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Quality control is a critical step in the processing and analysis of functional magnetic

resonance imaging data. Its purpose is to remove problematic data that could

otherwise lead to downstream errors in the analysis and reporting of results. The

manual inspection of data can be a laborious and error-prone process that is

susceptible to human error. The development of automated tools aims to mitigate

these issues. One such tool is pyfMRIqc, which we previously developed as a

user-friendly method for assessing data quality. Yet, these methods still generate

output that requires subjective interpretations about whether the quality of a given

dataset meets an acceptable standard for further analysis. Here we present a

quality control protocol using pyfMRIqc and assess the inter-rater reliability of four

independent raters using this protocol for data from the fMRI Open QC project

(https://osf.io/qaesm/). Data were classified by raters as either “include,” “uncertain,”

or “exclude.” There was moderate to substantial agreement between raters for

“include” and “exclude,” but little to no agreement for “uncertain.” In most cases only

a single rater used the “uncertain” classification for a given participant’s data, with

the remaining raters showing agreement for “include”/“exclude” decisions in all but

one case. We suggest several approaches to increase rater agreement and reduce

disagreement for “uncertain” cases, aiding classification consistency.

KEYWORDS

fMRI, resting state fMRI, task fMRI, quality control, inter-rater reliability

Introduction

Functional magnetic resonance imaging (fMRI) data are inherently multi-dimensional with
many potential sources of artefacts that can lead to spurious results (Power et al., 2012; Van
Dijk et al., 2012). Therefore, ensuring data are of sufficient quality for analysis is an essential
step in the processing of fMRI data. This is especially important for large multi-site studies
such as the Adolescent Brain Cognitive Development study (Casey et al., 2018), and the Human
Connectome Project (Van Essen et al., 2013), where time required to perform detailed, manual
screening of individual data can quickly become intractable. To address this, many quality
control tools and pipelines now exist to help users make informed decisions about quality in
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their datasets (Marcus et al., 2013; Esteban et al., 2017; Alfaro-
Almagro et al., 2018). These tools–which automate part of the quality
control process–aim to decrease the time taken to assess data quality,
minimise the amount of prior knowledge needed to make informed
decisions, and reduce errors during assessment.

Several tools currently exist for assessing the quality of fMRI data,
including MRIQC (Esteban et al., 2017), and Visual QC (Raamana,
2018). This list also includes pyfMRIqc, which we developed at the
Centre for Integrative Neuroscience and Neurodynamics (CINN),
University of Reading (Williams and Lindner, 2020). Many of our
neuroimaging facility users at CINN are Ph.D. students and early
career researchers, who join a community that prioritises practical
training and learning opportunities. As part of this commitment, we
develop software which is user-friendly and empowers individuals
to become confident and informed researchers. pyfMRIqc helps
users to make informed decisions about the quality of their data
by generating various image quality metrics and presenting them
in an easily interpretable way in a visual report. pyfMRIqc also has
extensive online documentation that describes to users how these
plots are generated and what they show, and aids their interpretation
with examples. Users of pyfMRIqc can generate these reports with
minimal programming experience, requiring only a single line of
code to run the software and without the need for using containerised
environments for generating output. As part of the work presented
here, we additionally developed a piece of software, “cinnqc,” which
we used to automate the minimal pre-processing and curation of
data for pyfMRIqc, and to identify cases where data deviate from the
expected acquisition parameters for the dataset.

Previous reports describe the use of inter-rater reliability for the
quality assessment of structural imaging data (Backhausen et al.,
2016; Esteban et al., 2017; Rosen et al., 2018; Benhajali et al.,
2020). For instance, Benhajali et al. (2020) developed a method
for quickly assessing the registration of T1 weighted images to
standard MNI space. Raters included citizen scientists who had
no previous experience with MRI data, as well as expert raters.
Their protocol resulted in good reliability, particularly with respect
to which images were deemed to fail quality assessment, between
expert raters, with citizen scientists also showing agreement. The
study therefore demonstrated that this straightforward approach
for assessing registration quality was consistent between individuals
with different skill levels. Another protocol assessed for reliability
between raters was presented by Backhausen et al. (2016), who
aimed to provide a workflow for the quality control assessment of
T1 images both during and after image acquisition to maximise
useful sample size. Images were classified into three categories (pass,
check, fail), and these three categories were associated with significant
differences in cerebral cortex, left amygdala, and total grey matter
volume estimations. Reliability between two raters for the three
classification categories was high [intra-class correlation coefficient
(α = 0.931)], in line with results from Rosen et al. (2018), who found
good consistency between expert raters when a three category rating
system was used (although notably concordance was significantly
lower when using five categories). Lastly, Esteban et al. (2017)
demonstrated fair to moderate agreement between two raters when
assessing the quality of T1 data from the ABIDE dataset. These
studies demonstrate that reasonable reliability can be expected of
subjective decisions about the quality of structural imaging data,
particularly when three categories are used to classify data. However,
in the case of functional data, and despite its potential utility, inter-
rater reliability has not been similarly evaluated to help understand
the consistency of subjective decisions about data quality. To assess

whether experienced raters are reliable in their classifications of
functional data quality across datasets, we used data from the fMRI
Open QC project,1 which included data with different acquisition
parameters from multiple sites.

