GLMV16].
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2.1.2 Chapter contribution

In this chapter we perform an a posteriori analysis of a second order initial value

problem discretized by a well-used two step explicit method: the Leap-frog scheme.

We obtain an a posteriori error bound in the problem’s energy norm. In order to

compute the bound we present and use reconstruction approaches which utilise the

numerical solution to construct globally defined interpolants of the solution in the

spatial variable. We compare the performance of a bound constructed from these

reconstruction approaches to the performance of a bound constructed using the

approach of [GLMV16]. The comparison between the different approaches is on the

basis of effectivity and rate of convergence.

The rest of this chapter is structured as follows: in §2.2 we introduce our model

problem. In §2.2.3 we present the numerical discretization of the problem using the

Leap-frog scheme. In §2.2.5 we present the re-formulation of the scheme, summa-

rized from [GLMV16, §2]. The re-formulation is required in order to obtain the

reconstruction with the framework of [GLMV16], which will be the benchmark case

against which we will compare our results.

In §2.3 we present the a posteriori error bound that we will use to compare

the behaviour of reconstructions obtained using our framework with that of the

framework of [GLMV16]. We also describe and present the frameworks in detail in

this section. We provide an illustrative example in order to illucidate the concept of

reconstruction. In particular, in §2.3.8 we present the reconstruction framework fo

[GLMV16], in §2.3.10 we present the framework we will be using. As an alternative

for obtaining higher order reconstructions we also present a framework based on the

WENO reconstruction in §2.3.13. In §2.4 we present numerical experiments based

on the reconstructions we propose and the one from [GLMV16]. Finally, we discuss

the results in 2.5.

2.2 Setup

In this section we will include some preliminary material required to present the

problem we will examine. Despite the fact that the model problem we will consider

is an ODE problem, we will nonetheless include considerations for the PDE problem
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in the setup phase so as not to have to re-introduce notation later on.

Let Ω ⊂ Rn denote an open bounded set, let ∂Ω denote the boundary of the set

and consider and let T ∈ R+. Also, let f : Ω × (0, T ] → R, u0, v0 : Ω → R denote

given functions and let u : Ω × [0, T ] → R denote the unknown function. Also,

consider a second order differential operator A such that

Au = −
n∑

i,j=1

Ä
aij(x, t)uxi

ä
xj

+
n∑
i=1

biuxi + c(x, t)u (2.1)

for given coefficients ai,j, bi, c where i, j = 1, . . . , n. Now, consider an Initial/Boundary

Value Problem (IBVP)

∂2u

∂t2
+Au = f in Ω× (0, T ]

u = 0 on ∂Ω×[0, T ]

u = u0 on Ω× {t = 0}
∂u

∂t
= v0 on Ω× {t = 0}

(2.2)

2.2.1 Definition (Second order hyperbolic problem). We say that the partial dif-

ferential operator ∂2
t +A is (uniformly) hyperbolic if there exists a constant θ > 0

such that
n∑

i,j=1

aij(x, t) ξiξj ≥ θ |ξ|2 . (2.3)

for all (x, t) ∈ Ω× (0, T ], ξ ∈ Rn.

2.2.2 The model problem and notation

We denote by (H, 〈·, ·〉) a Hilbert space equipped with inner product 〈·, ·〉 and norm

‖·‖H. We consider the interval [0, T ] ⊂ R, T > 0 and denote by A a positive definite,

self-adjoint, linear operator on D(A) -the domain of A-, which is dense in H, i.e.

D(A) = H, such that A : D(A) → H. Let Φ = (φ1, φ2), Ψ = (ψ1, ψ2) ∈ D(A) × H.

We define the following bilinear form on [D(A)× H]:

〈〈Φ,Ψ〉〉 := 〈A1/2φ1,A1/2ψ1〉+ 〈φ2, ψ2〉. (2.4)

Note that (2.4) is also the standard energy inner product on
î
D
Ä
A1/2

ä
× H

ó2
and

that it induces the energy norm

|||Φ||| :=
Å∥∥∥A1/2φ1

∥∥∥2
+ ‖φ2‖2

ã1/2

(2.5)
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With the notation in place we can introduce the model problem we are interested

in. Specifically, we seek a solution u,

u : [0, T ] → R

t 7→ u(t)
(2.6)

to the linear second order hyperbolic problem given by

d2u(t)

dt2
+Au(t) = 0 for t ∈ (0, T ] ,

u(0) = u0,

du(t)

dt
(0) = v0.

(2.7)

where u0, v0 ∈ H are given functions. In the analysis and examples we present in

this section, and in particular in the derivation of the a posteriori bound, it will

be helpful to express (2.7) as a system of equations. To do this, we introduce the

auxiliary variable v(t), which we define as

v(t) :=
du(t)

dt
. (2.8)

In order to facilitate exposition, we will denote d(·)(t)
dt

as (·)′ and d2(·)(t)
dt2

as (·)′′. We

use v to write (2.7) as a system of equations:

u′(t)− v(t) = 0 t ∈ (0, T ]

v′(t) +Au(t) = 0 t ∈ (0, T ]

u(0) = u0

v(0) = v0.

(2.9)

2.2.3 Numerical methods

In this section we present the discretisation of our domain and the numerical method

we will use to approximate (2.9). We will closely follow ([GLMV16]) in the notation

we use and in the formulation of our numerical approximation. Firstly, we uniformly

partition the temporal domain, [0, T ] by choosing 0 = t0 < · · · < tN = T , with

constant step size τ . We denote by un := u(tn) the exact solution to (2.7) and we

denote by Un ∈ D(A), n = 0, . . . , N , the numerical approximation to un.

Following the approach of [GLMV16], we approximate the model problem using

the Leap-frog scheme. This is an explicit, numerical discretisation scheme for second
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order problems. It has desirable conservative properties and second order accuracy.

Furthermore, it can be easily formulated as a system of equations, which is useful

in this context as we have formulated our model problem as a system of equations

as well (see (2.9)). Firstly, we discretise u′(t) and u′′(t) by

∂Un+1 :=
Un+1 − Un

τ
, n = 1, . . . , N − 1. (2.10)

and

∂2Un+1 :=
∂Un+1 − ∂Un

τ
=
Un+1 − 2Un + Un−1

τ 2
, n = 1, . . . , N − 1. (2.11)

We seek approximations Un+1 ∈ D(A) to un+1 such that

∂2Un+1 +AUn = 0, n = 1, · · · , N − 1,

U0 = u0.
(2.12)

Note that this method requires two initial conditions: U0 and U1. The value for

U1, is obtained as follows

∂U1 − v0

τ
+

1

2
AU0 = 0. (2.13)

After the first step we can use (2.12) to obtain subsequent values for Un. The

numerical scheme (2.12) can be re-formulated as a numerical discretisation for (2.9)

using staggered grids for u and v. This is the approach followed by [GLMV16] as it

is useful for the analysis. In order to re-formulate (2.12) as a system we introduce

the auxiliary variable

V n+1/2 := ∂Un+1 for n = 0, · · · , N − 1. (2.14)

This serves as an approximation to v half time steps tn+1/2 := 1
2
(tn + tn+1), i.e.

vn+1/2 := v
Ä
tn+1/2

ä
. We define

V −1/2 := 2v0 − V 1/2 (2.15)

and use this to define

U−1 := U0 − τV −1/2. (2.16)

Finally, we define

∂V n+1/2 :=
V n+1/2 − V n−1/2

τ
, for n = 0, · · · , N − 1. (2.17)
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Un and V n+1/2 are used to reformulate the leap-frog scheme as a system of equations

on a staggered grid (see Defn. 2.2.4). The reader should note that the re-formulated

version - which we present below - and the original numerical discretization are

equivalent.

2.2.4 Definition (Leap-frog scheme for (2.9)). The Leap-frog scheme for (2.9),

formulated as a system of equations on a staggered grid is given by

∂Un+1 − V n+1/2 = 0,

∂V n+1/2 +AUn = 0,

U0 = 0 and

V 0 = 1,

(2.18)

for n = 0, · · · , N − 1.

2.2.5 Re-formulation of the Leap-frog scheme

In order to carry out the analysis of the scheme and obtain residuals and the a

posteriori bounds, [GLMV16] define interpolants for V and U on staggered grids.

We will introduce all of these interpolants here in order to simplify and expedite our

exposition.

2.2.6 Definition. (Interpolants U and V ) We denote by U and V respectively

the piecewise linear interpolants of the sequences {Un}Nn=−1 at points {tn}Nn=−1,

t−1 := −τ and
¶
V n+1/2

©N−1

n=−1
at points

¶
tn+1/2

©N−1

n=−1
, t−1/2 := −τ/2:

U :[−τ, T ]→ D(A)

V :
î
− τ

2
, tN−1/2

ó
→ D(A)

(2.19)

In order to avoid confusion we provide a graphical depiction for {Un}Nn=−1, U ,¶
V n+1/2

©N−1

n=−1
and V in Figure 2.1 to elucidate their construction.
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−1
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tn+.5 tn+1.5 tn+2.5 tn+3.5 tn+4.5
0

1

2

3

{Un}Nn=−1

U (t)

{V n+1/2}N−1

n=−1

V (t)

Fig. 2.1. An illustration of {Un}Nn=−1, U ,
¶
V n+1/2

©N−1

n=−1
and V .

The interpolants U and V from (2.19) are subsequently used to define

Un+1/2 := U
Ä
tn+1/2

ä
=

1

2

Ä
Un + Un+1

ä
V n := V (tn) =

1

2

Ä
V n−1/2 + V n+1/2

ä for n = 0, . . . , N − 1. (2.20)

Un+1/2 and V n are used in (2.18) as follows

∂Un+1 − 1

2

Ä
V n+1 + V n

ä
= V n+1/2 − 1

2

Ä
V n+3/2 + 2V n+1/2 + V n−1/2

ä
∂V n+1/2 +

1

2

Ä
Un+1/2 + Un−1/2

ä
= −AUn +

1

2
A
Ä
Un+1 + 2Un + Un−1

ä
,

(2.21)

which simplifies to

∂Un+1 − 1

2

Ä
V n+1 + V n

ä
= −1

4

Ä
V n+3/2 − 2V n+1/2 + V n−1/2

ä
∂V n+1/2 +

1

2

Ä
Un+1/2 + Un−1/2

ä
= −1

4
A
Ä
Un+1 − 2Un + Un−1

ä
,

(2.22)

for n = 0, . . . , N − 1. Notice that in going from (2.18) to (2.22), we have incurred

residuals (the r.h.s. of (2.22)). We formally define these (piecewise constant) resid-

uals as follows:

RU (t) |(tn−1/2,tn+1/2] ≡ Rn
U :=

1

4
A
Ä
Un+1 − 2Un + Un−1

ä
RV (t) |(tn,tn+1] ≡ R

n+1/2
V := −1

4

Ä
V n+3/2 − 2V n+1/2 + V n−1/2

ä
.

(2.23)

2.2.7 Remark (Order of the residuals RU and RV ). As [GLMV16, §2.1] point out,

since the Leap-frog method is second order for both Un and V n+1/2, we have both

Rn
U = O(τ 2) and R

n+1/2
V = O(τ 2) as τ → 0, provided that the underlying solution

is sufficiently regular. In this case, we consider smooth solutions which are regular

enough for optimality.
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Hence, (2.22) can be viewed as a second order perturbation of (2.18). Proceeding

from this point, [GLMV16] write (2.22) as a perturbation of the original problem

written as a system of equations i.e. (2.9). They do this by introducing additional

interpolants.

2.2.8 Definition. (Interpolants U1 and V1) Let Un+1/2 and V n be defined as in

(2.20). Denote by U1 the piecewise linear interpolant of
¶
Un+1/2

©N−1

n=−1
at
¶
tn+1/2

©N−1

n=−1

by V1 the piecewise linear interpolant of {V n}N−1
n=0 at {tn}N−1

n=0 such that

U1 : [0, T ]→ D(A)

V1 :
î
0, tN−1

ó
→ D(A)

(2.24)

Additionally, we define the following interpolators:

1. Ĩ0: the piecewise constant midpoint interpolator on
¶Ä
tn−1/2, tn+1/2

ó©N−1

n=0
.

2. I0: the piecewise constant midpoint interpolator on {(tn−1, tn]}N−1
n=1 .

The interpolants U1 and V1 (see Defn. 2.2.8) and U and V (see Defn. 2.2.6) are

used to write (2.22) as

U ′ − I0V1 = RV

V ′ +AĨ0U1 = RU

(2.25)

The system (2.25) serves as the starting point in obtaining the reconstruction of

[GLMV16].

2.3 Reconstructions and a posteriori bounds

In this section we motivate the use of reconstructions as post processors of numerical

solutions in the context of a posteriori error estimation. We present the relevant

a-posteriori bound from [GLMV16], which we will use to benchmark the numerical

behavior of the estimator. We will firstly present the reconstruction of [GLMV16].

Then, we will present the reconstruction derived using the framework we propose.

2.3.1 Remark (Remark on a posteriori estimators). Let u and U be the exact

and the numerical solution respectively to the problem at hand. A posteriori error

control involves establishing an estimate of the form

||u− U || ≤ η(U) , (2.26)
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where η(U) is called the a posteriori estimator. The a posteriori estimator should

be explicitly (and, preferably, easily) computable. This implies that η(U) should

depend on available and explicitly computable quantities, such as the numerical

solution and given problem data. Furthermore, it is desirable for η(U) to converge

optimally; that is, with the same order as the error for the chosen numerical scheme.

2.3.2 Remark. In the context of the temporal FD discretisation (2.18), the numer-

ical solution U which is produced by the scheme is only defined point-wise in the

temporal variable. This poses challenges with regard to a posteriori error estimation,

because the norms involved in the estimator compare (temporally) globally defined

objects. Hence, rather than ‖u− U‖ we examine an alternative interpetation of the

error, namely
∥∥∥u− “U∥∥∥, where “U is a reconstruction of the numerical solution U . In

addition, rather than η(U), we examine η
Ä“Uä.

We will briefly explain why we use “U rather than U both for the (alternative)

error estimation
∥∥∥u− “U∥∥∥ and for the a posteriori error estimator, with reference

to a similar discussion in [AMN09, §1]. The reader should note that the work in

[AMN09] pertains to Galerkin methods, whereby the numerical solution is globally

defined in time.

The reconstruction, “U , can be designed to be globally continuous and such that

applying the PDE operator to it will result in an explicitly computable quantity. In

turn, this “U satisfies a perturbed PDE of similar form to the original problem, with

the difference being the presence of an explicitly and easily computable residual. We

will shortly demonstrate the residual’s construction with an example. This residual

is then utilized to obtain optimal a posteriori bounds using the stability framework of

the PDE (see Lem. 2.3.3). In summary, using the reconstruction “U rather than the

numerical solution U , where the (pointwise) U is obtained by the FD discretization,

allows us to obtain optimal bounds and to use a posteriori estimates which pertain

to globally defined objects, of which there are more in the literature.

Recall the problem

v′(t) +Au(t) = 0 t ∈ (0, T ]

u′(t)− v(t) = 0 t ∈ (0, T ]

u(0) = 0

v(0) = 1

(2.27)
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and consider the perturbed problem“V ′(t) +A“U(t) =: −R1(t) t ∈ (0, T ]“U ′(t)− “V (t) =: −R2(t) t ∈ (0, T ]“U(0) = 0“V (0) = 1,

(2.28)

where R1 and R2 are the resulting residuals. We define the errors

êV := v − “V and

êU := u− “U. (2.29)

Taking the difference between (2.27) and (2.28) we obtain the error equations

ê′V +AêU = R1,

ê′U − êV = R2.
(2.30)

We will now formally state the a posteriori error bound we will be using, which is

from [GLMV16].

2.3.3 Lemma. (see [GLMV16, §3: Thm 3.1]) Let(u, v) denote the solution of (2.9),

êU := u− “U and êV := v − “V and let R1 and R2 be defined as in (2.28). Then, the

following a posteriori error estimate holds

sup
t∈[0,tN ]

|||(êU , êV )(t)|||2 ≤ 2 |||(êU , êV )(0)|||2 + 4

Ç∫ t

0
|||(R2,R1)||| dt

å2

=: η(t)2 .

(2.31)

Proof. The estimate follows by applying energy arguments to (2.30). The starting

point is
1

2

d

dt
|||(êU , êV )|||2 = 〈〈(ê′U , ê′V ) ,(êU , êV )〉〉. (2.32)

Then, using the definition of the bilinear form 〈〈·, ·〉〉 (see (2.4)) and (2.30) we obtain

〈〈(ê′U , ê′V ) ,(êU , êV )〉〉 = 〈Aê′U , êU〉+ 〈ê′V , êV 〉

= 〈AêV , êU〉+ 〈AR2, êU〉 − 〈AêU , êV 〉+ 〈R1, êV 〉

= 〈AR2, êU〉+ 〈R1, êV 〉.

(2.33)

We then use the Cauchy-Schwarz inequality to obtain

1

2

d

dt
|||(êU , êV )|||2 ≤ |||(R2,R1)||| |||(êU , êV )||| . (2.34)
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Now, we integrate (2.34) from 0 to τ , with 0 ≤ τ ≤ tN , such that

|||(êU , êV )(τ)||| = sup
t∈[0,tN ]

|||(êU , êV )(t)||| , (2.35)

which leads us to

1

2
|||(êU , êV )(τ)|||2 ≤ 1

2
|||(êU , êV )(0)|||2 +

∫ τ

0
|||(R2,R1)(t)||| |||(êU , êV )(t)|||dt

≤ 1

2
|||(êU , êV )(0)|||2 + |||(êU , êV )(τ)|||

∫ τ

0
|||(R2,R1)(t)|||dt,

(2.36)

where we have used (2.35). Using Cauchy’s inequality with ε (A.1) with ε = 1,

a =
∫ τ

0 |||(R2,R1)(t)||| dt and b = |||(êU , êV )(τ)||| for the product term on the rhs

and multiplying by two throughout yields the required result.

2.3.4 Remark (The error at t = 0). The constant 2 |||(êU , êV )(0)|||2 in (7.32) may

be non-zero depending on the choice of reconstruction. In particular, for the recon-

struction of [GLMV16] (see Defn. 2.3.9) this term is not zero.

We will provide an example in order to illucidate the concepts of a-posteriori

error estimation, reconstruction and optimality. For the purposes of this example,

we will take A := I. Recall that we denote by {U}Nn and
¶
V n+1/2

©N
n

the numerical

approximations to u(tn) and v
Ä
tn+1/2

ä
, the solutions to (2.9), obtained using the

Leap-frog scheme for the system (2.18).

In order to utilize the a posteriori bound from [GLMV16], we need a globally

defined interpretation of the numerical solution, whereas the solutions produced by

the Leap-frog scheme are only defined pointwise. A simple approach to address this

issue is to use the linear Lagrange interpolants of each of the two sequences, which

will serve, in this case, as a simple example of a reconstruction. We will denote

these by “U and “V and they are defined as follows:“U(t) := Un +
t− tn

τ

Ä
Un+1 − Un

ä
, t ∈

Ä
tn, tn+1

ó
, n = 0, . . . , N − 1“V (t) := V n−1/2 +

t− tn−1/2

τ

Ä
V n+1/2 − V n−1/2

ä
, t ∈

Ä
tn−1/2, tn+1/2

ó
, n = 0, . . . , N.

(2.37)

2.3.5 Remark. We note that these reconstructions will lead to a sub-optimal esti-

mate. Nonetheless, we still use them because they elucidate the concept of recon-

struction and are very simple to code and use as a benchmark for comparison (with

higher order reconstructions) during numerical experiments.
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2.3.6 Definition (EOC and EI). To test the validity and robustness of our estimate

we will examine the estimated order of convergence (EOC) of the estimate and the

effectivity index (EI).

Consider two sequences ai(t) and hi which converge to zero from above we define

the EOC for these to be

EOC(ai(t);hi) :=
log(ai+1(t)/ai(t))

log(hi+1/hi)
. (2.38)

We define the EI at a time t to be the ratio of the estimator and the error at

that time, that is:

EI(t) :=
E (t)∥∥∥u− “U∥∥∥

X

, (2.39)

for some norm X. This allows us to quantify how effective a bound the estimator is

over time.

2.3.7 Remark. Generally speaking, the closer to one the EI is (bearing in mind

it is also greater than one), the closer to the error the estimate is is. This in turn

means that the estimate with the smaller EI is sharper than the one with the larger

EI. A small EI (close to one) combined with a high EOC are desirable characteristics

for an estimate.

We now have everything we need in order to benchmark the behaviour of the bound

η1(t) :=

(
2 |||(êU , êV )(0)|||2 + 4

Ç∫ t

0
|||(R2,R1)||| dt

å2
)1/2

(2.40)

for the Leap-frog discretisation (2.18) of (2.9) with A := I and initial conditions

(u0, v0) :=(0, 1). The simulations are conducted using a sequence of time-steps given

by τ = 2−m

10
,m = 7, . . . 10. The exact solution to this problem is

(u(t) , v(t)) :=(sin (t) , cos (t)) . (2.41)

The results are shown in Fig.2.2. Notice that the chosen reconstruction lacks the

approximability required to result in an optimal estimate: instead, the estimate

converges slower than the error.
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Fig. 2.2. Errors and asymptotic convergence rates for the linear Lagrange inter-

polant for the Leapfrog approximation (2.18) to (2.9). Notice that the estimate η,

given by (2.31), is suboptimal as it converges with a lower rate than the error.

Next, we address the the sub-optimality in the bound. We will use two different

methods: that of [GLMV16], which we present in the next section and one which

we will introduce in 2.3.10. We will compare the results on the Basis of EOC and

EI.

2.3.8 Reconstruction of [GLMV16]

In this section we firstly present the reconstruction from ([GLMV16]).

2.3.9 Definition (Reconstruction from [GLMV16]). Let {Un}Nn=0,
¶
V n+1/2

©N−1

n=−1

denote the numerical approximations to the solution of (2.9) produced by the Leap-

frog scheme (2.18). Let U and V denote the piecewise linear interpolants in Defn.

2.2.6 and let U1 and V1 denote the piecewise linear interpolants in Defn. 2.2.8.

Lastly, let RU , RV denote the residuals defined in (2.23). Then, the reconstructions

for “U and “V in [GLMV16, §3.1] are given by“U = Un +
∫ t

tn
(V1 +RV ) dt, t ∈ (tn, tn+1] and“V = V n−1/2 +
∫ t

tn−1/2
(−AU1 +RU) dt, t ∈

Ä
tn−1/2, tn+1/2

ó
.

(2.42)

We will compare the behavior “U and “V defined in (2.42) with that of (2.37).

The basis for comparison will be the performance of the bound (2.40). Naturally,

the residuals R1 and R2 will have a different form than the corresponding ones in

(2.30) as they depend on different reconstructions. Specifically, for RU , RV defined

in (2.23), U1, V1 defined in, and “U , “V defined in (2.42), the residuals R1 and R2 are
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given by

R1 := −A
Ä“U − U1

ä
−RU ,

R2 := “V − V1 −RV .
(2.43)

2.3.10 Reconstruction using our framework

In this section we will present a quadratic reconstruction which is different from

(2.42), with the intention of comparing the two in the numerical experiments section.

In addition to the nodal equivalence conditions, we will leverage information from

the finite diffence schemes to obtain a reconstruction of a higher order. Firstly, we

introduce the space of piecewise polynomials.

2.3.11 Definition (Space of piecewise polynomials). Let Pq([tn−1, tn] ,R) denote the

space of real-valued polynomials of degree q in the interval [tn−1, tn]. Then, we define

Vq :=
¶
w : [0, T ]→ R : w|[tn−1,tn] ∈ Pq

Äî
tn−1, tn

ó
,R
ä©

(2.44)

to be the space of piecewise polynomials of degree q.

Next, we introduce the reconstruction

2.3.12 Definition. Quadratic Reconstruction for the numerical solution of (2.18)

We define the reconstruction,
Ä“U, “V ä, of the numerical solution, (U, V ), of (2.18) on

a staggered grid consists of the functions “U ∈ V2, “V ∈ V2 which satisfy the following

set of conditions: “U(tn) = Un“U ′′|(tn,tn+1)(t) = −Un, ∀t ∈
Ä
tn, tn+1

ä“V Ätn+1/2
ä

= V n+1/2,“V ′|(tn−1/2,tn+1/2]

Ä
tn+1/2

ä
= −“UÄtn+1/2

ä (2.45)

2.3.13 WENO Reconstruction

In the previous sections we have seen a second order reconstruction, which converges

at an optimal rate for the given scheme. In this section, we will present an alter-

native method of obtaining temporal reconstructions, using WENO interpolation

(see [JSB+19], [LSZ09]), which may serve as an avenue for obtaining higher order

temporal reconstructions. In the remainder of this section, we will introduce the
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WENO interpolant and walk through its construction for this problem. We will

then use it to obtain reconstructions “U and “V . We will compare the performance of

a reconstruction obtained in this way with the results from the preceding sections.

We consider a uniform partition of the temporal variable 0 = t0 < · · · < tN = T

with constant time-step τ . Consider a function u(t) with a set of point values

{un := u(tn)} at times {tn}. We want to construct a third order WENO intepolating

polynomial in an interval [tn, tn+1] by using the 4-point stencil

S :=
¶
tn−1, . . . , tn+2

©
(2.46)

The interpolant is obtained as a convex combination of polynomials which are con-

structed on two 3-point sub-stencils, S1 and S2 of S, which are given by

S1 :=
¶
tn−1, tn, tn+1

©
,

S2 :=
¶
tn, tn+1, tn+2

©
.

(2.47)

The polynomials are Lagrange interpolants over the sub-stencils:

p1(x) := Un−1(t− tn)(t− tn+1)

2τ 2
+ Un(t− tn−1)(t− tn+1)

τ 2
+ Un+1(t− tn−1)(t− tn)

2τ 2
and

p2(x) := Un(t− tn+1)(t− tn+2)

2τ 2
+ Un+1(t− tn)(t− tn+2)

τ 2
+ Un+2(t− tn)(t− tn+1)

2τ 2

(2.48)

for t ∈ [tn, tn+1]. A polynomial approximation to u(t), p(t), can be obtained as a

convex combination of the p(i). The WENO approach is such that p(t) is a high order

approximation in intervals where u(t) is smooth. p(t) is obtained as a weighted sum

of the p(i) with the (linear) weights γ1 and γ2, each corresponding to a sub-stencil of

the large stencil:

γ1(t) := − t− tn+2

tn+2 − tn−1
and

γ2(t) :=
t− tn−1

tn+2 − tn−1
.

(2.49)

The linear weights are positive and satisfy

∑
i

γi = 1. (2.50)

Interested readers can find details on the construction of these weights in ([CFR05])

and [LSZ09]. If the solution is discontinuous inside a sub-stencil, we would like

that stencil to have little contribution to ensure the non-oscillatory behaviour of the
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scheme. This is achieved by using the non-linear weights ωi(t), which are obtained

from the γi(t) as follows:

ωj(t) :=
αj(t)∑2
i=1 αi(t)

, αi(t) :=
γi(t)

ε+ βi
, (2.51)

where the βi are the smoothness indicators for the sub-stencil to which they pertain.

They are an indication of how non-smooth the solution is in the corresponding sub-

stencil. If the solution is smooth in the sub-stencil Sj, then the relevant βj is small

and the relevant ωj is close to the γj in Sj. If instead the solution has a discontinuity

in Sj, then the βj is large, leading to a small ωj and ensuring the non-oscillatory

behaviour.

The βi which are used in this paper are given in [JSB+19]. For a constant

time-step τ , they are are defined as

β1 := 4
(∣∣∣y′j+1 − y′j

∣∣∣− ∣∣∣y′j − y′j−1

∣∣∣)2
and

β2 := 4
(∣∣∣y′j+2 − y′j+1

∣∣∣− ∣∣∣y′j+1 − y′j
∣∣∣)2

.
(2.52)

The calculation of the y′i is presented in detail in [JSB+19, §3.3.2]. Finally, the

WENO approximation to u(t) in the interval [tn, tn+1] based on the stencil S =

S1 ∪ S2 = {tn−1, tn, tn+1, tn+2} can be obtained as

p(t) := ω1p1(t) + ω2p2(t) . (2.53)

Now we can define the spatio-temporal reconstruction in terms of the WENO ap-

proximation.

2.3.14 Definition ( WENO temporal reconstruction). The WENO temporal recon-

struction, “U , of the numerical solution, Un, of (2.18) is obtained as the WENO inter-

polant (2.53) for t ∈ [tn, tn+1] on the stencil S := {tn−1, tn, tn+1, tn+2}. The WENO

temporal reconstruction “V is obtained in the same way for t ∈
î
tn−1/2, tn+1/2

ó
. In this

case, the process must be modified appropriately to reflect the fact that the inter-

polant is over a staggered grid and the stencil is S :=
¶
tn−3/2, tn−1/2, tn+1/2, tn+3/2

©
.

2.3.15 Remark (WENO reconstruction for “V ). The reader should note that in

order to calculate the a posteriori estimate (2.40) using the WENO reconstructions,

one to store four consecutive values for Un and five for V n+1/2. Specifically, we

require {Un−1, Un, Un+1, Un+2},
¶
V n−3/2, V n−1/2, V n+1/2, V n+3/2

©
and
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¶
V n−1/2, V n+1/2, V n+3/2, V n+5/2

©
. The reason for the two sets of values for V n+1/2

is because the FD solution for V n+1/2 is defined on the staggered grid, whereas the

estimator is calculated (by choice) on the integer valued grid.

2.3.16 Remark (Initial calculation of the a posteriori estimate). The reader will

notice that the WENO reconstruction requires four nodal values for Un and five for

V n+1/2. In the first few time-steps these values are not available. Hence, for the first

two steps, we utilitze a different reconstruction, namely Defn. 2.3.9.

2.3.17 Remark (Positivity of linear weights). In order to avoid treating nega-

tive weights (cf. [LSZ09]), we always evaluate the polynomial (2.53) in the middle

interval, [tn, tn+1] of the 4-point stencil S := {tn−1, tn, tn+1, tn+2}. The practical im-

plication is that we must calculate Un+2, V n+3/2 and V n+5/2. Furthermore, in order

to calculate the interpolant we must store four time-steps worth of values for Un

and five for V n+1/2.

2.4 Numerical Experiments

In this section we run numerical benchmarking experiments for the reconstructions

we introduced in §2.3.8, §2.3.10 and §2.3.13. We will use the same model problem

and the same initial conditions as we did for the sub-optimal, linear reconstruc-

tion we presented as an example in (2.37). Specifically, we use A := I and initial

conditions (u0, v0) = (0, 1). All the simulations are conducted using a sequence of

time-steps given by τ = 2−m

10
,m = 7, . . . 10. The results are shown in Fig. 2.3 for

the reconstruction obtained using Defn. 2.3.9, Fig. 2.4 for Defn. 2.3.12 and lastly,

Fig. 2.5 for a reconstruction obtained using Defn. 2.3.14.
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Fig. 2.3. Errors and asymptotic convergence rates for the reconstruction of

([GLMV16]), given by (2.42), for the Leap-frog approximation (2.18) to (2.9). The

a posteriori estimate, η, (2.31), is optimal.

Fig. 2.4. Errors and asymptotic convergence rates for reconstruction obtained

from Defn. 2.3.12 for the Leap-frog approximation, (2.18), to (2.9). The estimate,

η, (2.31) is also optimal, as in Fig. 2.3, albeit with a higher (worse) EI.

The results for this test are shown in Fig.2.5. Notice that the a posteriori bound

converges optimally.

