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Abstract  

Artificial Neural Networks (ANNs) have been widely used to determine future demand for power in the short, 

medium, and long terms. However, research has identified that ANNs could cause inaccurate predictions of load 

when used for long-term forecasting. This inaccuracy is attributed to insufficient training data and increased 

accumulated errors, especially in long-term estimations. This study develops an improved ANN model with an 

Adaptive Backpropagation Algorithm (ABPA) for best practice in forecasting the long-term load demand of 

electricity. The ABPA includes proposing new forecasting formulations that adjust/adapt forecast values, so it 

takes into consideration the deviation between trained and future input datasets' different behaviours. The 

architecture of the Multi-Layer Perceptron (MLP) model, along with its traditional Backpropagation Algorithm 

(BPA), is used as a baseline for the proposed development. The forecasting formula is further improved by 

introducing adjustment factors to smooth out behavioural differences between the trained and new/future datasets. 

A computational study based on actual monthly electricity consumption inputs from 2011-2020, provided by the 

Iraqi Ministry of Electricity, is conducted to verify the proposed adaptive algorithm's performance. Different types 

of energy consumption and the electricity cut period (unsatisfied demand) factor are also considered in this study 

as vital factors. The developed ANN model, including its proposed ABPA, is then compared with traditional and 

popular prediction techniques such as regression and other advanced machine learning approaches, including 

Recurrent Neural Networks (RNNs), to justify its superiority amongst them. The results reveal that the most 

accurate long-term forecasts with the minimum Mean Squared Error (MSE) and Mean Absolute Percentage Error 

(MAPE) values of (1.195.650) and (0.045) respectively, are successfully achieved by applying the proposed 

ABPA. It can be concluded that the proposed ABPA, including the adjustment factor, enables traditional ANN 

techniques to be efficiently used for long-term forecasting of electricity load demand. 

        

Keywords MLP neural networks; Load demand; Long-term forecasting; Adaptive Backpropagation; Linear 

regression; Radial basis function networks; Recurrent neural networks.  

 

1. Introduction 

Different techniques have been developed for electricity load demand forecasting over short, medium, and long-

term time scales during the past few years. These techniques range from statistical models such as regression and 

time-series approaches to Artificial Neural Networks (ANNs), machine learning, and expert systems [1]. ANNs, 

as a novel modelling technique, has been used in numerous studies of short and long-term forecasting. This 

technique has attributes, such as flexible computing frameworks and universal approximators, enabeling it to solve 

forecasting problems in different fields with a high degree of accuracy [2]. 

Traditional ANN techniques represent complex nonlinear relationships between dependent variables and other 

influencing variables. For example, forecasting load demand of electricity is influenced by the Gross Domestic 

Product (GDP) time series. The latter is highly correlated with different types of electricity consumption and the 

electricity unit's price [3]. The literature reveals that this ANN technique provides better short-term forecasting 

performance rather than long-term. This finding has been proven by authors in Ref. [4], who used a traditional 

ANN technique to forecast short-term load demand, and confirmed that this technique has several limitations, one 

of which is the accuracy of long-term forecasts. In Ref. [5], the authors concluded that ANN is more efficient in 

short-term electricity demand prediction than long-term forecasting. In Ref. [6], the authors confirmed that ANN 

techniques offer a powerful forecasting tool in planning energy usage and can be used to generate accurate 

forecasts only for short periods. This poor accuracy/performance has been attributed to insufficient training data 
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and an increased accumulation of errors in longer-term estimations [7]. Also, ANNs do not generate better results 

than other techniques for long-term predictions [8].  

Therefore, this paper aims to propose an Adaptive Backpropagation Algorithm (ABPA) for more accurate and 

robust long-term predictions. This accuracy is achieved by further improving the forecasting part of the traditional 

Backpropagation Algorithm (BPA) algorithm to be able to accommodate the impact of accumulated errors caused 

over long periods of prediction.        

The main contributions of this study can be summarised as follows:     

(1) To propose an Adaptive Backpropagation Algorithm, represented by new forecasting formulations that 

capture the deviation caused by different behaviours of trained and future input datasets (long term). The 

new formulation will accommodate the deviation caused while generating high accuracy forecast outputs.  

(2) To measure the impact of the normalisation of data on the quality of long-term forecasting outcomes. 

This impact includes identifying factors in a specific range that, if considered by the proposed ABPA, 

will improve its performance for more reliable and sustainable long-term forecasts.  

(3) To enable traditional ANN techniques with the proposed ABPA to be used for long-term electricity load 

demand forecasting. 

 

This improved ANN model's benefits are that it will assist energy operators, including companies of generation 

and transmission, to predict the amount of energy needed for best consumer demand satisfaction. This assistance 

contributes to achieving the most efficient allocation of energy resources, best practice of electricity scheduling, 

and optimal replacement plans for current outdated energy sources (if found). Also, this work contributes to the 

formulation of several management policies on electricity planning, scheduling, and distribution. These policies 

include encouraging suppliers to invest more in increasing their energy sources, use state-of-the-art computerised 

energy scheduling systems, and adopt other energy sources such as renewable energy in selected regions.  

 

The rest of the paper is organised as follows: Section 2 reviews previous work on applications of traditional ANNs, 

their hybrids, and other advanced machine learning approaches in long-term furcating of load demand. In Section 

3, the proposed ABPA is discussed alongside the traditional Backpropagation Algorithm's (BPA) limitations. In 

Section 4, a numerical case study is conducted, followed by a comparison study to justify the proposed algorithm's 

superiority. The last section addresses this study's main findings and recommendations for future work.  

 
 

2. Literature Review   

 

A thorough review of machine learning approaches and their application in long-term load forecasting, including 

ANN and deep learning, is conducted in this section. This review provides a clear understanding of methodologies 

used in long-term forecasting.     

2.1. Application of ANNs in Long Term-Load Forecasting  

 

This section presents the applications of traditional ANNs and their hybrids in the long-term forecasting of 

electricity load demand.  