We assess the inter-rater reliability of fMRI data quality
assessments for task-based and resting state data. We describe
quantitative and qualitative criteria for classifying data quality,
present a quality control protocol for assessing raw fMRI
data quality using pyfMRIqc, assess reliability between four
independent raters using this protocol, and provide example cases
of different data quality issues using output from pyfMRIqc. Raters
classified data into one of three assessment categories, “include,”
“uncertain,” or “exclude.” Using our protocol, we find moderate
to substantial reliability between raters, particularly for “include”
and “exclude” decisions, but less agreement between raters for the
uncertain classification.

Materials and methods

Participants

Imaging data participants
Imaging data from 129 subjects were included. Each subject had

a T1 weighted high-resolution anatomical image, and a single-band
echo-planar imaging (EPI) image for either task-based or resting state
functional magnetic resonance imaging (fMRI) acquisition. Task-
based fMRI data were included for 30 subjects. Resting-state fMRI
data were included for 99 subjects; resting-state data originated from
five sites, with approximately 20 subjects per site. Data originated
from the following publicly available datasets: ABIDE, ABIDE-II,
Functional Connectome Project, and OpenNeuro (Biswal et al., 2010;
Di Martino et al., 2014; Markiewicz et al., 2021). Data from each
site were treated as separate datasets for the purpose of performing
quality assessment. The expected acquisition parameters for data
from each site are summarised in Table 1. The data presented here
are available on the Open Science Framework page of the fMRI Open
QC project (see text footnote 1).

Quality control raters
Quality control assessments were completed by four independent

raters (BW, NH, CBM GMKR), who were all postdoctoral research
fellows, and all raters had previous experience in quality assessment,
processing and analysis of functional neuroimaging data. Two raters
(BW and GR) had previously used pyfMRIqc to perform quality
assessment of fMRI data. Additionally, BW was involved in the
development of pyfMRIqc. Each rater reviewed data for 104 of the
129 subjects, using outputs from cinnqc and pyfMRIqc. Subject
assignment ensured at least four subjects from each site were
reviewed by all four raters, and every other subject was reviewed by
three raters. Assignments were also balanced so that the proportion
of overlapping cases was equal across raters (see SupplementaryData
Sheet 1 for details of rater assignments).

Data processing

Minimal pre-processing of anatomical T1 weighted and
functional EPI data was performed using the FSL toolbox (version

1 https://osf.io/qaesm/
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TABLE 1 Expected acquisition parameters for subjects in each site in the main dataset.

Subjects Modality Voxel size (mm) Matrix Volumes TR (s)

sub-001→ sub-030 T1w 1× 1× 1 176× 256× 256 1

EPI 3× 3× 4 64× 64× 34 242 2

sub-101→ sub-120 T1w 1× 1× 1 256× 200× 256 1

EPI 2.67× 2.67× 3 96× 96× 47 156 2.5

sub-201→ sub-220 T1w 1× 1× 1 160× 256× 256 1

EPI 3× 3× 3.840789 80× 80× 38 150 2

sub-301→ sub-316 T1w 0.976562× 1.2× 0.976562 256× 182× 256 1

EPI 1.5625× 1.5625× 3.1 128× 128× 45 162 2.5

sub-401→ sub-423 T1w 1× 1× 1 256× 200× 256 1

EPI 2.667× 2.667× 3 96× 96× 47 123 2.5

sub-701→ sub-720 T1w 1× 1× 1 192× 256× 256 1

EPI 3× 3× 3.51 64× 64× 39 198 2.5

T1w modality is the high-resolution T1 weighted anatomical image. EPI modality is the functional (BOLD) task-based (sub-001→ sub-030) and resting state (sub-101→ sub-720) echo-planar
images. TR is the time taken in seconds to acquire a single volume of EPI data.

6.0) from the Oxford Centre for Functional MRI of the Brain
(FMRIB’s Software Library2) (Jenkinson et al., 2012). Data pre-
processing, curation, and quality control was automated using
“cinnqc.”3 cinnqc provides wrapper scripts for executing and
curating output from FSL pre-processing functions (e.g., motion
correction, registration, and brain extraction), and also generating
pyfMRIqc reports for minimally pre-processed data. To pre-process
data, the T1 image was skull stripped using the Brain Extraction Tool
(Smith, 2002), then grey matter, white matter, and cerebrospinal
fluid tissue segmentation was performed using FMRIB’s Automated
Segmentation Tool (Zhang et al., 2001). Functional EPI data were
motion corrected with MCFLIRT (Jenkinson et al., 2002), using affine
transformations to align the first volume of functional data with each
subsequent volume. Functional EPI and anatomical T1 data were
then co-registered using the epi_reg function,4 and a linear affine
transformation was used to convert a brain extracted mask of the
T1 anatomical image to functional EPI space using FMRIB’s Linear
Image Registration Tool (Jenkinson and Smith, 2001; Jenkinson
et al., 2002). The brain mask in functional EPI space was then
re-binarised using a threshold of 0.5. Image quality metrics and
plots were generated using pyfMRIqc (Williams and Lindner, 2020)
to aid data quality assessment, e.g., the identification of artefacts
that were participant-, sequence-, technique-, or tissue-specific.
pyfMRIqc was run with the following input arguments: -n < motion
corrected EPI data >, -s 25, -k < brain extracted mask in functional
space > -m < motion parameter output from MCFLIRT >.