Fig. 2.5. Errors and asymptotic convergence rates for the WENO reconstruction

from Defn. 2.3.14 for the Leap-frog approximation (2.18) to (2.9). The estimate, η,

given by (2.31) is optimal and has a lower EI than in Fig. 2.3.
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2.5 Discussion

We constructed the a posteriori bound of [GLMV16, Thm. 3.1] and used it to

compare different reconstructions approaches with regard to the temporal aspect

of the problem using an IVP ODE model problem. Specifically, we compared the

reconstruction of [GLMV16], (2.42) with three different reconstructions: a linear

and a quadratic reconstruction obtained using the framework in Defn. 2.3.12 and a

WENO reconstruction obtained as explained in Defn. 2.3.14.

The comparison between different methods of constructing the bounds was con-

ducted the following grounds: the evolution of the L∞-norm of the errors defined

in (2.29), the evolution of the estimator defined in (2.40), a comparison of the Ex-

perimental Order of Convergence (EOC) of these quantities, (2.38) and lastly, a

comparison of the Effectivity Index (EI) (2.39).

The first numerical test we run is the first order, linear reconstruction given by

(2.37). The results are shown in Fig. 2.2. We can immediately see that the a

posteriori bound is one order sub-optimal relative to the order of the error for the

scheme; the estimate converges with order one whereas the scheme converges with

order two.

In the second and third numerical tests we construct the a posteriori estimate

using the frameworks of [GLMV16] (see Defn. 2.3.9) and the framework we intro-

duce in this chapter (see Defn. 2.3.12). The results are shown in Figures 2.3 and

2.4 respectively for the two tests. In both cases the error estimates are optimal.

However, the estimate constructed using Defn. 2.3.9 results in a lower EI (overall)

compared to the one using Defn. 2.3.12.

Despite this difference in effectivity, there is merit in using the quadratic recon-

struction described in the framework from Defn. 2.3.12. In particular, by incorpo-

rating additional information from the FD scheme (such as another FD quotient at

the unused temporal sub-interval endpoint) , this framework gives us an avenue for

constructing a posteriori estimates up to order three in the temporal component (for

solutions which possess sufficient regularity). Indeed, we use this in later chapters

to construct optimal estimates for the temporal component of reconstructions for

FD schemes which are up to order three in time.

The last framework we examine for obtaining reconstructions is Defn. 2.3.14.
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In this case, we use the WENO polynomial construction process to obtain the con-

struction. The results are shown in Fig. 2.5. We can see that the estimate is of

optimal order and the EI is slightly improved compared to the other two optimal

reconstructions. More importantly, this method can be used - at least in principle-

to obtain reconstructions of optimal order for schemes higher than order three. In

later chapters we will use WENO reconstructions for the spatial component of the

reconstruction process for hyperbolic problems. It is also important to note that

the computational stencil is wider than a single sub-interval, meaning that the con-

struction process is not localizable to a single interval.
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Chapter 3

Simple a posteriori control of

finite difference discretisations of

elliptic problems

Abstract

In this chapter we perform an a posteriori analysis of a model elliptic problem discretised by

a central finite difference scheme. The analysis is based on a reconstruction of the discrete

solution, which facilitates an alternative error interpretation. We use this interpretation to

construct robust a posteriori error bounds and compare the performance of such bounds

with classical bounds obtained for linear Lagrange finite element discretisation of the same

problems.

3.1 Introduction

In this chapter we shift our focus to the spatial component of the reconstruction

process. Continuing the work from the previous chapter, we use the reconstruction

approach to construct computable a posteriori bounds for a reconstruction of the

FD approximation to an elliptic model problem.

The performance of the bound will be assessed with regard to its convergence

behaviour using numerical experiments with solutions of varying regularity. The

reconstruction-based a posteriori bound for the FD discretisation will be compared

with an a posteriori bound obtained for a Finite Element (FE) formulation of the
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same problem using linear Lagrange elements.

3.1.1 Motivation

Our motivation in this chapter is to derive and examine robust a posteriori error

bounds for FD schemes without using an equivalent Finite Element-based formu-

lation. In this regard, we adapt the idea in Chapter 2 and create a framework for

constructing a posteriori error bounds for FD discretisations of elliptic problems

using the idea of reconstructions.

The novelty in this work is that it enables the user of the method to utilise

existing bounds for elliptic problems in the context of FD discretisations through the

use of an alternative error interpretation, which we will specify in this chapter. The

alternative error interpretation is based upon the post-processing of the pointwise

FD solution and, crucially, it does not rely upon recasting the FD discretisation as

an equivalent FE discretisation.

3.1.2 Chapter contribution

The main contribution from this chapter is a framework for obtaining robust a pos-

teriori error bounds for the central FD discretisation of the model elliptic problem

- the Poisson equation. The bound is based on a reconstruction - a continuously

defined post-processed object which is a function of the point-wise defined FD so-

lution. The post-processor enables us to provide an alternative, ”globally-defined”

interpretation of the error which facilitates the use of a posteriori error bounds

which require globally defined objects, such as classical residual error bounds. We

demonstrate how to obtain a reconstruction using this framework. We then use the

reconstruction to obtain computable bounds.

We emphasise the fact that we do not recast the FD problem as an equivalent FE

problem (see e.g. [CET14]). However, we note that there is an interesting connec-

tion between the FE discretisation of our problem using linear triangular Lagrange

elements on a uniform, regular mesh with the 5-point FD discretisation on the same

problem on the same grid (i.e. same, uniform node placement). In particular, this

connection is that the resulting discrete operator is the same up to a constant for

the two discretisations. This in turn means that it is computationally inexpen-
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sive to draw comparisons between the performance of the bound obtained using

the approach we introduce, with a classical posteriori bound for the Finite Element

method with linear triangular elements as described. The additional computational

expenses we incur for the FE discretisation is the computation of the right hand

side and the multiplication of the FD operator to obtain the FE discrete operator,

which simply involves multiplication with a constant. However, since the left hand

side operator is available, this simplifies the process. In this way, we can, relatively

inexpensively, create a benchmark set of examples, where the solution behaviour is

well understood, to enable insights to be made on more complicated problems in

later chapters.

The rest of the chapter is structured as follows. In §3.2 we introduce the notation

we adopt throughout the rest of the chapter and present the model problem we will

be using as a test case. We also present and prove the bound we will test in later

sections. In §3.3 we present the Finite Difference (FD) numerical discretisation we

will use for our problem. In §3.4 we present the reconstruction procedure for the

model problem. In §3.3.4 we present the FE discretisation of the model problem.

We use the FE discretisation in deriving the main result of the section, Lemma 3.5.4

as well as to produce classical a posteriori bounds, which we use for comparisons in

the subsequent section. In §3.6 we test the convergence behaviour of an a posteriori

bound constructed using the reconstruction for a range of test cases of varying

regularity. The chapter is concluded in §3.7.

3.2 Setup and preliminaries

In this section we introduce notation and present the tools we will use in subsequent

sections. We will present the model problem in strong and weak form as well as the

necessary Sobolev spaces machinery we will need in this regard.

3.2.1 Spaces of Continuous functions

We denote by α the multi-index α :=(α1, . . . , αN) ∈ NN
0 and we denote by |α| the

length of α given by |α| := ∑N
i=1 αi. We use the multi-index notation for expository
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convenience with regard to derivatives:

Dα :=

Ç
∂

∂x1

åα1

. . .

Ç
∂

∂xN

åαN

(3.1)

For some domain Ω ⊂ RN , we denote by Ck(Ω) the set of all continuous real-valued

functions, say u, on Ω such that Dαu is continuous on Ω for all α = (α1, . . . , αN)

for which |α| ≤ k. Let Ω denote the closure of Ω. We denote by Ck
Ä
Ω
ä

the set of

all functions u ∈ Ck(Ω) for which Dαu can be extended to a continuous function on

Ω for all α for which |α| ≤ k. We denote by Ck
0(Ω) the set of functions u ∈ Ck(Ω)

whose support is a bounded subset of Ω. Furthermore, we denote by C∞0 (Ω) the set

of functions u ∈ Ck
0(Ω) ∀k ≥ 0, i.e. the set of infinitely differentiable functions with

compact support.

3.2.2 Elliptic model problem

Now, let Ω ⊂ R2 denote a polygonal, bounded, connected domain with boundary

∂Ω. We consider the linear second order partial differential equation (PDE) with

homogeneous Dirichlet boundary conditions:

−∆u = f in Ω,

u = 0 on ∂Ω,
(3.2)

where f : Ω→ R.

Next, we give a Maximum Principle result, which is used to prove uniqueness

of solutions to (3.2). This is not the topic of this chapter but we do use a discrete

version of the Maximum Principle in 3.3 to prove uniqueness of solution for the FD

discretisation of (3.2) we will introduce later.

3.2.3 Theorem (Maximum Principle). Assume that u ∈ C2(Ω) ∩ C0
Ä
Ω
ä
. Then, if

∆u ≥ 0 (resp. ∆u ≤ 0) in a bounded domain Ω, then the maximum (resp. the

minimum) is achieved on the boundary ∂Ω.

3.2.4 Lebesgue and Sobolev spaces

Sobolev spaces are the required setting for a lot of the results of relevance to this

chapter, in particular with regard to weak formulation of the model problem and the
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FE discretisation. We firstly introduce the notation pertaining to Lebesgue spaces,

since we will not only be using it here but also in later chapters (see [ES11]):

Lp(Ω) =
ß
φ :

∫
Ω
|φ|p <∞

™
for p ∈ [1,∞) and L∞(Ω) =

®
φ : ess sup

x∈Ω
|φ (x)| <∞

´
.

(3.3)

which are equipped with corresponding norms

‖u‖Lp(Ω) =


(
∫

Ω |u|
p)

1/p
for p ∈ [1,∞),

ess supx∈Ω |u (x)| for p =∞.
(3.4)

We make extensive use of L2(Ω), which is equipped with the inner product

〈u, v〉L2(Ω)×L2(Ω) :=
∫

Ω
uv. (3.5)

We also consider the Sobolev spaces

Wk,p(Ω) = {φ ∈ Lp(Ω) : Dαφ ∈ Lp(Ω) for |α| ≤ k} , (3.6)

where the derivatives Dα are understood in the weak sense. The Sobolev spaces are

equipped with norms and semi-norms given by

‖u‖Wk,p(Ω) :=

Ñ∑
|α|≤k

‖Dαu‖pLp(Ω)

é1/p

and |u|Wk,p(Ω) :=
∥∥∥Dku

∥∥∥p
Lp(Ω)

. (3.7)

3.2.5 Remark. We use the notation Wk,p
0 (Ω) to denote the closure of C∞0 (Ω) in

Wk,p(Ω). This is the set of functions u ∈Wk,p(Ω) for which there exist um ∈ C∞0 (Ω)

such that um → u in Wk,p(Ω).

3.2.6 Remark. For Sobolev spaces, we are interested in the case p = 2. For this

reason, we will use the notation Hk(Ω) and Hk
0(Ω) to denote the spaces Wk,2(Ω) and

Wk,2
0 (Ω), respectively. We will equip the spaces Hk(Ω) with norms and semi-norms

‖u‖2
Hk(Ω) :=

∑
|α|≤k

‖Dαu‖2
L2(Ω)

|u|2Hk(Ω) :=
∑
|α|=k

‖Dαu‖2
L2(Ω)

(3.8)

We will also make use of the dual Sobolev spaces. We will denote the dual of

Hk
0(Ω) by H−k(Ω). In particular, we will use H−1(Ω). In this regard, we denote the
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duality pairing between H1
0(Ω) and H−1(Ω) as 〈· | ·〉H−1(Ω)×H1

0(Ω). The space H−k(Ω)

is equipped with the norm

‖u‖H−k(Ω) := sup
06=φ∈Hk

0(Ω)

〈u |φ〉H−k(Ω)×Hk
0(Ω)

|φ|Hk(Ω)

(3.9)

Now that we have the necessary Lebesgue and Sobolev space machinery we will

re-cast the model problem (3.2) into its weak form, which is the form we will utilise

throughout this chapter.

3.2.7 Definition (Linear and Bilinear forms). We will use the short-hand a(·, ·) :

H1
0(Ω) × H1

0(Ω) → R and l(·) : H1
0(Ω) → R to denote the bilinear and linear forms

respectively that we will be using in the FE formulation we will introduce in this

section. These are defined as follows:

a(u, v) :=
∫

Ω
∇u · ∇vdx,

l(v) :=
∫

Ω
fvdx,

(3.10)

where f : Ω→ R.

3.2.8 Definition. (Weak formulation and discretisation) Let a(·, ·) : H1
0(Ω)×H1

0(Ω)→

R and l(·) : H1
0(Ω)→ R be defined as in (3.10). The weak formulation of (3.2) is to

find u ∈ H1
0(Ω) such that

a(u, v) = l(v) ∀v ∈ H1
0(Ω) . (3.11)

3.2.9 Lemma. (Lax-Milgram [Cia02]) Consider a bilinear functional a(·, ·) : H1
0(Ω)×

H1
0(Ω)→ R which satisfies the following:

1. ∃c0 > 0 such that c0 ‖v‖2
H1

0(Ω) ≤ a(v, v) ∀v ∈ H1
0(Ω),

2. ∃c1 > 0 such that |a(v, w)| ≤ c1 ‖v‖H1
0(Ω) ‖w‖H1

0(Ω) ∀v, w ∈ H1
0(Ω).

Also let l(·) : H1
0(Ω)→ R denote a linear functional such that

∃c2 > 0 s.t. |l(v)| ≤ c2 ‖v‖H1
0(Ω) ∀v ∈ H1

0(Ω) . (3.12)

Then, there exists a unique u ∈ H1
0(Ω) such that

a(u, v) = l(v) ∀v ∈ H1
0(Ω) . (3.13)

3.2.10 Remark. (Existence and uniqueness of weak solutions to (3.11)) The vari-

ational formulation (3.11) possesses a unique solution as it satisfies the conditions

of the Lax-Milgram theorem .
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3.3 Numerical Methods and Discretisation

In this section we will present the domain discretisation of Ω using a uniform grid.

We will also present the FE and FD discretisations of (3.2).

3.3.1 Domain discretisation

3.3.2 Definition. (Discretisation of Ω) We let Ω := [0, 1]2 denote the unit square

and we denote its boundary by ∂Ω. We define a grid over Ω by choosing points

(xi, yj) ∈ Ω such that 0 = x0 < . . . , xM = 1 and 0 = y0 < · · · < yM = 1 (see Fig.

3.1). We will use uniform grid spacing h := 1/M in both directions. We will denote

by Ωh the set of interior grid-points:

Ωh := {(ih, jh) : i, j = 1, . . . ,M − 1} (3.14)

and by ∂Ωh the set of boundary grid-points:

∂Ωh := {(ih, jh) : i, j = 0,M} . (3.15)

We will define Ωh := Ωh ∪ ∂Ωh. Lastly we denote by Iij the quadrilateral [xi, xi+1]×

[yj, yj+1], i, j = 0, . . . ,M − 1.

3.3.3 Remark. Note that the results can be extended a mesh with non-uniform

spacings.

Fig. 3.1. A uniform grid over Ω. We denote by Ωh the set of interior grid-points

(circles) and by ∂Ωh the set of boundary grid points (plus sign).
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3.3.4 Finite Element approximation

In this section we present a Finite Element approximation of the model problem.

Our motivation for doing this is that in the specific problem we are considering, the

FE method posed over a regular diagonal mesh (as shown in Fig. 3.2) with linear

Lagrange elements, results in the same discrete operator (up to a constant power

of h) as the one obtained from the central FD discretisation on the same grid (i.e.

same node placement). In this sense, since the left hand side operator is available

(up to a constant) by using either discretisation as a starting point, and since no

additional computational expense is incurred from re-derivation, it is interesting to

compare the behaviour of classical and well-used FE bounds with bounds based on

the reconstruction we will obtain from the FD solution. We caution the reader that

the two discretisations are NOT the same since neither the left nor the right hand

sides are the same for the two different discretisation routes.

3.3.5 Remark. We will use the uniform grid in Defn. 3.3.2 in order to pose the

triangulation, T we will use for the FE discretisation of (3.11). It is important for

the FE discretisation to have the same left-hand side matrix (up to a constant power

of h) as the FD discretisation.

3.3.6 Definition. (Triangulation of Ω) We define a triangulation, T , of Ω by using

the grid defined in Defn. 3.3.2 (see also Fig. 3.2). We will use using uniform

triangular elements, denoted K. We denote by ∂K the boundary of the element K.

We denote by E the set of edges associated with T . We note that the elements K

of T intersect along complete edges, at vertices or not at all. We denote by hE the

length of edge E ∈ E . We denote by hK the diameter of the element K, which is

defined to be the length of is longest side. We denote by ρK the radius of the largest

ball contained in K. Lastly, we denote by Ωh,K the set of vertices of element K.
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Fig. 3.2. Regular diagonal mesh.

3.3.7 Definition (Finite Element space). Let Pq(K) denote the space of polyno-

mials of total degree q over the triangle K ∈ T . We define the FE subspace of order

q associated with the triangulation T of Ω defined in Defn. 3.3.6 as

Vhq :=
¶
w ∈ C0

Ä
Ω
ä

: Ω→ R : ∀K ∈ T , w|K ∈ Pq(K)
©
. (3.16)

3.3.8 Definition. (Finite Element discretisation) Let Vh1(Ω) be the FE subspace of

H1
0(Ω) as specified in Defn. 3.3.7. Then, the finite element solution to (3.11) is the

uh ∈ Vh1(Ω) such that

a(uh, vh) = l(vh) ∀vh ∈ Vh1(Ω) . (3.17)

3.3.9 Lemma. (Galerkin orthogonality [EG21, Lemma 26.12]) Let u ∈ H1
0(Ω) and

uh ∈ Vh1(Ω) denote the solutions to (3.11) and (3.17) respectively. Then,

a(u− uh, vh) = 0 ∀vh ∈ Vh1(Ω) . (3.18)

3.3.10 Lemma. (Céa’s Lemma) The finite element approximation, uh, of u, the

weak solution of (3.2), is the best approximation to u amongst all vh ∈ Vh(Ω) in the

H1
0(Ω) norm. That is,

‖u− uh‖H1
0(Ω) ≤ ‖u− vh‖H1

0(Ω) ∀vh ∈ Vh(Ω) . (3.19)
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Since we will be using a bound pertaining to a finite element approximation of

the model problem we will be examining in this chapter, we will introduce some

relevant notation and results in this section.

3.3.11 Remark. (Weak solutions to (3.17)) The FE discretisation,(3.17) can be

shown by the Lax-Milgram theorem (see [EG13, Lem. 2.2]) to admit unique solu-

tions. Furthermore, by Céa’s lemma ([EG13, Lem. 2.28]), the solution uh ∈ Vh1(Ω)

to (3.17) is the best possible approximation amongst all vh ∈ Vh1(Ω) to the solution

u ∈ H1
0(Ω) of (3.11).

3.3.12 Proposition. (Trace inequality (see [Ver13, §3.3]))For every element K ∈

T , every edge E of K and every function v ∈ H1(K), the following inequality holds,

‖v‖L2(E) ≤ c1h
1/2
K ‖v‖L2(K) + c2h

−1/2
K ‖∇v‖L2(K) (3.20)

where the constants c1 and c2 depend only upon the shape parameter of the trian-

gulation (see [Ver13, Ch.1,3] for more details ).

3.3.13 Lemma. (Interpolation error bound [SM03]) Suppose that u ∈ H2(Ω). The

linear Lagrange interpolant Ihu ∈ Vh1(Ω) of u satisfies the following error bounds:

‖u− Ihu‖L2(Ω) ≤ c1h
2 |u|H2(Ω) and

|u− Ihu|H1
0(Ω) ≤ c2h |u|H2(Ω) .

(3.21)

3.3.14 Lemma. (A priori error bound for the model elliptic problem) Suppose that

u ∈ H2(Ω) ∩ H1
0(Ω) solves and let C > 0. Then, the following a priori error bound

holds for (3.11) where uh is the solution to (3.17):

‖u− uh‖H1
0(Ω) ≤ Ch |u|H2(Ω) . (3.22)

Proof. The result follows by applying Céa’s lemma with vh := Ihu in combination

with the interpolation error bounds for Ihu from Lem. 3.3.13.

In what follows, we are interested in an (explicitly computable) a posteriori

bound for ‖∇(u− uh)‖L2(Ω).

3.3.15 Definition. (Jumps) We use the notation J·K to denote the jump operator.

With reference to Fig. 3.2, let E ∈ E denote an (interior) edge shared by adjacent

patches I and I ′ and let nI and nI′ denote the outward normals on E for each of I
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and I ′ respectively. Consider a point x :=(x, y) ∈ E. We define the jump across E

at x of a piecewise continuous function, u and its derivative ∂u/∂n in the direction

of the outward normal at E as follows:

JuKE := un|I + un|I′ . (3.23)

3.3.16 Lemma. (A posteriori error bound for the model elliptic problem (see

[Ver13, Thm. 1.4.6])) Let u ∈ H1
0(Ω) solve (3.11) and uh ∈ Vh1(Ω) ⊂ H1

0(Ω) solve

(3.17) for some f ∈ L2(Ω) . We define the quantity

η2
K := h2

K ‖f + ∆uh‖2
L2(K) +

1

2

∑
E∈∂K

hE ||J∇uhKE||
2
L2(E) for K ∈ T . (3.24)

Then, for some C > 0 the following error bound holds (see [AO11, Ch. 2]):

‖∇(u− uh)‖L2(Ω) ≤ η(uh; f) := C

(∑
K∈T

η2
K

)1/2

. (3.25)

3.3.17 Corollary. (One-dimensional a posteriori bound) In the case where the

domain is the unit interval discretised by a (uniform) partition 0 = x0 < · · · <

xM = 1, the a posteriori error bound (3.25) simplifies by choosing

η2
j := h2 ‖f‖2

L2([xj ,xj+1]) +
h

2

∑
j,j+1

∣∣∣∣∣∣
s
∂uh
∂x

{

xj

∣∣∣∣∣∣
2

for j = 0, . . . ,M − 1. (3.26)

3.3.18 Finite Differences approximation

In this section we present the FD approximation we will be using for (3.2). We

will use the FD solution produced by this numerical scheme in order to obtain the

reconstruction.

We will approximate the model problem, (3.2), using the well-known central FD

scheme. Firstly, we denote by Ui,j the numerical solution obtained by the chosen

FD discretisation at the grid-point (xi, yj):

U : R2 → R

Ωh 7→ Ui,j
(3.27)

and by ∆h we denote the difference operator we use to approximate the Laplacian

operator (in 2D):

∆h : R → R

Ui,j 7→ ∆hUi,j
. (3.28)

We now define our FD approximation of (3.2).
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3.3.19 Definition. (FD approximation to (3.2)) We seek a function U : Ωh → R

which satisfies

−∆hUi,j = fi,j in Ωh

Ui,j = 0 on ∂Ωh,
(3.29)

where, for 1 ≤ i, j ≤M − 1, the discrete operator ∆h is defined as:

∆hUi,j :=
Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 − 4Ui,j

h2
. (3.30)

3.3.20 Remark (One dimensional model problem). In one dimension, the model

problem reduces to seeking a function U : Ωh → R which satisfies

−Uj+1 − 2Uj + Uj−1

h2
= fj for 1 ≤ j ≤M − 1,

Uj = 0 for j = 0,M.

(3.31)

The FD approximation (3.29) can be written as a system of (M − 1)2 equations

which can be solved with an appropriate iterative/direct method. We will now

provide some classical results to demonstrate that the discrete problem, (3.29), has

a unique solution. In addition we will provide an error bound between Ui,j and the

exact solution, u, of (3.2). We briefly go through some relevant stability, consistency

and convergence results pertaining to the elliptic model problem.

In order to obtain the error result we will utilise the truncation error for the

scheme (3.29).

3.3.21 Definition. (Truncation Error) We obtain the truncation error for the FD

approximation to ∆u by applying the discrete operator to ∆h to the exact solution

u of (3.2) and comparing the two quantities. Applying the discrete operator ∆h,

defined in (3.30) and noting that U agrees with u on ∂Ωh, results in

∆hu(xi, yj) :=
u(xi+1, yj) + u(xi−1, yj) + u(xi, yj+1) + u(xi, yj−1)− 4u(xi, yj)

h2
.

(3.32)

Let u ∈ C4
Ä
Ω
ä

and define M4 := max
ß
||∂4u/∂x4||L∞(Ω) , ||∂

4u/∂y4||L∞(Ω)

™
. Then,

it holds that

||∆hu−∆u||L∞(Ωh) ≤
h2

6
M4. (3.33)

In order to prove the uniqueness result we will use a discrete maximum principle.
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3.3.22 Theorem (Discrete Maximum principle [MM05, Ch 6: Lemma 6.1]). Let

V : Ωh → R denote a mesh function on Ωh which satisfies

∆hV ≥ 0 on Ωh. (3.34)

Then, maxΩh
V ≤ max∂Ωh

V with equality iff V is constant.

3.3.23 Remark. (Discrete Minimum principle)The analogous discrete minimum

principle holds as folows: we let V : Ωh → R which satisfies

∆hV ≤ 0 on Ωh. (3.35)

Then minΩh
V ≥ min∂Ωh

V .

3.3.24 Theorem. The FD approximation, defined in (3.29), is uniquely solvable.

Proof. Suppose that there exist two solutions Ũ1 and Ũ2 for the FD aproximation

(3.29). Then, their difference satisfies

−∆h

Ä
Ũ1 − Ũ2

ä
i,j

= 0 in ΩhÄ
Ũ1 − Ũ2

ä
i,j

= 0 on ∂Ωh.
(3.36)

By the discrete maximum principle (see Thm. 3.3.22) and its discrete minimum

counterpart (see Rem. 3.3.23) it holds that

0 = min
∂Ωh

Ä
Ũ1 − Ũ2

ä
i,j
≤ min

Ωh

Ä
Ũ1 − Ũ2

ä
i,j
≤ max

Ωh

Ä
Ũ1 − Ũ2

ä
i,j
≤ max

∂Ωh

Ä
Ũ1 − Ũ2

ä
i,j

= 0

(3.37)

Hence Ũi ≡ Ũ2.

3.3.25 Theorem. The solution U to (3.29) satisfies

||U ||L∞(Ωh) ≤
1

8
||f ||L∞(Ωh) . (3.38)

Proof. The proof is through an application of the maximum principle. We introduce

the function φ :=
î
(x− 1/2)2 +(y − 1/2)2

ó
/4. This function satisfies ∆hφ = 1 on

Ωh and 0 ≤ φ ≤ 1/8 on Ωh. We let M := ‖φ‖L∞(Ωh). Then

∆h(U +Mφ)i,j = ∆hUi,j +M ≥ 0. (3.39)

Then, through an application of the maximum principle we obtain

max
Ωh

Ui,j ≤ max
Ωh

(Ui,j +Mφi,j) ≤ max
∂Ωh

(Ui,j +Mφi,j) ≤
1

8
M. (3.40)

By using the same argument on −Ui,j in combination with the minimum principle

counterpart we obtain the required result.
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Now we can prove a global error estimate for the problem.

3.3.26 Theorem. (from [MM05, §6.2]) Let u ∈ C4
Ä
Ωh

ä
denote the solution of (3.2)

and let U denote the solution of the discrete approximation (3.29) to (3.2). Let

Ti,j denote the truncation error and let this be bounded from above by T for all

0 ≤ i, j ≤M by defining T , as follows

T :=
h2

12
(Mxxxx +Myyyy) (3.41)

where

Mxxxx :=

∣∣∣∣∣
∣∣∣∣∣∂4u

∂x4

∣∣∣∣∣
∣∣∣∣∣
L∞(Ωh)

and Myyyy :=

∣∣∣∣∣
∣∣∣∣∣∂4u

∂y4

∣∣∣∣∣
∣∣∣∣∣
L∞(Ωh)

. (3.42)

Then, the following bound holds:

||u− U ||L∞(Ωh) ≤
h2

96
(Mxxxx +Myyyy) . (3.43)

Proof. Let Ti,j denote the truncation error of for the FD scheme at the grid-points

(xi, yj), 0 ≤ i, j,≤ M . Then, let T , where maxi,j |Ti,j| ≤ T := h2

12
(Mxxxx +Myyyy),

denote the maximum truncation error, where

Mxxxx :=

∣∣∣∣∣
∣∣∣∣∣∂4u

∂x4

∣∣∣∣∣
∣∣∣∣∣
L∞(Ωh)

and Myyyy :=

∣∣∣∣∣
∣∣∣∣∣∂4u

∂y4

∣∣∣∣∣
∣∣∣∣∣
L∞(Ωh)

. (3.44)

see also (3.33). Let U denote the vector containing the (M − 1)2 entries Ui,j (i.e.

excluding the boundary values), arranged in lexicographical order. Also, let ∆h

denote the discrete 5-point central difference operator defined in (3.32). We define

the global error as

ei,j := Ui,j − ui,j (3.45)

and consider difference relations at the interior mesh points, Ωh of Ωh, given by

∆hUi,j + fi,j = 0,

∆hui,j + fi,j = Ti,j,
(3.46)

in order to obtain the global-truncation error relation

∆hei,j = −Ti,j. (3.47)

We will obtain the bound on ei,j by using the discrete maximum principle (Thm.

3.3.22). In order to obtain a function which satisfies the condition in Thm 3.3.22

we define a comparison function

Φi,j :=

Ç
xi −

1

2

å2

+

Ç
yj −

1

2

å2

, (3.48)

62



for which

∆hΦi,j = 4. (3.49)

Now, we define on Ωh

ψi,j := ei,j +
1

4
TΦi,j. (3.50)

We apply the discrete operator to ψ to obtain

∆hψi,j = ∆hei,j +
1

4
T∆hΦi,j

= −Ti,j + T

≥ 0 ∀(xi, yj) ∈ Ωh.

(3.51)

Notice that ∆hψi,j ≥ 0 which implies that we can use the discrete maximum principle

(see Thm. 3.3.22) to prove that ψi,j - where (xi, yj) ∈ Ωh - cannot be greater than

its neighbours. We apply the maximum principle recursively until we arrive at the

boundary. This implies that a maximum value of ψi,j must be attained at a boundary

point (xi, yj) ∈ ∂Ωh.

At the boundary, the exact and approximate solutions u and U agree and there-

fore ei,j = 0 for (xi, yj) ∈ ∂Ωh. In addition, the comparison function Φi,j has a

maximum value of 1/2 which is also attained at the boundary of our unit square

domain. Hence, we obtain from (3.50) that

ψi,j ≤
1

8
T ∀(xi, yj) . (3.52)

Now, noting that T,Φ ≥ 0 in Ωh, we obtain from (3.50) that

Ui,j − u(xi, yk) = ei,j ≤ ψi,j ≤
1

8
T =

h2

96
(Mxxxx +Myyyy) . (3.53)

This bound is one-sided. In order to obtain the required result we need to repeat

the process, only this time we will define

ψi,j := −ei,j +
1

4
TΦi,j, (3.54)

in order to show that

− ei,j ≤
1

8
T ≤ h2

96
(Mxxxx +Myyyy) .. (3.55)

Then, (3.53) in combination with (3.55) yield the desired result:

||u− U ||L∞(Ωh) ≤
h2

96
(Mxxxx +Myyyy) . (3.56)
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3.3.27 Corollary. (Asymptotic error behaviour of (3.29)) If u ∈ C2
Ä
Ω
ä

then

lim
h→0
||u− U ||L∞(Ωh) = 0 (3.57)

and if u ∈ C4
Ä
Ω
ä
, then

||u− U ||L∞(Ωh) ≤
h2

48
M4, (3.58)

where

M4 := max

®∣∣∣∣∣∣∂4u/∂x4
∣∣∣∣∣∣

L∞(Ω)
,
∣∣∣∣∣∣∂4u/∂y4

∣∣∣∣∣∣
L∞(Ω)

´
. (3.59)

3.3.28 Remark. In fact, the FD scheme would converge for less strict requirement

than u ∈ C2(Ω), i.e. even if u ∈ H1(Ω) only. We do not demonstrate this and

neither can we show it readily from FD error analysis. We advise interested readers

to consult [JS13, §2] for more details on the convergence analysis of elliptic boundary

value problems. We do note however, that the FE formulation does converge for

u ∈ H1(Ω). Therefore, since the two discretisations result in the same discrete

operator (up to an appropriate constant) for the specific choices for the grid and

triangulation (see Defn. 3.3.6 and Defn. 3.3.2), we would expect the FD formulation

to also converge (albeit to a different discrete solution since the right hand sides are

different).