 

The practice of using different methods for long-term load demand forecasting was demonstrated, and found that 

most of the basic ANNs were successfully applied in short-term forecasting. However, the most suitable ANN 

network model for long-term forecasting requires careful consideration of network architecture and its training 

method [9]. A Hierarchical Neural Network (HNN) model was proposed in Ref. [10] to forecast both short and 

long-term electricity demand. The developed HNN model generated more realistic predictions than the non-

hierarchical simple ANN. In Ref. [11], a Hierarchical Hybrid Neural (HHN) model was developed to tackle the 

problem of long-term peak load forecasting. In Ref. [12], an Adaptive Multilayer Perceptron (AMP) algorithm 

consisting of eight steps was proposed for dynamic time series forecasting with minimal complexity. Results 

showed that the proposed scheme for the AMP algorithm could produce accurate and robust forecasting of 

electricity load consumption. In Ref. [13], a method that combines neural network models of load forecasting with 

Virtual Instrument Technology based on Radial Basis Function (RBF) neural networks was introduced to build a 

virtual forecaster for reliable short, medium, and long-term load forecasting. Results indicated that the forecasting 

model based on the RBF has high accuracy and stability. In Ref. [14], a new method based on Multi-Layer 

Perceptron Artificial Neural Network (MLP-ANN) was proposed for long-term load forecasting. The comparison 

test results illustrate the advantages of the proposed method. In Ref. [15], the ANNs model was integrated with 

an Adaptive Neuro-Fuzzy Inference System (ANFIS) to analyse the effects of different weather variables and 
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actual and previous energy for forecasting the electricity load. The developed ANFIS model produced more 

accurate and reliable long-term energy load forecasts than the basic ANN model. In Ref. [16], different Machine 

Learning (ML) approaches, including ANNs, Multiple Linear Regression (MLR), ANFIS and Support Vector 

Machine (SVM), were applied to forecast long-term electricity load. The results indicated that SVM provided 

more reliable and accurate results than other ML techniques. In Ref. [17], three models based on Multivariate 

Adaptive Regression Splines (MARS), ANNs, and Linear Regression (LR) methods were utilised for long-term 

load forecasting. The study concluded that the MARS model gives more accurate and stable results than the ANN 

and LR models. In Ref. [18], two approaches of ANNs and SVMs were compared to predict long-term electrical 

load and found that the performance of forecasting using SVMs is consistently better than ANN. In Ref. [19], 

Support Vector Regression (SVR) and ANN approaches were used to identify electricity's best prediction model. 

The outputs indicated that the seasonal SVR model outperformed the ANN model in terms of the generated 

forecasts' accuracy. In Ref. [20], different load forecasting techniques were reviewed and compared for power 

forecasting. These methods include ANN, Support Vector Regression (SVR), Decision Tree (DT), LR, and Fuzzy 

Sets (FS). In Ref. [21], a hybrid method based on the combination of Particle Swarm Optimisation (PSO), Auto-

Regressive Integrated Moving Average (ARIMA), ANN, and the proposed SVR technique was used to forecast 

the long-term load and energy demands. The results showed that the proposed PSO-SVR and hybrid methods give 

more accurate resultsthan ARIMA and ANN methods. In Ref. [22], accurate and precise medium and long-term 

district-level energy prediction models were proposed employing machine learning-based models. The ANN with 

nonlinear autoregressive exogenous multivariable inputs was one of these models. This model was identified as 

the best forecasting model with a minimum MAPE value. In Ref. [23], a Univariate Multi-Model (UMM) based 

on neural networks was proposed to forecast electrical load. The purpose was to increase the performance of mid 

to long-term forecasting. However, this technique was greedy, requiring large amounts of data for training 

purposes. Ref. [24] suggested three models based on Multivariate Adaptive Regression Splines (MARS), ANN, 

and LR methods for long-term forecasting of load demand. MARS was reported to be more computationally 

efficient than ANN. The MARS model gives more accurate and stable results than ANN and LR models by 

comparing these models. In Ref. [25], a Multiple Neural Network (MNN) model was proposed for long-term time 

series prediction. In this MNN model, each neural network component makes forecasts for a different length of 

time. The results revealed that the developed MNN model outperformed the single ANN model. In Ref. [26], a 

hybrid approach based on Wavelet Support Vector Machines (WSVM) and Chaos Theory were employed for 

mid-term load forecasting. In Ref. [27], the Prophet and Holt-Winters forecasting models were used for long-term 

peak loads forecasting. The Prophet model has proven to be more robust to noise than the Holt-Winters model. In 

Ref. [28], the Fuzzy Logic (FL) concept was applied to ANN for long-term electric load forecasting. A 

feedforward input-delay back propagation network was used to design the ANN model. It was concluded that, in 

long-term load forecasting, both ANN and FL are powerful tools with a minimal error rate. In Ref. [29], FS was 

applied to ANN for modelling long-term uncertainties, and the enhanced forecasting results were compared with 

those of traditional methods, including regression. Results indicated that although ANN has its flexibility in 

handling nonlinear systems, it cannot model all corresponding factors of long-term load. In Ref. [30], the accuracy 

of the results of statistic methods (Exponential Smoothing, ARIMA, Regression), FL, and ANN algorithms were 

used and compared to estimate electricity consumption. Double exponential smoothing was the best method for 

producing approximate data close to the target. In Ref. [31], a Variable Structure Artificial Neural Network 

(VSANN) was used to improve the forecast accuracy of electricity load for the mid to long-term. However, 

applying a simple ANN model did not lead to a minimum load forecast error. In Ref. [32], an approach based on 

dynamic Feedforward Backpropagation Artificial Neural Network (FBP-ANN) was presented for long-term 

forecasting of total electricity demand. The proposed approach proved its accuracy along with effectiveness in 

long-term forecasting. In Ref. [33], a modified technique based on an ANN combined with LR was applied to 

conduct long-term electrical load demand forecasting. Application results showed that the proposed hybrid 

technique is feasible and effective.  