Resources

Ubuntu 20.04.4 LTS
FSL version 6.0 (see text footnote 2).
Anaconda 4.10.1
Python 3.8.8

2 www.fmrib.ox.ac.uk/fsl

3 https://github.com/bwilliams96/cinnqc

4 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/UserGuide#epi_reg

• cinnqc 0.1.0
• easygui 0.98.3
• matplotlib 3.3.4
• nibabel 3.2.1
• numpy 1.20.1
• pandas 1.2.4

Quality assessment protocol

Raters were given the following instructions before beginning
quality assessment:

TABLE 2 Quantitative criteria for determining dataset inclusion/exclusion.

Criteria Exclusion criteria

Motion Any relative movements > Voxel size
More than 5 relative
movements > 0.5 mm1

Max absolute motion > 2 mm (1.5 mm is
marginal)1

Slice-wise SNR < 99 (99→ 150 is marginal)1*

Consistent voxel sizes No2 (to 2d.p.)

Consistent number of volumes No2

Consistent number of scans in the dataset No3

T1w whole brain coverage No4

EPI whole brain coverage in the mean
image of the pyfMRIqc report and the
first volume

No4

*Some slices will return slice-wise TSNR values of NaN. NaN values are returned because the
slice does not have any voxels that SNR are calculated for; if this is the case, then the presence
of these NaN values should not be used for the purpose of exclusion. Some slices will include
a large proportion of non-brain voxels which will have lower values relative to brain voxels
decreasing the slice-wise TSNR mean. If this is the case then use your discretion in your
assessment of slice-wise TSNR.
1 : Center for Brain Science, Harvard University (https://cbs.fas.harvard.edu/facilities/
neuroimaging/investigators/mr-data-quality-control/); 2 : Human Connectome Project
(Marcus et al., 2013); 3 : BIDS standard (Gorgolewski et al., 2016); 4 : UK Biobank
(Alfaro-Almagro et al., 2018).
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The following criteria need to be used to classify all images5 :

• Include–no quality assessment issues that indicate the
dataset is problematic.
• Uncertain–some quality assessment issues that makes the

inclusion of dataset marginal.
• Exclude–quality assessment issues that mean the data should not

be included.

Each image classified as either “uncertain” or “exclude” should
include an explanation of why the given classification was made.
Please be as descriptive as possible when explaining your decision-
making.

Quality assessment decision-making should be supported by
the output produced by cinnqc and pyfMRIqc. cinnqc and
pyfMRIqc derivatives can be found online in the directories
/cinnqc/ examples/{fmriqc-open-qc-task, fmriqc-open-qc-rest-100,
fmriqc-open-qc-rest-200, fmriqc-open-qc-rest-300, fmriqc-open-qc-
rest-400, fmriqc-open-qc-rest-500, fmriqc-open-qc-rest-600, fmriqc-
open-qc-rest-700}/derivatives/cinnqc/of the cinnqc GitHub page (see
text footnote 3).

Quantitative data assessment
Quantitative quality assessment criteria for T1 and EPI data

based on acquisition parameters and derived metrics from the data
are summarised in Table 1. Thresholds for absolute and relative
motion, as calculated using MCFLIRT, are given to limit its effect
on data quality. Motion thresholds are defined in Table 2 and
are summarised in the pyfMRIqc report. Yet, even motion that
is sub-threshold could still impact data quality. Qualitative data
assessment should be carried out to check whether any motion
incidents coincide with a problematic change in signal. Temporal
signal to noise (TSNR, referred to as SNR in pyfMRIqc) is calculated
as mean intensity divided by the standard deviation of voxels (25th
centile mean intensity) outside the brain-extracted mask in functional
space. It is calculated by pyfMRIqc on minimally pre-processed data.
Slice-wise TSNR should be checked in the pyfMRIqc report, and
potentially problematic slices should be followed up using qualitative
assessments. Field of view, number of volumes, and scans are checked
using cinnqc, and a file with the suffix ∗_notes.txt is generated to
describe any potential issues. Note, some voxel dimensions may
appear to be different due to rounding, but if they are equal to 2
decimal places then subjects do not need to be excluded. T1 and
EPI data should have whole brain coverage, which includes the
cerebral cortex and subcortical brain regions (but not necessarily
the cerebellum). A summary of quantitative assessment criteria can

5 Additional information about classifications not given in the protocol but
which was agreed by raters:

• Include cases would pass all quantitative and qualitative quality control
criteria and pyfMRIqc plots or manual inspection of data would not
indicate any issues with data.