3.4 Reconstruction

Having defined both the FE and FD approximations to our model problem, we can

proceed with the definition of the reconstruction. We will go over the reconstruc-

tion procedure and demonstrate how a reconstruction is used in posteriori error

estimation for our problem.

3.4.1 Reconstruction Procedure

In this section we present conditions we use in order to obtain the polynomial re-

construction, “U . We use both nodal values of the numerical solution, Uj, as well as

information from the numerical scheme.

3.4.2 Definition (Space of the reconstruction). Let Qq(Iij) denote the space of

polynomials of degree q in each variable over the quad Iij := [xj, xj+1] × [yj, yj+1].
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We define the space of the reconstruction “U to be the space of piecewise polynomials

of degree q in each variable over quads in Ω

Uh
q (Ω) :=

¶
w : Ω→ R : w|Ii,j ∈ Qq(Ii,j)

©
. (3.60)

We will give an illustrative example of the reconstruction procedure in 1D in

order to motivate the subsequent material.

3.4.3 Definition (Reconstruction in 1D). In one dimension, the reconstruction,“U ∈ Uh
3(Ω), of the numerical solution U of (3.29) (see Defn. 3.4.8) is the unique

function that satisfies“U(xj) = Uj for j = 0, . . . ,M,

d2

dx2
“U(xj) =

Uj+1 − 2Uj + Uj−1

h2
for j = 1, . . . ,M − 1,

d2

dx2
“U(xj) = −f(xj) for xj ∈ ∂Ω.

(3.61)

3.4.4 Remark (Polynomial degree of the reconstruction). The conditions in Defn.

(3.4.3) lead to a piece-wise polynomial reconstruction of order three i.e. “U ∈ Uh
3(Ω).

One can choose to obtain a reconstruction of lower polynomial order by using only

a subset of the conditions (3.71). For instance, nodal equivalence alone would result

in a reconstruction “U ∈ Uh
1(Ω). This would effectively be the bilinear-interpolant

of the FD solution or, equivalently, the FE solution for continuous linear Lagrange

elements.

3.4.5 Remark (Reconstruction Residual). We obtain the reconstruction residual,

R by substituting “U in (3.2):

R(x) := f + ∆“U. (3.62)

The reconstruction residual R is the quantity of interest that we use in the compu-

tation of a posteriori bounds in this chapter. A desirable property for a “U to possess

is that it leads to a residual that, in turn, leads to an a posteriori error estimate of

optimal order. An optimal estimate is one that converges at the same rate as error

for the underlying numerical scheme.

3.4.6 Lemma (Asymptotic convergence rate for the reconstruction residual in 1D).

Let {Uj}Mj=0 denote the the central difference approximation of u, the solution of

65



(3.2) with f ∈ C2(Ω). Suppose “U ∈ Uh
3(Ω) is the piecewise cubic interpolant of the

nodal values of {Uj}Mj=0, obtained from Defn. 3.4.3 and let R(x) be defined as in

(3.62). Then, as h→ 0,

‖R‖L2(Ω) ≤
1
8
h2 max

j
‖f ′′‖2

L∞([xj ,xj+1]) . (3.63)

(see also [BSB+01]).

Proof. We begin by defining “U(x) as a“U(x) := c0(x− xj)3 + c1(x− xj)2 + c2(x− xj) + c3, (3.64)

where the constants ci, 0 = 1, . . . , 3 are defined by the conditions in Defn. 3.4.8.

Hence, the quantity
d2“U
dx2

:=
xj+1 − x

h
fj +

x− xj
h

fj+1, (3.65)

is, by construction, the piecewise linear Lagrange interpolant of {fj}Mj=0. With this

result at hand, we proceed as follows

‖R‖2
L2(Ω) =

∑
j

‖R‖2
L2([xjxj+1])

=
∑
j

∫ xj+1

xj
|R(s)|2 ds.

(3.66)

We now use the fact that R := “U ′′−f is a continuous function on all closed intervals

[xj, xj+1] to obtain

‖R‖2
L2(Ω) =

∑
j

∫ xj+1

xj
|R(s)|2 ds ≤ h

∑
j

‖R‖2
L∞([xj ,xj+1]) . (3.67)

Finally, since f ∈ C2([xj, xj+1]) and since “U ′′ is the piecewise linear Lagrange

interpolant of f at points 0 = x0 < x1 < · · · < xM = 1. Then, the following error

bound holds ([SM03, Thm 11.1])∥∥∥f − “U ′′∥∥∥
L∞([0,1])

≤ 1
8
h2 ‖f ′′‖L∞([0,1]) (3.68)

We substitute the result (3.68 in (3.67) to obtain

‖R‖2
L2(Ω) ≤ h

∑
j

‖R‖2
L∞([xj ,xj+1]) ≤ h

∑
j

1
64
h4 ‖f ′′‖2

L∞([xj ,xj+1]) (3.69)

Noting that h := 1/M and that the sum is over M intervals we obtain

‖R‖2
L2(Ω) ≤

1
64
h4 max

j
‖f ′′‖2

L∞([xj ,xj+1]) . (3.70)

Finally, we take square roots on both sides to conclude the proof.
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3.4.7 Remark. Although we used f ∈ C2
Ä
Ω
ä

in Lemma 3.4.6, in reality we obtain

optimally converging a posteriori bounds for less regular f , such as for example

f ∈ H2(Ω). We will demonstrate this practically with a numerical example.

3.4.8 Definition (Reconstruction in 2D). The reconstruction , “U ∈ Uh
3(Ω), of the

numerical solution U of (3.29) is the unique function that satisfies“U(xi, yj) = Ui,j for i, j = 1, . . . ,M

∂xx“U(xi, yj) =
Ui+1,j − 2Ui,j + Ui−1,j

h2
for i, j = 2, . . . ,M − 1

∂yy“U(xi, yj) =
Ui,j+1 − 2Ui,j + Ui,j−1

h2
for i, j = 2, . . . ,M − 1

∂xy“U(xi, yj) =
1

2h

Ç
Ui+1,j+1 − Ui−1,j+1

2h
− Ui+1,j−1 − Ui−1,j−1

2h

å
for i, j = 1, . . . ,M − 1

(3.71)

3.4.9 Remark (Reconstruction operator on the boundary). In the reconstruction

conditions, we note that special attention must be paid to the treatment of the

boundary. In the particular (square) domain, for homogeneous Dirichlet boundary

conditions, the reader will notice that the central difference approximations to the

second and first derivatives cannot be defined at the boundary as the required points

do not exist. In order to overcome this we split the boundary in two sets of points,

corner and non-corner points and treat them separately.

In order to compute the difference quotients required for Defn. 3.4.8 at boundary

sides - where we lack the required nodes - we use the relation (3.29). Specifically,

using (3.29), we can compute(h−2)(Ui,j+1 − 2Ui,j + Ui,j−1) for the vertical portion

of the boundary and (h−2)(Ui+1,j − 2Ui,j + Ui−1,j) for the vertical portion of the

boundary. For the mixed derivatives, we use one-sided differences at all boundary

points. The second derivatives at the corner points are zero.

3.4.10 Remark (Curved boundary). We note that if the boundary is curved then

a different approach would be required. In such a case we could consider using a

lower order reconstruction that only makes use of nodal values for the boundary

patches.

3.4.11 Remark (General Operator). The convergence rate in Lemma 3.4.6 was

demonstrated for the model problem (3.2). A similar result can be shown to hold
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for a more general problem. In particular, consider the problem

− d

dx

Ç
p(x)

du

dx

å
+ q(x)u = f(x) . (3.72)

A central finite difference discretisation for this problem with Dirichlet boundary

conditions and p ∈ C3
Ä
Ω
ä
, q ∈ C2

Ä
Ω
ä
f ∈ C2

Ä
Ω
ä

would lead to second order

convergence for the error. In this case, the reader should note that the conditions

for the reconstruction are not as obvious as they are for (3.2).

3.5 A posteriori error analysis

In this section we use the reconstruction to obtain optimal a posteriori error bounds.

3.5.1 Lemma. Suppose z ∈ H1
0(Ω) is the weak solution of the following perturbed

problem:

−∆z = R in Ω

z = 0 on ∂Ω.
(3.73)

for some R ∈ H−1(Ω). Then, the following result holds:

‖∇z‖L2(Ω) = ||R||H−1(Ω) . (3.74)

Proof. To begin, note in the case R ≡ 0, ∆z = 0 in Ω, with z = 0 on ∂Ω, so z ≡ 0

in Ω and the result is trivially true.

Now, for z 6= 0, we recall the definition of the H−1(Ω)-norm of the residual R:

||R||H−1(Ω) := sup
φ∈H1

0(Ω)

〈R |φ〉H−1(Ω)×H1
0(Ω)

||∇φ||L2(Ω)

. (3.75)

Testing (3.73) with z, we obtain

||∇z||2L2(Ω) = 〈∇z,∇z〉L2(Ω)×L2(Ω) = 〈R | z〉H−1(Ω)×H1
0(Ω)

(3.76)

Hence, since z 6= 0, we have that

||∇z||L2(Ω) =
〈R | z〉H−1(Ω)×H1

0(Ω)

||∇v||L2(Ω)

≤ sup
φ∈H1

0(Ω)

〈R |φ〉H−1(Ω)×H1
0(Ω)

||∇φ||L2(Ω)

= ||R||H−1(Ω) .

(3.77)
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Furthermore, by a Cauchy–Schwartz inequality

||R||H−1(Ω) = sup
φ∈H1

0(Ω)

〈R |φ〉H−1(Ω)×H1
0(Ω)

||∇φ||L2(Ω)

= sup
φ∈H1

0(Ω)

〈∇z,∇φ〉L2(Ω)×L2(Ω)

||∇φ||L2(Ω)

≤ sup
φ∈H1

0(Ω)

||∇z||L2(Ω) ||∇φ||L2(Ω)

||∇φ||L2(Ω)

= ||∇z||L2(Ω)

(3.78)

Finally, combining (3.77) and (3.78) we obtain the desired result.

We will now use Lemma 3.5.1 to establish stability and results for the model

problem (3.2).

3.5.2 Corollary (Stability for the model elliptic problem). Let u be the weak

solution of (3.2) and let v ∈ H1
0(Ω) solve the following perturbed problem for a

prescribed f and a residual R ∈ H−1(Ω):

−∆v = f −R in Ω

v = 0 on ∂Ω,
(3.79)

Then, the error between the two functions e := u− v satisfies the bound

||∇e||L2(Ω) ≤ ‖R‖H−1(Ω) . (3.80)

Ideally we would like to use (3.80) as an posteriori bound. However, as it involves

the H−1-norm, it is not immediately obvious how to do this. In order to overcome this

hurdle we examine two alternative strategies. In this spirit we try to find quantities

which behave like the required norm of R but which can be computed directly or

for which have known or derivable bounds. The first avenue we will explore is when

R ∈ L2(Ω).

3.5.3 Corollary. Suppose that in addition to the assumptions in Corollary 3.5.2

we have that R ∈ L2(Ω). Then, the following bound holds:

||∇e||L2(Ω) ≤ Cp ||R||L2(Ω) . (3.81)

Proof. Since we have R ∈ L2, we have

〈R |φ〉H−1(Ω)×H1
0(Ω) =

∫
Ω
Rφdx. (3.82)
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Hence, from the definition of the H−1−norm we have

||R||H−1(Ω) = sup
φ∈H1

0(Ω)

〈R |φ〉H−1(Ω)×H1
0(Ω)

||∇φ||L2(Ω)

≤ sup
φ∈H1

0(Ω)

||R||L2(Ω) ||φ||L2(Ω)

||∇φ||L2(Ω)

. (3.83)

We now use the Poincaré inequality on ||φ||L2(Ω):

||φ||L2(Ω) ≤ Cp ||∇φ||L2(Ω) , (3.84)

where the constant Cp depends upon the domain Ω. Substituting this in (3.83) gives

||∇e||L2(Ω) ≤ ||R||H−1(Ω) ≤ sup
φ∈H1

0(Ω)

Cp ||R||L2(Ω) ||∇φ||L2(Ω)

||∇φ||L2(Ω)

= Cp ||R||L2(Ω) . (3.85)

There are interesting connections to point out between the FD discretisation

(3.29) and the FE discretisation (3.17). Firstly, if the two methods are based over

the same Cartesian grid, with the FE discretisation consisting of linear, triangular,

Lagrange elements over a regular diagonal partition, then the matrix operator on

the left hand side of both methods will be the same (up to a constant factor).

This could be used to directly make use of the estimate (3.25) in our FD compu-

tations. However, it is not our goal here, instead we want to use it as a benchmark

to test our reconstruction based approach.

It also is going to prove essential in computations when f is not as smooth as

required for the conditions of Theorem 3.4.6 to hold.

Now we derive an alternative approach for when R /∈ L2(Ω). This could happen

for example if the problem data, f /∈ L2(Ω). This is also the situation for the specific

reconstruction since “U /∈ C1(Ω).

3.5.4 Lemma. Let “U ∈ Vh3(Ω) ∩ C0(Ω) denote the bicubic reconstruction of the

FD solution, {Uij}Mi,j=0 to (3.2), obtained using the FD discretisation (3.29). Let

H−1(Ω) 3 R := f + ∆“U denote the resulting residual and let v ∈ H1
0(Ω) be the

unique weak solution of∫
Ω
∇v · ∇φdx =

∫
Ω
Rφdx ∀φ ∈ H1

0(Ω) . (3.86)

Now, let vh ∈ Vh1 be the finite element approximation of v satisfying∫
Ω
∇vh · ∇φdx =

∫
Ω
Rφdx ∀φ ∈ Vh1(Ω) . (3.87)
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Then, the following error a posteriori error estimate holds∣∣∣∣∣∣∇u−∇“U ∣∣∣∣∣∣
L2(Ω)

= ||R||H−1(Ω) ≤
(
η(vh;R)2 + ||∇vh||2L2(Ω)

)1/2
, (3.88)

where η is defined in (3.25).

Proof. From Lem. 3.5.1 we obtained the following result for (3.73):

||R||H−1(Ω) = ||∇v||L2(Ω) . (3.89)

In addition, because of Galerkin orthogonality (i.e. because the error v − vh is

orthogonal to V1
h(Ω)), we have that

||R||2H−1(Ω) = ||∇v||2L2(Ω)

= ||∇(v − vh) +∇vh||2L2(Ω)

= ||∇(v − vh)||2L2(Ω) + ||∇vh||2L2(Ω)

(3.90)

Finally, from Lemma 3.3.16 we know that

||∇(v − vh)||L2(Ω) ≤ η(vh;R) , (3.91)

with η defined in (3.25). Combining these results gives us:

||R||2H−1(Ω) ≤ η(vh;R)2 + ‖∇vh‖2
L2(Ω)

= C

(∑
K∈T

h2
K

∣∣∣∣∣∣f + ∆“U + ∆vh
∣∣∣∣∣∣2

L2(K)
+

1

2

∑
E∈E

hE ||J∇vhK||2L2(E)

)

+ ||∇vh||2L2(Ω) .

(3.92)

The required result is obtained by applying square roots to both sides of the in-

equality.

3.5.5 Remark. The reader will note that in order to obtain the result in Lemma

(3.5.4), in addition to the FD discretisation and solution of the model problem, we

solve an additional FE problem, (3.87), with the residual from the FD solution and

post-processing as the right-hand side. Admittedly, this extra step is a practical

disadvantage in obtaining the corresponding bound. However, if the finite element

approximation space consists of a regular diagonal mesh, the stiffness matrix used

in the FD computation can be reused, as well as any preconditioners, or LU factori-

sations.

In the next lemma, we present a bound which does not require this additional

step but which is only optimal under the conditions of Theorem 3.4.6. In general it

is of a lower order than the one we just derived.
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3.5.6 Remark (Lemma for the bound involving reconstruction jumps). Let v ∈

H1
0(Ω) solve (3.73) for R ∈ H−1(Ω) given by

R := f + ∆“U, (3.93)

where f ∈ L2(Ω). Since “U ∈ Uh
3(Ω) ∩ C0(Ω) we have that ∆“U ∈ H−1(Ω). Hence

the Poincaré argument we used in Theorem 3.5.3 is not immediately applicable.

However, since the “U lives on the same mesh as the finite element approximation,

we can reuse parts of the a posteriori argument. Indeed, it can be shown that the

following bound holds:

||R||H−1(Ω) ≤ Cp

(∑
K∈T

∥∥∥f + ∆“U∥∥∥2

L2(K)
+
∑
E∈E

h
−1/2
E

∣∣∣∣∣∣∣∣r∇“Uz

E

∣∣∣∣∣∣∣∣2
L2(E)

)1/2

(3.94)

Proof. We omit the proof as it is not the focus of the work, however, it is similar to

the a residual posteriori argument from classical finite element techniques.

3.6 Numerical Verification

In this section we present numerical experiments carried out to benchmark the

behaviour of the a posteriori error bounds (3.88) and (3.94) for the model problem,

(3.2) and the classical FE a posteriori bound (3.25). In all tests, we will discretise

the problem using a central finite difference approximation given by (3.29). We will

use the FD solution, Uij, to obtain a reconstruction , “U using Defn. 3.4.8 in 2D and

Cor. 3.4.3 in 1D. The reconstruction is used in the process of obtaining both of the

a posteriori error bounds as well as to facilitate the alternative error interpretation,

which we define as

e := u− “U. (3.95)

For the sake of brevity and clarity we will adopt the following notation when

referring to the bounds (3.88) and (3.94):

B1 :=

(∑
K∈T

h2
K

∣∣∣∣∣∣f + ∆“U + ∆vh
∣∣∣∣∣∣2

L2(K)
+ ||∇vh||2L2(Ω) +

1

2

∑
E∈E

hE ||J∇vhKE||
2
L2(E)

)1/2

,

B2 :=

(∑
K∈T

∥∥∥f + ∆“U∥∥∥2

L2(K)
+
∑
E∈E

h−1
E

∣∣∣∣∣∣∣∣r∇“Uz

E

∣∣∣∣∣∣∣∣2
L2(E)

)1/2

(3.96)
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In the one-dimensional case our domain of consideration is the unit interval

Ω :=[0, 1]. We use equidistant spacing for the M + 1 grid points: xj+1 − xj = h for

j = 0, . . . ,M − 1.

We consider test cases of solutions with varying regularities and in each case

we obtain the corresponding right hand side, f , using a method of manufactured

solutions. In all cases we approximate quantities involving integrals using a Gauss-

quadrature. In order to compute polynomials of order three exactly, we use a quadra-

ture rule of at least two points in each direction, which is formally order four.

3.6.1 Two-dimensional tests

In this section we examine in a 2D setting the asymptotic convergence rate for the

gradient error (3.95) of our finite difference post-processor 3.4.8, and the a posteriori

error bounds (3.88) and (3.94) for the model problem (3.2). The comparison of

the convergence characteristics is carried out on a sequence of approximations on

uniform grids with discretisation parameter h = 2−m, m = 4, . . . , 8 (see Fig. 3.1).

In addition, we carry out a companion set of experiments using an FE discreti-

sation of the same model problem (3.2) using linear Lagrange elements (3.17) on a

regular diagonal mesh (see Fig. 3.2). In these tests, we use the well-used, classical

FE bound (3.25). These tests will serve as an intuitive benchmark of the relative

performance of the reconstruction in the a posteriori bound.

Test 1- 2D

In this test we benchmark the behaviour of the reconstruction for two smooth solu-

tions:

u(x, y) = sin (2πx) sin (2πy) . (3.97)

The results are shown in Figs. 3.3 and 3.4 respectively for the FD discretisation and

the FE discretisation we use for comparison.
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Fig. 3.3. Asymptotic convergence rate for the gradient error (3.95) for the finite

difference post-processor 3.4.8 ( plus sign), and the a posteriori error bounds (3.88)

(circles) and (3.94) (triangles) for the model problem (3.2). The exact solution (3.97)

is smooth. Both bounds are optimal, with (3.88) being sharper.

Fig. 3.4. Asymptotic convergence rates for e := ‖∇(u− uh)‖L2(Ω) (plus sign) of the

model problem (3.2) discretised using linear Lagrange elements (3.17), and of the

bound (3.25) (circles). The exact solution (3.97) is smooth. The bound is optimal.

Test 2

In this test we use an H2(Ω) \ H3(Ω) exact solution

u(x) :=


1
4
cos
Å

8π
∣∣∣x− 1

2

∣∣∣2ã+ 1 if |x− 1/2|2 ≤ 1
8

0 otherwise.

(3.98)

where x =(x, y) ∈ R2. The test case (3.98) results in a source term given by

f(x) :=


−8πsin

Å
8π
∣∣∣x− 1

2

∣∣∣2ã− 64π2cos
Å

8π
∣∣∣x− 1

2

∣∣∣2ã |x− 1/2|2 if |x− 1/2| ≤ 1
8

0 otherwise.

(3.99)

The results are shown in Fig. 3.5 and 3.6 for the FD and FE approximations

respectively. In this test, the residual converges sub-optimally compared to the error.
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Notice that, in Fig. 3.5, the residual ‖R‖L2(Ω) converges sub-optimally compared to

the error, whereas the bound (3.88) converges optimally.

3.6.2 Remark. We note that the order of convergence in the error ‖∇e‖L2(Ω) in

this case is O
Ä
h3/2

ä
. The reason for that is the lower regularity of the solution.

However, our focus here is to examine the robustness of the post-processor based

bound, (3.88). We note that in this regard the bound behaves optimally, also with

regard to reflecting the loss of approximability due to the lower regularity of the

solution.

Fig. 3.5. Asymptotic convergence rate for the gradient error (3.95) of the FD

postprocessor 3.4.8 (plus sign), and the of the error bounds (3.88) (circles) and (3.94)

(triangles) for the model problem (3.2). The exact solution (3.98) is in H2(Ω)\H3(Ω).

The bound (3.88) is optimal whereas bound (3.94), is sub-optimal.

Fig. 3.6. Asymptotic convergence rates for e := ‖∇(u− uh)‖L2(Ω) (plus sign) of the

FE discretisation of (3.2) using linear Lagrange elements (3.17) and of the bound

(3.25) (circles). The exact solution (3.98) is in H2(Ω)\H3(Ω). The bound is optimal.

3.6.3 One-dimensional tests

In this section we examine in a 1D setting the asymptotic convergence rate for the

gradient error (3.95) of the finite difference post-processor 3.4.8, and the a posteriori
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error bounds (3.88) and (3.94) for the model problem (3.2). The comparison of

the convergence characteristics is carried out on a sequence of approximations on

uniform grids with discretisation parameter h = 2−m, m = 4, . . . , 8 (see Fig. 3.1).

In the same fashion as we did in the 2D tests, we carry out a companion set

of experiments using the same problem but approximated with a Finite Element

discretisation with linear Lagrange elements (3.17), posed over the same uniform

grid as the FD discretisation (i.e. same discrete operator up to a constant). For the

a posteriori error estimate we use the classical FE bound (3.25).

Test 3: C1(Ω) \ C2(Ω) solution

In this test we use an C1(Ω) \ C2(Ω) exact solution

u(x) :=



x2/2 if x ≤ 0.25

−x2/2 + x− 1/16 if 0.25 < x ≤ 0.75

x2/2− x+ 1/2 if 0.75 < x ≤ 1,

(3.100)

which results in a step-function source term:

f(x) :=



1 if x ≤ 0.25

−1 if 0.25 < x ≤ 0.75

1 if 0.75 < x ≤ 1.

(3.101)

The results are shown in Fig. 3.7.

Fig. 3.7. Asymptotic convergence rate for the error (3.95) of our FD postprocessor

3.4.8 (plus sign), and for the bounds (3.88) (circles) and (3.94) (triangles) for the

model problem (3.2). The exact solution (3.100) is C1(Ω)\C2(Ω). The bound (3.88)

is optimal with EI ∼ 10 (the constant is not included) while (3.94) is sub-optimal.
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Fig. 3.8. Asymptotic convergence rates for the error e := ‖∇(u− uh)‖L2(Ω) (plus

sign) of the FE discretisation of the model problem (3.2) using linear Lagrange

elements (3.17) and of the FE bound (3.25) (circles). The exact solution (3.100) is

in C1(Ω) \ C2(Ω). The bound is optimal.

Test 4: C0(Ω) \ C1(Ω) solution

In this case, we will use a hat function exact solution given by

u(x) :=
3

8
− 3

4

∣∣∣∣x− 1

2

∣∣∣∣ . (3.102)

One can easily verify that, in this case, the required f we obtain using the method

of manufactured solutions is a Dirac delta distribution:

δ
Ä
x− 1

2

ä
:=


∞ if x = 1

2

0 otherwise.

(3.103)

As it is difficult to numerically represent (3.103), we work instead with a numerical

approximation which converges to (3.103) in some appropriate sense, which we will

define shortly. In order to present this result we firstly introduce the necessary no-

tation. We adopt the same notation as [HNS16], as we use their results to construct

the numerical approximation for (3.103).

We denote by D(Ω) the dual space of C∞0 (Ω). The Dirac delta is an element of

D(Ω) and it is defined as

δ(φ) := φ(0) for φ ∈ C∞0 (Ω) . (3.104)

In particular, δ ∈ H−s(Ω) for s > 0. Following the approach of [HNS16], we ap-

proximate the Dirac delta using a sequence of distributions δ̃h ∈ D(Ω). The δ̃h

are parametrised by their support, which we identify with h > 0, and possess the
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property that δ̃h → δ in a suitable sense as h → 0. The δ̃h are constructed using

suitably regular functions δh ∈ Hs
0(Ω). Then, δ̃h ∈ H−s(Ω), s > 0 is defined as

δ̃h(φ) := 〈δh, φ〉L2(Ω)×L2(Ω) ∀φ ∈ Hs
0(Ω) . (3.105)

We omit details about the construction of the δh and requirements to guarantee

required convergence rates and instead direct interested readers to [HNS16, §2,3].

3.6.4 Definition (Weak-* convergence). The sequence, δ̃h of distributions con-

verges in distribution to δ as h→ 0 iff

δ̃H(φ)→ δ(φ) = φ(0) ∀φ ∈ C∞0 (Ω) as h→ 0. (3.106)

In the numerical example we examine in this section, we use

δh(x) :=


1

2h
,

∣∣∣x− 1
2

∣∣∣ ≤ h

0 otherwise.

(3.107)

Having identified an appropriate approximation δ̃h to δ, we solve (3.2) with

f = δh, which is given by by (3.107). The results are shown in Fig. (3.9).

Fig. 3.9. Asymptotic convergence rates for the gradient error e := ‖∇(u− uh)‖L2(Ω)

(plus sign) of the FE discretisation of the model problem (3.2) using linear Lagrange

elements (3.17) and of the bound (3.25) (circles). The exact solution (3.102) is in

C0(Ω) \ C1(Ω). The bound (3.88) is optimal with EI ∼ 5 (constant not included),

while (3.94) diverges.

3.7 Conclusion

In this chapter we introduced a methodology for obtaining reconstructions for the FD

discretisation of the elliptic model problem with homogeneous Dirichlet boundary
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conditions. We evaluated the performance of a quadratic reconstruction when it

is used to obtain an a posteriori error bound in a range of numerical experiments

where the underlying solutions have different regularity.

We demonstrated in practice that this framework can be used to obtain optimal

a posteriori error estimates (provided the solution possesses sufficient regularity)

which reflect the behaviour of the underlying error, measured in the H1
0(Ω)-norm.

We compared the performance of a bound obtained using a post-processor of an

FD solution with well-used bounds based on FE solutions of the same problems.

We found that bounds constructed using our framework compare favourably with

existing FE bounds.

In particular, for smooth solutions, we are able to achieve order 2 convergence

in the gradient norm for our post-processed solution. This is one order higher than

the analogous FE computation at very little additional computational expense.

In addition, we proved results which allowed us to investigate the behaviour of the

residual in the H−1(Ω)−norm - a quantity which cannot be practically computed.

However, in the process of doing so we had to solve an additional FE problem in

order to compute required quantities. This resulted in an optimal bound with at the

expense of small extra effort. A bound which does not require the extra FE solution

was also computed but it was sub-optimal for solutions less regular than C4(Ω).
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Chapter 4

Automated error control for the

transport equation

Abstract

In this chapter, we present an a posteriori error bound for a class of fundamental finite

difference methods for the transport equation. This is based on a simple to evaluate

reconstruction operator that yields optimal a posteriori upper bounds for the fully discrete

solution. We are also able to show global lower bounds for this bound. We validate the

analysis with some numerical experimentation and examine the ability to detect parasites,

a numerical artefact produced when a wave passes over a non-uniformity in the mesh.

4.1 Introduction

In this chapter we shift our focus to hyperbolic problems. We will use this chapter

to motivate the subsequent work on hyperbolic problems using the linear transport

equation in one dimension as an illustrative example. In this regard, we will use an

easy-to-evaluate reconstruction operator for the model problem.

We will examine the performance of the a posteriori estimate constructed in this

way using a number of numerical experiments. In addition, we will test the ability

of the bound to detect numerical parasites - numerical artefacts which propagate at

the wrong speed/direction, polluting the computation. We will validate our analysis

with some simple numerical experiments.
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4.1.1 Motivation

Our motivation in this chapter is to derive and implement an a posteriori error bound

for a class of fundamental FD methods using reconstructions. In particular, the a

posteriori error bound is derived using the stability framework of the PDE, thereby

decoupling from the chosen discretisation method. Then, the bound is obtained in

practice by using a reconstruction framework in the hyperbolic setting.

We will demonstrate this by using fundamental FD methods for the linear trans-

port equation, obtaining a bound for the fully discrete solution.

In this regard, the novelty in this chapter - which will be made concrete in

the following chapters - are the foundational ideas for a framework for construct-

ing a posteriori error estimates based on FD solutions of hyperbolic conservation

laws. The underlying motivation is that, while FD schemes for conservation laws

are widely used in practice, a posteriori error bounds for FD schemes receive less

attention when compared to the FV and FE counterparts. In addition, we will

demonstrate the ability of such an estimate to detect parasitic waves. This may be

considered as the start of an effort to come up with a strategy for removing these

from computations.

4.1.2 Chapter contribution

In this chapter we demonstrate in practice the reconstruction procedure from the

previous chapter in the process of obtaining an a posteriori bound for linear ad-

vection. We will use the procedure to construct optimal bounds for this problem

and we will prove that the bound is optimal for a simple numerical scheme in one

dimension. We will use the simple test cases to demonstrate the ability of a bound

constructed in this way to reliably indicate areas requiring refinement. We conclude

the chapter with an implementation of mesh adaptivity in one spatial dimension,

using the bound as an indicator.