2.2. Application of Deep Learning Techniques in Long-Term Load Forecasting 

Although deep learning approaches are used to solve short-term load forecasting problems, their application for 

long-term load forecasting is still limited. In this section, up-to-date deep learning approaches for improved long-

term load forecasting are investigated to understand the different architecture configurations used in such 

forecasting approaches. These include but are not limited to the authors of Ref. [34], who developed optimal 

design settings for Deep Neural Networks (DNNs) to generate accurate predictions of long-term electricity 

demand. The effectiveness of prediction using the developed DNNs’ architecture, compared with traditional 

ANNs, was higher. In Ref. [35], a Deep-Feedforward Neural Network (Deep-FNN) with a sigmoid transfer 

function, resilient backpropagation training algorithm, and Deep-FNN with Rectified Linear Unit (ReLU) 

activation function was proposed for short-term and long-term load forecasting. The outcome demonstrated that 

Deep-FNN with sigmoid function and resilient backpropagation training algorithm performed better than other 

models. In Ref. [36], Deep Recurrent Neural Network (DRNN) models were proposed for a medium to long-term 

https://www.sciencedirect.com/topics/engineering/artificial-neural-network
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electric load prediction. The proposed DRNN’s error is relatively lower when compared with the conventional 

multi-layered perceptron neural network. In Ref. [37], a bespoke DRNN configuration was explored for medium 

to long-term electricity and heat demand predictions. The DRNN model outperformed both Gradient Boosting 

Regression (GBR) and SVM approaches in terms of accuracy. Ref. [38] proposed a method for forecasting high 

energy demand using a Long Short-Term Memory (LSTM) neural network, and Exponential Moving Average 

(EMA) was proposed. The LSTM model proved its superiority compared with other ANN, SVM, Random Forests, 

Bayesian Regression, and Mean-Only Model approaches. Ref. [39] proposed a method for long-term load 

forecasting utilising RNN consisting of Long-Short-Term-Memory (LSTM-RNN) cells was proposed. The 

proposed model's performance could be further improved by incorporating more weather parameters. In Ref. [40], 

Feedforward Artificial Neural Network (FANN), SVM), RNN, Generalized Regression Neural Network (GRNN), 

K-Nearest Neighbours, and Gaussian Process Regression (GPR) were used for long-term load forecasting. The 

FANN method showed better results compared with others. In Ref. [41], LSTM was developed for long-term 

energy consumption prediction with distinct periodicity. This model introduced special units called memory 

blocks to overcome the vanishing/exploding gradient problems. In Ref. [42], different Machine Learning 

algorithms, including SVR, Random Forest Regression, and Flexible Neural Tree, were compared for the best 

forecasting of a short and long-term load demand period. It was observed that the forecasting accuracy decreased 

with the increase of timescale. In Ref. [43], a new variant of RNNs based on the transform learning model, named 

Recurrent Transform Learning (RTL), was proposed for long-term load forecasting. Results showed that the 

proposed technique outperforms all other techniques.  

 

The previous literature indicates that the forecasting efficiency of traditional ANNs for long-term predictions of 

load demand could only be increased if integrated with other forecasting approaches/algorithms such as ANFIS, 

SVR, and LR. The accuracy of deep learning approaches in long-term load forecasting requires developing 

sophisticated architecture configurations and careful selection of the training method, including best tuning of all 

the involved parameters.  

 

However, improving the BPA algorithm of the traditional ANN and its forecasting capability has not been 

investigated yet. The difference in behaviours between trained and future datasets and how to encapsulate/quantify 

these behaviour differences to adapt the current BPA algorithm for better forecasts has not yet been studied. In 

addition, the modification suggested in the mathematical formulation of the forecasting formula and how to correct 

the behaviour gained after training the network to be familiar with the unexpected behaviour of other future values 

of the datasets that might have different behaviour has also not been investigated before. To further clarifythe 

proposed mathematical derivation, an adjustment factor is proposed to capture and quantify any deviation between 

the trained dataset’s behaviours and new/future datasets. This factor will then be added to the forecasting formula 

to smooth out any positive or negative deviations obtained in the forecasting values due to both trained and future 

dataset behaviour differences. Different adjustment factors and new forecasting equations for popular dataset 

ranges, including (0,1) and (-1,0), are proposed to obtain reliable and accurate long-term load forecasts.  

 

It is also worth mentioning that the popular reasons behind the inability of such traditional ANNs to provide 

accurate long-term forecasts are the lack of training data and the increment of accumulated errors in long-term 

estimation. However, other reasons for the limitations of traditional ANNs as long-term forecasting require further 

discussion. Although authors in Ref. [44] addressed some possible reasons for the underperformance of many 

complex novel ANN architectures, none of these reasons relates to the problem's settings considered in this study.  
 

Therefore, in this study, the reasons/limitations behind the poor performance of traditional ANNs in long-term 

forecasting will be further investigated and discussed. The study will also propose an improved ABPA algorithm 

with a new formulation for reliable long-term forecasting. 
 

3. Multiple-Layer Perceptron Artificial Neural Networks 

This section explains the BPA used in a multiple-layer traditional artificial neuron network. The BPA’s limitation 

in terms of the validity of its optimal weight values for providing accurate long-term forecasts is also discussed. 

A proposed improvement on the BPA currently used is also introduced. Different forecasting formulations for 

different dataset ranges are suggested to identify any deviation caused by changed behaviours of trained and future 

datasets for better forecasting outcomes. 

The proposed algorithm's main contribution is that it provides adaptive forecasting models/formulations to 

encapsulate the behaviour difference between trained and future datasets in terms of deviation. This deviation will 

be added as an adaptive factor to the current ANN forecasting model outcomes for more accurate long-term 

https://www.sciencedirect.com/topics/engineering/recurrent
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forecasts. This adaptive factor's value could be positive or negative, depending on the deviation betweencurrent 

and future datasets’ behaviours.        

3.1. Backpropagation Algorithm (BPA)    

This section discusses a Multi-Layer Perceptron (MLP) model. This model consists of j layers, and each layer 

involves several neurons. The first layer is the input layer, while the last layer is the output layer, and all layers in 

between are hidden layers, as shown in Fig. 1.  
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Fig. 1. The architecture of the MLP model  

In the forward pass computations, the input variables/dataset represent individual independent variables 𝑋𝑖   , i =
1, . . . , m (m is the number of independent variables), each variable involves (n) observations. These variables are 

fed into the network's input layer after normalising them in a specific range. In order to set the importance of each 

input, a weight 𝑊𝑖,𝑘,𝑗 is assigned to input index i, layer j-1, to the corresponding neuron index k, and next layer j.  