• Uncertain cases would pass all quantitative quality control criteria, but
pyfMRIqc plots or manual inspection of data may indicate marginal issues
in the data that could warrant exclusion.

• Exclude cases would fail at least one quantitative quality control criteria,
and/or pyfMRIqc plots or manual inspection of data indicate data quality
issues that would warrant exclusion.

be found in Table 2, and a summary of the expected acquisition
parameters can be found in Table 1.

Qualitative data assessment
pyfMRIqc generates a number of plots and tables that can

be helpful in the qualitative assessment of data. Mean and slice-
wise scaled squared difference (SSD) is calculated by squaring the
difference in voxel intensity between consecutive volumes, and
dividing by the global mean squared difference. In the QC plots
section, mean and slice-wise SSD graphs can be used to identify
global, and slice-wise changes in signal intensity, respectively. SSD
is also plotted alongside the global normalised mean voxel intensity,
normalised SSD variance, plus absolute and relative motion to
visualise relationships between changes in SSD, signal intensity, and
motion. Further, mean, minimum, and maximum SSD is plotted
slice-wise to determine whether issues are present in specific slices.

The plot of the “Mean voxel time course of bins with equal
number of voxels” is generated by binning voxels into 50 groups,
based on their mean intensity, and calculating the mean intensity
for voxels in each bin for each volume. Bins are ordered top-down
from lowest mean intensity voxels (non-brain/cerebrospinal fluid) to
highest (grey matter, then white matter voxels). This plot enables easy
visualisation of signal variance and was originally described by Power
(2017), where further information can also be found.

The “Masks” plot can be helpful in indicating whether there
were issues during acquisition or processing (such as brain extraction
and/or registration of T1 and EPI data). For instance, there may be
many brain voxels that are not highlighted in blue. If this is the
case, then scans should be carefully checked for signal distortion
(described below), or processing steps may need to be manually re-
run with adjusted input parameters. Poor registration (for instance,
misalignment of gross anatomical structures including brain surface,
or grey matter/white matter/cerebrospinal fluid boundaries) may be
indicative of other data quality issues.

The “Variance of voxel intensity” plot visualises the variance
in signal in each voxel over the timeseries of the functional
run. The png image given in the pyfMRIqc report is thresholded
(voxel intensities are divided into 1,000 equal width bins, and the
intensity of the highest bin with at least 400 voxels is used) to aid
visualisation, however a nifti version of the image is also included
which is unthresholded. This nifti image is useful for more in-depth
investigation if there are potential quality issues or the figure appears
problematic. The “Sum of squared scaled difference over time” plot
presents the voxel-wise sum of SSD over the functional run. Similarly
to the “Variance of voxels intensity” plot, we applied a threshold for
the png figure for readability (sum of squared scaled differences are
divided into 50 equal width bins, and the upper threshold of the fifth
bin is used), but the nifti image does not have a threshold.

To inspect data for signal distortion, load T1 images from the
subject’s BIDS directory; for EPI images, load the image with the
suffix ∗_example-func.nii.gz from the subject’s cinnqc BIDS derivative
directory, and the mean voxel intensity nifti file from pyfMRIqc. If
visual abnormalities are present, this could impact the signal (e.g.,
image distortion, signal loss, artefacts such as ringing or ghosting),
or processing (e.g., brain extraction, registration, motion correction)
of T1 or EPI data. To determine if this is the case, the plots
from pyfMRIqc can be used to aid subject classification. Detailed
explanations for interpreting pyfMRIqc plots and tables can be found
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TABLE 3 Qualitative criteria for determining dataset inclusion.

Criteria Threshold

Aberrant pyfMRIqc
output

Plots or tables that indicate problematic EPI data, supported by
visual inspection of functional data

T1w signal
distortion

Visual abnormalities in the acquisition of the T1w image, such
as ringing artefacts that would impair registration to standard
template

EPI signal distortion Visual abnormalities in the mean image of the pyfMRIqc report
or the first volume of the fMRI data that would impair
registration to standard template

Atypical brain
structure

Morphology that would impair registration to standard
template (pathological or non-pathological).

TABLE 4 Example cases that were used during the calibration session for
raters before independently assessing the whole dataset.

Subject Include Uncertain Exclude Notes

sub-013 1 Many volumes
with relative
movement > 0.1.
Motion events
around volumes
65 and 205
appear to cause
global decrease
in signal

sub-103 1 Peak in SSD
between
volumes 95–100
looks like its
driven by eye
movement

sub-207 1 More than 5
relative motion
events > 0.5.
Max absolute
movement is
marginal

in the pyfMRIqc User Manual.6 A summary of qualitive assessment
criteria can be found in Table 3.