The rest of this chapter is structured as follows. In §4.3 we present our linear

advection model problem an a posteriori error bound. In §4.4 we demonstrate

the construction of bounds for two well-known used numerical schemes for linear

advection. We prove that the bound is optimal for the Forward-Time Backward-

Space (FTBS) scheme. In §4.5 we demonstrate the use of the bound with simple
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numerical examples for these two schemes. In §4.6 we provide the details of the

adaptive strategy for the linear advection problem and we demonstrate the use of

the a posteriori bound in the implementation of adaptivity. We conclude the chapter

in §4.7

4.2 Preliminaries and problem setup

4.2.1 Definition. (Bochner spaces) We use the following the notation for time-

dependent Sobolev (Bochner spaces):

L∞
Ä
0, T ; Hk(Ω)

ä
:=

{
u : [0, T ]→ Hk(Ω) : sup

t∈[0,T ]
‖u(t)‖Hk(Ω) <∞

}
. (4.1)

4.2.2 Definition. (Periodic boundary conditions) Let Ω denote the one dimensional

unit interval, i.e. Ω := [x0, xM ] with x0 < xM . Then, periodic boundary conditions

are implemented by identifying the points x0 and xM as being the same point.

4.3 Hyperbolic model problem

We consider the linear transport equation

ut + ux = 0 in Ω× (0, T ]

u(x, 0) = u0(x) in Ω× {0}
(4.2)

with periodic boundary conditions (see Defn. 4.2.2).

4.3.1 Remark (The solution to (4.2)). Let u0 ∈ C1(R× R+) in (4.2). The 1D

transport equation, (4.2), admits a solution

u(x, t) = u0(x− t) . (4.3)

As [LeV92] notes, the solution u(x, t) to (4.2) at a point (x, t) depends only on

the initial data u0(x) at a single point, x0, which is the point through which the

characteristic line through (x, t) passes.

For the particular problem, (4.2), characteristic lines do not cross as they have

a constant gradient. Hence, discontinuities in the intial data will be transferred

along characteristics and will only affect the value of the solution along the specific
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characteristic curve that passes through them. This allows for non-smooth solutions

to these problem, for which the PDE does not make sense. The reason is that

discontinuous solutions will not be differentiable at the point of discontinuity.

In order for such solutions to make sense we should expand our definition of

solution to that of weak solutions. This will be introduced in later chapters. For

now, for expositions sake, we will make the underlying assumption that the solu-

tion is classical. This is true under appropriate regularity conditions on the initial

condition.

4.3.2 Lemma (Stability and error control for the linear advection equation). Let

u be a classical solution of the initial boundary value problem

ut + ux = 0 in Ω× (0, T ]

u(x, 0) = u0(x) in Ω× {0}
(4.4)

with periodic boundary conditions. Suppose also that v is a classical solution of a

perturbed balance law, specifically for some R ∈ L∞(0, T ; L2(Ω))

vt + vx = −R in Ω× (0, T ]

v(x, 0) = v0(x) in Ω× {0},
(4.5)

also with periodic boundary conditions. Then, the error between the two functions,

e := u− v, satisfies the following bound for all t ∈ [0, T ]:

‖e(t)‖2
L2(Ω) ≤ ω(t)

ñ
‖e(0)‖2

L2(Ω) +
∫ t

0
‖δ(s)R(s)‖2

L2(Ω) ds

ô
, (4.6)

where

ω(t) =


exp(t) for t ≤ 1

t exp(1) for t ≥ 1.

(4.7)

and

δ(s) =


1 for s ≤ 1

√
s for s ≥ 1.

(4.8)

Proof. We defer the proof of this result until Chapter 6, where we prove it for linear

systems. The scalar linear case that we examine in this chapter follows easily (in

particular, see Lem. 6.4.1 and Cor. 6.4.3).
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4.4 Fundamental numerical methods and a pos-

teriori bounds

We partition the domain Ω (see Defn. 4.2.2) by choosing 0 = x0 < · · · < xM = 1.

We denote the spatial mesh size hj := xj+1 − xj for 0 ≤ j ≤ M − 1 and we use Ij

to denote the sub-interval [xj, xj+1] of Ω.

In the temporal variable, we partition [0, T ] into sub-intervals with endpoints

given by 0 = t0 < · · · < tN = T . The time-step is defined by τn := tn+1 − tn. We

denote by Un
j as an approximation to u(xj, t

n), the solution of (4.2) given by either

one of two different schemes. The two schemes we consider are both posed over a

uniform temporal and spatial partition, that is τn ≡ τ for all n and hj ≡ h for all

j and are both classical schemes in the study of conservation laws. We consider an

upwinding forward-time backward-space (FTBS)

Un+1
j = Un

j −
τ

h

Ä
Un
j − Un

j−1

ä
for n = 0, . . . , N − 1 and j = 0, . . . ,M − 1

U0
j = u0(xj) for j = 0, . . . ,M

(4.9)

and a Crank-Nicolson central-space (CNCS)

Un+1
j = Un

j −
1

2

Å τ
2h

Ä
Un
j+1 − Un

j−1

ä
+

τ

2h
+
Ä
Un+1
j+1 − Un+1

j−1

äã
for j = 0, . . . ,M − 1.

U0
j = u0(xj) for j = 0, . . . ,M,

(4.10)

for n = 0, . . . , N − 1

4.4.1 Definition (Truncation error for the FTBS scheme). We define the Trunca-

tion error for the FTBS scheme at (t, x), T (t, x), as

T (t, x) :=
u(t+ τ, x)− u(x, t)

τ
+
u(t, x)− u(t, x− h)

h

=
1

2
(τutt(x, η) + huxx(ξ, t)) ,

(4.11)

for ξ ∈(x− h, x), η ∈(t, t+ τ).

4.4.2 Definition (Truncation error for the BTFS scheme). We define the Trunca-

tion error for the BTFS scheme at (t, x), T (t, x), as

T (t, x) :=
u(t+ τ, x)− u(x, t)

τ
+
u(t+ τ, x+ h)− u(t+ τ, x)

h

=(τ − h)utx,

(4.12)

for ξ ∈(x+ h, x), η ∈(t, t+ τ).
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4.4.3 Remark. (Consistency and truncation error) Formally, both the FTBS and

CNCS scheme are consistent and have truncation errors O(τ + h) and O(τ 2 + h2)

respectively.

4.4.4 Remark. (Stability) The FTBS scheme is stable, conditional upon the ratio

τ/h being less or equal to one. The CNCS scheme is unconditionally stable.

4.4.5 Remark. (Convergence) For the model problem (4.2), the FTBS scheme is

consistent and conditionally stable and the CNCS scheme is consistent and uncondi-

tionally stable. Hence, according to the Lax equivalence theorem (see Thm. A.0.2)

both schemes will converge as long as the parameters τ and h are appropriately

chosen.

In order to make use of the abstract bounds given in §4.3 we must have an

interpretation of the numerical approximation {Un
j }nj , which is only defined as point

values over the space-time domain. The most intuitive post-processing is to apply

a bilinear Lagrange interpolant in space-time.

4.4.6 Corollary (An a posteriori bound). Let “U be a continuous reconstruction of

the finite difference approximation {Un
j }nj . Then, in view of Lemma 4.3.2, we have

the a posteriori bound:∥∥∥(u− “U)(t)
∥∥∥2

L2(Ω)
≤ ω(t)

ñ∥∥∥(u− “U)(0)
∥∥∥2

L2(Ω)
+
∫ t

0
‖δ(s)R(s)‖2

L2(Ω) ds

ô
=: ω(t) E (t)2,

(4.13)

where

R := −“Ut − “Ux (4.14)

is the discrete residual of the reconstruction.

Note that given the numerical solution, the right hand side of (4.13) is fully

computable. It can even be shown to be fully robust when u0 is a sufficiently

smooth initial condition as we will indicate in the following result.

4.4.7 Lemma (Asymptotic convergence rate for the reconstruction residual). Let

{Un
j }nj be the FTBS approximation of u, the solution of (4.2) with u0 ∈ C2(Ω).

Suppose “U is the piecewise bilinear interpolant of the nodal values of {Un
j }nj and let

ω(t) E (t)2 be defined in (4.13), then

ω(t) E (t)2 ≤ C
Ä
τ 2 + h2

ä
‖u0‖2

C2(Ω) . (4.15)
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Proof. We begin by defining, “U t nodally as“U t
j (t) := Un

j +
Un+1
j − Un

j

τ
(t− tn) , for t ∈

î
tn, tn+1

ó
and j ∈ [0,M − 1], (4.16)

which represents the interpolant in the temporal direction. This allows us to write“U as“U(x, t) := “U t
j (t) +

“U t
j+1(t)− “U t

j (t)

h
(x− xj) for (x, t) ∈ [xj, xj+1]×

î
tn, tn+1

ó
.

(4.17)

Since “U is bilinear on a space-time slab we can compute R explicitly as

−R = ∂t“U + ∂x“U = ∂t“U t
j +

∂t“U t
j+1 − ∂t“U t

j

h
(x− xj) +

“U t
j+1 − “U t

j

h
. (4.18)

Now consider the residual component of the estimator. Since δR is linear over each

spatial interval, we see that

‖δ(s)R(s)‖2
L2(Ω) =

M−1∑
j=0

∫ xj+1

xj
|δ(s)R(s, x)|2 dx

=
M−1∑
j=0

h
∣∣∣δ(s)R(s, xj+1/2)

∣∣∣2 , (4.19)

Now

∫ T

0
‖δ(s)R(s)‖2

L2(Ω) ds =
N−1∑
n=0

∫ tn+1

tn

M−1∑
j=0

h
∣∣∣δ(s)R(s, xj+1/2)

∣∣∣2 ds. (4.20)

We recall from Lem. 4.3.2 that

δ(s) =


1 for s ≤ 1

√
s for s ≥ 1

(4.21)

hence we may bound (4.20) as follows:

∫ T

0
‖δ(s)R(s)‖2

L2(Ω) ds ≤ max(1, T )
N−1∑
n=0

∫ tn+1

tn

M−1∑
j=0

h
∣∣∣R(s, xj+1/2)

∣∣∣2 ds

≤ max(1, T ) τh
N−1∑
n=0

M−1∑
j=0

∣∣∣R(tn+1/2, xj+1/2)
∣∣∣2 . (4.22)

Using (4.18) we see that

−R(tn+1/2, xj+1/2) =
Un+1
j − Un

j

τ
+
Un
j+1 − Un

j

h
+

Ç
1

2τ
+

1

2h

åÄ
Un+1
j+1 − Un

j+1 −
Ä
Un+1
j − Un

j

ää
,

(4.23)
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which simplifies to

−R(tn+1/2, xj+1/2) =
1

2τ

Ä
Un+1
j+1 − U

n
j+1 + Un+1

j − Unj
ä

+
1

2h

Ä
Un+1
j+1 − U

n+1
j + Unj+1 − Unj

ä
=

1

2

Ü
Un+1
j+1 − Unj+1

τ
+
Unj+1 − Unj

h︸ ︷︷ ︸
A

ê
+

1

2

Ü
Un+1
j − Unj

τ
+
Un+1
j+1 − U

n+1
j

h︸ ︷︷ ︸
B

ê
.

(4.24)

We note that term A in (4.24) is the FTBS discretisation (4.9) evaluated at the

(j + 1)-th node and it is therefore equal to zero. Hence, (4.24) simplifies to

−R(tn+1/2, xj+1/2) =
1

2

(
Un+1
j − Un

j

τ
+
Un+1
j+1 − Un+1

j

h

)
. (4.25)

Notice that this corresponds to a backward time, forward space discretisation. In a

sense this is the “opposite” discretisation of the method we study. This allows us

to relate the residual, (4.25), to the truncation error of the BTFS scheme (see Defn.

4.4.2) and to subsequently use this in our calculation.

Therefore, to assess the contribution of the remaining terms, we relate them to

quantities for which we have known bounds, such as the truncation error. In this

spirit we utilise the relation between the BTFS scheme and its truncation error,

(4.12) to (4.25):

Un+1
j − Un

j

τ
+
Un+1
j+1 − Un+1

j

h
=
un+1
j − unj
τ

+
un+1
j+1 − un+1

j

h
− T nj . (4.26)

On account of (4.9), (4.26) is zero. We add the right-hand side of (4.26), evalu-

ated at (tn, xj) and (tn+1, xj+1) to (4.24) to obtain:

−R(tn+1/2, xj+1/2) =
1

2

(
Un+1
j − Un

j

τ
+
Un+1
j+1 − Un+1

j

h

)

− 1

2

(
un+1
j − unj
τ

+
un+1
j+1 − un+1

j

h

)
+

1

2
T nj ,

(4.27)

where T nj is the truncation error, defined in (4.12), at(tn, xj). Then, (4.27) simplifies

to

−R(tn+1/2, xj+1/2) =
1

2

(
en+1
j − enj
τ

+
en+1
j+1 − en+1

j

h

)
+

1

2
T nj . (4.28)

Examining (4.28), we see that the term in brackets is essentially a truncation error.

We denote the maximum of this quantity over (tn, xj) as T e. In the same vein as

in Defn. 4.4.2, we will assume that there exists a constant Ce > 0 such that the

following bound holds:

|T e| := max
n

max
j

∣∣∣∣∣
(
en+1
j − enj
τ

+
en+1
j+1 − en+1

j

h

)∣∣∣∣∣ ≤ Ce(τ + h) ‖u0‖C2(Ω) . (4.29)
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Combining (4.29) with the known bounds we have for the truncation error, T nj

(see Defn. 4.4.1), we obtain a bound for the residual |R|.

Firstly, since u ∈ C2([0, T ]× Ω), |utt| and |uxx| are bounded, for the particu-

lar problem, by ‖u0‖C2([0,T ]×Ω) for all (t, x) ∈ [0, T ] × Ω. We define the maximum

truncation error for all t =[0, T ] to be

T u := max
n

max
j

∣∣∣T nj ∣∣∣ , (4.30)

for which the following bound holds (see also Defn. 4.4.1)

|T u| ≤ Cu(τ + h) ‖u0‖C2(Ω) , (4.31)

for some Cu ∈ R+. Finally, we combine (4.29) and (4.31) to obtain∣∣∣RÄtn+1/2, xj+1/2

ä∣∣∣ ≤ 1

2
(|T u|+ |T e|)

≤ 1

2
max {Ce, Cu}(τ + h) ‖u0‖C2(Ω) .

(4.32)

For brevity, we define C := 1
2
max {Ce, Cu}, which simplifies (4.32) to

∣∣∣RÄtn+1/2, xj+1/2

ä∣∣∣ ≤ C(τ + h) ‖u0‖C2(Ω) . (4.33)

Now, we substitute (4.33) in (4.20) we obtain

∫ T

0
‖δ(s)R(s)‖2

L2(Ω) ds ≤ max(1, T ) τh
N−1∑
n=0

M−1∑
j=0

∣∣∣R(tn+1/2, xj+1/2)
∣∣∣2

≤ C2 max(1, T ) τh(τ + h)2 ‖u0‖2
C2(Ω)

N−1∑
n=0

M−1∑
j=0

1.

(4.34)

Now we use the fact that

M−1∑
j=0

1 = M =
1

h
and

N−1∑
n=0

1 = N =
1

τ
, (4.35)

to evaluate the summations in the second line of (4.34), thereby simplifying it to∫ T

0
‖δ(s)R(s)‖2

L2(Ω) ds ≤ C2 max(1, T )(τ + h)2 ‖u0‖2
C2(Ω) . (4.36)

Finally, knowing from interpolation theory that
∥∥∥Äu− “Uä(0)

∥∥∥
L2(Ω)

= O(h2) and com-

bining this with (4.36) concludes the proof.

4.4.8 Remark. Combining the results of Corollary 4.4.6 and Lemma 4.4.7 implies

the a posteriori bound is fully robust for FTBS, at least with smooth initial data.

We will subsequently demonstrate this with numerical examples.
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4.4.9 Remark (Asymptotic convergence rate for the reconstruction residual). Let

{Un
j }nj be the CNCS approximation of u, the solution of (4.2) with u0 ∈ C2(Ω).

Suppose “U is the piecewise linear in time and piecewise quadratic in space interpolant

which is constructed using the conditions (4.41) and let ω(t) E (t)2 be defined in

(4.13), then »
ω(t) E (t)2 = O(τ 2 + h2). (4.37)

4.5 Numerical experiments

In this section we test the validity and asymptotic behaviour of our estimate.

4.5.1 Test 1: Smooth initial condition

We illustrate the asymptotic behaviour of the a posteriori bound by considering the

solution of (4.2) with initial condition

u0(x) = sin (2πx) , (4.38)

and periodic boundary conditions. In this case the solution of this problem is given

by

u(x, t) = sin (2π(x− t)) . (4.39)

Using the bilinear Lagrange interpolant as a reconstruction operator, we examine

the behaviour of the bound for both the FTBS scheme, where we have an optimal

estimate, and the CNCS scheme, where we have only an upper bound. We conduct

the simulations over a family of meshes with discretisation parameter h = 2−m,m =

4, . . . 7, with a time-step τ = h
10

. The results are shown in Figure 4.1. As indicated

in Lemma 4.4.7 the asymptotic convergence rate of the estimate matches that of the

error for the FTBS scheme with a favourable EI(4) < 3, but the Lemma does not

naturally extend to the CNCS scheme. The reason for this is that the naive bilinear

interpolant lacks the approximability to achieve the optimal convergence rate of the

residual.
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(a) FTBS (4.9).

(b) CNCS (4.10).

Fig. 4.1. Errors and asymptotic convergence rates for the a posteriori bound

given in Corollary 4.4.6 using the bilinear interpolant of the FTBS (4.9) and CNCS

(4.10) approximations of (4.2) with initial condition (4.38) and periodic boundary

conditions. The estimate is optimal for the FTBS scheme and suboptimal for CNCS.

4.5.2 Remark (Suboptimal bound for CNCS). The bound given in Corollary 4.4.6

is suboptimal for the CNCS scheme. The reason for this is that the bilinear Lagrange

interpolant we used for the reconstruction simply does not have the approximability

required. Since the CNCS scheme is formally of order two, we must incorporate this

information into the reconstruction we use.

We do this by building information from within the finite difference spatial dis-

cretisation directly into the post-processor. Indeed, within each space-time patch

[tn, tn+1] × [xj, xj+1], we can augment “U such that it is defined as a patch-wise bi-

quadratic interpolant by constructing it in two steps as follows. Firstly, we construct

the interpolant in the temporal direction as the unique piecewise quadratic polyno-

mial in time which satisfies “U t
j (t

n) = Un
j“U t

j

Ä
tn+1

ä
= Un+1

j and

∂t“U t
j (t

n) = − 1

2h

Ä
Un
j+1 − Un

j−1

ä
.

(4.40)

Note that we have used the superscript t to denote time dependence for this inter-
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mediate step of the reconstruction, “U t, and the sub-script j to denote the spatial

position, xj, on the grid where we construct the temporal polynomial. Once the“U t
j , j = 0, . . . ,M − 1 are computed, we use them to obtain the unique patch-wise

bi-quadratic polynomial which satisfies“U(xj, t
n) = “U t

j (t
n) ,“U(xj+1, t

n) = “U t
j+1(tn) and

∂x“U(xj, t
n) =

“U t
j+1(tn)− “U t

j−1(tn)

2h
.

(4.41)

In this way we are closer to the spirit of a finite difference method. The argument

from Lemma 4.4.7 can be modified to apply in this case. Indeed, one can show

that applying the same argument the interpolant given by (4.41) yields
√
wE 2 =

O(τ 2 + h2), which is optimal for the CNCS scheme (provided that the solution

possesses the requisite regularity to allow the estimate to achieve this optimal rate).

To illustrate this asymptotic convergence properties we have replicated the same

experiment as in Figure 4.1 for the quadratic reconstruction. This is shown in

Figure 4.2. It can be seen that the additional information provided by appropriately

increasing the order of data representation allows us to achieve optimal convergence

rates of the a posteriori bound and favourable effectivities.

Fig. 4.2. Errors and asymptotic convergence rates for the linear in time, quadratic

in space Hermite interpolant of CNCS (4.10) approximations of (4.2) with initial

condition (4.38) and periodic boundary conditions. The estimate is now optimal for

the CNCS scheme with favourable effectivity of EI(4) ∼ 2.2.

The ideas presented in this section form an intuitive way to obtain the recon-

struction. It is possible to generalise this quite naturally to other spatio-temporal

discrestisations as we will present in the forthcoming sections.

The last test in this section is presented in order to motivate adaptivity in the

context of finite difference schemes for conservation laws. We highlight additional
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challenges that arise in implementing adaptivity, even for scalar examples in one

spatial dimension.

4.5.3 Test 2: Parasite detection in 1D

Grid and discretisation

Consider a piecewise uniform grid which has a mesh-size change at x = 0.5:

xj − xj−1 =


h if xj ≤ 0.5

2h if xj > 0.5.

(4.42)

Such a grid is shown in Fig. 4.3. Let the set {uj(t)}Mj=0 denote the numerical

solution on time-continuous lines produced by the following central difference semi-

discretisation posed over the grid (4.42):

duj
dt

=



uj+1−uj−1

2h
for xj < 0.5,

uj+1−uj−1

3h
for xj = 0.5,

uj+1−uj−1

4h
for xj > 0.5.

(4.43)

Fig. 4.3. A piecewise uniform grid given by (4.42) with a doubling of the mesh

size for x ≥ 0.5.

In this test we investigate the resulting behaviour of the a posteriori bound

(4.13) in the presence of parasitic waves and we verify the capability of the bound

we construct to detect such waves. Firstly, we will give some background information

on the propagation characteristics of parasites and then we will describe the relevant

numerical experiments.
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Propagation characteristics of parasitic waves

In this section we provide some background on propagation properties of parasitic

waves for the case they are generated by a mesh non-uniformity (see Fig. 4.3). The

material we will present in this section is a summary of [Vic80, §4].

4.5.4 Definition. (Fourier Transform in the time-domain) We denote the time-

domain Fourier transform (FT) of uj by ûj

ûj (ξ) =
∫ ∞
−∞

uj (t) exp(−iξt) dt, (4.44)

and we let {ûj(ξ)} denote the Fourier transforms of the semi-discrete numerical

solutions {uj(t)} which are obtained by (4.43).

4.5.5 Definition. (Fourier transform of the spatial semi-discretisation) In order to

obtain information on the propagation characteristics of the {uj(t)}, we apply the

Fourier Transform to (4.43) to obtain

iξûj = −
Ç
ûj+1 − ûj−1

2h

å
, (4.45)

which can be re-written as

ûj+1 + 2iξhûj − ûj−1 = 0. (4.46)

4.5.6 Definition. (Space-shift Operator) We define the space-shift operator E through

the relation

uj+1 = Euj, (4.47)

and we denote by Ê its image in the Fourier domain.

We solve (4.46) by seeking solutions for which the ratio

Ê =
ûj+1

ûj
(4.48)

is independent of j. In order to find solutions that satisfy (4.48) we use Ê to write

(4.46) as Ä
Ê + 2iξh− Ê−1

ä
ûn = 0 (4.49)

and we impose that Ê satisfies the relation

Ê2 + 2iξhÊ− 1 = 0. (4.50)
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This equation has two solutions for |ξh| < 1:

Ê1 = −iξh+
√

1− (ξh)2,

Ê2 = −iξh−
√

1− (ξh)2.
(4.51)

4.5.7 Remark. The cases |ξh| ≥ 1 are treated in [Vic81b] and interested readers

can consult this source for more information. However, we are not interested in

them in this section.

4.5.8 Remark. In [Vic81a], Ê1,2 are referred to as cell transfer functions. They

are used in the derivation of the propagation characteristics of solutions, {uj(t)}, of

(4.43) and in particular of the wavelength, phase velocity and group velocity.

The existence of two cell transfer functions reflects the fact that the set of solu-

tions {uj(t)} to (4.43) can be decomposed into two types of solutions, say {pj(t)}

and {qj(t)}:

{uj(t)} = {pj(t)}+ {qj(t)} . (4.52)

Then, Ê1 corresponds to solutions of the type {p(t)} while Ê2 corresponds to {q(t)}.

These two different types of solutions, {p(t)} and {q(t)} have different propagation

characteristics. In particular, we are most interested in wavelength, group velocity

and phase velocity.

4.5.9 Remark. Phase velocity is the velocity at which a wave propagates in a

medium. Group velocity, in a context where, say, sinusoidal wave forms of different

frequencies are superimposed, is the speed at which the entire pattern travels. The

two can be different.

4.5.10 Proposition. (Propagation characteristics of {pj(t)} and {qj(t)}) Let λ

denote the wavelength, let Cp denote phase velocity and Cg denote group velocity.

Solutions of the the type {pj(t)} have the following propagation characteristics:

Cp
p(ξ) =

ξh

arcsin (ξh)
, Cp

g (ξ) =
√

1−(ξh)2 and λp(ξ) =
2πh

arcsin (ξh)
(4.53)

Solutions of the the type {qj(t)} have the following propagation characteristics:

Cq
p(ξ) =

ξh

π − arcsin (ξh)
, Cq

g (ξ) = −
√

1−(ξh)2 and λq(ξ) =
2πh

π − arcsin (ξh)
(4.54)
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4.5.11 Remark. In the context we are considering, solutions of the type {p(t)} have

positive phase and group velocities and wavelengths in the range (4h,∞), whereas

solutions of the type {q(t)} have positive phase velocity, negative group velocity and

wavelengths in the range of (2h, 4h) (see [Vic81a, §3 and §5]).

4.5.12 Remark. Suppose that a smooth wave-form is travelling over a grid and

the spacing changes from fine to coarse abruptly. Then, it is shown in [Vic81b, §6]

that reflection occurs at the interface between the fine and coarse mesh portions,

and that the reflected component of the solution contains mostly the type {q(t)}.

Recall that solutions of type {qj(t)} contain smaller wavelengths and are char-

acterized by negative group velocity (see Pro. 4.5.10). Hence, once reflection occurs

at the interface, the reflected components of the waveform will appear as a spurious

oscillatory wave-train which travels in the opposite direction than that of the on-

going solution. This spurious oscillation, which is a numerical artefact, is what we

refer to by the term parasite.

In order to demonstrate the concept of parasites in practice, as well as our a

posteriori estimates capability to detect it, we use the CNCS scheme (4.10) on a

piecewise non-uniform grid given by

hj = xj+1 − xj =


2−9 if xj+1 > 1/2,

2−10 otherwise

. (4.55)

4.5.13 Remark (Truncation error of the central difference quotient). The trunca-

tion error of the standard central difference approximation to the first derivative,

ux(xj, t
n) ≈

Un
j+1 − Un

j−1

hj+1 + hj
, (4.56)

on a uniform grid is order 2 globally. On a non-uniform grid, it is locally only order

1 wherever JhjK := hj+1 − hj 6= 0. In order to ensure that the spatial discretisation

is second order on a non-uniform grid, we use the modified quotient:

ux(xj, t
n) ≈

Ç
1

hj+1

− 1

hj + hj+1

å
Un
j+1 +

Ç
1

hj
− 1

hj+1

å
Un
j +

Ç
1

hj + hj+1

− 1

hj

å
Un
j−1,

(4.57)

which is order two globally on a non-uniform grid as well and simplifies to (4.56) on

a uniform grid.
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The CNCS scheme (4.10) is modified in the spatial component with the new

quotient, (4.57) and becomes

Un+1
j = Unj

− τ

2

ñÇ
1

hj+1
− 1

hj + hj+1

å
Unj+1 +

Ç
1

hj
− 1

hj+1

å
Unj +

Ç
1

hj + hj+1
− 1

hj

å
Unj−1

ô
− τ

2

ñÇ
1

hj+1
− 1

hj + hj+1

å
Un+1
j+1 +

Ç
1

hj
− 1

hj+1

å
Un+1
j +

Ç
1

hj + hj+1
− 1

hj

å
Un+1
j−1

ô
for n = 0, . . . , N − 1 and j = 0, . . . ,M − 1.

U0
j = u0(xj) for j = 0, . . . ,M.

(4.58)

4.5.14 Remark. (Time-step) In the modified CNCS scheme, (4.58) there are two

spatial step-sizes present in the domain we are considering. We note that we couple

the temporal step, τ to the spatial step of the fine domain: τ = 0.1× 2−10.

In order to demonstrate the effect of the parasite, and the ability of the a poste-

riori bound to detect it, we localise the bound and plot ‖R‖L2(Ij), with

R = −“Ut − “Ux (4.59)

with the reconstruction “U obtained using the conditions (4.41). We use an initial

condition

u0(x) = exp
Ä
−1000(x− 0.25)2

ä
. (4.60)

as it is narrow and helps us show what the parasite looks like, and periodic boundary

conditions.

The results are shown in Fig. 4.4. The parasitic wave is the highly oscillatory

wave (blue colour) in the right-most plot (magnified). It forms as the solution travels

over an abrupt grid-spacing change (see (4.55)) and travels in the opposite direction

from the solution. Notice that the residual we have constructed using the conditions

(4.40) and (4.41) correctly detects and tracks the parasite as can be seen by the small

bumps in the second plot (orange colour). In general, we note that parasitic waves

may rapidly pollute the computation.
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(a) Before parasite forms. (b) After parasite forms. (c) Magnified Parasite.

Fig. 4.4. A parasitic wave (blue oscillatory waveform), forming as the solution

travels over an abrupt mesh change, given by (4.55). We plot the solution and the

normalized L2-norm of the local residual (4.59) before and after parasite formation

to demonstrate that the residual can be used to detect and track the parasite.

4.5.15 Remark. The reader should note that implementing mesh adaptivity in

the presence of an existing grid discontinuity may exacerbate parasite formation

and propagation. A potential solution would be to implement model adaptivity

simultaneously (see [GP17]) in order to ”dampen” parasites out or to selectively

remove them.

4.6 Adaptivity

4.6.1 Adaptive Algorithm

Our adaptive algorithm is of SOLVE → ESTIMATE → MARK → REFINE type.

4.6.2 Remark (Maximum number of refinements). For the purposes of this pa-

per we allow a maximum of four refinement levels relative to the initial, uniform

triangulation.

There are potentially several ways to compare the performance of a numerical

solution on a uniform and an adaptive mesh. In this case we will use what we will

refer to as an equivalent uniform mesh.

4.6.3 Definition (Equivalent Uniform Mesh). We define a uniform mesh to be

equivalent to an adaptive mesh if it has the same cumulative number of degrees of
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freedom, which we define as
N∑
n=0

Ndof (t
n) . (4.61)

We find this number by firstly running the simulation on the adaptive mesh

and recording the number of dof at each time-step. We then average this over the

number of time steps and set the resulting value to be the number of degrees of

freedom for the equivalent uniform mesh.

4.6.4 Marking

The criterion for marking cells for refinement/coarsening is based is a maximum

strategy. We refine cells wherein the value of the local indicator is larger than some

multiple of the maximum value of the local residual and coarsen cells where it is

lower. We do nothing in cases where the local value of the indicator falls in between

the two values. Lastly, we do not coarsen a cell marked if its sibling is marked for

refinement at the same time-step.

This strategy is described in detail in [SS05, §1.5] and it is modified for time-

dependent problems for the purposes of these experiments. Briefly, let ηS denote

the local residual term ‖R‖L2(Ij) in a ’cell’ S := Ij =[xj, xj+1] for S ∈ SK , where SK

is the initial parent triangulation. We set two predefined tolerances γr and γc for

refining and coarsening respectively. We mark a cell for refinement if

ηS ≥ γr max
S′

ηS′ , S
′ ∈ Sk (4.62)

and we mark for coarsening coarsen if

ηS ≤ γc max
S′

ηS′ , S
′ ∈ Sk. (4.63)

The reader should note that there are several ways of choosing γc and γr. We

chose them empirically as γc = .05e − 10 and γr = 0.5e − 8. We summarize the

marking-refinement/coarsening process in Algorithm 1.
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Algorithm 1 Mesh Adaptivity

Require: Maximum number of refinement levels relative to initial triangulation,

refinement parameter γr and coarsening parameter γc.

while tn < T do

set S
(0)
K = Sk, the initial grid for the time-step tn.

Solve (4.9) on S
(0)
K and compute the local indicator ηS for all S ∈ S(0)

K .