These weights at the first term are selected randomly. For example, for the first hidden layer, the first output 𝑋1 

is calculated as below: 

𝑌1,1 = 𝑓(𝑛𝑒𝑡1,1)                                                                                           (1) 

The value of 𝑛𝑒𝑡1,1 is: 

 

𝑛𝑒𝑡1,1 = ∑ 𝑋i . 𝑊i,1,1 𝑚
𝑖=1                                                                                             (2)   

 

Where   

i is the input/neuron index at layer j-1,   

𝑛𝑒𝑡1,1 is the output of 𝑋1for all neurons of the first input layer   

 

The outputs 𝑛𝑒𝑡𝑘,𝑗−1 of neuron 𝑘, layer j-1 becomes the inputs to the last layer 𝑗.  

Each neuron output is normalised using the Activation function (Sigmoid). The final network output (calculated) 

is normalised using the below Sigmoid function: 

 

𝑌̂𝑑 =
1

1+𝑒
−(∑   𝑛𝑒𝑡𝑘,𝑗− 𝜃𝑗𝑘 )

                                 (3) 

Where   

k is the neuron index of the following corresponding layer j, 

𝑛𝑒𝑡𝑘,𝑗 is the input to the last hidden layer 𝑗, Ɐ neuron k,  
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𝑊𝑖,𝑘𝑗 is the weight on the connection from neuron 𝑖 to 𝑘 at layer 𝑗,  

𝜃𝑗 is the Threshold (bias) on layer j  

𝑌̂𝑑  is the desired/calculated output  

 

The validation stage is then applied to check the difference between the actual/calculated and desired/target 

outputs of the network.  

 

The difference between the desired output 𝑌𝑎  (target) and the actual network’s output 𝑌̂𝑑 (calculated) is calculated. 

An error function defined as Mean Square Error (MSE) is usually used as a typical error function.  

  

      𝑀𝑆𝐸 = ∑
(𝑌𝑎− 𝑌̂𝑑 )2

𝑛𝑑  , d=1,…,n ; Ɐa                                      (4) 

 

Where   

d is the output value index, 

𝑛 is the number of input values/observations.  

𝑌𝑎  desired/target output  (observations used in training)  

 

The backpropagation computations involve three stages: Training, Validation/Test, and Forecasting. The dataset 

is divided into three parts according to these stages; the longest dataset’s part is used for training, the second part 

to validate the model accuracy, and the third for model testing. The steps of backpropagation are summarised 

through the Training stage as follows: for a specific learning rate (𝜂), the weights are updated using a learning 

algorithm (gradient descent). The weights are adjusted anywhere in the network after the error becomes known. 

The derivative of the error function for that weight must be found, and the delta rule ∆𝑤 is generalised.  

 

As shown in Equation 3, the non-linearity sigmoid function is the most used normalisation function in the multi-

layered perceptron models [45]. Inadequate or inappropriate data normalisation to input variables may 

considerably worsen forecasting results [13]. The derivative being 
𝑑𝑌

𝑑𝑋
= 𝑌́ = 𝑌̂(1 − 𝑌̂) and the delta rule used to 

change the weight 𝑊𝑖 in neuron k, hidden layer j with a sigmoid function is as follows: 

 

          

∆𝑊𝑖,𝑗,𝑘 = 𝜂𝑋𝑖𝛿𝑘,𝑗                                                                                                            (5) 

 

Where:  

 

𝛿𝑘,𝑗 = 𝑌𝑎(1 − 𝑌𝑎)(𝑌̂𝑑 − 𝑌𝑎)                   (6)  

 

The weights are then updated after each pattern is implemented by: 

 

𝑊𝑖,𝑘,𝑗  𝑢𝑝𝑑𝑎𝑡𝑒 =  𝑊𝑖,𝑘,𝑗 − ∆𝑊𝑖,𝑗,𝑘                                                                        (7) 

 

The newly updated weights will then be fed into the network for another training session. Each training session 

involves attempting different numbers of neurons and hidden layers to make model improvements and increase 

output accuracy. The training session stops when the MSE is minimal. The MLP is considered the best model and 

ready to be tested by exposing it and comparing it to the data's test part.  

 

After the training stage is completed, the model is ready to forecast future values using the below equation: 

 

𝑌̂𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 =  (𝑌̂𝑑 + 1) (Max(𝑌𝑎) − Min (𝑌𝑎)) + Min (𝑌𝑎)                              (8) 

 

Where:  

𝑌𝑎: desired output (within the training data set), (we enter this in the training session) 

Min (𝑌𝑎) is the minimum desired/target output, 

Max (𝑌𝑎) is the maximum desired/target output, 

The forecasting model/formulation (8) is used to restore the data to their actual values. The BPA uses the 

forecasting formulation after the training and testing stages have been completed. This paper will improve this 
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formulation by including the deviation/accumulated error caused by the behaviour difference between trained and 

future datasets for more accurate long-term forecasting outputs.  

 

3.2. Memory of Learning and Long Terms Forecasting  

Neural networks generally perform three functions. They supervise learning tasks, build knowledge, and 

memorise the correct answer to provide it in advance from datasets. As explained in section 3, the networks then 

learn by tuning themselves to find the correct answer, increasing their prediction’s accuracy. Also, they understand 

the behaviour of datasets and mimic their interchanging relationships, taking into consideration factors that could 

affect their behaviour and stability for further predictions.   

 

However, the training stage is conducted on the available numerical information in input datasets. At the training 

stage, the behaviour of datasets is captured, including inputs of independent variables  𝑋𝑖   , i = 1, . . . , m (m is the 

number of independent variables), each with (n) observations, assuming that some aspects of the past pattern will 

continue in the future. Hence, a memory of training is established. This memory enables backpropagation to 

predict datasets' future behaviour based on the current learned behaviour obtained from the training stage and 

supported by the validation/test stage. This training includes estimating and hence capturing the behaviour of each 

dataset of input  𝑋𝑖 as it continues in the future. Although the bias term allows for some deviation/random variation 

and the effects of relevant variables that are not included in the model, the behaviour of future inputs  𝑋𝑖 beyond 

the trained datasets could irritate and become unexpected due to unforeseen factors. This irritation could affect 

the validity of the optimal weights, make the forecasting of the behaviour of future observations challenging, and 

subsequently elevate the bias factor further. Many researchers attribute the popular reason for such poor 

performance to a lack of training data and increased accumulated errors over long-term estimation. 