Rater calibration and reliability assessment

Each rater independently assessed and classified subjects using
the quality assessment protocol described above. To ensure quality
assessment criteria were interpreted consistently, BW used the quality
assessment protocol to identify exemplar subjects for issues and
presented these training cases to the other raters (Table 4).

Fleiss’ kappa (Fleiss, 1971) was calculated using the “irr” package
in R (Gamer et al., 2019) to assess pair-wise and category-wise inter-
rater reliability between raters; to correct for multiple comparisons
we used the Holm method to control the family-wise error rate
using the “p.adjust” function in R (Holm, 1979; R Core Team, 2020).
We chose to use Fleiss’ kappa instead of Cohen’s kappa, because
Fleiss’ kappa also allows us to determine how similar pairs of raters
are across classifications by calculating category-wise agreement.

6 https://drmichaellindner.github.io/pyfMRIqc/

We used the criteria described by Landis and Koch (1977) to
interpret Fleiss’ kappa using the following benchmarks to describe
the strength of agreement: poor agreement < 0.00; slight agreement
0.00–0.20; fair agreement 0.21–0.40; moderate agreement 0.41–0.60;
substantial agreement 0.61–0.8; almost perfect agreement 0.81–1.00.
Overall agreement across raters and categories was calculated using
Krippendorff ’s alpha (Krippendorff, 1970), which is useful as a
measure of overall agreement because it is not restricted by the
number of raters or the presence of missing data in the sample
(Hayes and Krippendorff, 2007). Krippendorff ’s alpha and bootstrap
95% confidence intervals (1,000 iterations, sampling subjects with
replacement) were calculated in R using scripts from Zapf et al.
(2016).

Results

Each subject was categorised as either “include” (rater one: 68,
rater two: 73, rater three: 80, rater four: 74), “uncertain” (rater one: 10,
rater two: 12, rater three: 3, rater four: 9), or “exclude” (rater one: 26,
rater two: 19, rater three: 21, rater four: 20) by the four raters. Overall
percentage agreement between raters is summarised in Table 5.

Inter-rater reliability between pairs of raters was calculated
using Fleiss’ Kappa; overall agreement between all pairs of raters
was moderate and significantly greater than chance level (rater 1–
2: κ = 0.536, z = 6.143, p < 0.001; rater 1–3: κ = 0.437, z = 4.639,
p < 0.001; rater 1–4: κ = 0.456, z = 5.17, p < 0.001; rater 2–3: κ = 0.448,
z = 5.071, p < 0.001; rater 2–4: κ = 0.596, z = 6.818, p < 0.001;
rater 3–4: κ = 0.578, z = 6.022, p < 0.001). Category-wise Kappa for
all raters was moderate and substantial for “include” and “exclude”
assignments respectively and was significantly greater than chance
level (“include”: κ = 0.514, z = 6.661, p < 0.001; “exclude”: κ = 0.731,
z = 9.472, p < 0.001). However, this was not the case for “uncertain”
assignments, where agreement between raters was slight (κ = 0.013,
z = 0.166, p = 1.0). We also calculated Fleiss’ Kappa category-wise
for pairs of raters (Figure 1). All raters had moderate to substantial
agreement, and performed at significantly greater than chance level
for “include” (rater 1–2: z = 5.697 p < 0.001; rater 1–3: z = 3.849
p < 0.001; rater 1–4: z = 3.591 p < 0.001; rater 2–3: z = 4.409
p < 0.001; rater 2–4: z = 5.269 p < 0.001; rater 3–4: z = 5.253
p < 0.001) and “exclude” (rater 1–2: z = 5.405 p < 0.001; rater
1–3: z = 5.3 p < 0.001; rater 1–4: z = 6.645 p < 0.001; rater 2–
3: z = 5.231 p < 0.001; rater 2–4: z = 5.887 p < 0.001; rater 3–4:
z = 6.525 p < 0.001) assignments, but not for “uncertain” (rater 1–
2: z = 1.471 p = 1.0; rater 1–3: z = −0.537 p = 1.0; rater 1–4: z = 1.0
p = 0.716; rater 2–3: z = 0.529 p = 1.0; rater 2–4: z = 4.272 p < 0.001;
rater 3–4: z = −0.415 p = 1.0) assignments (Figure 1). Overall
agreement in the dataset, as assessed using Krippendorff ’s alpha was
0.508 [95% bootstrap confidence intervals (0.381, 0.615)]; removing
instances where “uncertain” was assigned increased Krippendorff ’s

TABLE 5 Overall percentage agreement between raters for
“include”/“uncertain”/“exclude” assignments.

Rater 1 Rater 2 Rater 3 Rater 4

Rater 1 – 78.481 75.949 75.641

Rater 2 78.481 – 75.949 83.333

Rater 3 75.949 75.949 – 84.615

Rater 4 75.641 83.333 84.615 –
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FIGURE 1

Reliability between pairs of raters for each category was assessed using Fleiss’ Kappa. Agreement between raters at significantly greater than chance level
is denoted as ***p < 0.001.

alpha to 0.694 [95% bootstrap confidence intervals (0.559, 0.802)].
In total, at least two raters categorised 97 subjects as include, 6
subjects as uncertain, and 26 subjects as exclude. Supplementary
Table 1 summarises the subject-wise group majority classification
(“include”/“uncertain”/“exclude”).