Set ηmax := maxS′∈Sk ηS′ .

for S ∈ S(0)
K do

if ηS > γrηmax then

Mark S for refiment

end if

end for

for S ∈ S(0)
K do

if ηS < γcηmax then

if S /∈ SK and the siblings of S are not marked for refinement then

Mark S for coarsening

end if

end if

end for

for S ∈ S(0)
K do

if S is marked for refinement then

Create two children of S

Prolong U over S and assign corresponding values to children nodes

Prolong the grid {xj} assigning corresponding values to children nodes

elseif S is marked for coarsening

Restrict U by assigning the relevant values from S and its sibling to

their parent

Restict the grid {xj} by assigning corresponding values from S and its

sibling to their parent

Delete S and its sibling

end if

end for

Recompute both the error and the bound from (4.13) and record them as the

values for time step tn

do n := n+ 1

end while

end
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4.6.5 Adaptive experiments

In this section we describe the numerical experiments we run to test the a poste-

riori bounds as criteria for adaptivity. We use a linear advection problem with a

discontinuous initial condition and periodic boundary conditions. In this way we

benchmark the performance of the indicator in a more challenging setting than in

previous sections.

4.6.6 Remark (Grid-spacing for the adaptive mesh). We start the simulations

at the coarsest available refinement level. Then, the indicator detects where this

is insufficient and refines locally, which essentially pertains to the vicinity of the

discontinuities. This is the reason for the small but abrupt increase in the number

of dofs in the left plot in Fig. 4.6 during the first few time steps of the simulation.

4.6.7 Remark (Time-step for the adaptive mesh). In order to maintain numerical

stability, in the absence of an adaptive mechanism for the time-step, we couple

the time-step to the smallest spatial step present in the computation, to maintain

numerical stability.

Linear advection

We run a benchmarking experiment experiment using the linear advection equation

ut + ux = 0 (4.64)

over a domain Ω = [0, 1] with T = 0.5 using periodic boundary conditions and a

discontinuous initial condition given by

u0(x) =


1 if |x− .25| ≤ 0.125

0 if |x− .25| > 0.125.

(4.65)

We discretise the problem using a Forward-Time Backward Space scheme given by

(4.9) for both the adaptive and the uniform case. The residual in this test case is

constructed using a bilinear Lagrange interpolant (see (4.14)). The simulation starts

at the coarsest refinement level out of a maximum allowable three refinement, with

a uniform grid with spatial step h = 2−5 and a temporal step τ = 2−7

10
which remains

constant throughout the simulation. The grid-spacing for the equivalent uniform
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grid (see Rem. 4.6.3) corresponds to 720 degrees of freedom, i.e. 0 = x0 < · · · <

x719 = 1.

In Fig. 4.5, we plot snapshots of the solution (blue line) and the logarithm of the

reciprocal of the grid spacing (grey line). The evolution of the error and the number

of DOFs is shown in 4.6 alongside a comparison with an equivalent uniform grid.

Notice that the residual reliable detects and tracks regions of refinement/coarsening

interest, such as in the vicinity of discontinuities (for refinement) and away from

them (for coarsening). This is evident from an examination of the evolution of the

grid spacing, shown as the grey line.

(a) t = 0 s (b) t ≈ 0.1 s (c) t ≈ 0.2 s

(d) t ≈ 0.3 s (e) t ≈ 0.4 s (f) t ≈ 0.5 s

Fig. 4.5. Evolution of the solution, u, (blue line) and of the logarithm of the recip-

rocal of the local grid-spacing (grey line) for the advection problem (4.2), discretised

with a FTBS spatio-temporal discretization (see (4.9)). The residual, (4.14), reliably

detects and tracks regions where refinement/coarsening is required.
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Fig. 4.6. A comparison of the performance of the adaptive grid with an equivalent

uniform grid (see Defn. 4.6.3), which in this case has 720 dofs. The adaptive

grid consistently maintains a lower level of error throughout the major part of the

simulation compared to the equivalent uniform grid.

4.7 Conclusion

In this section we presented an a posteriori error bound for a class of well used

finite difference schemes for the transport equation in one spatial dimension. This

is intended as motivation for a more general framework for constructing a posteriori

error bounds for FD schemes for hyperbolic conservation laws in the chapters that

follow.

The a posteriori bound was constructed using a simple reconstruction of the FD

numerical solution obtained using the FTBS and CNCS scheme. We touched upon

the issue of optimality and how this depends on the particular set of conditions used

to obtain the reconstruction. Specifically, we showed, in a simple example, how

we can incorporate information from the chosen FD scheme in order to obtain an

optimal bound for a higher order FD approximation.

Additionally, we demonstrated the capability of a bound constructed in this

way to detect parasites: numerical artefacts that are generated as a result of the

presence of discontinuities in the underlying numerical approximation. In this case

the discontinuity in question is an abrupt change in mesh spacing.

Lastly, we demonstrated that the bound can be used as a driver for adaptivity us-

ing a numerical experiment with a discontinuous initial condition. We found that the
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reconstruction-based bound performed favourably compared to a grid with uniform

spacing, with the comparison being on the basis of the two experiments (adaptive

and non-adaptive) having the same number of cumulative degrees of freedom.
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Chapter 5

Postprocessing in finite difference

schemes

Abstract

In this chapter, we introduce a class of Weighted Essentially Non-Oscillatory (WENO)

schemes for systems of conservation laws. These schemes form the basis of the a posteriori

analysis that will appear in later chapters through the WENO reconstruction operator.

While the WENO schemes are fundamentally based upon this operator, it is not explicitly

written down in the literature, rather it is typically eliminated in the scheme derivation.

We use this chapter to give an explicit representation of the operator which we will then

use as a fundamental component of the a posteriori bounds we construct.

5.1 Introduction

In this chapter we expand upon the material in Chapter 4 by explaining how to

obtain post-processors of FD solutions for non-linear problems. As we explained in

previous chapters, the post-processor is necessary in order to obtain the a posteriori

bound.

In addition, we expand upon the issue of optimality of the a posteriori bound

obtained from the post-processor that was touched upon in the previous chapter.

Specifically, we do this by showing how to obtain polynomial reconstructions of

solutions obtained by higher order schemes both temporally and spatially. We also

show how to obtain post processors for non-linear problems.
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We describe explicitly and in detail the WENO component of the reconstruction

procedure. We evaluate the performance of this as an interpolant using various

functions of varying regularity in order to demonstrate the approximability of this

interpolant.

5.1.1 Motivation

Our motivation in this chapter is to extend the procedure introduced in Chapter

4 and formalize it into a framework for obtaining reconstructions for hyperbolic

conservation laws in one-dimension.

We emphasize to the reader the fact that now we are changing strategy with

regard to obtaining reconstructions. We will now endeavour to directly build infor-

mation from the numerical scheme in the reconstruction. This will be reflected from

the the very beginning of the procedure, at the framework level.

The framework will contain mechanisms for obtaining spatial reconstruction for

higher order schemes. This will enable us to build optimal a posteriori error bounds

for conservation laws, at least in the pre-shock regime, without resorting to un-

favourable temporal to spatial step coupling. We note that in the temporal compo-

nent the framework we present in this chapter is limited to third order but it can

be extended to higher orders in the way shown in Chapter 2.

We will present the reconstruction procedure in the context of WENO schemes

on non-uniform grids. The reason for this preference is twofold. Firstly, WENO

schemes have high orders of approximability in space and good behaviour in the

presence of discontinuities. Secondly, presenting the procedure for non-uniform grids

will enable us to use the a posteriori estimate as a driver for mesh adaptivity in the

numerical tests we will run in later chapters.

5.1.2 Chapter contribution

In this chapter we present the framework for obtaining reconstructions from solutions

of general finite difference schemes approximating systems of non-linear conservation

laws. The novelty is that the reconstructions from this framework will enable the

construction of reliable a posteriori estimate for general FD schemes. The result is

quite general, in that we assume nothing on the exact solution although the final
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estimate is conditional, in that it holds only under some conditions on the numerical

solution. The framework has inherent mechanisms to construct robust estimates of

high-order, at least in the pre-shock regime, enabling the user to obtain optimal

bounds for high order FD schemes using WENO interpolation [LSZ09, JSB+19].

This will be demonstrated using appropriate numerical experiments in the next

chapter.

The rest of this chapter is structured as follows. In §5.2 we present the model

problem we will be using throughout this chapter. In §5.3 we present the spatial

and temporal discretisations we will be using to approximate the model problem.

In §5.3.9 we present WENO schemes which will be used as spatial discretisations

in some of the examples we consider in later chapters. In §5.3.17 we present the

procedure for obtaining the spatial component of the WENO reconstruction (which

we present in later chapters). In §5.4 we carry out some numerical experiments to

benchmark the behaviour of the spatial component of the reconstruction by using

it as an interpolant of functions of varying regularity. We conclude the chapter in

§5.5.

5.2 Hyperbolic systems model problem

In this section we will present the model problem we will use throughout this chapter

as well as for the following chapters.

5.2.1 Definition (One-dimensional system of conservation laws). We consider prob-

lems of the form

ut + ∂xf(u) = 0,

u(x, 0) = u0(x) ,
for (x, t) ∈ Ω×(0,∞) (5.1)

with u = (u1, . . . , up)
T and f(u) = (f1(u) , . . . , fp(u))T and complemented with

periodic boundary conditions. In particular,

u : R× R+ → Rp

(x, t) 7→ u(x, t)
(5.2)

and the flux function f

f : Rp → Rp

u(x, t) 7→ f(u(x, t))
(5.3)
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5.3 Numerical methods and discretisation

In this section we present the spatial and temporal discretisations we will use to

approximate (5.1). We will use boldface notation for vector-valued quantities in

order to distinguish them from scalar quantities.

5.3.1 Spatial discretisation

We will denote byUn
j the numerical approximation to u(xj, t

n). It is well known that

numerical schemes for non-linear conservation laws may converge to functions which

are not weak-solutions of the original problem (see [LeV92, §12.1]). We address

this problem by expressing the method in conservation form. We use a consistent

numerical flux function F , which takes p+ q + 1 arguments:Ä
Un
j−p+1, · · · ,Un

j+q

ä
: F n

j 7→ F
Ä
Un
j−p, · · · ,Un

j+q

ä
F (v, · · · ,v) = f(v) ,

(5.4)

where p and q are simply used to determine the width of the computational stencil.

We use F to approximate ∂xf such that

∂xf(u) ≈ 1

h

Ä
F
Ä
Un
j−p, · · · ,Un

j+q

ä
− F

Ä
Un
j−p−1, · · · ,Un

j+q−1

ää
. (5.5)

We can then use a method-of-lines approach in the discretisation of (5.1) by requiring

d

dt
U j =

1

h

Ä
F
Ä
Un
j−p, · · · ,Un

j+q

ä
− F

Ä
Un
j−p−1, · · · ,Un

j+q−1

ää
∀ j = 0, . . . ,M.

(5.6)

For clarity, we provide illustrative examples of F for the Lax-Friedrichs and the

Lax-Wendroff scheme.

5.3.2 Remark (Conservation form for the Lax-Friedrichs scheme). The Lax-Friedrichs

scheme can be written in conservation form, (5.6), by defining the numerical flux

function F as

F (U j,U j+1) :=
h

2τ
(U j −U j+1) +

1

2
(f(U j) + f(U j+1)) . (5.7)

The Lax-Friedrichs flux is formally O(h).

5.3.3 Remark (Conservation form for the Lax-Wendroff scheme). The Lax-Wendroff

scheme can be written in conservation form by using the Richtmayer two-stage
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method. We define the numerical flux function F as

F (U j,U j+1) := f
(
U
n+1/2
j+1/2

)
, (5.8)

where

U
n+1/2
j+1/2 :=

1

2

Ä
Un
j+1 +Un

j

ä
− τ

2h

Ä
f
Ä
Un
j+1

ä
− f

Ä
Un
j

ää
U
n+1/2
j−1/2 :=

1

2

Ä
Un
j +Un

j−1

ä
− τ

2h

Ä
f
Ä
Un
j

ä
− f

Ä
Un
j−1

ää
.

(5.9)

The conservation form of the scheme is then given by:

Un+1
j := Un

j −
τ

h

(
f
(
U
n+1/2
j+1/2

)
− f

(
U
n+1/2
j−1/2

))
. (5.10)

The Lax-Wendroff scheme is formally O(τ 2 + h2).

5.3.4 Remark. The aforementioned schemes have various limiters which can be

applied to them. These can be fully accounted for in the framework we propose.

5.3.5 Temporal discretisation

We approximate the temporal variable using both implicit and explicit temporal

discretisations. For example, using various 1-stage Runge-Kutta methods given by

the Butcher tableau

θ θ

1
. (5.11)

In general, we will be using Strong-Stability Preserving Runge-Kutta (SSP-RK)

methods ([GST01]).

5.3.6 Definition. (RK methods) Let U(j) denote the jth predictor stage of an

m−stage RK and likewise, let F(j) denote the numerical flux function (see (5.4))

computed at the jth stage. Then, the m−stage RK method is given as follows:

U(0) = Un,

U(i) = Un + τ
s∑

k=1

ai,k
h

(
F

(k)
j − F

(k)
j−1

)
Un+1 = Un + τ

s∑
i=1

bi
h

(
F

(i)
j − F

(i)
j−1

) (5.12)
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We will represent RK methods using Butcher tableaus. Butcher tableaus are

given in the well-known general format;

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...

cs as1 as2 · · · ass

b1 b2 · · · bs

. (5.13)

5.3.7 Definition. (Discrete Total Variation (TV) and Total Variation Diminishing

(TVD) Schemes) The discrete TV of the numerical solution,
¶
Un
j

©n
j

at the n−th

time-step is defined as

TV (Un) :=
M∑
j=1

∣∣∣Un
j+1 − Un

j

∣∣∣ . (5.14)

A difference scheme is then said to possess the TVD property or to be TVD if

TV
Ä
Un+1

ä
≤ TV (Un) . (5.15)

SSP-RK schemes were developed in [SO88], [Shu88] and further explored in

[GS98]. Originally, they were called TVD time discretisations [Shu02]. In the

context of non-linear hyperbolic conservation laws, which are known for develop-

ing discontinuities even for smooth initial conditions, SSP-RK methods possess an

advantage over classical RK methods. In particular, as demonstrated in [GS98, §2],

even if the chosen discretisation for the spatial derivative is free of spurious oscil-

lations, if the RK method is non-TVD, spurious oscillations can still occur, which

highlights the need for TVD time discretisations.

SSP-RK methods arose as the natural extension of the TVD property to high

order time-discretisation. Suppose that the spatial discretisation (see subsequent

sections) is such that, with a suitable CFL condition on the temporal step, the

resulting forward Euler discretisation possesses the TVD property (see Defn. 5.3.7).

Then, under suitable conditions for the coefficients in (5.12), the RK method can

have the TVD property, with a potentially different time step restriction (see [Shu02,

Lem. 2.1]).

5.3.8 Remark. We also make use of Strong-Stability Preserving Runge-Kutta

(SSPRK) methods and in particular of the one given in the following Butcher tableau
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(see [GST01, Pro. 4.1]):

0 0 0 0

1 1 0 0

1/2 1/4 1/4 0

1/6 1/6 2/3

(5.16)

5.3.9 WENO Schemes

In this section we briefly summarise the details behind Weighted Essentially Non-

Oscillatory (WENO) schemes, (cf. [JS96], [Shu98]), which pertain to our implemen-

tation. ENO/WENO schemes have been used with great success in several areas

and in particular in the discretisation of hyperbolic conservation laws and convecion-

diffusion equations (see e.g. [Shu20] for an overview).

They have several features which contributed to their widespread success. These

include a mechanism of computational stencil construction that can achieve arbitrar-

ily high accuracy in regions where the solution is smooth, essentially non-oscillatory

behavior in the vicinity of discontinuities (no artificial, numerical overshoots and un-

dershoots) and proven ability to simulate complex smooth solution structures (see

[Shu98] for more details). In the present work we only consider WENO schemes.

There are two, closely related procedures that we use in the context of WENO

schemes: reconstruction and approximation. The reconstruction procedure is used

to form F in the spatial discretisation of (5.5) while the approximation procedure is

used to obtain the spatial component of the post-processor “U , such as, for example,

in Lemma 4.3.2 (compare with conditions (4.41)).

5.3.10 Remark. In order to avoid cofusion, it is emphasized that the ENO/WENO

reconstruction procedure, as that is defined in [Shu98], refers to the procedure used

to formulate the ENO/WENO numerical scheme. The reconstruction procedure we

have developed refers to the procedure used to obtain the post-processor which is

subsequently used for a posteriori error computations.

The readers should note that this procedure, as well as the characteristics of

the resulting reconstruction, are built using information from the scheme and are

therefore inherently linked with it.

5.3.11 Definition (WENO reconstruction problem from [Shu98]). Given the cell
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averages of a function v(x):

v̄j :=
1

hj

∫ xj+1

xj
v(ξ) dξ, j = 0, . . . ,M − 1, (5.17)

find a polynomial pj(x) of degree at most k−1 for each cell Ij such that it is a k− th

order accurate approximation to v(x) inside Ij:

pj(x) = v(x) +O
Ä
hk
ä
, x ∈ Ij, j = 0, . . . ,M − 1. (5.18)

The procedure for obtaining the polynomial pj from v̄j can be found in [Shu98,

Procedure 2.2] and in [Shu20, §.2.2]. This procedure is used both for finite volumes

and for finite differences with a minor difference. In the context of finite volumes,

we use the cell averages v̄j to obtain a high order approximation to v. We then

substitute this in an expression for F to calculate the numerical flux. In contrast, in

the context of finite differences, the computational variables are point values rather

than cell averages. In this case, the values f(U j), j = 1, . . . ,M , are used to obtain

a high-order accurate approximation to F and subsequently ∂xf in (5.4) and (5.5).

This is the approach we will be using throughout this work.

We present this procedure below for a uniform scheme for simplicity. The reader

should note that in the shallow water numerical experiment in §4.6.5, the WENO

scheme used is derived for a non-uniform scheme over an adaptive grid. As a result,

all geometry-related quantities - such as the sub-stencil polynomials, the smooth-

ness indicators and the resulting weights - are no longer pre-computable constants.

Instead, they have to be re-computed at every time-step. The reader can find the

detailed procedure on how to derive the scheme on a non-uniform grid in [Shu98].

5.3.12 Remark (Order of WENO schemes on non-uniform grids). The reader is

advised that, as is pointed out in [Shu98], WENO schemes for finite differences

which are posed on non-uniform grids cannot be higher than order two.

5.3.13 The WENO-3 scheme

In one spatial dimension, the WENO reconstruction procedure for the third or-

der finite difference WENO scheme is used to approximate fjx on the cell Ij :=

[xj, xj+1]. The cell Ij is chosen to be the central cell of the computational stencil
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S := {Ij−1, Ij, Ij+1}. The approximation is then obtained as a convex combination

of polynomials over two sub-stencils of S, namely

S1 := {Ij−1, Ij} and

S2 := {Ij, Ij+1} .
(5.19)

The polynomials p1(x)and p2(x) are the ENO reconstructions of f(u) on the subs-

tencils S1 and S2 respectively. The numerical flux at xj, denoted by Fj, is obtained

as the combination

Fj := w1p1(xj) + w2p2(xj) , (5.20)

where w1 and w2 are the non-linear weights (see (5.33)) corresponding to S1and S2,

which have to satisfy the conditions

wl ≥ 0,
2∑
l=1

wl = 1. (5.21)

Finally, the WENO approximation to the flux derivative is obtained using

∂xfj ≈
1

hj−1

(Fj − Fj−1) . (5.22)

5.3.14 Remark. For exposition, we consider the case of scalar f to highlight the

main ideas.

5.3.15 Remark (Flux-splitting). In problems where WENO schemes are imple-

mented using finite differences one should ensure upwinding and stability (see [Shu98]).

This can be achieved in various ways. In this paper, this was done by applying the

chosen finite difference method to a flux-splitting f±(u) of f(u). In particular,

f(u) = f+(u) + f−(u) . (5.23)

where
d

du
f+(u) ≥ 0 and

d

du
f−(u) ≤ 0. (5.24)

A simple flux-splitting is the Lax-Friedrichs splitting, which is given by

f±(u) :=
1

2
(f(u)± αu) , (5.25)

For 1D scalar conservation laws

α := max
u
|f ′(u)| . (5.26)
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For hyperbolic systems of conservation laws, f ′ is a Jacobian (with real eigenvalues).

In this case upwinding is slightly more involved. The reader should note that in that

case one can either perform a characteristic decomposition (which is the more robust

approach) or use flux-splitting on a component-by-component basis. We opt for the

latter route as it is sufficient for the purposes of this study. In this case, α is

calculated using the eigenvalues, λi, of the Jacobian f ′:

α := max
u

max
i
|λi(u)| . (5.27)

The reader should also note that when coding WENO schemes, the stencil used for

f+(u) is biased to the left, while the stencil for f−(u) is biased one point to the

right.

We will demonstrate the process for obtaining f+ as an example. The ENO

sub-stencil polynomials for f+, for a third order WENO scheme are given by

p1(U) =
1

2
(−f(Uj−1) + 3f(Uj)) ,

p2(U) =
1

2
(f(Uj) + f(Uj+1))

(5.28)

Next, we construct the weights w1 and w2. Suppose we wanted to create a recon-

struction for a function v(x), which is piecewise smooth in sub-stencils S1 and S2.

There are constants dr, r = 1, 2 such that

vj+1 = d1v
(1)
j+1 + d2v

(2)
j+1 = v(xj+1) +O

Ä
h2k−1

ä
, (5.29)

where v
(i)
j+1 is the reconstruction of v(x) in the sub-stencil Si evaluated at xj+1. More

specifically, for f+,

d1 =
1

3
, d2 =

2

3
. (5.30)

If v(x) is smooth, the nonlinear weights wi should be very close to di. If, instead, v(x)

has a discontinuity in some stencil, the wi from that stencil should be close to zero

to avoid spurious oscillatory behaviour. This is accomplished by using smoothness

indicators βi, where

βi :=
k−1∑
l=1

∫ xj+1

xj
h2l−1

(
∂lpi(x)

∂xl

)2

dx. (5.31)

This is simply a sum of scaled L2(Ω) norms of the derivatives of pi. The factor h2l−1

ensures that βi scales like an L2(Ω)−norm over polynomials. In the case of the third
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order WENO scheme over a uniform grid,

β1 =(vj−1 − vj)2 , β2 =(vj − vj+1)2 . (5.32)

We can now obtain the weights wi, which are given by

wi :=
αi∑k−1
s=0 αs

, with αi =
di

(ε+ βi)
2 . (5.33)

The constant ε� 1 is a small constant to ensure the denominator does not vanish.

In experiments we use ε = 10−6. We repeat this process to obtain f− noting that in

this case the entire computational stencil is biased one position to the right.

5.3.16 Remark (Choice of nonlinear weights). The choice of nonlinear weights is

very important. As is demonstrated in [JS96], an appropriate choice of nonlinear

weights can upgrade the order of accuracy of (5.20) in smooth regions relative to

an ENO scheme with a stencil S1 or S2. Furthermore, because these weights are

designed to reflect the smoothness of the reconstruction polynomial in the relevant

stencil, they are also used to facilitate the non-oscillatory property of the WENO

scheme.

The Smoothness Increasing Accuracy Preserving (SIAC) filtering is a compa-

rable concept. This is a post-processing technique which has been used to reduce

error oscillations and recover smoothness in the solution and its derivatives in the

context of the Discontinuous Galerkin method (see [DGPR19]). Note that SIAC

is complicated to implement in multiple spatial dimensions. However, the WENO

scheme is relatively simple.

5.3.17 WENO approximation

In this section we present the procedure we will use in later chapters for obtaining the

spatial component of the reconstruction. This is based on the WENO interpolation

procedure of [JSB+19]. An advantage of this interpolant is that all its aspects (sub-

stencil polynomials, linear and non-linear weights) have been modified for use on

non-uniform grids. In addition, it has the other advantages of WENO interpolants.

These include high orders of approximation in region where the solution is smooth

and essentially non-oscillatory behaviour in the vicinity of discontinuities.
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Consider a function y(x) with a set of point values {yj} at locations {xj}, where

the grid is not necessarily uniform. We want to construct a third order WENO

interpolating polynomial in an interval [xj, xj+1] by using the 4-point stencil

S := {xj−1, . . . , xj+2} (5.34)

The interpolant is obtained as a convex combination of polynomials which are con-

structed on two 3-point sub-stencils, S1 and S2 of S, which are given by

S1 := {xj−1, xj, xj+1} ,

S2 := {xj, xj+1, xj+2} .
(5.35)

The polynomials are Lagrange interpolants over the sub-stencils:

p1(x) := yj−1
(x− xj)(x− xj+1)

hj−1(hj−1 + hj)
+ yj

(x− xj−1)(x− xj+1)

hj−1hj
+ yj+1

(x− xj−1)(x− xj)
(hj−1 + hj)hj

and

p2(x) := yj
(x− xj+1)(x− xj+2)

hj(hj + hj+1)
+ yj+1

(x− xj)(x− xj+2)

hjhj+1

+ yj+2
(x− xj)(x− xj+1)

(hj + hj+1)hj+1

(5.36)

for x ∈ [xj, xj+1]. A polynomial approximation to u(x), p(x), can be obtained as a

convex combination of the p(i). The WENO approach is such that p(x) is a high order

approximation in intervals where u(x) is smooth. p(x) is obtained as a weighted sum

of p(1) with the (linear) weights γ1 and γ2, each corresponding to a sub-stencil of the

large stencil:

γ1(x) := − x− xj+2

xj+2 − xj−1

and

γ2(x) :=
x− xj−1

xj+2 − xj−1

.
(5.37)

The linear weights are positive and satisfy

∑
i

γi = 1. (5.38)

Interested readers can find details on the construction of these weights in ([CFR05])

and [LSZ09]. If the solution is discontinuous inside a sub-stencil, we would like

that stencil to have little contribution to ensure the non-oscillatory behaviour of the

scheme. This is achieved by using the non-linear weights ωi(x), which are obtained

from the γi(x) as follows:

ωj(x) :=
αj(x)∑2
i=1 αi(x)

, αi(x) :=
γi(x)

ε+ βi
, (5.39)
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where the βi are the smoothness indicators for the sub-stencil to which they pertain.

They are an indication of how non-smooth the solution is in the corresponding sub-

stencil. If the solution is smooth in the sub-stencil Sj, then the relevant βj is small

and the relevant ωj is close to the γj in Sj. If instead the solution has a discontinuity

in Sj, then the βj is large, leading to a small ωj and ensuring the non-oscillatory

behaviour.

The βi which are used in this paper are given in [JSB+19] and are defined as

β1 :=(hj + hj+1)2

Ñ ∣∣∣y′j+1 − y′j
∣∣∣

hj
−

∣∣∣y′j − y′j−1

∣∣∣
hj−1

é2

and

β2 :=(hj−1 + hj)
2

Ñ ∣∣∣y′j+2 − y′j+1

∣∣∣
hj+1

−

∣∣∣y′j+1 − y′j
∣∣∣

hj

é2

.

(5.40)

The calculation of the y′i is presented in detail in [JSB+19, §3.3.2]. Finally, the

WENO approximation to u(x) in the interval [xj, xj+1] based on the stencil S =

S1 ∪ S2 = {xj−1, xj, xj+1, xj+2} can be obtained as

p(x) := ω1p1(x) + ω2p2(x) . (5.41)

5.3.18 Remark (Boundary conditions). We implement periodic boundary condi-

tions by identifying the points j = 0 and j = M as the same point. In the case of

non-periodic boundary conditions - Neumann boundary conditions in particular -

the computational domain is extended using an appropriate number of ghost nodes.

For WENO schemes the number of ghost nodes depends on the WENO sub-stencil

width. The values for the ghost nodes can be obtained by extrapolation based on

the local WENO polynomials.

5.4 Numerical tests

In this section we conduct numerical tests to investigate the convergence of the spa-

tial component of the WENO interpolant. In order to facilitate the comparison we

define an alternative error interpretation in the same fashion as in previous sections,

i.e. by evaluating the error between a function and an appropriate reconstruction.

In this case, we consider the WENO interpolant which is defined in (5.41).

In the numerical experiments in this section, the sequence of approximations is

carried out on grids with discretisation parameter h = 2−m, m = 8, . . . , 19. We will
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examine the EOC of the L2(Ω)−norm of the error for the different test cases we

specify below.

5.4.1 Test 1: Sinusoidal function

In this test we use the WENO interpolant to interpolate the sinusoidal function

u(x) = sin (40πx) for x ∈ [0, 1] . (5.42)

The results are shown in Fig.5.1. The L2(Ω)−error converges with order 3.5.

Fig. 5.1. In this plot we examine the asymptotic convergence rate for the L2(Ω)−

error of the spatial WENO interpolant (5.41) for a smooth, sinusoidal function given

by (5.42).
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5.4.2 Test 2: Hat function

In this test we use the WENO interpolant to interpolate the hat function

u(x) =



x x ∈ [0, 0.25) ,

1
2
− x x ∈ [0.25, 0.75) ,

x− 1 x ∈ [0.75, 1] .

(5.43)

The results are shown in Fig. 5.2. Notice that, since u /∈ C1(Ω), the convergence

rates drop significantly to order 1.5.

Fig. 5.2. In this plot we examine the asymptotic convergence rate for the L2(Ω)−

error of the spatial WENO interpolant (5.41) for a sawtooth function given by (5.43).

In this case, we note the high approximability offered by the WENO interpolant,

evidenced by the fact that, at the coarsest discretisation level, the error is already

of the order of 10−11.
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5.4.3 Test 3: Step function

In this test we use the WENO interpolant to interpolate the step function

u(x) =


1 for

∣∣∣x− 1
2

∣∣∣ ≤ 1
4

0 otherwise.

(5.44)

The results are shown in Fig. 5.3. Notice that in this case the convergence rate

drops to order 0.5.

Fig. 5.3. In this plot we examine the asymptotic convergence rate for the L2(Ω)−

error of the spatial WENO interpolant (5.41) for a sawtooth function given by (5.44).

5.5 Conclusion

In this section we presented the WENO interpolation procedure which allows us to

post-process the FD solution in the temporal and spatial components, for general

problems. We concluded the chapter with numerical experiments where we demon-

strated the high approximability offered by the WENO interpolant for functions of

varying regularity.
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Chapter 6

Automated error control for linear

hyperbolic systems

Abstract

In this chapter, we extend the results of Chapter 4 to general linear systems. We are

able to show a posteriori error control for general classes of schemes, including the WENO

schemes from Chapter 5. We validate these results numerically and examine the impact

of low regularity entropy solutions on the robustness of the bounds.

6.1 Introduction

In this chapter we consider linear systems of conservation laws with symmetric

coefficient matrices in one spatial dimension. We derive a simple a posteriori error

bound based on the stability framework of the PDE and use the reconstruction

procedure to compute it.

We illustrate the reconstruction procedure using the one-dimensional wave equa-

tion in system form as a model problem. We discretise this using the Leapfrog

scheme on staggered grids. The performance of the a posteriori bound in this way

is evaluated on the basis of optimality.

6.1.1 Motivation

A linear system allows us to demonstrate the framework of the reconstruction and

its utility in obtaining a posteriori error bounds. It is also a convenient intermediate
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stage for extending the results presented so far to systems of non-linear conservation

laws. We distinguish between linear and non-linear cases. We address linear systems

in this chapter and defer non-linear ones to the following chapter. In this regard,

we focus our attention to symmetric hyperbolic problems in this chapter. We derive

an appropriate a posteriori bound based on the stability framework of the problem.

The procedure for obtaining the bound is, as in previous chapters, independent

from the numerical discretisation used to obtain the approximation - in this case

the Leapfrog scheme.