 

We discuss in this paper other reasons related to the poor performance of the traditional BPA in long-term 

forecasting. One of these reasons is that optimal weights obtained after the training stage has been completed 

might become less sustainable in the long-term than short-term forecasting. This suitability issue escalates notably 

when future datasets' behaviour deviates from the trained datasets' current behaviour theme. Hence, these weights 

become less valid/sustainable, affecting the network learning memory and response to prediction decisions. If so, 

the memory of learning obtained at the training stage starts distracting in providing the correct forecast answer, 

resulting in incorrect responses. This inaccuracy of responses starts accumulating over time, causing “non-

realistic” or “false” prediction decisions and ending with a significant deviation/bias value. The ANN model 

memory tends to vanish for longer-term forecasting resulting in a weak and unfit prediction model.  

 

3.3. Adaptive Backpropagation Algorithm (ABPA) 

This section discusses suggestions for improving forecast values' accuracy caused by learning memory 

disruption/deterioration. This deterioration of memory is attributed to the difference between the two behaviour 

practices of both training and future datasets. As explained in section 3.2., this leads to wrong decisions to provide 

overestimated/underestimated forecasting outputs.       

 

The difference between the behaviour of actual datasets (used to train the network) and any deviated behaviour 

caused by the new/future datasets used for forecasting is captured in an adjustment factor. This factor is calculated 

by finding the difference between the two behaviours. This difference is identified by adopting the last trained 

observation of the network datasets as a base of knowledge. This base represents the source of the datasets' 

behaviour that the ANN has captured during the training stage. Any deviation from the network will be captured 

by an adjustment factor 𝑴𝒂𝒙 (𝒀𝒂
𝒂𝒅𝒋

) or 𝑴𝒊𝒏 (𝒀𝒂
𝒂𝒅𝒋

) and will be added to or subtracted from the forecasting 

formulation/model, equation (8) based on the deviation type (positive or negative). A positive deviation ∆ 

𝐌𝐚𝐱 (𝒀𝒂) means that the generated values are overestimated forecasts, while a negative deviation ∆ 𝐌𝐢𝐧 (𝒀𝒂) 

means that the provided forecasts are underestimated. Both deviations are caused by the different behaviour 

themes of future datasets that the trained network does not understand. The forecasting after 

adjustments/adaptation should produce accurate forecast values considering any deviation/difference between the 

captured behaviour (after training) and other behaviours inherited by future dataset values.  
 

This improvement includes adjustment of the network desired/target output 𝑌𝑎  . The adjustment could be made on 

either the Maximum Value of 𝑌𝑎 , Minimum Value of 𝑌𝑎  or both Maximum and Minimum Values of 𝑌𝑎.   

For the range of the dataset (-1,0), the adapted forecasting equation is developed as follows:  
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• Calculate the adjusted values of Max (𝑌𝑎) and Min (𝑌𝑎) using the equations:  

𝑀𝑎𝑥 (𝑌𝑎
𝑎𝑑𝑗

) = Max (𝑌𝑎) + ∆ Max (𝑌𝑎) if (∆ Max (𝑌𝑎) is +ve), or -∆ Max (𝑌𝑎) (if ∆ Max (𝑌𝑎) 𝑖𝑠 -ve) 

𝑀𝑖𝑛 (𝑌𝑎
𝑎𝑑𝑗

) = Min (𝑌𝑎) + ∆ Min (𝑌𝑎) if (∆ Min (𝑌𝑎) is +ve), or -∆ Min (𝑌𝑎) (if ∆ Min (𝑌𝑎) 𝑖𝑠 -ve) 

∆ = 𝑀𝑎𝑥∀𝑖 (
𝑋𝑖,𝑛+𝑙 − 𝑋𝑖,𝑛

𝑋𝑖,𝑛
) , l=1,…,L 

∆ = 𝑀𝑖𝑛∀𝑖 (
𝑋𝑖,𝑛+𝑙 − 𝑋𝑖,𝑛

𝑋𝑖,𝑛
) , l=1,…,L 

Where:  

𝑌𝑎
𝑎𝑑𝑗

: is the adjusted value of 𝑌𝑎    

∆: is the variation between 𝑋𝑖,𝑛 and 𝑋𝑖,𝑛+𝑙  

n: is the index of last input/observation 

l: is lag of forecasting,   

𝐿: is the number of forecasting lags.   

𝑋𝑖,𝑛 : the last input n of each dataset i, 𝑋𝑖,𝑛   

𝑋𝑖,𝑛+𝑙 : the forecasted input n+1 of each input value  𝑋𝑖   
 

This adapted equation will adjust either Max(𝑌𝑎) and/or Min(𝑌𝑎) values to keep the bridge of the behavioural 

theme between the new datasets used for forecasting 𝑋𝑖,𝑛+1 , 𝑋𝑖,𝑛+2 , … , 𝑋𝑖,𝑛+𝐿 for all i=1,…,m and the last 

observation of the trained datasets of the independent variables 𝑋𝑖,𝑛. This sort of behavioural bridging will 

subsequently improve the forecasting value if the learning memory starts distracting because of the confusion 

caused by the behaviour of future values of the input variables beyond the overall captured behaviour.     

• In case adjustment of Max(𝑌𝑎) is applied, the adapted forecasting equation is: 

 𝑌̂𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 =  (𝑌̂𝑑 + 1) (𝑀𝑎𝑥 (𝑌𝑎
𝑎𝑑𝑗

) − Min (𝑌𝑎)) + Min (𝑌𝑎)   (8.1) 

• In case Min(𝑌𝑎) is suggested for adjustment, the adapted forecasting equation is: 

𝑌̂𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 =  (𝑌̂𝑑 + 1) (𝑀𝑎𝑥 (𝑌𝑎) − Min (𝑌𝑎
𝑎𝑑𝑗

)) + Min (𝑌𝑎
𝑎𝑑𝑗

)     (8.2) 

• In case both Min(𝑌𝑎) and Min(𝑌𝑎) are adjusted, the adapted forecasting equation is: 

𝑌̂𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 =  (𝑌̂𝑑 + 1) (𝑀𝑎𝑥 (𝑌𝑎
𝑎𝑑𝑗

) − Min (𝑌𝑎
𝑎𝑑𝑗

)) + Min (𝑌𝑎
𝑎𝑑𝑗

)   (8.3) 

Any of the above models/formulations could be applied to accommodate forecast value deviations caused by input 

datasets' behaviour (future). The quality of the forecasting output depends on the deviation in behaviour. Hence, 

a comparative study is required to decide which of the above forecasting models/formulations best adjust 

forecasting outputs to comply with the datasets' behaviour and provide the best forecasting outcomes.     