QC “exclude” criteria examples

Data acquisition artefacts
Imaging acquisition artefacts were identified in five subjects by

at least one rater. These issues included ghosting (aliasing), ringing,
and wraparound artefacts (Table 6). In Figure 2 we present these
three artefacts, with the relevant output from pyfMRIqc used to
identify the issue. For the first subject, ghosting (aliasing) in the mean
functional image from pyfMRIqc was detected (Heiland, 2008). This
can be detected visually as the presence of spurious signal outside

TABLE 6 Number of datasets excluded by single, majority, and all raters for
each of the relevant exclusion reasons.

Single
rater

Majority
raters

All
raters

Abnormal brain morphology 2 0 0

Aliasing 1 2 0

Global signal 10 1 0

Incorrect acquisition
parameters

4 0 0

Motion 9 4 17

Non-whole brain coverage 1 0 0

Ringing artefact 1 0 0

SNR 5 1 0

Unidentified artefact 4 0 0

Wraparound artefact 1 0 0

In all cases where raters excluded a subject, the rater also provided notes explaining their
reasons for exclusion. Here, these notes are categorised into groups, and the number of times a
single, majority (two of three when three raters were assigned or two/three when four raters
were assigned) or all raters mentioned that category in their notes is reported. Note that
raters could give multiple reasons for excluding a subject, which means that agreement for
exclusion could be based on different reasons. Subject and category-wise frequencies for single,
majority, and all raters, as well as the number of raters excluding each subject are included in
Supplementary Data Sheet 2.

the perimeter of the head. In the second case, wraparound of the
functional signal was detected in the mean functional image (Arena
et al., 1995). Wraparound can be detected when part of the head is
partially occluded by the field of view. In this case, the most posterior
portion of the head appears instead in the anterior portion of the
image and is most noticeable visually on axial and sagittal slices.
The third case contained in-plane artefacts in the data due to eye
movements (McNabb et al., 2020). In this case, both the variance
in voxel intensity, plus a peak in the maximum and sum of the
scaled squared difference in affected slices (particularly slices 15–
17) indicated the presence of physiologically unrelated changes in
signal. These effects are especially pronounced around volumes 19–
21, where there is a peak in the variance of the sum of squared
difference. A video of flickering in affected slices is included in
Supplementary Video 1.

Motion
30 datasets were classified as “exclude” by at least one rater

with issues relating to motion described in the notes (Table 6). Of
these cases, 17 exceeded acceptable values set out in our quantitative
criteria for absolute and relative motion (Table 2). The remaining
cases were classified as “exclude” based on the residual effects of
motion upon the data, despite the quantitative measure of motion
being sub-threshold (Friston et al., 1996). This includes decreases in
global signal coinciding with the onset of motion events (Figure 4),
plus peaks in scaled squared difference and banding in the binned
carpet plot (Figure 3; Power, 2017).

Signal loss
Sudden changes in global signal can be assessed in several ways

using pyfMRIqc. For instance, Figure 4 demonstrates when motion
artefacts lead to a sudden decrease in global signal (Power et al., 2017).
The onset of head motion around volumes 12 and 70, identified by the
peaks in the mean and variance of the scaled squared difference plus
the sum of relative and absolute movements, is immediately followed
by a decrease in the normalised mean voxel intensity of around
two standard deviations for approximately ten volumes (Figure 4).
Banding is also present in the binned carpet plot, where sudden
changes in signal coincide with changes in intensity across all bins. Six
of the reviewed subjects were reported as having SNR related issues
by at least one of the four raters, and eleven were reported as having
global signal issues (Table 6).
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FIGURE 2

Example cases of three different types of data acquisition artefacts detected using output from pyfMRIqc.

Atypical brain structure
Two subjects were excluded by one rater due to the presence

of atypical brain structure in the T1 weighted anatomical image
(Table 6). Both cases are detailed in Figure 5, with one subject having
a right ventricle that was enlarged and covering greater than both
the extent of the left ventricle and where we would typically expect
the ventricle to cover. The second subject had an unexpected mass
in their left ventricle, and hypointensities in white matter across the
whole brain. We are unable to comment on the clinical relevance
of these anatomical features as none of the authors have clinical
expertise.

Uncertain cases

27 subjects were classified as “uncertain” by at least one rater;
“uncertain” was used as a classification by a single rater for 21
subjects, and more than one rater for six subjects. For the subjects
classified as “uncertain” by one rater, the other two/three raters gave
the same classification (“include”/“exclude”) for 20 of the 21 subjects;
one subject received one “include,” one “uncertain,” and one “exclude”
classification. For the remaining six cases where more than one rater
classified subjects as “uncertain,” the notes for four subjects indicated
the presence of issues related to residual motion that were below
our threshold, while the notes for the other two subjects indicated
the presence of possible pathology in the T1 image and aliasing in
functional data. Lastly, only one dataset was rated as “uncertain”
by all raters (Figure 4), with raters “uncertain” about the effects of
sub-threshold residual motion on the data.