6.1.2 Chapter contribution

In this chapter we derive a residual based a posteriori error estimate for symmet-

ric linear systems of hyperbolic conservation laws. This estimate is based on the

stability framework of the PDE and is not dependent on the chosen numerical dis-

cretisation method. We then use the reconstruction framework introduced in the

previous chapter to compute the quantities involved in this estimate. We demon-

strate the use of the framework using as a model problem the one dimensional wave

equation in the form of a first order system of conservation laws. The system is

discretised using a Leapfrog scheme on grids which are staggered in both time and

space. We demonstrate numerically that the obtained estimate is optimal in the ex-

ample we consider, where we use a smooth initial condition. The rest of the chapter

is structured as follows. In §6.2 we set up the preliminaries we require for the rest

of the chapter. In §6.3 we introduce the model problem we will be using. In §6.4

we present an a posteriori bound for symmetric linear systems of linear conserva-

tion laws. In §6.5 we present the Leapfrog discretisation for our problem and the

reconstruction we will use to evaluate the bound. In §6.6 we present the numerical

experiments we ran to benchmark the bounds behaviour. We conclude the chapter

in §6.7.

6.2 Preliminaries and Problem Setup

In this section we present the model problem we will be using throughout the rest of

the chapter, along with relevant notation. We will specify the structure of the linear
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symmetric hyperbolic system we consider in this chapter. We will use the latter in

obtaining the a posteriori bound in subsequent sections. We include some results

which pertain to solutions of systems of conservation laws, such as admissibility

criteria. Despite the fact that we do not make use of these in the present chapter,

the a posteriori estimate makes reference to entropy solutions. As such, we will

introduce the material we need in order to present entropy solutions to conservation

laws, despite the fact that we do not use the entropy framework yet.

6.2.1 Remark. (Convention for matrix derivatives) Let x ∈ Rn and let u := u(x) :

Rm → Rn such that u ∈ C1(Rm; Rn). We adopt the following convention for matrix

differentiation

∂u

∂x
:=


∂u1
∂x1

. . . ∂u1
∂xn

...
. . .

...

∂um
∂x1

. . . ∂um
∂xn

 . (6.1)

6.2.2 Remark. (Derivative of a field) Derivatives of a field, q, are denoted Dq :=

(∂u1q(u) , . . . , ∂udq(u)). The matrix of second derivatives is

D2q(u) :=


∂u1,u1q(u) . . . ∂u1,udq(u)

...
. . .

...

∂ud,u1q(u) . . . ∂ud,udq(u)

 . (6.2)

6.2.3 Definition (Linear, one-dimensional system of first order PDEs). Let T ∈ R+,

t ∈ (0, T ] and let Ω :=[0, 1]. We consider the linear system given by

∂u

∂t
+

∂

∂x
(A(x, t)u) = 0 in Ω× (0, T ] ,

u(x, 0) = u0(x) in Ω× {0}
(6.3)

in the unknown u : Ω×[0, T ]→ Rm with u :=(u1, . . . , um)T , A ∈ C1(Ω×[0, T ] ; Rm×m)

and u0 ∈ C1(Ω; Rm×m) a given initial condition. Throughout this chapter we will

use homogeneous Dirichlet boundary conditions: u(0, t) = u(1, t) = 0.

6.2.4 Definition (Hyperbolic system). The system of equations given in (6.3) is

called hyperbolic if the matrix A(x, t) is diagonalizable for each x ∈ R and t ≥ 0, i.e.

if it has m real eigenvalues and the corresponding eigenvectors {rk(x, t)}mk=1 form a

basis of Rm. Furthermore, the system is called strictly hyperbolic if the eigenvalues

of A(x, t) are not only real but also distinct for all (x, t).
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6.2.5 Remark. Examples of equations which are/can be written in the form (6.3)

or (6.4) include Maxwell’s equations of electrodynamics and the linearized Euler

equations. In this chapter we will use the one-dimensional wave equation as an

example for demonstrating our framework (see Ex. 6.3.2).

6.3 Model Problem

6.3.1 Definition. (Linear, symmetric hyperbolic system with constant coefficients)

Let u := (u1, . . . , um)T : R × R+ → Rm and A ∈ Rm×m be a constant, symmetric

matrix. Then, the linear system in (6.3) reduces to

∂u

∂t
+ A

∂u

∂x
= 0. (6.4)

6.3.2 Example (The wave equation). A simple example of (6.4) with symmetric

A is the wave equation
∂2u

∂t2
=
∂2u

∂x2
. (6.5)

It can be easily shown that (6.5) can be written as a first-order system of conservation

laws by introducing a variable v which is related to u as follows:

ut + vx = 0

vt + ux = 0,
(6.6)

with appropriate boundary and initial conditions. In this case, u =(u, v)T and A is

given as

A :=

0 1

1 0

 . (6.7)

6.3.3 Remark. In general, conservation laws do not admit classical solutions: their

solutions can develop discontinuities in finite time, even if u0 is smooth. This

motivates the use of weak solutions. Weak solutions are particularly important

with regard to (5.1) when f is non-linear. We will use them to motivate entropy

solutions, which we will in turn refer to in the a posteriori error result we present in

this chapter. Hence, we will introduce the weak solution results and definitions we

need here.
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6.3.4 Definition. (Weak derivative) Let X denote a Banach space and let u ∈

L1(0, T ;X). We say that v ∈ L1([0, T ] ;X) is the weak derivative of u, denoted by

u′ = v (6.8)

if ∀φ ∈ C∞c (0, T ) ∫ T

0
φ′(t)u(t) dt = −

∫ T

0
φ(t)v(t) dt. (6.9)

6.3.5 Definition. (Weak solution for (6.4) [GR13]) Let u0(x) ∈ L∞(Ω; Rm). Then,

we say that the function u(x, t) ∈ L∞(0, T ; L∞(Ω; Rm)) is said to be a weak solution

to (6.4) if u(x, 0) = u0(x) for x ∈ Ω and the following equality holds for all φ ∈

C1
Ä
0, T ; C1(Ω; Rm)

ä
∫ ∞

0

∫
R
u · ∂φ

∂t
+ Au · ∂φ

∂x
dxdt+

∫
R
u0(x) · φ(x, 0) dx = 0. (6.10)

6.3.6 Remark. Weak solutions to (5.1) are not necessarily unique. For this reason

admissibility criteria are used to remove inappropriate solutions (e.g. physically

irrelevant ones) from consideration. There are multiple admissibility criteria, such as

the Rankine-Hugoniot condition, the Lax shock condition and the entropy conditions

to name but a few. Entropy is more relevant to our case.

6.3.7 Definition (Entropy/entropy-flux pair). The pair(η, q) is an entropy/entropy-

flux pair associated with the conservation law (5.1) iff η is convex and

Dq = DηDf. (6.11)

6.3.8 Definition (Entropy solution). A function u ∈ L∞(0, T ; L∞(Ω; Rm)) is an

entropy solution of (5.1) with an associated entropy/entropy-flux pair (η, q) if∫ ∞
0

∫
Ω
u · ∂tφ+ f(u) · ∂xφ dxdt+

∫
Ω
u0 · φ(·, 0) dx = 0 ∀φ ∈ C1

Ä
0, T ; C1(Ω; Rm)

ä
and∫ ∞

0

∫
Ω
η(u) ∂tφ+ q(u) ∂xφ dxdt+

∫
Ω
η(u0)φ(·, 0) dx ≥ 0 ∀φ ∈ C1

Ä
0, T ; C1(Ω; Rm)

ä
(6.12)

It can be verified that strong solutions of (5.1) also satisfy the additional con-

servation law

∂tη(u) + ∂xq(u) = 0. (6.13)

We have now defined an entropy solution for (6.4). The rest of this section

includes a series of results showing that an entropy solution, as is defined in Defn.

6.3.8, exists and it is unique for the problem under consideration.
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6.3.9 Vanishing Viscosity method

An important approach for obtaining a unique solution to (6.4), is the vanishing

viscosity method. We follow the exposition of [Eva10] to briefly present the method

here.

Firstly, (6.4) is approximated by the following problem through the addition of

artificial viscosity:

∂uε

∂t
+ A

∂uε

∂x
= ε

∂2uε

∂x2
in Ω× (0, T ]

uε(x, 0) = uε0(x) on Ω× {t = 0} ,
(6.14)

where 0 < ε ≤ 1 and uε0 is the mollification of u0, obtained as shown in Defn.

A.0.4. The approximate problem (6.14) has a unique solution uε for each ε > 0,

which converges to 0 as |x| → ∞. The purpose of this approximation is to obtain

a solution u of (6.4) as the limit of a sequence of solutions uε of the approximating

problem (6.14) as ε→ 0. This is encapsulated in Theorem 6.3.10.

6.3.10 Theorem. (Existence of approximate solutions to (6.14)) For each ε > 0,

there exists a unique solution uε of (6.14) with

uε ∈ L2
Ä
0, T ; H3(R; Rm)

ä
, u̇ε ∈ L2

Ä
0, T ; H1(R; Rm)

ä
. (6.15)

Proof. See [Eva10, §7.3: Theorem 1].

Our intention is to obtain solutions u of (4.2) as limits of the solutions uε of the

parabolic problem (6.14) as the coefficient of the viscous term, ε, goes to 0. In that

regard, the next two results are helpful.

6.3.11 Theorem. (Energy estimate) There exists a constant C, depending only on

the spatial dimensions of Ω and the coefficients, such that

max
0≤t≤T

(
‖uε(t)‖H1(R;Rm) + ‖u̇ε(t)‖L2(R;Rm)

)
≤ C ‖u0‖H1(R;Rm) (6.16)

for each 0 < ε ≤ 1.

Proof. See [Eva10, §7.3: Thm 2]

6.3.12 Remark. The significance of Thm. 6.3.11 is that it provides a bound for

the sequence uε, 0 < ε ≤ 1 as ε → 0. This bound is utilized to obtain a (weakly)
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convergent subsequence, uεk , of uε. More specifically, there exists a subsequence

εk → 0 and a function u ∈ L2
Ä
0, T ; H1(R; Rm)

ä
such that the weak derivative u̇ ∈

L2
Ä
0, T ; L2(R; Rm)

ä
such that

uεk ⇀ u weakly in L2
Ä
0, T ; H1(R; Rm)

ä
u̇εk ⇀ u̇ weakly in L2

Ä
0, T ; L2(R; Rm)

ä (6.17)

and u(0) = u0.

This is encapsulated in [Eva10, §7.3: Thm 3], which tells us that there does exist

weak solution to (4.2). Furthermore, this solution is unique ([Eva10, §7.3: Thm 4]).

6.4 A posteriori error bound for a linear system

In this section we present two a posteriori error bounds for linear systems of hy-

perbolic conservation laws. In the first one we will assume that the matrix in one

spatial dimension. This bound is the systems analogue to the scalar bound for linear

advection we derived in Lemma 4.3.2.

The result in Lemma 6.4.3 serves as a gateway to more interesting test cases. We

will start looking at such cases by assuming that A(x, t) is non-constant, symmetric

and differentiable.

6.4.1 Lemma (Stability and error control for a non-constant, symmetric linear

system of equations). Let A ∈ C1(R×[0, T ] ; Rm×m) be a symmetric matrix and

define C := ‖Ax‖L∞ . Also, let u be an entropy solution of the initial boundary

value problem

ut + Aux = 0 in Ω× (0, T ]

u(x, 0) = u0(x) in Ω× {0}
(6.18)

with periodic boundary conditions and suppose v is an entropy solution of the

perturbed problem for some R ∈ L∞(0, T ; L2(Ω; Rm))

vt + Avx = −R in Ω× (0, T ]

v(x, 0) = v0(x) in Ω× {0},
(6.19)

also with periodic boundary conditions. Then, the error between the two functions,

e := u− v, satisfies the following bound for all t ∈ [0, T ]:

‖e(t)‖2
L2(Ω) ≤ ω(t)

ñ
‖e(0)‖2

L2(Ω) +
∫ t

0
‖δ(s)R(s)‖2

L2(Ω) ds

ô
, (6.20)
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where

ω(t) =


exp(2C) exp(t) for t ≤ 1

t exp(2C + 1) for t ≥ 1.

(6.21)

and

δ(s) =


1 for s ≤ 1

√
s for s ≥ 1.

(6.22)

Proof. Subtracting (6.18) from (6.19) we have the following error equation for e

et + Aex = R in Ω× (0, T ]

e(x, 0) = (u0 − u0)(x) in Ω× {0}.
(6.23)

Testing (6.23) with e we see∫
Ω
e ·R =

∫
Ω
e · et + e ·(Aex)

=
∫

Ω
e · et +

1

2
((Ae) · e)x −

1

2
((Axe) · e) ,

(6.24)

Then, since the domain is periodic, it follows that

∫
Ω
R · e =

1

2

d

dt
‖e‖2

L2(Ω) −
1

2

∫
Ω

(Axe) · e, (6.25)

which is re-arranged to obtain

1

2

d

dt
‖e‖2

L2(Ω) =
∫

Ω
R · e+

1

2

∫
Ω

(Axe) · e, (6.26)

Let us look at the two terms on the right seperately. Firstly, concerning the first

term, we apply an identical argument as we did in the proof of Lemma 6.4.3. That

is, we firstly apply the Cauchy-Schwarz inequality, followed by the Cauchy inequality

to obtain

∫
Ω

(δR) ·
Ä
δ−1e

ä
≤ ‖δR‖L2(Ω)

∥∥∥δ−1e
∥∥∥

L2(Ω)
≤ 1

2
‖δR‖2

L2(Ω) +
1

2

∥∥∥δ−1e
∥∥∥2

L2(Ω)
, (6.27)

for any δ ∈ C0([0, T ],R+). Next, we obtain an upper bound for the second term on

the r.h.s. of (6.26) using the Cauchy-Schwarz inequality along with the fact that

A ∈ C1([0, T ] ; Rm×m) (see also [Eva10]):

1

2

∫
Ω

(Axe) · e ≤
∣∣∣∣12
∫

Ω
(Axe) · e

∣∣∣∣ ≤ C ‖e‖2
L2(Ω) , (6.28)
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where C = ‖Ax‖L∞ . Now we can combine this results to obtain an upper bound for

(6.26) as follows

1

2

d

dt
‖e‖2

L2(Ω) ≤
1

2
‖δR‖2

L2(Ω) +
1

2

∥∥∥δ−1e
∥∥∥2

L2(Ω)
+ C ‖e‖2

L2(Ω) . (6.29)

Finally, we use Gronwall’s inequality to realise the bound

‖e(t)‖2
L2(Ω) ≤ exp

Ç∫ t

0
δ(s)−2 + 2C ds

åñ
‖e(0)‖2

L2(Ω) +
∫ t

0
‖δ(s)R(s)‖2

L2(Ω) ds

ô
.

(6.30)

Choosing

δ(s) =


1 s ≤ 1

√
s s ≥ 1

(6.31)

concludes the proof.

6.4.2 Remark. In order to avoid confusion, we note that the equations (6.3), (6.18)

and (6.19) may be considered as a conservation law, a Hamilton-Jacobi type equation

and a balance law respectively. Our intent in Lemma 6.4.1 is the posteriori estimate

in a more general format. We simplify this result in Cor. 6.4.3 below to make it

specific to our case of interest: namely, a linear system of conservation laws with a

constant, symmetric coefficient matrix.

6.4.3 Corollary (Stability and error control for a constant, symmetric linear sys-

tem of equations). Let the conditions of Lem. 6.4.1 with A ∈ Rm×m constant and

symmetric. Then, the error bound (6.20) holds with C = 0 in (6.21).

6.5 Numerical methods and discretisation

In this section we will present the spatial and temporal discretisations for our nu-

merical experiments, as well as the Leapfrog scheme we will use to approximate

the wave equation as a system (see the model problem (6.4)). We will express the

model problem - the one-dimensional wave equation- in the form (6.4). We will then

discretise the system using the Leapfrog scheme on staggered grids.

6.5.1 Temporal and spatial domain discretisation

We discretise the spatial domain Ω := [0, 1] by choosing a uniform partition with

constant spatial step-size h and points 0 = x0 < · · · < xM = 1 such that xj+1−xj =
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h for all j = 0, . . . ,M . Next, we uniformly partition the temporal domain [0, T ] into

N by defining 0 = t0 < · · · < tN = T with constant step-size τ , where N is chosen

such so that the desired CFL condition is satisfied. We denote by unj := u(tn, xj)

the exact solution to (6.4) and by Un
j we denote the approximation to unj obtained

by the chosen numerical scheme.

The test problem we will use is the one dimensional wave equation with peri-

odic boundary conditions and prescribed initial conditions on u and its temporal

derivative:

utt = uxx

u(x, 0) = u0(x)

ut(x, 0) = v0(x) ,

(6.32)

We express (6.32) as a one-dimensional system of first order advection equations by

introducing a variable v which is related to u in (6.32) as follows: This is written as

a system

vt + ux = 0

ut + vx = 0.
(6.33)

The test problem, (6.33), is now in the form of the model problem (6.4), with

u =(u, v)T and

A :=

0 1

1 0

 . (6.34)

6.5.2 Numerical scheme

Central difference Leapfrog

The model problem (6.32) can be approximated using a central difference FD dis-

cretisation:

Un+1
j − 2Un

j + Un−1
j

τ 2
=
Un
j+1 − 2Un

j + Un
j−1

h2
(6.35)

for n = 1, . . . , N . Notice that the scheme uses three time levels Un+1, Un and Un−1.

In order to initiate it we need the value of U−1, which is unavailable. Instead, we

make use of the given initial conditions, u0(xj) and v0(xj) from (6.32). We use a

central difference discretisation to obtain the value of U−1:

U1
j − U−1

j

2τ
= v0(xj) , (6.36)
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which gives us

U−1
j = U1

j − 2τv0(xj) . (6.37)

We can substitute (6.37) in (6.35) to obtain U1 as follows

U1
j = U0

j + τv0(xj) +
τ 2

2h2

Ä
U0
j+1 − 2U0

j + U0
j−1

ä
. (6.38)

Once we have computed U1 we can compute U−1 from (6.35), by substituting the

obtained U1 values back in the scheme. In a similar fashion to what we did in

§2.2.3, we will formulate the leapfrog scheme for u and v using staggered grids. The

staggering will be in both space and time. Specifically, with reference to (6.32) the

approximation to the variable u, will be on integer space and time points (tn, xj)

and will be denoted as Un
j . In the same vein, the approximation to v will be defined

on mid-points of space-time slabs,
Ä
tn+1/2, xj+1/2

ä
and will be denoted as V

n+1/2
j+1/2 .

Leapfrog scheme on staggered grids

We now have all the information we need in order to re-formulate the scheme (6.35)

into a Leapfrog scheme on staggered grids. In this way we can solve (6.32) as a

first order system of conservation laws given by (6.33), for which we already have

presented a framework for obtaining reconstructions. We will use the Leapfrog

scheme posed over staggered grids, which is second order accurate and has several

advantages, explained in Chapter 2 and in [GLMV16]. The temporal component of

the scheme is in fact the same as that presented in §2.2.3 and the spatial component

is also staggered.

In the notation of (6.35) and using V n
j to denote the numerical approximation

to v in (6.33), we define the Leapfrog scheme on staggered grids (in both space and

time) as follows:

V
n+1/2
j+1/2 − V

n−1/2
j+1/2

τ
+
Un
j+1 − Un

j

h
= 0

Un+1
j − Un

j

τ
+
V
n+1/2
j+1/2 − V

n+1/2
j−1/2

h
= 0

(6.39)

for n = 0, . . . , N , j = 0, . . . ,M , with periodic boundary conditions which are imple-

mented by identifying the end-points of the domain, i.e x = 0 and x = 1.
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Reconstruction

In the reconstruction procedure the first step is to obtain the temporal component,

Û
t

=
Ä“U t, “V t

ä
, from the numerical solution U = (U, V ) produced by the numerical

scheme (6.39). Once the temporal component of the reconstruction is available, it

is used to obtain the full spatio-temporal reconstruction.

The procedure for obtaining the temporal component of the WENO reconstruc-

tion, Û
t

=
Ä“U t, “V t

ä
, from the FD solution obtained from the numerical scheme,

(6.39), is explained in Defn. 2.3.14. Since the definition pertains to the same tem-

poral discretisation as the one we are using in this chapter, that is Leapfrog on grids

staggered in time, the exact same procedure is followed as in in Chapter 2.

6.5.3 Remark. In particular, the reader should note that, because the grids are

staggered in time, we need to store an additional value of V n+1/2, as we explain in

Rem 2.3.15 in greater detail.

Once the temporal component of the reconstruction, Û
t

=
Ä“U t, “V t

ä
, is available

we use it to obtain the full spatio-temporal reconstruction, Û =
Ä“U, “V ä. The full

reconstruction is obtained as explained in Defn. 7.4.7. The reader should note that,

because the grids are staggered in space as well, we need to account for this when

obtaining the reconstruction.

6.5.4 Remark. Once again, attention must be paid during implementation to the

fact that the staggering is also in space. This is not an issue during the calculation

of the error; it is of concern only during the calculation of the residual computation,

which involves quantities which are defined on different grids.

6.6 Numerical verification

In this section we conduct numerical tests in order to investigate the behaviour of the

a posteriori error bound given in Cor. 6.4.3. In the same fashion as in the previous

chapters, we use the reconstruction, Û , for two purposes. Firstly, to facilitate an

alternative error interpretation and secondly to obtain a computable a posteriori

error bound using the stability framework of the PDE. We define the alternative

error interpretation as

e := u− Û . (6.40)
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The a posteriori error bound we will compute is given by

η(t) :=

Ç
ω(t)

ñ
‖e(0)‖2

L2(Ω) +
∫ t

0
‖δ(s)R(s)‖2

L2(Ω) ds

ôå1/2

, (6.41)

where ω(t) and δ(t) are given in Cor. 6.4.3. We assess the results based on the

EI and the EOC of the alternative error interpretation (6.40) and the a posteriori

bound (6.41).

We run a benchmarking experiment for (6.33), discretised by the Leapfrog scheme,

(6.39) on a staggered grid, in the domain Ω = [0, 1] with periodic boundary condi-

tions, an initial condition given by

u0(x) = 15 sin (2πx) ,

v0(x) =
∂u

∂t
(0, x) = 30π sin (2πx)

(6.42)

and an exact solution given by

u(x, t) = 15 sin (πx)[cos (2πt) + sin (2πt)] . (6.43)

For an exact solution, u(x, t), given by (6.43), we obtain (after a few calculations)

v(x, t) in (6.32) as

u(x, t) = 15 cos (πx)[cos (2πt)− sin (2πt)] . (6.44)

The simulations are conducted over a family of grids parametrised by h = 2−m, m =

9, . . . , 12 and a time-step τ = h/10. The spatial and temporal grids are staggered

for the two variables in (6.39), with
¶
Un
j

©
obtained at integer space-time points and{

V
n+1/2
j+1/2

}
obtained at the space-time slabs’ mid-points. The results are shown in

Figure 6.1.

Notice that the estimate behaves optimally as it converges at the same rate as

the underlying error in the chosen norm. The somewhat strange initial behaviour of

the error and estimate, which is rather more apparent in the EOC plots (third and

fourh plots from the right in Fig. 6.1) may potentially be the result of a parasite in

time. This may in turn be due due to the choice of the particular norm.
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Fig. 6.1. Errors and asymptotic convergence rates for the error, (6.40), and the

a posteriori bound, (6.41), using the WENO reconstruction (see Defns. 2.3.14 and

7.4.7), of the FD solution of (6.33), discretised with the Leapfrog scheme (6.39) over

staggered grids. Notice that the estimate is optimal for the Leapfrog scheme with

favourable effectivity of EI(1) ∼ 2.

6.7 Conclusion

In this chapter we derive an a posteriori error bound for a linear system of con-

servation laws with a constant and symmetric coefficient matrix. We benchmark

the behaviour of this bound by using as a model problem the one-dimensional wave

equation in system form, discretised by a Leapfrog scheme on staggered grids.

In order to construct an a posteriori error bound we firstly define an alternative

error interpretation to overcome the difficulty caused by the point-wise nature of

the FD solution. We do this by using the WENO reconstruction procedure that

we introduced in Chapters 2 and 5 for the temporal and spatial components of the

reconstruction respectively. The WENO reconstruction is used in the computation

of both the error as well as of the a posteriori bound.

We find that the a posteriori bound evaluated in this way is optimal, in that it

converges with the same EOC as the bound. In addition, a bound constructed in

this way has a favourable effectivity index of approximately two (see also Fig. 6.1).
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Chapter 7

A posteriori error analysis for

non-linear hyperbolic problems

Abstract

In this chapter, we examine non-linear conservation laws. We approximate the solutions

with the finite difference schemes considered in previous chapters and show a posteriori

bounds in different cases. We are able to use the relative entropy framework to prove

a posteriori upper bounds for general systems and a Kruzkov framework to prove upper

bounds for scalar conservation laws.

7.1 Introduction

In this chapter we use the framework introduced in Chapter 5 to obtain reconstruction-

based a posteriori error bounds for non-linear problems. We demonstrate the use of

the framework in both a scalar example and a systems example.

In the scalar case, we use Burgers equation as a model problem. The recon-

struction is used to obtain a optimal a posteriori error bounds both in the pre-shock

and post-shock regime. In the pre-shock regime we use the entropy framework of

[GP17] to obtain a bound in the L2(Ω)−norm. In the post-shock regime we exam-

ine the use of a bound from [CG95], which is based on the Kruzhkov framework

(see [OV06],[Ohl09]). We lay the groundwork for using the two bounds in conjunc-

tion with a view of achieving a result which is optimal in both the pre-shock and

post-shock regimes. This currently remains a future challenge.
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In the systems case we use the shallow water equation as a model problem. In

this case, we use the a posteriori error bound to drive adaptive mesh refinement.

The a posteriori error analysis is carried out using the stability framework of the

PDE (see [GMP15]) and it therefore yields a bound which is usable regardless of

the chosen numerical discretisation technique. The construction of the estimate for

computational purposes is done using reconstruction techniques. Similar techniques

have been used for dG methods (see e.g. [Mak07, GMP15, GP17, DGPR19]).

We conduct a range of numerical experiments to benchmark the behaviour of

the estimates and to demonstrate the concept of optimal order for smooth solutions.

We showcase relevant results for widely used schemes for both linear and non-linear

examples.

7.1.1 Motivation

In this chapter we apply the framework to non-linear problems for FD schemes. FD

schemes are in widespread use for hyperbolic conservation laws. However, as pointed

out in previous chapters, a posteriori error control for FD schemes has not received

as much attention as for the FV and FE counterpart. In this spirit we introduced

a framework for obtaining reconstructions from FD solutions. Reconstructions en-

able a posteriori error control for FD discretisations, albeit for an alternative error

interpretation.

The novelty in this chapter is the application to non-linear hyperbolic problems.

These problems exhibit behaviour which makes it challenging both to pose numer-

ical discretisation schemes as well as to establish a posteriori error control when

compared to linear problems. An example of such behaviour in non-linear problems

is that shocks form in finite time, even for smooth initial conditions.

For scalar problems, such as Burgers equations, we examine both L1(Ω) sta-

bility results as well as relative entropy L2(Ω) stability results, with the intention

of combining them in future work to derive an a posteriori bound which is robust

both prior and subsequent to shock formation. We believe this will be the first such

bound in the literature.
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7.1.2 Chapter contribution

In this Chapter we use reconstructions to compute a posteriori error estimates de-

rived in [GMP15] for non-linear examples for two examples in one spatial dimension:

a non-linear scalar example, Burgers equation, and a non-linear system, the shallow

water equations.

In the scalar example we examine the behaviour of two a-posteriori error esti-

mates - a relative entropy-based a posteriori estimate from [GMP15] with an a poste-

riori estimate based on Kruzkov’s doubling of variables technique from [CG95]. Our

intention is to examine the possibility of combining the two to obtain an estimate

that is optimal both prior and following shock-formation for the scalar problem in

one dimension.

In the shallow water example we use the a posteriori error estimate to facilitate

an adaptive algorithm and we benchmark the results against an equivalent uniform

mesh - a mesh that possesses the same number of cumulative degrees of freedom as

the adaptive mesh over the simulated time.

The rest of the chapter is structured as follows. In §7.2 we set up the preliminaries

and present the chosen notation. In §7.3 we present the model problems we will

address. In §7.4 we present the domain discretisation, the numerical methods we

will be using as well as the relevant reconstructions. In §7.5 we present the relevant

a posteriori error bounds. In §7.6 we present numerical experiments to validate the

behaviour of the bound. Finally, we conclude the chapter in §7.7.

7.2 Setup

In this section we present preliminary material and results we need in order to set

up model problems and a posteriori error results in later sections. We present the

general format of both the scalar problem and the system and we define theoretical

results and concepts that are necessary in this context. In particular, we define the

concepts of weak solutions, admissibility criteria, entropy/ entropy flux pairs and

entropy solutions. We will recall notation from previous sections as necessary.
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7.2.1 Scalar conservation law

In this section we present results for the non-linear scalar problem

ut + ∂xf(u) = 0,

u(x, 0) = u0(x) ,
for (x, t) ∈ Ω×(0,∞) (7.1)

complemented with periodic boundary conditions.

7.2.2 Remark. (Non-uniqueness of weak solutions) As alluded to in the previous

chapter, It is possible that multiple weak solutions, u may exist for a specific prob-

lem (7.1). In order to address the issue of non-uniqueness one must incorporate

admissibility criteria for choosing the appropriate weak solution. Such criteria arise

naturally through the second law of thermodynamics and can be realized, as [Daf05]

points out, either by requiring that admissible solutions satisfy entropy inequalities

or by adding small amounts of diffusion (vanishing viscosity solutions). In the case

of the latter choice, small amounts of diffusions have far greater effect on solutions

containing shocks than on smooth solution.

7.2.3 Definition. (Vanishing viscosity solution) To build upon some of the results

in the previous chapter, consider the perturbed problem, parametrized by (a small

parameter) ε > 0:

uεt + f(uε)x = εuεxx (7.2)

with initial data uε(x, t) := uε0(x), which satisfies limε→0+ u
ε
0(x) = u0(x). Then, we

say that u is a viscosity solution of (7.1) if it can be obtained as the limit

u = lim
ε→0+

uε (7.3)

of solutions uε to the perturbed problem (7.2)

In order to relate the concept of vanishing viscosity with entropy solutions, we

consider a convex function η : R → R and we use this to construct a function

q : R→ R which is defined as

q(u) :=
∫ u

0
f ′(s) η′(s) ds. (7.4)

7.2.4 Lemma. Let u be a smooth solution of (7.1) and suppose that η and q are

an entropy and entropy-flux pair that satisfies the relation

q′ = η′f ′. (7.5)

137



Then, the following result holds:

η′(u)ut + q′(u)ux = 0. (7.6)

Proof.
∂

∂t
η(u) +

∂

∂x
q(u) = η′(u)ut + q′(u)ux

= η′(u)(ut + f ′(u))

= 0.

(7.7)

7.2.5 Remark. (Entropies for scalar conservation laws) In the case of scalar con-

servation laws, any convex function η is an entropy for (7.1) ([GR13]). The resulting

entropy flux q is then obtained using the relation (7.4).

Let (η, q) be an entropy/entropy flux pair with η ∈ C2(R× R+) and let uε be a

vanishing viscosity solution to (7.1) (see Defn. 7.2.3). We multiply (7.2) by η′(uε)

and obtain

η′(uε)uεt + η′(uε) f ′(uε)uεx = εη′(uε)uεxx. (7.8)

We then use the relation (7.5) to obtain

η′(uε)uεt + q′(uε)uεx = εη′(uε)uεxx

η(uε)t + q(uε)x = εη(uε)xx − εη
′′(uε)(uεx)

2 .
(7.9)

Since η is a convex function, −η′′(uε)(uεx)
2 is non-positive and hence

η(uε)t + q(uε)x ≤ εη(uε)xx . (7.10)

Since uε is a vanishing viscosity solution to (7.1) (see Defn.7.2.3), passing to the

limit ε→ 0 we have that u, the weak solution to (7.1) satisfies the inequality

∂tη(u) + ∂x(u) ≤ 0. (7.11)

in the sense of distributions. We state this formally in Lem. 7.2.6.