This adjustment could also be applied to datasets with a range (0,1). The adapted forecasting equations are:  

• In case adjustment of Max(𝑌𝑎) is applied, the adapted forecasting equation is: 

 𝑌̂𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 =  ((𝑌̂𝑑) (𝑀𝑎𝑥 (𝑌𝑎
𝑎𝑑𝑗

) − Min (𝑌𝑎))) + Min (𝑌𝑎)  (8.4) 

• In case Min(𝑌𝑎) is suggested for adjustment, the adapted forecasting equation is: 

 𝑌̂𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 =  ((𝑌̂𝑑) (𝑀𝑎𝑥 (𝑌𝑎) − Min (𝑌𝑎
𝑎𝑑𝑗

))) + Min (𝑌𝑎
𝑎𝑑𝑗

)  (8.5) 

• In case both Min(𝑌𝑎) and Min(𝑌𝑎) are adjusted, the adapted forecasting equation is: 

𝑌̂𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 =  ((𝑌̂𝑑) (𝑀𝑎𝑥 (𝑌𝑎
𝑎𝑑𝑗

) − Min (𝑌𝑎
𝑎𝑑𝑗

))) + Min (𝑌𝑎
𝑎𝑑𝑗

)   (8.6) 
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4. Case study, Results Analysis, and Discussion 

4.1. Case Study and ANN Inputs  

A case study is conducted to test the proposed forecasting formulations in section 3.3. This case study considers 

the electricity load demand (monthly peak load) in the Republic of Iraq for 2011-2020 and electricity consumption 

in multiple sectors, including domestic (households), industrial, commercial, government, and agriculture. The 

electricity load demand of both Nov and Dec 2020 was supposed to be released in early 2021. However, this was 

delayed due to the third wave of Covid-19 in the Republic of Iraq.  
 

We considered six input variables to forecast electricity's load demand, each representing annual energy 

consumption by a sector/industry. The developed model also considers electricity cut periods, represented by an 

unsatisfied demand factor. This unsatisfied demand, leading to unplanned cuts, frequently occurs due to the many 

factors that have caused the current national electricity system in Iraq to become outdated. These factors include 

frequent wars and political interventions, lack of maintenance, unstable security conditions, and a market 

monopolised by private suppliers (mainly using diesel generators), all of which have led to an inability to satisfy 

the increasing electricity demand. This shortage is referred to as a cut period of electricity, most commonly 

unscheduled. Hence, this factor is vital in forecasting electricity consumption in Iraq and is considered in this 

study. The input and output parameters and respective symbols are summarised in Table 1. 
 

Table 1. Description of the input datasets and output parameter 

Parameter  Description  

Input  

 

 

 

 

 

Output 

D: Domestic (MWh)  

C: Commercial (MWh)  

I: Industrial (MWh)  

G: Governmental (MWh) 

A: Agricultural (MWh)  

 

L: Load demand of electricity (MW)  

 

 

The electricity load demand (monthly peak load) in the Republic of Iraq for 2011-2020 is considered as an output 

parameter, while electricity consumption in multiple sectors, including domestic (households), industrial, 

commercial, governmental, and agricultural, are considered as parameter inputs of the ANN. See Fig. 2 for the 

monthly electricity consumption rate in Iraq, including the load demand. 

 

Fig. 2. Load demand and consumption of electricity in Iraq 

0

5000

10000

15000

20000

25000

30000

35000

0

1000000

2000000

3000000

4000000

5000000

6000000

1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

C
o

n
su

m
p

ti
o

n
 (

M
W

h
)

Lo
ad

 D
em

an
d

 (
M

W
)

Dom. Com. Ind. Gov. Agr. Load demand



10 

 

As seen in Fig. 2, the domestic sector, represented by households, consumes a significant portion of electricity. 

The secondlargest consumer of electricity is the industry, covering both private and public sectors. This 

consumption includes refineries, gas stations, and communication companies. Governmental consumption comes 

third. It can also be noticed that the industrial sector's energy consumption decreases after 2017 due to many 

political reasons, such as increased imports from neighbouring countries. Moreover, the governmental sector 

indicates high electricity consumption, increasing in 2011. This high consumption is attributed to the increasing 

number of government premises, employees and offices.  
 

The load demand of electricity (MW) depends on the above sectors' energy consumption (MWh). This load 

demand (MW) increases due to increasing domestic sector requirements. This increment in the domestic sector 

requirements is attributed to changes in population growth and in economic and demographic patterns in Iraq. 

 

The ANN is trained using input datasets (monthly) from 2011 to 2019. These datasets consist of load demand as 

the dependent variable and five other independent variables, including domestic, commercial, industrial, 

governmental, and agricultural consumption of electricity. A sample of the dataset used to train the ANN model 

is presented in Table 2.  