Discussion

This work aimed to describe a protocol for assessing the quality
of raw task-based and resting state fMRI data using pyfMRIqc,
and to assess the reliability of independent raters using this
protocol to classify data with respect to whether it meets an
acceptable standard for further analysis. We used data from the fMRI

Open QC Project [(see text footnote 1), data were derived from
ABIDE, ABIDE-II, Functional Connectome Project, and OpenNeuro
(Biswal et al., 2010; Di Martino et al., 2014; Markiewicz et al.,
2021)]. Overall, we found moderate agreement between raters, and
moderate to substantial category-wise agreement between raters
for include/exclude classifications. Poor to moderate category-wise
agreement was found for the uncertain classification, with reliability
at significantly greater than chance level for only one pair of raters.
Krippendorff ’s alpha for the include/exclude categories across all
raters was sufficient to tentatively accept the raters’ classifications
were reliable (Krippendorff, 2004, p. 241). We also provide examples
for different types of quality issues that were identified in the dataset.

For the “uncertain” classification we found that there was a lack
of reliability between raters, with two pairs of raters having negative κ

values, indicating no agreement (McHugh, 2012), and a further three
pairs having coefficients close to 0. The lack of reliability between
raters for the “uncertain” classification appears to be driven by the
uncertainty of a single rater for a given subject. Of the 27 subjects
rated “uncertain” by any rater, 21 (78%) were not rated “uncertain”
by the other raters. Of the 6 subjects rated “uncertain” by more than
one rater, uncertainty related to concerns about motion (N = 4),
aliasing (N = 2), and possible pathology (N = 2). This included one
subject (sub-013) who was classified by all raters as “uncertain” due
to residual effects of motion, yet other similar subjects (e.g., sub-
010 and sub-016) were unanimously classified as “exclude” despite
having visually similar plots, and less maximum absolute motion
(Figure 3). In our quantitative exclusion criteria (Table 2), we give
explicit thresholds for absolute and relative movement events, and
though 17/30 excluded data sets were excluded by at least one rater
due to exceeding our quantitative movement thresholds, 13/30 were
excluded based on qualitative assessment of movement effects on
data quality. These thresholds are relatively arbitrary, and despite
being a helpful heuristic, they did not appear to capture all cases
where motion had an adverse effect on data. pyfMRIqc counts the
number of relative motion events > voxel size, 0.5 mm and 0.1 mm,
and though we set our thresholds for the number of relative motion
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FIGURE 3

Example cases of three different types of motion artefacts detected using output from pyfMRIqc. One subject (sub-013) was classified as uncertain by all
raters, while sub-010 and sub-016 were classified as exclude by all raters.

events > voxel size and 0.5 mm based on previous guidelines,7 we
did not set a threshold for motion events > 0.1, but < 0.5 mm. In
cases where motion was sub-threshold but still an issue, persistent
but small motion events could negatively impact data as we did not
include a threshold for small (0.1 < motion < 0.5) motion events.
Nevertheless, it is worth mentioning that data reviewed here by
raters was only minimally pre-processed and that approaches such
as ICA-based denoising (Pruim et al., 2015), the inclusion of motion
parameters in a model (Friston et al., 1996), and removing volumes
affected by motion (Power et al., 2012) can, and often are used during
data pre-processing to decrease the negative effects of motion on the
signal in fMRI data. However, though these approaches are helpful for
cleaning data that may otherwise be discarded, we feel that consensus
guidelines for (un)acceptable levels of motion are needed to improve
consistency within the neuroimaging community, in the same way
the BIDS standard (Gorgolewski et al., 2016) has been widely adopted
as the de facto data formatting structure.

It is important to note that despite the data only being minimally
pre-processed, the purpose of pyfMRIqc is not to determine whether
data processing steps worked as expected, but to assess the quality
of the data itself. We motion corrected data so that our metrics (e.g.,
scaled squared difference) are calculated for contiguous voxels in time
and space but we do not directly measure whether all physical motion
was corrected for. Brain extraction, spatial normalisation, distortion
correction, and denoising, are all commonly used and important
pre-processing steps in the pipeline of fMRI data analysis, and the
efficacy of these pre-processing steps should also be checked as part
of a robust analysis pipeline for ensuring data quality. Therefore, the

7 https://cbs.fas.harvard.edu/facilities/neuroimaging/investigators/mr-
data-quality-control/

output generated by pyfMRIqc should be treated as one part of a
broader data processing procedure. Additionally, because the image
quality metrics generated by pyfMRIqc have no absolute reference –
that is they cannot be compared to a reference value since there is
no ground truth – the detection of data quality issues is dependent
on individual interpretation. One way to address this issue is by
generating a database of reference values to aid outlier detection.
This is the process used by MRIQC, which crowdsources image
quality metrics to generate population-level distributions (Esteban
et al., 2017). However, we are currently unable to generate these
distributions with pyfMRIqc.