7.2.6 Lemma. (Entropy condition (see [GR13, Thm. 3.3])) Assume that (7.1)

admits an entropy η(u) with an associated entropy flux q(u). Let(uε)ε be a sequence

of sufficiently smooth solutions of (7.2) such that

‖uε‖L∞(R×(0,+∞]) ≤ C, C > 0,

uε → u as ε→ 0 a.e. in(x, t) R×(0,+∞) ,
(7.12)
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where C > 0 is constant and independent of ε. Then, u is a weak solution of (7.1)

and satisfies the entropy condition

∂tη(u) + ∂xq(u) ≤ 0 (7.13)

in the sense of distributions i.e.

∫ ∞
0

∫
Ω
η(u) ∂tφ+ q(u) ∂xφ dxdt ≥ 0 ∀φ ∈ C1

c (R× [0,∞)) , φ ≥ 0. (7.14)

The inequality (7.14) is called the entropy condition.

We now have the tools to give an existence and uniqueness theorem for entropy

solutions to the scalar conservation law (7.1).

7.2.7 Theorem. (Existence and uniqueness of entropy solution for (7.1); [GR13,

Theorem 3.4]) Assume that the u0 ∈ L∞(R). Then, the problem (7.1) has a unique

entropy solution u ∈ L∞(R×(0, T )). This solution satisfies for almost all t ≥ 0

‖u(·, t)‖L∞(R) ≤ ‖u0‖L∞(R) . (7.15)

Moreover, if u and v are the entropy solutions of (7.1) associated with initial condi-

tions u0 and v0 respectively, we have

u0 ≥ v0 =⇒ u(·, t) ≥ v(·, t) a.e. (7.16)

Finally, if u0 ∈ L∞(R) ∩ BV(R), then u(·, t) ∈ BV(R) with

TV (u(·, t)) ≤ TV (u0) . (7.17)

7.2.8 Remark. (Uniqueness of entropy solution for the scalar problem (7.1)) A

uniqueness proof of the entropy solutions (up to a set of measure 0) to (7.1) can be

found in [Eva10, §3.4 Thm 3].

7.2.9 Systems of conservation laws

In this section we will present relevant results for one-dimensional systems of non-

linear conservation laws, recalling notation from previous sections as necessary.
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7.2.10 Definition (One-dimensional system of conservation laws). We consider

problems of the form

ut + ∂xf(u) = 0,

u(x, 0) = u0(x) ,
for (x, t) ∈ Ω×(0,∞) (7.18)

with u = (u1, . . . , um)T and f(u) = (f1(u) , . . . , fm(u))T and complemented with

periodic boundary conditions. In particular,

u : R× R+ → Rm

(x, t) 7→ u(x, t)
(7.19)

and the flux function f

f : Rm → Rm

u(x, t) 7→ f(u(x, t))
(7.20)

7.2.11 Remark. (Piecewise smooth solutions to 7.18) In the context of weak solu-

tions, the system of conservation laws (7.18) may also admit solutions which feature

jump discontinuities (see [LeF02]).

7.2.12 Remark. (Jump) Consider a single curve which splits the space-time do-

main in two pieces, which we will denote by Ω+ and Ω−. Also suppose that this

curve is C1(R× R+). We will denote the shock by x = γ(t), where γ : t → γ(t) ∈

C1(R×[t1, t2]) for some t1 < t2 and we let Γ := {(x, t) ∈ R× R+ : x = γ(t)}. We use

this to define the limits of u on each side of Γ:

u±(x, t) := lim
x→γ(t)±

u(x, t) . (7.21)

Let s(t) := γ′(t) denote the speed of the shock and let ν := (νt, νx) denote the

normal to the curve: Ä
νt, νx

ä
:=(−s(t) , 1) (7.22)

Lastly let u+ ∈ C1(Ω+) and u− ∈ C1(Ω−). The relation between u and f(u) across

the curve is given by the Rankine-Hugoniot jump condition

7.2.13 Theorem. (Rankine-Hugoniot jump condition [GR13, Thm. 2.1]) Let u :

R × R+ → Ω be a piecewise C1(R× R+) function, with the discontinuity given by

the curve described in the remark above. Then u is a weak solution of (7.18) on

R× R+ if and only if the following two conditions are satisfied:
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1. u± are classical solutions of (7.18) in Ω± respectively.

2. u satisfies the following jump condition along the discontinuityÄ
u+ − u−

ä
νt +

Ä
f
Ä
u+
ä
− f

Ä
u−
ää
νx = 0. (7.23)

The jump relation (7.23) is called the Rankine-Hugoniot condition.

7.2.14 Remark. We will use the shorthand J·K to denote the jump in a certain

quantity. Hence, we can write the Rankin-Hugoniot condition, (7.23), as

s JuK = Jf(u)K . (7.24)

7.2.15 Remark. The Rankine-Hugoniot condition is a means for determining whether

a shock-wave is indeed a weak solution for (7.18).

7.2.16 Remark. (Existence of entropy pairs for systems of conservation laws) In

contrast with scalar conservation laws where every convex entropy η gives rise to an

entropy flux q, it is possible that systems of conservation laws possess only a single

entropy pair, the existence of which may be a special property of the specific case

in question ([GR13]).

7.2.17 Theorem. ([GR13, Thm 3.1]) Let η : Ω→ R be a strictly convex function.

A necessary and sufficient condition for η to be an entropy for the system (7.18) is

that the p× p matrices η′′(u)f ′(u) are symmetric.

As [GR13] point out, the symmetrization of (7.18) can be accomplished by in-

troducing new dependent variables v, i.e. u = u(v) s.t. u′ is symmetric positive

definite and f ′(u)u′(v) are symmetric. This is formalized as the following theorem

7.2.18 Theorem. [GR13, Thm. 3.2] A necessary and sufficient condition for the

system (7.18) to possess a strictly convex entropy η is that there exists a change of

dependent variables u = u(v) that symmetrizes (7.18).

141



7.3 Model problems

7.3.1 Scalar model problem: Burgers equation

We consider (7.1) for the one-dimensional Burgers equation given by

∂tu+ ∂x

Ç
u2

2

å
= 0, in Ω× (0, T ],

u(x, 0) = u0(x) in Ω× {0}
(7.25)

and coupled with periodic boundary conditions.

7.3.2 Remark. Periodic boundary conditions for Burgers equation The reader

should note that, in this problem, we use periodic boundary conditions as a com-

putational convenience. It is important to emphasize that if the computation is

allowed to run for long enough it will eventually become polluted. This will happen

once the solution reaches the periodic boundary.

7.3.3 System model problem: shallow water equations

We consider the one dimensional shallow water equations given by

ηt

(ηv)t

+

+

(ηv)xÄ
ηv2 + 1

2
gη2
ä
x

= 0

= 0,
(7.26)

in Ω× (0, T ] equipped with the initial conditions

h(x, 0) =


h0 for x ≤ x0

h1 for x > x0,

v(x, 0) = v0(x)

(7.27)

and coupled with free outflow boundary conditions.

7.4 Numerical discretisation and reconstruction

In this section we present the temporal and spatial approximation of the domains in

which we conduct our numerical experiments as well as the numerical FD approx-

imations for the corresponding to the scalar and system model problem (7.1) and

(7.18) respectively. Subsequently, we will present the relevant reconstructions.
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7.4.1 Scalar model problem

Spatial and temporal domain discretisation

We partition the domain Ω =[−π, π] uniformly by choosing points −π = x0 < · · · <

xM = π and we denote the step-size by h. We denote by Ij the sub-interval [xj, xj+1]

of Ω, j = 0, . . . ,M − 1. In the temporal variable we partition the interval [0, T ] into

sub-intervals with end-points 0 = t0 < · · · < tN = T , where N is chosen such that a

CFL condition is satisfied. We denote by unj := u(tn, xj) the exact solution to (7.1)

and by Un
j we denote the approximation to unj , obtained by the chosen numerical

scheme.

Numerical Scheme

The numerical scheme we use is the SSP3-WENO3 scheme. We specify the tempo-

ral component of this scheme in the Butcher tableau given in (5.16) (see [GST01,

§4:(4.2)]) and the spatial component is specified in §5.3.13 (see [Shu98, Table 2.1]

and [JSB+19, §3]).

7.4.2 Reconstruction

The reconstruction is obtained using the FD solution of (7.1), which is obtained as

explained in §5.3.

We illustrate the reconstruction procedure in Fig. 7.1. Firstly, we use Defn.

7.4.5 to obtain Û
t
(t) from U , where the latter is produced by the chosen numerical

discretisation to (4.2). This is the solid red line in the middle plot. Then, we use

Defn. 7.4.7 to obtain Û
ts

(x, t) from Û
t
(t). This is the transparent red surface in

the third plot.

The reconstruction procedure will now be explained in detail. We obtain a

polynomial reconstruction, which we will denote by Û
ts

, by using the nodal values

of U as well as the temporal and spatial approximations of the partial derivatives

of the equation. The reader should note that we interpolate firstly in time and

subsequently in space, because the temporal component of (7.31) is linear while the

spatial one may be non-linear.

In the exposition that follows, we will use the superscripts t and s to represent
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Fig. 7.1. Example of a reconstruction procedure. (Left) Un for n = 0, 1, 2 pro-

duced by a Finite Difference scheme in 1D, with periodic boundary conditions and

a sinusoidal initial condition (blue dashed lines). (Middle) Temporal reconstruction

step Û
t
(t), depicted as solid, red lines. (Right) Spatio-temporal reconstruction step

Û
ts

(x, t), depicted as a transparent, red surface.

that the function in question is either time or space dependent only. We will also

use the supercript ts to denote dependence on both time and space.

7.4.3 Definition (Space of the spatial reconstruction step). Let Pq([xj, xj+1]) de-

note the space of polynomials of degree q over the sub-interval [xj, xj+1]. We define

the space of the spatial step of the reconstruction,

Vsq :=
¶
w : [0, L]→ R : w|[xj ,xj+1] ∈ Pq([xj, xj+1])

©
, (7.28)

to be the space of piecewise polynomials of degree q over [0, L]. The superscript s

indicates the space dependence.

7.4.4 Definition (Space of the temporal reconstruction step). We define the space

of the temporal step of the reconstruction as the space of piecewise polynomials of

degree 3 over [0, T ] such that

Vt3(0, T ; L∞(Ω)) :=
¶
g : [0, T ]→ V : g|[tn,tn+1] ∈ P3

Äî
tn, tn+1

ó
,L∞(Ω)

ä©
. (7.29)

Here, P3([tn, tn+1] ,L∞(Ω)) is the space of functions which are polynomials of degree

q in time and belong to L∞(Ω) in space.

7.4.5 Definition (Temporal reconstruction). The temporal reconstruction, Û
t
∈

Vt3(0, T ; L∞(Ω))of the numerical solution U , is the unique function satisfying

Û
t
(tn) = Un

j and

∂tÛ
t
(tn) = −1

h

Ä
F
Ä
Un
j−p, · · · ,Un

j+q

ä
− F

Ä
Un
j−p−1, · · · ,Un

j+q−1

ää
.

(7.30)
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for n = 0, . . . , N .

7.4.6 Remark (Order of the temporal reconstruction). The procedure presented

in Defn. 7.4.5 limits the temporal component of the reconstruction to third order.

The reason for this is that the four conditions specified in (7.30) allow us to ob-

tain reconstructions of polynomial order up to and including three. A possibility

for increasing the order of the temporal reconstruction is by obtaining a WENO

interpolant for the temporal component. We have demonstrated this approach in

§2.3.13.

Once we obtain the temporal reconstruction we use it to define the full spatio-

temporal reconstruction. The procedure used to obtain the spatial component is

based on the WENO interpolation procedure which is derived and presented in

detail in [JSB+19].

7.4.7 Definition (Spatio-temporal reconstruction). Let Û
t

be a temporal recon-

struction of the numerical solution U of (5.1). The spatio-temporal reconstruction

Û
ts
∈ Vt3

Ä
0, T ; Vsq

ä
in the interval [xj, xj+1] is given by the WENO interpolant of Û

t
,

which is defined in (5.41).

7.4.8 Remark (Order of the reconstruction). The conditions presented in Defn.

7.4.5 result in a polynomial which is of third order in the temporal variable. In

contrast Defn. 7.4.7 can be used to obtain spatial reconstructions of arbitrary order

in space, simply by using a higher order WENO interpolant. The limiting factor in

the order of the full spatio-temporal reconstruction will be the lowest order between

the spatial and temporal steps. In this case, this will be the order of the temporal

component (order three).

7.4.9 Definition (Reconstruction). The reconstruction, Û
ts

, of the numerical so-

lution, U , to (5.1) is a function that satisfies

Û
ts

t + ∂xf
Ä
Û
äts

=: −R in Ω× (0, T ]

Û
ts

(x, 0) = u0(x) in Ω× {0}
(7.31)

and the relevant boundary conditions, such that the reconstruction residual, R, is

well-defined and explicitly computable. Furthermore, Û should lead to an optimal

a posteriori error estimate. An estimate is optimal when it converges at the same

rate as the chosen numerical scheme.
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7.4.10 System model problem

Spatial and temporal domain discretisation

We partition the domain Ω = [0, 32π] uniformly by choosing points 0 = x0 < · · · <

xM = 32π, denoting the step-size by h. We denote by Ij the sub-interval [xj, xj+1]

of Ω, j = 0, . . . ,M − 1. In the temporal variable we partition the interval [0, T ] into

sub-intervals with end-points 0 = t0 < · · · < tN = T , where N is chosen such that a

CFL condition is satisfied. We denote by unj := u(tn, xj) the exact solution to (7.1)

and by Un
j we denote the approximation to unj , obtained by the chosen numerical

scheme.

7.4.11 Remark. In what follows we remind users that the term reconstruction is

used to refer to both the procedure that is used to formulate the WENO scheme

(described in §5.3.13 and in [SO88, §2]) as well as to the procedure that we utilize

to post-process the FD solution.

Numerical Scheme

The numerical scheme we use for this problem is the SSP3-WENO3 scheme specified

in (5.16) for the temporal component and in §5.3.13 for the spatial component.

7.4.12 Remark. (WENO schemes for system) As we noted in Rem. 5.3.15, there

are two approaches for formulating the WENO scheme for systems: the component-

wise approach and the characteristic decomposition approach. In the component-

wise approach the reconstruction procedure is applied to each component of the

solution to obtain the scheme, as was done in the scalar case.

In more challenging problems, e.g., highly non-linear problems or problems in-

volving multiple shocks and discontinuities, the simple component-wise approach

may not prevent spurious oscillations (see [Shu20, §4.1.2]). In this case, a more ro-

bust (albeit more computationally expensive) approach, is the characteristic decom-

position procedure, which is described in detail in [Shu98, Procedure 2.10]. Briefly,

this procedure involves the application of the reconstruction procedure to each com-

ponent of the characteristic variables and subsequently the transformation back to

physical space. The reader should note that we do not use this approach here.
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7.5 A posteriori error bounds

In this section we present the a posteriori error results we will use in this chapter.

These include an a posteriori error bound for Burgers’ equation specifically which

holds in the pre-shock regime, a Kruzkov entropy based bound from [Ohl09] which

also holds in the post-shock regime and a relative-based error bound from [GMP15]

for systems of conservation law in one spatial dimension which admit a convex

entropy.

The first way is to facilitate an alternative error interpretation. This alterna-

tive error - measured in an appropriate, easily computable norm - is amenable to

rigorous a posteriori error control, which is in turn facilitated by an appropriate

stability framework. The second way the reconstruction is used, is to apply to it the

differential equation in order to obtain a reconstruction residual. The reconstruction

residual is then used in the computation of the a posteriori error bound.

7.5.1 Theorem (a posteriori error control for non-linear systems of 1D conservation

laws from [GMP15]). Let V ⊂ Rd be a convex state space. Let f ∈ C2
Ä
V,Rd

ä
satisfy

(6.13) and let u be an entropy solution of (5.1) with periodic boundary conditions.

Let Û
ts

take values in D (which is a convex, compact subset of the state space, V ).

Then for 0 ≤ t ≤ T the error between u and Û
ts

is given by∥∥∥∥u(·, t)− Û
ts

(·, t)
∥∥∥∥2

L2(I)
≤C−1

η

Ç
‖R‖2

L2(I×(0,t)) + Cη

∥∥∥∥u0 − Û
ts

0

∥∥∥∥2

L2(I)

å
× exp

á∫ t

0

Ç
CηCf

∥∥∥∥∂xÛ ts
(·, s)

∥∥∥∥
L∞(I)

+ C2
η

å
Cη

ds

ë
(7.32)

The constants Cη and Cη represent the minimum and maximum absolute eigenvalues

of D2η. Furthermore, Cf :=
Ä∑

iCfi

ä1/2
, where Cfi

is an upper bound for the absolute

values of the eigenvalues of the ith component of f .

Proof. See [GMP15, Thm.5.5]

7.5.2 Remark. The reader should note that the Gibbs phenomenon does not cause

problems in the blow-up rate Thm. 7.5.1.

7.5.3 Lemma (Stability and error control for Burgers’ equation with periodic

boundary conditions). Let the conditions of Lemma 7.5.1 hold with f(u) := 1
2
u2, i.e.
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the scalar Burgers’ equation. Suppose the initial value problem for u and “U ts are

coupled with periodic boundary data. Then, the error between the two functions,

e := u− “U ts, satisfies the following bound for all t ∈ [0, T ]:

‖e(t)‖2
L2(Ω) ≤ exp

Ç∫ t

0

Å∥∥∥∂x“U(s)
∥∥∥

L∞(Ω)
+ 1
ã

ds

åñ
‖e(0)‖2

L2(Ω) +
∫ t

0
‖R(s)‖2

L2(Ω) ds

ô
=: ωb(t) E 2

b

Ä
t; L2(Ω)

ä
,

(7.33)

where

ωb(t) := exp

Ç∫ t

0

Å∥∥∥∂x“U(s)
∥∥∥

L∞(Ω)
+ 1
ã

ds

å
(7.34)

and

−R := ∂t“U + ∂x

(“U2

2

)
. (7.35)

Proof. Let u(x, t) solve

ut + ∂x

Ç
u2

2

å
= 0

u(x, 0) = u0(x)

(7.36)

with periodic boundary conditions. Let v denote the reconstruction, “U , which sat-

isfies the perturbed PDE

vt + ∂x

Ç
v2

2

å
= −R

v(x, 0) = v0(x) .

(7.37)

Then, the error e := u− v satisfies

et + ∂x

Ç
(u+ v)(u− v)

2

å
= R

e(x, 0) = e0(x) .

(7.38)

We use the fact that u+ v = u+ v − v + v = e+ 2v to rewrite this as

et + ∂x

Ç
(e+ 2v)(e)

2

å
= R

e(x, 0) = e0(x) .

(7.39)

We test with (7.39) e to obtain

∫
Re =

∫
eet +

1

2
e∂x
Ä
e2 + 2ve

ä
∫
Re =

∫
eet +

∫
1

3
∂x
Ä
e3
ä

+
∫
e∂x(ve)

(7.40)

We note that
1

2
∂x
Ä
ve2
ä

= veex +
1

2
e2vx (7.41)
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and that

e∂x(ve) = veex + e2vx

=
1

2
∂x
Ä
ve2
ä

+
1

2
e2vx.

(7.42)

Hence
1

2

d

dt
‖e‖2

L2(Ω) =
∫
Re+

∫
1

2
e2vx (7.43)

We use the Cauchy-Schwarz and Holder’s inequality to obtain

1

2

d

dt
‖e‖2

L2(Ω) ≤ ‖R‖L2(Ω) ‖e‖L2(Ω) +
1

2
‖e‖2

L2(Ω) ‖vx‖L∞(Ω)

≤ 1

2
‖R‖2

L2(Ω) +
1

2
‖e‖2

L2(Ω) +
1

2
‖e‖2

L2(Ω) ‖vx‖L∞(Ω) .

(7.44)

Finally now use Gronwall’s inequality to obtain the desired result:

‖e(t)‖2
L2(Ω) ≤ exp

Ç∫ t

0

(
‖vx(s)‖L∞(Ω) + 1

)
ds

åñ
‖e(0)‖2

L2(Ω) +
∫ t

0
‖R(s)‖2

L2(Ω) ds

ô
.

(7.45)

7.5.4 Remark. Note that the result given in Lemma 7.5.3 loses its robustness in the

post-shock regime due to the presence of the reconstruction’s derivative, which blows

up upon shock formation, in the exponential accumulation factor, see (7.33). The

next result on a posteriori error control is from [CG95]. It pertains to a posteriori

error control for a scalar, non-linear hyperbolic problem and it makes use of the

Kruzkov doubling of variable technique (see [Kru70],[Kuz76]). This estimate retains

robustness in the post-shock regime. We introduce it in order to combine it with

the a posteriori error estimate for the scalar problem and present an estimate that

is optimal in both the pre-shock and post-shock regimes.

7.5.5 Theorem. (L1(Ω) error bound - [CG95, Thm. 2.1]) Let u be an entropy

solution of (7.1) and denote by “U ts the reconstruction of the numerical solution¶
Un
j

©n
j

(see Defn.7.4.7). Then,

∥∥∥u(t)− “U ts(t)
∥∥∥

L1(Ω)
≤ ‖u0 − v0‖L1(0,t;L1(Ω)) +

∫ t

0
‖R(s)‖L1(Ω) ds

=: ωa(t) Ea
Ä
t; L1(Ω)

ä
,

(7.46)

where

ωa(t) = 1 ∀t (7.47)
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and

R := ∂t“U ts + ∂x
Ä
f
Ä“U ts

ää
(7.48)

is the discrete residual of the reconstruction.

Proof. See [CG95, Appendix].

7.5.6 Remark. By combining Lemma 7.5.3 and Theorem 7.5.5 we obtain an a

posteriori error estimate that is optimal in both the pre-shock and post-shock regime

for the scalar problem, (7.1), in one spatial dimension.

7.5.7 Theorem (Robust bound pre and post shock). Let the conditions of Lemma

7.5.3 and Theorem 7.5.5 hold. Then, the following error estimate holds:

‖e‖L1(Ω) ≤ min{ωb(t)Eb
Ä
t,L1(Ω)

ä
, |Ω|1/2 ωa(t)Ea

Ä
t,L2(Ω)

ä
}, (7.49)

where the subscript (·)b corresponds to the bound variables of Lem. 7.5.3 in the pre-

shock regime and the subscript (·)a corresponds to the post-shock regime of Thm.

7.5.5.

Proof Notice that for any w ∈ L2(Ω)

‖w‖L1(Ω) =
∫

Ω
|w| ≤ |Ω|1/2 ‖w‖L2(Ω) . (7.50)

The result follows from the fact that the L2(Ω) estimate, Lem. 7.5.3, contains an

exponential term which contains the derivative of the reconstruction.

7.5.8 Remark. The presence of an exponential term involving the spatial derivative

of the reconstruction in the L2(Ω) estimate in Lem. 7.5.3 causes the estimate to blow

up in the presence of shocks. At that point, taking the minimum between the two

results will mean that the L1(Ω) result will be chosen.

7.6 Numerical verification

In this section we will study the asymptotic behaviour of the a posteriori bound and

compare and contrast it with the behaviour of the error, defined as

e := u− Û , (7.51)
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for a linear example, the transport problem, and two non-linear examples: Burg-

ers’ equation and the shallow water equations. The reason for including the linear

example is to investigate the behaviour of the estimates in situations where we

can conveniently examine solutions of different regularity before proceeding to the

non-linear problems.

The tests in this section are a preliminary step before the next section, in which

the a posteriori bound is used as a refinement/coarsening criterion in adaptive tests.

We will firstly present the bounds we will be testing for the non-linear problems we

benchmark in this section, along with the numerical schemes we will use.

7.6.1 Remark (a posteriori bound for non-linear problems). Some of the test cases

we examine in this section are non-linear so the post-processor from Lemma 4.3.2

is not appropriate. Instead, we will use a different a posteriori estimate which is

appropriate for nonlinear systems of hyperbolic conservation laws.

7.6.2 Remark (Reconstruction residual). The reconstruction residual, R, is used

to compute the smooth post-processor that bounds the error of the problem from

above in Thm. 4.3.2. We obtain R by substituting Û
ts

in (5.1):

− R̂(x, t) := ∂tÛ
ts

(x, t) + ∂xf
Å
Û
ts

(x, t)
ã

(7.52)

The reader may notice that Û
ts

(x, t) may be more difficult to compute than the

solution. Nonetheless, this is a worthwhile endeavour from a computational per-

spective because of the utility of a (locally) coarser grid. In this case, Û
ts

(x, t) can

be used in an a posteriori estimate estimate, a driver for adaptivity. In turn this can

lead to reduction of the necessary degrees of freedom in the computational domain

where appropriate. If the regions of the domain where high resolution are necessary

are highly localised, it may be the case that the extra computational expense in-

curred in the computation of Û
ts

(x, t) is justified by the reduction in computational

resource usage.

We test the bound (7.33) for three different schemes - Lax-Friedrichs, Lax-

Wendroff and SSP3-WENO - with uniform temporal and spatial discretizations,

i.e. τn := τ ∀n and hj := h ∀j. The reconstruction residual, (7.52), will be obtained

by using Defn. 7.4.5 for the temporal component and Defn. 7.4.7 for the spatial

component.
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7.6.3 Test 1: Advection equation

In this section, the model problem we test is the advection equation with periodic

boundary conditions, see (4.2). The objective of the test is to compare the perfor-

mance of the a posteriori error bound of [CG95] with the a posteriori error bound

we presented in Cor. 4.4.6.

We discretise the model problem, (4.2), using a simple FTBS scheme, (4.9), a

Lax-Friedrichs (LxF) scheme (see (5.6)-(5.7)) as well as a SSP3 - WENO3 scheme,

for which we provide the temporal discretisation as a Butcher tableaux in Tbl. 5.16

and the spatial discretisation in §5.3.13.

In the FTBS and LxF tests we obtain the reconstruction, “U ts by using a piecewise

bilinear interpolant of the numerical solution, {Un
j }nj . In the SSP3-WENO3 tests,

the reconstruction is obtained as a Hermite-in-time, WENO3-in space interpolant,

as explained in Defns. 7.4.5 and 7.4.7.

We test three initial conditions: a smooth initial condition given by

u0(x) = sin (2πx) , (7.53)

a piecewise linear continuous initial condition given by

u0(x) =


1− 4

∣∣∣x− 1
4

∣∣∣ for |x| <= 0.25

0 otherwise,

(7.54)

and a discontinuous initial condition given by

u0(x) =


1 for

∣∣∣x− 1
4

∣∣∣ ≤ 1
8
,

0 otherwise.

(7.55)

We will use periodic boundary conditions in all tests. In all these cases the exact

solution is given by

u(x, t) = u0(x− t) . (7.56)

The results from each test will be presented in figures consisting of three sub-figures,

each sub-figure corresponding to an initial condition. Each sub-figure will in turn be

composed of two rows of plots: in the top row the spatial components of the error

are calculated in the L1(Ω)−norm and the estimate is given in Thm. 7.5.7. In the

bottom row the spatial components of the error are calculated in the L2(Ω)−norm
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and the estimate used is given in Cor. 4.4.6. The simulations are conducted over

a family of meshes with discretisation parameter h = 2−m, m = 7, . . . , 10, with a

temporal step τ = h/10.

Discussion

The results are shown in Fig. 7.2 for the FTBS scheme, in Fig. 7.3 for the Lax-

Friedrichs scheme and in Fig. 7.4 for the SSP3-WENO3 scheme. The reader should

note that in each of the figure’s subplots, the top row pertains to the L1(Ω) estimate,

(7.46), while the bottom row corresponds to the L2(Ω) estimate from Cor. 4.4.6.

We observe that, in the case of the FTBS scheme, Fig. 7.2, the L1(Ω) bound,

(7.46), is robust and converges optimally for all three initial conditions, (7.53), (7.54)

and (7.55). The L2(Ω) estimate from Cor.4.4.6 is robust for the smooth and piecewise

linear initial conditions, but it loses robustness for the step initial condition (7.55).

In the case of the Lax-Friedrichs scheme, Fig. 7.3, we observe behaviour similar

to the FTBS scheme in the smooth and piecewise linear cases. The notable difference

between the two is in the non-robustness of the L1(Ω) bound in the case of the Lax-

Friedrichs scheme with the step initial condition. In contrast, in the corresponding

FTBS result we observe robustness. This behaviour was unexpected as the routines

for the error calculation, the reconstruction and the residual computation are the

same for both cases. The distinguishing feature between the two is the spatial

discretisation, which nonetheless yields the same error behaviour (asymptotically)

for the two schemes. Hence, it is reasonable to expect similar behaviour for the

estimates, which is not the case as can be seen in Figs. 7.2c with 7.3c.

In deciphering the difference in behaviour between LxF and FTBS in the step-

initial condition test, we note that the feature that stand out first is the spatial

discretisation, which is the only essential difference between the two cases. We

believe that, possibly, the reason for the difference may lie in the fact that the

bilinear reconstruction we employ may not possess the requisite approximability to

accommodate the underlying LxF flux as well as it does the FTBS flux. This does

not manifest in the smooth and hat test-cases but it does become apparent in the

case of the relatively more challenging step-initial condition.

In particular, as we can see in Fig. 7.3c, the estimate actually diverges. This
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results by a lack of balance of relative contribution to the residual between the

temporal and spatial component of the reconstruction. This may be the result of

the fact that, by using a bilinear interpolant, the information from the LxF flux

is not incorporated in the reconstruction. In contrast, in the case of the FTBS

flux, which involves a backward difference of the numerical solution, the bilinear

interpolant does incorporate this information to some degree (though coincidentally

and due to the form of the particular scheme).

Lastly, for the SSP3-WENO3 scheme, Fig. 7.4, we observe that both estimates

are robust and converge for the smooth initial condition. For the piecewise linear

initial condition, the L1(Ω) estimate is robust while the L2(Ω) bound seems to be

slightly sub-optimal, although this may be because the resolution is not fine enough

for the bound to enter the asymptotic convergence regime. However, in the case of

the step initial condition, while the L1(Ω) estimate is optimal, the L2(Ω) one loses

optimality.
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(a) Smooth initial condition, (7.53).

(b) Hat initial condition, (7.54) .

(c) Step initial condition, (7.55).

Fig. 7.2. Errors and asymptotic convergence rates for an estimate constructed

using a bilinear interpolant for the FTBS scheme, (4.9), for the transport equation.

Both estimates are optimal for smooth and continuous initial conditions, as shown

in Figs. 7.2a, 7.2b, but the L2(Ω) estimate from Cor. 4.4.6 loses optimality for

discontinuous initial conditions, see Fig. 7.2c.

155



(a) Smooth initial condition, (7.53).

(b) Hat initial condition, (7.54) .

(c) Step initial condition, (7.55).

Fig. 7.3. Errors and asymptotic convergence rates for an estimate constructed

using a bilinear interpolant for the LxF scheme, (see (5.6)-(5.7)), for the transport

equation. Both estimates are optimal for smooth and continuous initial conditions,

as shown in Figs. 7.3a, 7.3b, but the L2(Ω) estimate from Cor. 4.4.6 loses optimality

and diverges for discontinuous initial conditions, see Fig. 7.3c.
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(a) Smooth initial condition, (7.53).

(b) Hat initial condition, (7.54) .