   

Table 2. Sample training data set used for learning the ANN 

Year Month D C I G A L 

2011 Jan 807810 80299 258606 182512 40304 7142 

        

 Dec 859547 92394 378707 366890 148163 7222 

2012 Jan 1029478 127508 367460 382630 152714 8625 

        

 Dec 1298710 113361 476621 331336 55479 8708 

2013 Jan 1175507 114461 717176 488478 80361 10417 

        

 Dec 972583 105221 431702 287158 31213 10500 

2014 Jan 969578 98106 430423 370384 25874 12208 

        

 Dec 1046479 127509 589467 671879 51525 12292 

 

 

 

2017 Jan 1679993 246388 729516 1323604 104943 13833 

        

 Dec 2255290 222741 149700 353834 19539 13417 

2018 Jan 2255290 244726 346517 660315 21875 19098 

        

 Dec 1917974 130057 633546 298107 29103 18696 

2019 Jan 2024190 194155 357444 342794 44468 21669 

        

 Dec 2024190 194155 357444 342794 44468 18014 

 

 

The complete dataset inputs and the load demand as output are presented graphically in Fig. 2. Another set of 

inputs of the year 2020 from the months (Jan-Oct) are used to validate and evaluate the proposed ABPA 

performance. A sample of this testing data is presented in Table 3.     
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Table 3. Sample testing data set used to evaluate the optimised ANN 

Year Month D C I G A L 

2020 Jan 2171109 247153 376323 513709 42303 23849 

 Feb 1521127 142113 389312 292361 40375 21988 

 Mar 2028360 200519 318475 243270 42976 25615 

 

 Oct 2232481 235083 561184 449513 88824 27615 

 
 

 

4.2. Experimental Results 

 

4.2.1. ANN Architecture and Training Parameters 
 

After the ANN has been trained, the optimal weight values are obtained and the optimal number of neurons and 

layers. The testing and forecasting stages then follow by adopting input datasets for the year 2020 from Jan to Oct 

for comparison and validation purposes. The architecture of five inputs, one hidden layer with five neurons and 

one output (5×5×1), is the most suitable for the proposed ABPA. The proposed ANN architecture's performance 

is assessed using the MSE and MAPE criteria. See Table 4 for the optimal parameters used for ANN architecture 

and training.   
 

Table 4. The architecture of ANN and Training Parameters 

Architecture of ANN  

Number of Layers 3 

Number of neurons in the layer 5 

Number of Inputs 5 

Number of Hidden Layers 1 

Number of Outputs 1 

Initial weights and biases  Randomisation 

Activation Function  Sigmoid 

Number of Training Data  108 

Number of Testing Data 10 
 

Training Parameters  
 

Learning Rule Adaptive Backpropagation (ABPA)  

Learning Rate 0.02 

Momentum Constant  1 

 

 

4.2.2. Impact of Input Normalisation on the Model’s Output  

 

Having trained the ANN, obtained optimal parameters, and tested and validated the outputs as outlined above, 

normalisation of the data is applied.   
 

Applying normalisation to the input datasets is then investigated to examine its effect on the weights' calibration 

during the training stage. This assists in identifying the best range of input datasets for the best estimation of 

weights across the ANN and, subsequently, for high-quality forecasts. See Fig. 3 for a comparison of datasets 

before and after normalisation is applied.  
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Fig. 3. The evaluation of impacts of different ranges of input datasets 

In Fig. 3, the actual load demand datasets of the year 2020 starting from Jan to Oct are used to test the accuracy 

of long-term forecasts using Equation 8, where adjustment is not applied (see section 3.3). The normalisation is 

applied to electricity load and consumption datasets by converting them between (0,1) ranges. The normalisation 

of this range provides, as shown in Fig. 3, more accurate long-term forecasts, justified by its minimum MSE, 

47.497.616 and MAPE, 0.24, than the dataset’s range (±∞) with MSE equal to 50.759.956 and MAPE equal to 

0.26. This (0,1) range normalisation also reflects a well-training and best learning practice obtained after 

normalisation of range (0,1) is applied to the datasets. However, the datasets’ range (-1,0) provides fluctuated 

forecasts and does not converge the actual load demand data, thereby achieving the highest MSE equal to 

77.857.125 and MAPE equal to 0.287.  
 

The traditional forecast model/formulation used in the BPA (Equation 8) is improved by adding/subtracting the 

deviation represented by the adaptive factor to/from the forecast values obtained using Equation 8 (the adjustment 

is applied). This adaptive factor equals the deviation between long-term forecasts and the behaviour theme the 

network becomes familiar with after the training stage has been completed.  
 

For the range of the dataset between (-1,0), formulations (8.1) to (8.3) are applied to improve the long-term 

forecast values obtained by Equation (8). The dataset range (0,1) shows more accurate forecasts using Equation 

(8) (see Fig. 3 above). However, the purpose of the range (-1,0) experiment is to justify the proposed formulations 

(8.1) to (8.3) by understanding the general theme of its behaviour, even though they are not the best forecast 

outcomes. See Fig. 4 for the impact of the proposed forecasting formulations (8.1) to (8.3), the dataset range (-

1,0) on the quality of forecasting outcomes.    
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Fig. 4. The evaluation of the impact of the proposed forecast adjustments – datasets range (-1,0) 

Fig. 4 shows that the best forecasts are obtained by applying Equation (8.2), achieving minimum values of MSE 

13.884.386 and MAPE 0.16 compared with the No-Adjustment Equation (8), that scored MSE and MAPE equal 

to 77.857.125 and 0.287. Equation (8) generates forecasts that are below the forecasting theme, and hence 

Min(𝑌𝑎) is suggested for adjustment of the 𝑌̂𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡  values. Equation (8.1) generates the worst forecasts with the 

highest MSE and MAPE values equal 105.350.141 and 0.48, respectively. However, Equation (8.3) provides the 

second-best forecasts compared with the actual load data to achieve MSE and MAPE equal to 37.118.399 and 

0.30, respectively.  
 
 

The impact of the proposed forecasting adjustments for input datasets range (0,1) is identified, and each 

adjustment is represented by the suggested forecasting formulations (8.4) to (8.6). See Fig. 5 for the impact of the 

proposed adjustments on forecasts' quality.   
 

 
 

Fig. 5. The evaluation of the impact of the proposed forecast adjustments – datasets range (0,1) 
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As presented in Fig. 5, the best forecasting of load demand is achieved by using the proposed formulation (8.4) 

for the best datasets of the (0,1) range (the adjustment is applied). This best forecasting is attributed to having the 

minimum MAPE 0.045 and MSE 1.195.650. This adjustment is applied by adding the adjustment factor to the 

obtained forecasting values to improve long-term load forecasting further. The worst forecasts are generated using 

formulation (8), where no adjustment is applied to produce an MSE value equal to 47.497.616 and MAPE equal 

to 0.24. The second-best forecasts are generated using Equation (8.6), where adjustment is applied to produce 

MSE equal to 1.850.110 and MAPE equal to 0.063, followed by forecasts generated by Equation (8.5) with MSE 

and MAPE equal to 3.147.928 and 0.089 respectively.  