Cognitive biases may also influence subjective decision-making
about the quality of fMRI data. The acquisition and preparation of an
fMRI dataset involves great economic and time cost, and researchers
may be motived more by these sunk costs to minimise loss from
their own data than from secondary datasets. People tend to be loss
averse (Kahneman and Tversky, 1979), and the thought of “wasting”
the resources put into acquiring the dataset could bias individuals
to perceive data quality issues as less problematic than if the data
were collected independently. For instance, Polman (2012) found
that people are less loss averse when making decisions for others
compared to themselves, and that this reduction of loss aversion may
be due to a decreasing effect of cognitive bias on decision making.
Compared with others, people also disproportionately value things
they have created themselves (Norton et al., 2012), and may therefore
be reluctant to discard data they perceive as having value. Reappraisal
is one strategy that can be used to decrease loss aversion (Sokol-
Hessner et al., 2009, 2013), and could improve decision-making by
changing the perspective of discarding data from a waste of spent
resource to a way of maximising ability to detect effects and improve
data quality. The adoption of open research practices, such as the
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FIGURE 4

An example case of global signal loss following motion detected using output from pyfMRIqc.

preregistration of data quality control procedures and acceptable
thresholds could also decrease the risk of biases influencing decision-
making, while at the same time reducing questionable research
practices more generally (Niso et al., 2022). However this has not yet
been widely adopted in the neuroimaging community (Borghi and
Gulick, 2018).

There are several limitations in the protocol and software as
presented here. Firstly, our finding that often only a single rater
classified a dataset as “uncertain” suggests that the quality control
protocol presented (which is published unedited from its pre-
assessment state), lacked nuance for interpreting edge cases that
would otherwise have been classified as either “include” or “exclude.”
Given that pyfMRIqc was initially designed to aid decision-making
about the quality of raw/minimally pre-processed fMRI data, we
suggest that future users err on the side of caution with respect
to marking datasets for exclusion, and first fully pre-process data
using their pipeline of choice and then determine whether this had
a positive impact and reduced data quality issues. Second, cinnqc,
and by extension pyfMRIqc, do not formally quantify the success of
the minimal pre-processing steps. When designing software for users

FIGURE 5

T1 weighted images for two cases of atypical brain structure that were
present in the dataset.

with minimal programming experience, prioritising ease of use over
functionality can reduce the freedom of more advanced users. For
instance, brain extraction currently uses default arguments in FSL
to identify brain and non-brain tissue (Smith, 2002). This process
can sometimes exclude brain voxels (particularly at the boundary of
the brain), or include non-brain voxels in the brain extracted image.
However, these issues can be ameliorated via optional arguments that
change the default values, but this requires fine tuning on a per-
subject basis, or the use of other software like HD-BET or ANTsX
(Isensee et al., 2019; Tustison et al., 2021). A method for integrating
these features would improve the computational reproducibility of
the quality control procedure, as currently users would need to
generate these files separately and use the cinnqc nomenclature to
integrate output with the rest of the pipeline. A third limitation is that
pyfMRIqc does not currently provide visualisation for distributions
of “no-reference” image quality metrics. As previously mentioned,
MRIQC currently crowdsources these values from users by default
to generate robust distributions (Esteban et al., 2017). Though
pyfMRIqc does not currently have the userbase to make this an
effective method for identifying outliers at the population level,
visualising the distribution of these values for at least the group
level would help users to make more informed decisions about the
quality of data they have in their sample. Future versions of pyfMRIqc
would be improved by focusing on including these features in the
software, and could potentially integrate reference values from the
MRIQC Web-API for equivalent metrics in a similar way to how
MRIQCEPTION8 works.

In summary, we present a quality control protocol for pyfMRIqc
(Williams and Lindner, 2020), implement it on data from the fMRI
Open QC project (see text footnote 1), and assess its reliability using
four independent raters. Data were classified by each rater as either
“include,” “uncertain,” or “exclude,” based on the protocol and output

8 https://github.com/elizabethbeard/mriqception
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generated by pyfMRIqc and cinnqc, which automated minimal pre-
processing, data curation, and identification of deviated acquisition
parameters in the dataset. Our results indicate that our reliability
between raters was good for “include” and “exclude” decisions,
with κ values that ranged from moderate to substantial agreement.
However, coefficients for the “uncertain” classification demonstrated
little reliability between raters, and below chance level for all but
one pair of raters. Furthermore, we found that in all but one cases
where only one rater used the “uncertain” classification the other
raters agreed with each other. We suggest that improvements in
agreement between raters could be made by consulting sample-wide
distributions of image quality metrics, increasing the clarity of the
quality control protocol, and implementing further separate pre-
processing steps before reassessing the data and deciding whether or
not to exclude them.
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