(c) Step initial condition, (7.55).

Fig. 7.4. Errors and asymptotic convergence rates for an estimate constructed

using a Hermite-in-time, WENO-in-space interpolant for the SSP3-WENO3 scheme,

(Tbl. 5.16 and §5.3.13), for the transport equation. Both estimates are optimal for

smooth and continuous initial conditions, as shown in Figs. 7.4a, 7.4b, but the

L2(Ω) estimate from Cor. 4.4.6 loses optimality for discontinuous initial conditions,

see Fig. 7.4c. 157



7.6.4 Test 2: Scalar Inviscid Burgers’ equation.

In this section, we benchmark the performance of the a posteriori estimate (7.33)

on the basis of a non-linear scalar problem. The model problem we use is the

one-dimensional inviscid Burgers’ equation with periodic boundary conditions and

a prescribed initial condition:

∂tu+ ∂x

Ç
u2

2

å
= 0,

u(x, 0) = u0(x)

for (x, t) ∈ [−π, π]× (0, T ]. (7.57)

We discretise the model problem, (4.2), a Lax-Friedrichs (LxF) scheme (see (5.6)-

(5.7)), a Lax-Wendroff (LxW) scheme, (5.10), well as a SSP3 - WENO3 scheme, (see

Tbl. 5.16 for the temporal discretisation and §5.3.13 for the spatial discretisation).

In the LxF tests we obtain the reconstruction, “U ts as a piecewise bilinear inter-

polant of the numerical solution, {Un
j }nj . In the LxW and SSP3-WENO3 tests, the

reconstruction is obtained as a Hermite-in-time, WENO3-in space interpolant, as

explained in Defns. 7.4.5 and 7.4.7.

We use two different initial conditions. We use a sinusoidal initial condition given

by

u0(x) = − sin (x) , (7.58)

and a piecewise linear initial condition given by

u0(x) =


1− |x| for |x| ≤ 1,

0 otherwise.

(7.59)

In the case of (7.58), the exact solution in the pre-shock regime can be represented

as an infinite sum of Bessel functions (see [GMP15]):

u(x, t) = −2
∞∑
k=1

Jk(kt)

kt
sin (kx) , (7.60)

where Jk denotes the kth Bessel function. This is a decaying sequence, so we can

approximate the solution by truncating it (we truncate at k = 100). In the post-

shock regime, we do not have an analytic formula for the solution.

In the case of the piecewise linear initial condition, (7.59) we obtain the exact

solution using the method of characteristics. In the pre-shock regime, the exact
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solution is given by 

0 for x < −1,

1+x
1+t

for − 1 ≤ x < t,

1−x
1−t for t ≤ x < 1,

0 otherwise,

(7.61)

while in the post-shock regime, i.e t ≥ 1, it is given by

u(x, t) =



0 for x < −1,

1+x
1+t

for − 1 ≤ x ≤
»

2(1 + t)− 1,

0 otherwise.

(7.62)

The tests we perform aim to investigate the behaviour of the estimates prior and

subsequent to shock formation.

In Figs. 7.5, 7.6 and 7.7 we show the behaviour of the error, e := u− “U ts and the

estimate (7.33) before and after shock formation, using the sinusoidal initial condi-

tion (7.58). In Fig. 7.8 we decouple the residual component and the exponential

accumulation factor in (7.33) and investigate them separately.

All simulations are conducted over a family of meshes with discretisation pa-

rameter h = 2−m, m = 11, . . . 14, with a temporal step τ = h/10. The results in

each figure will pertain to individual schemes and they will be presented in two rows

of sub-figures (within the same figure): a top row corresponding to the pre-shock

behaviour and a bottom row corresponds to the post-shock behaviour.
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(a) Pre-shock.

(b) Post-shock.

Fig. 7.5. Errors and asymptotic convergence rates for an estimate constructed

using a bilinear reconstruction for the Lax-Friedrichs scheme, (5.7), for Burgers’

equation with sinusoidal initial conditions. The estimate is optimal prior to shock

formation and blows up once the shock forms due to the exponential factor in (7.33).
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(a) Pre-shock.

(b) Post-shock.

Fig. 7.6. Errors and asymptotic convergence rates for a Hermite-in-time-WENO3-

in space reconstruction for the Lax-Wendroff scheme, (5.10), for Burgers’ equation

with sinusoidal initial conditions. The estimate is optimal prior to shock-formation

and blows up post-shock because of the exponential factor in (7.33).
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(a) Pre-shock.

(b) Post-shock.

Fig. 7.7. Errors and asymptotic convergence rates for a Hermite-WENO3 recon-

struction for the SSP3-WENO3 discretisation of Burgers’ equation with a sinusoidal

initial condition. Notice that the estimate loses optimality gradually in the interval

0.2 ≤ t ≤ 0.8. This is because the solution itself is losing regularity, only this time

the scheme and the residual are both of sufficiently high order to capture this. At

t ≈ 1 the shock forms and the exponential factor in (7.33) blows up.

In order to explain the behaviour of the estimate (7.33) we decouple the time

accumulation factor from the residual component of the post-processor (see Fig.

7.8). Notice that at t ≈ 1 the exponential factor blows up rapidly as the spatial

derivative of the reconstruction, ∂x“U ts blows up. The reason for this is that at t = 1

the solution starts forming a shock. This explains the behaviour for t ≥ 1.

Fig. 7.8. Decoupling for the post-processor for the SSP3-WENO3 approximations

of Burgers’ equation with a sinusoidal initial condition. The blow-up in the time

accumulation term is because of the spatial derivative in the exponential factor.
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7.6.5 Test 2: Comparison of estimates

In this section we compare the performance of the estimates (7.33) and (7.46) using

Burgers equation as a model problem. We use a sinusoidal initial condition given by

(7.58) and a piecewise linear initial condition given by (7.59). We have analytical

expressions for the exact solutions for both initial conditions in the pre-shock regime

but in the post-shock regime we only have an exact solution for (7.59).

The motivation behind the tests in this section is to investigate and compare

the pre-shock and post-shock performance of the two estimates. The numerical dis-

cretisation of the problems will be done using the Lax-Friedrichs and SSP3-WENO3

schemes we introduced earlier. The respective reconstructions are obtained using

a bilinear interpolant for the Lax-Friedrichs scheme and a Hermite-WENO3 in-

terpolant for the SSP3-WENO3 scheme. The results for all experiments will be

arranged in figures of two-subplots corresponding to the two initial conditions. In

turn, each subplot contains two rows of results. In the top row the spatial compo-

nents of the error are calculated in the L1(Ω)−norm and the estimate is given in

Thm. 7.5.7. In the bottom row the spatial components of the error are calculated

in the L2(Ω)−norm and the estimate used is given in (7.33).

In all cases the simulations are conducted over a family of meshes with discreti-

sation parameter h = 2−m,m = 9, . . . , 12, with a temporal step τ = h/10.

The results for the Lax-Friedrichs scheme are shown in Figs. 7.9 and 7.11 for the

pre-shock and post-shock regimes respectively. The results for the SSP3-WENO3

scheme are shown in Figs. 7.10 and 7.12 for the pre-shock and post-shock regime

respectively.

Discussion

In discussing our results for this section, we draw some comparisons, where relevant,

with the analogous results from the transport problem in §7.6.3. The reason is that

in case of the piecewise linear initial condition for the Burgers problem, (7.59), the

solution transitions from being piecewise linear in the pre-shock regime to being

discontinuous in the post-shock regime. Since we have solutions of this regularity

in the tranport problem (albeit, for two different initial conditions) we will use the

behaviour of the error and the estimate in those cases as a reference in order to
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assess whether the numerical behaviour in the Burgers pre and post shock regimes

for the piecewise linear initial condition is reasonable.

In the case of the Lax Friedrichs scheme, in the pre-shock regime, Fig. 7.9, we

observe that both estimates are robust for both the smooth and the piecewise linear

initial conditions, Figs. 7.9a and 7.9b respectively. Furthermore, the behaviours of

both the error and the estimate are consistent with our observations in the Lax-

Friedrichs scheme for the linear transport problem, when we use initial conditions

of the same regularity as in the pre-shock regime of the Burgers solution (see Figs.

7.3a-7.3b).

In the post-shock regime, we will only examine the results pertaining to the

piecewise linear initial condition, Fig. 7.11b, where we have an expression for the

solution. We observe that the error converges in both the L1(Ω) and L2(Ω) cases,

with O
Ä
h3/4

ä
and O

Ä
h3/8

ä
respectively. In addition, both estimates lose robustness.

These results are unexpected on two levels:

1. Firstly, with regard to the EOC of the errors (for both L1(Ω) and L2(Ω)), our

observations in Fig. 7.11b are not consistent with our results in the transport

problem for solutions possessing the same regularity and discretised by the

Lax-Friedrichs scheme. Specifically, with reference to Fig. 7.3c the error for

the step-initial condition converges in the L1(Ω) case as O
Ä
h1/2

ä
and in the

L2(Ω) as O
Ä
h1/4

ä
.

2. Secondly, with regard to the EOC of the estimates, with reference to Fig.

7.11b, we observe that both estimates lose robustness in the post-shock regime.

The reason this result is unexpected is the same reason that the corresponding

Lax-Friedrichs result for transport was unexpected as well (compare with Fig.

7.3c). That is, because the L1(Ω) estimate loses robustness in this setting

whereas it is fully robust in a very similar setting. The setting we refer to is

of course the transport problem with the step initial condition, discretised by

the FTBS scheme and with the exact same reconstruction routine as in the

Burgers problem.

The last component of the results in this section pertains to the SSP3-WENO3

discretisation for the Burgers model problem, (7.57). In the pre-shock regime, for
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the smooth initial condition, (7.58), with reference to Fig. 7.10a, we observe high

orders of convergence for the error and robustness in both the L1(Ω) and L2(Ω)

estimates, (7.46) and (7.33) respectively. For the piecewise linear initial condition,

(7.59), with reference to Fig. 7.10b we observe that the L1(Ω) estimate, (7.46), is

robust while the L2(Ω) estimate, (7.33), appears to be sub-optimal compared to the

EOC of the corresponding error, although the estimate’s EOC may increase upon

further refinement.

In the post-shock regime, both estimates lose robustness for the smooth initial

condition (see Fig. 7.12a). This is not unexpected for the L2(Ω) estimate, (7.33) on

account of the spatial derivative term in the exponential accumulation factor which

goes to infinity when shocks appear. Unfortunately, we cannot ascertain whether

this behaviour is justifiable for the L1(Ω) estimate, (7.46), as we do not possess an

expression of the solution in the post-shock regime.

In the case of the piecewise linear initial condition, with reference to Fig. 7.12b,

we observe that the errors converge with O(h) for the L1(Ω) case and O
Ä
h1/2

ä
for

the L2(Ω) case. However, both of the respective estimates lose robustness. This

behaviour is consistent with our observation in the Lax-Friedrichs case. The source

of this behaviour remains an open question at this point.
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(a) Pre-shock: smooth initial condition, (7.58).

(b) Pre-shock: hat initial condition, (7.59) .

Fig. 7.9. Errors and asymptotic convergence rates for an estimate constructed

using a bilinear interpolant for the Lax-Friedrichs scheme, (5.7), for Burgers’ equa-

tion. Both estimates are optimal for the smooth and continuous initial conditions,

with the L2(Ω) estimate converging more slowly.
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(a) Pre-shock: smooth initial condition, (7.58).

(b) Pre-shock: hat initial condition, (7.59) .

Fig. 7.10. Errors and asymptotic convergence rates for an estimate constructed

using a Hermite-WENO reconstruction for the SSP3-WENO3 scheme, (Tbl. 5.16

and §5.3.13), for Burgers’ equation. Both estimates are optimal for the smooth

initial condition, as shown in Figs. 7.10a. The estimate (7.33) loses optimality for

the hat initial condition (see 7.10b).
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(a) Post-shock: smooth initial condition, (7.58).

(b) Post-shock: hat initial condition, (7.59) .

Fig. 7.11. Errors and asymptotic convergence rates in the post-shock regime,

t ≥ 1 for an estimate constructed using a bilinear interpolant for the Lax-Friedrichs

scheme, (5.7), for Burgers equation. Both estimates lose optimality in the post-

shock regime. In particular, the L2(Ω) estimate diverges for both initial conditions

in the post-shock regime.
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(a) Post-shock: smooth initial condition, (7.58).

(b) Post-shock: hat initial condition, (7.59) .

Fig. 7.12. Errors and asymptotic convergence rates in the post-shock regime,

t ≥ 1 for an estimate constructed using a Hermite-WENO3 reconstruction for the

SSP3-WENO3 scheme, (Tbl. 5.16 and §5.3.13), for Burgers’ equation.

7.6.6 Test 3: Shallow Water equations

We conclude the numerical testing of our framework with with a systems example.

We use the shallow water equations as a model problem. There are two tests in this

section, a benchmarking test where we assess the behaviour of the bound using a

sinusoidal initial condition, and an adaptive experiment where use the estimate to

drive adaptivity. The model problem we test is given by

ηt

(ηv)t

+

+

(ηv)xÄ
ηv2 + 1

2
gη2
ä
x

= 0

= 0,
(7.63)
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equipped with the initial conditions

h(x, 0) =


h0 for x ≤ x0

h1 for x > x0,

v(x, 0) = v0(x) .

(7.64)

over a domain Ω = [0, 32π] and T ≈ 10. We will use free outflow boundary condi-

tions.

7.6.7 Remark. In order to avoid confusion we note that the set of initial conditions

(7.64) with the free outflow boundary conditions will be used in the adaptive test

later in the chapter. An additional set of sinusoidal initial conditions and a periodic

boundary condition will be used in the benchmarking of the residual, as we clarify

below.

Benchmarking of the estimate

In the first instance we simply want to validate the numerical behaviour of the

scheme and of the residual component, R, (see (7.31)) of the estimate, (7.32) for a

smooth initial condition. Specifically, we want to confirm that, in the case a high

order scheme is used with smooth initial conditions, the reconstruction possesses

the requisite approximability to produce a high-order estimate. Hence, in this ex-

periment our focus is exclusively the EOC of the global residual not the error of

the scheme. In this context we define the following constants: d = 2.0, λ = 32π,

k = 2π/λ, ω =
»
gk tanh(kd) and a = 1/10. The initial condition we will use to

benchmark the behaviour of the residual is given by

h(x, 0) = d+ a sin (kx) ,

v(x, 0) = aω
cosh(kh)

sinh(kd)
sin (−kx) .

(7.65)

We will use periodic boundary conditions for this experiment. The results are shown

in Fig. 7.13. Notice that the reconstruction possesses the high order approximability

which is required in order to construct an optimal a posteriori estimate for a high

order scheme (provided the solution possesses sufficient regularity).

7.6.8 Remark. The reader will notice that the set of initial and boundary con-

ditions in (7.65) is different compared to what we prescribe in (7.64). The reason
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is that, in this instance, we are interested in confirming that the reconstruction

possesses sufficient approximability to construct an optimal estimate (which neces-

sitates a high order residual) for a high order scheme. We do this by using a smooth

(albeit unknown) solution and examining the behaviour of the residual under these

conditions. Our desired result is to confirm high order convergence of the residual

when a high order scheme is used.

Fig. 7.13. Bench marking for the shallow-water equations with a sinusoidal ini-

tial condition, (7.65) and periodic boundary conditions. We use an SSP3-WENO3

scheme with h = 2−m,m = 9, . . . 12, with a timestep τ = h
10

. The bound is con-

structed using a Hermite-WENO3 interpolant. Observe that the residual maintains

a high order of convergence throughout the simulation.

Adaptive experiment

In this case we conduct a numerical experiment to test the residual term R in

(7.32) as a local refinement criterion for the shallow water equations using a dam-

break initial condition and free outflow conditions. We use v0(x, 0) = 0, x0 = 30,

h0 = 0.2 and h1 = 0.1 for the initial condition. This problem has an exact solution

and this can be found in [DLK+13, §4.1.1]. We discretise the problem using an

SSP3-WENO3 spatio-temporal discretisation and we use a Hermite-WENO3 spatio-

temporal reconstruction to obtain the residual, R (see (7.52)).

We start the simulation with the coarsest possible mesh, which is given by h =

32π× 2−10 and we use a constant time-step τ = 32π×2−12

10
throughout the simulation.

The equivalent uniform mesh is found to have 2183 degrees of freedom, i.e. 0 =

x0 < · · · < x2182 = 32π. The adaptive simulation is shown in Fig. 7.14.

Notice that the estimate is able to accurately track regions of refinement inter-

est. Also, we note that the adaptive mesh consistently performs better than the
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equivalent uniform mesh throughout the major part of the simulation, as can be

seen in Fig. 7.15.

(a) t = 0 s (b) t ≈ 4.91 s (c) t ≈ 7.37 s

(d) t ≈ 9.82 s (e) t ≈ 12.27 s (f) t ≈ 17.18 s

Fig. 7.14. Evolution of the surface elevation (blue line) for the shallow water

dam break problem, using and SSP3-WENO3 spatio temporal discretization. The

logarithm of the reciprocal of the local grid-spacing is overlaid with a grey line. We

use a Hermite-WENO3 spatio-temporal reconstruction to construct the residual,

R (see (7.52)). Notice that the residual reliably detects regions where refinement

is required - such as in the vicinity of the shock and the rarefaction) and where

coarsening is appropriate.
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Fig. 7.15. A comparison of the performance of the adaptive grid for the shallow

water dam break problem with an equivalent uniform grid (see Defn. 4.6.3), which

in this case has 2183 dofs. The adaptive grid consistently maintains a lower level of

error than the equivalent uniform grid throughout the major part of the simulation.

7.7 Conclusions

The main contribution from this chapter is the presentation and numerical testing

of a framework for constructing reliable, optimal a posteriori error estimates for

classes of Finite Difference schemes in the context of scalar and systems of non-linear

hyperbolic conservation law in one spatial dimension. The framework is generally

applicable: it does not depend on the specific choice of the underlying FD scheme.

The methodology incorporates both the numerical solution and information from

the FD scheme itself, thereby facilitating the construction of high order a posteriori

estimates using reconstruction techniques. This is a desirable property as it enables

the user to construct optimal estimates for high order FD schemes. In addition,

in the scalar case we examine the possibility of combining existing a posteriori

estimates that are individually optimal in the pre-shock and post-shock regime with

the intention of combining them into a single bound that is optimal in both regimes.

These consist of a L1(Ω) based on a Kruzkov framework from [CG95] and a relative

entropy based L2(Ω) bound from [GMP15].

We demonstrate that the obtained estimates possess desirable characteristics in

the pre-shock regime using a range of numerical tests with both linear and non-

linear, scalar and vectorial examples. In these tests, both estimates constructed
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using the presented framework show optimal convergence characteristics while the

solution is smooth, but lose robustness in the post-shock regime. In the case of the

relative entropy bound we attribute the loss of robustness to the presence of the

spatial derivative of the reconstruction in an exponential time accumulation factor

in the estimate: this term blows up in the presence of shocks. However, in the case

of the L1(Ω) estimate, the question of the loss of robustness in the post-shock regime

for the non-linear problem remains open. Hence, the question of the combination of

the bounds into a single bound that is robust throughout both regimes is also open.

Lastly, we show that residuals constructed using the methodology we propose can

be reliably used as local mesh refinement criteria. We demonstrate this capability

by using the residual to accurately track figures of refinement interest in the dam

break scenario for the shallow water equations in one spatial dimension.
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Chapter 8

Conclusion

In this thesis we examined the topic of a posteriori error detection for approxima-

tions of PDEs using FD methods. After motivating the topic of a posteriori error

estimation with an ODE model problem discretised by a linear multistep method,

we shifted our attention exclusively on FD discretisations of PDEs, with a focus on

hyperbolic conservation laws for the last four chapters. Our main contribution is

the development and extensive testing of a framework based on reconstructions for

establishing error control over the problems by using their stability framework.

We extensively tested this framework numerically with a range of PDE problems,

using several frequently-used numerical schemes to discretise them. We showed that

this framework can be used to construct reliable, robust a posteriori error bounds.

We showed that under appropriate conditions the estimates behave optimally, that

is they converge at the same rate as the numerical scheme. We demonstrate how to

incorporate these conditions in the construction of the estimate and we also identify

scenarios in which the estimates lose optimality, by using examples from non-linear

hyperbolic conservation laws after shocks develop.

8.1 Part 1

The first part of the thesis consists of Chapters 2, 3 and 4.

In 2, inspired by the work in [GLMV16], we proposed a framework to construct

an a posteriori error bound for the same linear multistep method as the one ex-

amined in that paper and then we tested this framework on a second order ODE
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problem. Specifically, in [GLMV16], the time discretisation was a Leapfrog scheme

on a staggered grid. We performed numerical tests which showed that the a posteri-

ori error estimate computed using the proposed framework behaved optimally, that

is it converged at the same rate as the error for underlying discretisation.

Subsequently, in Chapter 3 we performed an a posteriori error analysis of a

model elliptic problem. We used a reconstruction-based framework to obtain an a

posteriori error bound of the FD solution. We compared the performance of a bound

obtained using this framework with a classical bound for FE elements, for an FE

method which is nodally equivalent to our FD discretisation. We showed that the

bound obtained based on the reconstruction of the FD solution compares favourably

with the classical FE bound.

In Chapter 4, the last chapter of the first part of the thesis, we use a recon-

struction based framework to facilitate a posteriori error control for a class of FD

schemes for the linear advection equation in one spatial dimension. The behaviour

of the a posteriori bounds resulting from the proposed reconstruction operators was

validated in a number of numerical tests, in which the estimates were shown to be-

have optimally. In addition, the estimates were shown to reliably have the capability

of tracking features of interest, in this case parasitic, highly oscillatory waves (see

[Vic81b]), which arise when numerical solutions encounter mesh non-uniformities.

Lastly, the performance of the estimates as a criterion for adaptivity was eval-

uated and found to be favourable compared to a mesh with the same number of

cumulative degrees of freedom. This chapter sets the tone for the second part of the

thesis, which focuses on hyperbolic conservation laws.

8.1.1 Optimal a posteriori error estimation for fourth order

discretisations

A direction for further research is the generalization of the proposed framework to

higher orders. As an example, [Yos90] presents a fourth order version of the Leapfrog.

In this case, the WENO approach in §2.3.13 for constructing the a posteriori error

estimate can be used to obtain an a posteriori error estimate that would be optimal

for the higher order discretisation.
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8.2 Part 2

The second part of the thesis consists of Chapters 5, 6 and 7. In this part, we

shift our focus to hyperbolic conservation laws. In this context, in part two, we

present and numerically test a reconstruction-based framework for constructing a

posteriori error estimates that is intended for general hyperbolic problems in one

spatial dimension.

In Chapter 5 we present the class of temporal and spatial discretisations we

use for the hyperbolic problems in the rest of the thesis (see [GST01] and [Shu98]

respectively). We also present the WENO interpolation process, [JSB+19], which

we use in the framework we present in Chapter 7 for obtaining reconstructions of

general conservation laws in one spatial dimension. We test the WENO interpolation

procedure in functions of varying regularity to show its suitability as an interpolant

on account of both its high order accuracy for smooth solutions and non-oscillatory

behaviour in the presence of discontinuities.

Chapter 6 is a extension of Chapters 2 and 4 in both the model problem it

treats, i.e. the wave equation in system form as well as in the numerical scheme it

uses to discretise it (in the temporal variable), the Leapfrog scheme,[GLMV16]. We

conduct a numerical experiment with a smooth initial condition where we confirm

that the reconstruction-based framework we present can be used to obtain optimal

a posteriori estimates from the FD solution.

Finally, in Chapter 7 we focus on non-linear hyperbolic conservation laws. In this

chapter we use the relative entropy framework to show a posteriori error bounds for

general systems (see [GMP15]) and a Kruzkov framework for upper bounds for scalar

problem, see [CG95]. We then present a framework for obtaining reconstructions

for non-linear problems, both scalar and systems, see §7.4.2. These reconstructions

are used to compute the aforementioned a posteriori estimates.

In both scalar and systems problems, the resulting estimates are validated using

classes of well-used FD schemes, see §7.4. In the scalar case we use Burgers equation

as a model problem. We demonstrate using numerical experiments that the frame-

work can be used to obtain optimal a posteriori estimates in the pre-shock regime.

In the post-shock regime, we show that the framework can be used to construct a

robust estimate, (see [CCL95, Thm. 2.1]) using the Kruzkov framework.
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In the systems case, we use the shallow water equations as a model problem. In

this example, we use the a posteriori error estimate as a driver for mesh adaptivity,

demonstrating the capacity of the estimator to identify and track features of interest

which require higher resolution.

8.2.1 Incorporation of limiters

In the framework that we have presented in this work, we have not incorporated flux

limiters, [Swe84, BB73, BBH75] and this is a possible avenue for further research.

8.2.2 Optimal a posteriori estimate in the pre/post shock

regime for scalar problem

We have examined individually the behaviour of two a posteriori error estimates,

a L1(Ω) estimate that is based on a Kruzkov framework from [CG95] and a L2(Ω)

estimate based on a relative entropy framework from [GMP15] that is optimal in

the pre-shock regime. Our intention is to combine these two estimates into a single

estimate that is optimal in both the pre- and post-shock regime. At the moment

the L1(Ω) estimate loses robustness in the post-shock regime. An avenue of further

research is to locate the source of this behaviour and then either use the bound of

[CG95], if appropriate, or produce an alternative solution that can function robustly

in the post-shock regime (see e.g. [Ohl09]).

8.2.3 Mesh adaptivity

In the adaptive examples that we have presented in Chapters 4 and 7, for h −

adaptivity was chosen for refining and coarsening. There are additional choices we

could implement, such as r, that is relocating nodes in the mesh, (see [HR10]) and

hr adaptivity, which is a combination of both methods (see [PPG+05]). There is

utility in examining these alternatives, and r−adaptivity in particular. Doing so

would facilitate a more direct comparison between the performance of the adaptive

method and the uniform mesh case as the number of dofs would be the same at every

time step. Briefly, such a simulation would involve using the a posteriori estimate

to relocate nodes.
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8.2.4 Model Adaptivity

Dynamic model adaptation, involves adaptively choosing from a hierarchy of models

the most appropriate one to solve in different parts of the domain. In a part of the

domain where the physics are particularly complex, a more physically descriptive

PDE model can be chosen. In contrast, in parts of the domain where the complex

model can be well approximated by a simpler one, the simpler one can be solved,

resulting in computational savings.

The choice of model can be done a priori with knowledge of the physics in specific

parts of the domain. Alternatively, it can be done in real time, which can be achieved

through an a posteriori estimate. The latter is the route that would be of interest

to us for further research. Model adaptivity can be coupled with mesh adaptivity,

see [GP17] (see also [BE03, BE04] for theory on multi-modelling and its coupling

to mesh adaptivity; see [CBvB05, AGQ06] for applications in advection-diffusion

equations and flow related problems).

8.2.5 Neural networks and deep learning

In Chapter 4 we presented the issue of parasite formation in the context of non-

stationary solutions encountering mesh non-uniformities. A solution to such prob-

lems in practice is to add viscosity locally. Mechanisms for adding viscosity vary.

They include heuristics, such as gradient indicators, rigorous a posteriori error esti-

mators (e.g. in the style of [GP17]) or machine learning based approaches, [DHR20],

for example as a means of determining the optimal amount of viscosity that should

be added. A direction of further research could be to compare approaches based

on neural networks with a dynamic model adaptive approach based on a posteriori

error estimation.
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Appendix A

Useful results

A.0.1 Lemma (Cauchy inequality with ε). Let a, b ∈ R and ε > 0. Then

ab ≤ εa2 +
1

4ε
b2. (A.1)

Proof. See [Eva98, Appendix B.2].

A.0.2 Theorem. (Lax equivalence theorem (see [LeV92, §10.5])) For a consistent

difference approximation to a well-posed linear evolution problem, stability is nec-

essary and sufficient for convergence.

A.0.3 Definition. (Standard mollifier from [Eva10]) We define the standard moll-

fier, η ∈ C∞(R), as follows

η(x) :=


C exp

(
1

|x|2+1

)
for |x| < 1 and

0 for |x| ≥ 1,

(A.2)

where the constant C > 0 is chosen such that
∫

R ηdx = 1. We use η to obtain

functions ηε for ε > 0, which we define as

ηε(x) :=
1

ε
η
Åx
ε

ã
. (A.3)

The functions ηε are in C∞(R) and satisfy

∫
R
ηεdx = 1. (A.4)

The support of the ηε is a subset of the open ball of radius ε in R, centered at x = 0.
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A.0.4 Definition. (Mollification of a function) Let f : U → R be a locally inte-

grable function. Then, we define its mollification, f ε as follows:

f ε := ηε ∗ f in Uε, (A.5)

where

f ε(x) =
∫
u
ηε(x− y) f(y) dy =

∫
B(0,ε)

ηε(y) f(x− y) dy (A.6)

A.0.5 Proposition. (Derivative of a matrix-vector product) Let A ∈ Rm×n denote

a constant matrix and let x denote an n × 1 vector and y = Ax denote an m × 1

vector. Then,
∂y

∂x
= A (A.7)

Proof. Let aij, 1 ≤ i ≤ m, 1 ≤ j ≤ n denote the entry of matrix A in row i and

column j. Then,

yi =
n∑
k=1

aikxk. (A.8)

Hence,
∂yi
∂xj

= aij, (A.9)

which is precisely the matrix A.

A.0.6 Proposition. (Derivative of a matrix-vector product with respect to a scalar)

Let x denote a scalar independent variable. LetA ∈ C1(R; Rm×m) and x ∈ C1(R; Rm).

We define

y := Az. (A.10)

Then,
∂y

∂x
=
∂A

∂x
z + A

∂z

∂x
. (A.11)

A.0.7 Proposition. Consider the m-component vectors (i.e. m×1 column vectors)

y, x and let both of them be functions of an underlying vector, n-component vector

z . Let the scalar α = α(z) be defined as the product

α := yTx. (A.12)

Then,
∂α

∂z
= xT

∂y

∂z
+ yT

∂x

∂z
. (A.13)
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Proof. Let xi, yi, 1 ≤ i ≤ m, denote the ith entry of vectors x and y respectively.

Also, let zk, 1 ≤ k ≤ n denote the kth entry of vector z. We have

α =
m∑
i=1

xiyi. (A.14)

Using this notation,

∂α

∂zk
=

n∑
j=1

Ç
xj
∂yj
∂zk

+ yj
∂xj
∂zk

å
, k = 1, . . . , n. (A.15)

Hence,
∂α

∂z
= xT

∂y

∂z
+ yT

∂x

∂z
(A.16)

We will use the result in Proposition A.0.7 to obtain the derivative of the product

eTAe in the case when e and A depend on x.

A.0.8 Proposition. We denote the independent variable by x. We consider a

matrix A ∈ C1(R; Rm×m) and a column vector e ∈ C1(R; Rm). Define the product

α(x) := e(x)T Ae(x) . (A.17)

Then
∂α

∂x
= eT

Ç
AT

∂e

∂x
+ A

∂e

∂x
+
∂A

∂x
e

å
(A.18)

Proof. Let v := Ae. Then, we can write (A.17) as

α = eTv. (A.19)

We can use Proposition A.0.7 obtain

∂α

∂x
= vT

∂e

∂x
+ eT

∂v

∂x
. (A.20)

Substituting back v = Ae gives us

∂α

∂x
=(Ae)T

∂e

∂x
+ eT

∂(Ae)

∂x

= eTAT
∂e

∂x
+ eT

Ç
∂A

∂x
e+ A

∂e

∂x

å (A.21)

which simplifies to
∂α

∂x
= eT

Ç
AT

∂e

∂x
+ A

∂e

∂x
+
∂A

∂x
e

å
(A.22)
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