 

In general, it can be concluded that the best forecasting practice of the load dataset inputs of the year 2020 over 

the long-term is achieved for input datasets range (0,1) and by applying Equation (8.4). These settings could 

change according to the type and number of the data and other learning requirements.   

 

5. Comparison Study  

A comparison study is conducted to justify the proposed forecasting method's superiority in generating high-

quality long-term forecasts. Five forecasting approaches were used to predict electricity's load demand from Jan 

to Oct 2020. These approaches include:  

 

1- The traditional Backpropagation Algorithm (BPA) 

2- The Adjusted Backpropagation Algorithm (ABPA) 

3- Radial Basis Function Networks (RBFN) 

4- Regression Analysis (REG)  

5- Redcurrant Neural Networks – Long Short-Term Memory (RNNs-LSTM) 

 

REG is used to forecast the load demand. The Least-Squares (LS) method is applied to estimate the regression 

model's parameters. After selecting the most influential independent variables, the model becomes:  

 
L = 0.0099486 D + 0.004962 I + 0.002712 G - 0.026445 Cut 

Where:  

 L: load demand  

 D: Domestic consumption  

 I: Industrial consumption  

 G: Governmental consumption 

 Cut: Unsatisfied demand, Cut (shortage of electricity)  

 

After solving the above regression model, T-test values for all parameters are zero, P=0, which means that these 

parameters are statistically significant. The coefficient of determination 𝑅2 is also calculated: 𝑅2 = 98%. This 

significant value refers to the strong relationships between the regression model variables. The F-test value is 

calculated as 574.3, which indicates that the regression model is a close fit to the actual one. However, the REG 

model is not accurate enough for long-term prediction due to the non-linearity relationship between the load 

demand dependent variable and other electricity consumption independent variables.  

The RNNs-LSTM architecture is selected and used in this comparison study. This selection is attributed to its high 

efficiency in long-term forecasting [46]. In addition, such network architectures have a recurrent hidden state 

whose activation at each time is dependent on that of the previous time, which makes it specialised for processing 

sequential data (time series).  

After the RNN has been trained, the best architecture, along with other relevant RNNs parameters, is found to be: 

number of inputs (5), number of layers (4), number of neurons (5), number of outputs (1), number of hidden layers 

(2), input delays (5), layer delays (1), learning rate (0.005), learn rate (Gradient), layer type (Dense, LSTM), layer 

activation (ReLU, Linear), data division (Random), training (Bayesian Regulation), sum square parameter (21.5), 

Calculations (MEX), epochs (134). See Table 5 for a comparison of load demand forecasting approaches.  
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Table 5. Load forecasting of four methods with actual data 

Year 

2020 

Actual Load REG BPA ABPA RBFN RNNs-

LSTM 

Jan 23849 18324 19484 19784 25344 20924 

Feb 21988 14100 12510 12138 23212 16126 

Mar 25615 17117 17276 19080 17812 19858 

Apr 21923 18707 19529 20394 15960 23365 

May 26592 19653 20494 22047 21271 25437 

June 28015 22830 22319 24235 25539 28868 

July 28354 21903 20558 20847 27043 23375 

Aug 29792 23829 22243 23326 27329 27746 

Sept 29060 21355 20445 20436 26513 24679 

Oct 27615 19997 19753 20376 21052 27327 

MAPE - 0.25 0.26 0.045 0.144 0.116 

MSE - 44.495.892 50.759.957 1.195.650 19.197.960 12.845.733 

 
 

The overall trend of the load demand curve for the trained datasets and long-term forecasting values obtained by 

each forecasting method is demonstrated in Fig. 6.    

 

 

Fig. 6. The comparison of accurate forecasting of multiple approaches 

Fig.6 shows that the best long-term forecasts of load demand are obtained using the proposed ABPA. Based on 

forecasting value adjustments, the suggested forecasting formulations contributed significantly to amending the 

deviations obtained from the difference in behaviour between the trained and new forecast datasets. The long-

term forecast values are further improved. This improvement was assessed considering the minimum MSE and 

MAPE equal to 1.195.650 and 0.045 respectively compared with the previous version of forecasts using No 

Adjustment, i.e., Equation 8, which achieved significantly higher MSE and MAPE values equal to 50.759.957 

and 0.26 respectively.     
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The second-best forecast method based on the achieved MSE and MAPE values of 12.845.733 and 0.116 is the 

RNNs-LSTM. This method’s performance, as discussed earlier, is attributed to its high capability for learning 

order dependence in sequence prediction problems. The RBFN method is considered the third-best forecasting 

method by achieving MSE and MAPE values equal to 19.197.960 and 0.144. The REG approach provides 

forecasts below the actual load and shows performance almost close to BPA with MSE and MAPE values equal 

to 44.495.892 and 0.25.     

 

   

6. Conclusion and Future Work 

This study proposed improving the classical forecasting formulation used in BPA for higher-quality long-term 

load demand forecasting. This improvement was achieved by capturing the behaviour differences within/outside 

the training input datasets and quantifying these differences as adjustment factors. This adjustment was possible 

by bridging the last observation's behaviour (within the trained datasets) and future datasets outside the training 

stage. This deviation (adjustment factor) was then quantified/encapsulated in a variation term, which was added 

to/subtracted from the classical forecasting model for best adjustments and higher accuracy outputs. 

The new forecasting formulations, including the proposed adjustment factors, improved long-term forecasts' 

quality. This improvement was evident from the quality of load forecast values obtained using the ABPA 

compared with other forecasting methods. Compared with other methods, the APBA obtained the lowest values 

of MSE equal to 1.195.650 and MAPE equal to 0.045. The reduction in both MSE and MAPE values showed that 

the proposed ABPA, represented by the new forecasting formulations, successfully accommodated the deviation 

caused while generating high accuracy forecast outputs. The achieved high forecasting accuracy also verified the 

traditional ANN techniques and the proposed ABPA’s ability to successfully capture the unexpected behaviour 

of the year 2020, which was exceptionally different from other previous years due to the Covid-19 outbreak. The 

traditional BPA could not understand the significant change in the load dataset behaviour, especially for 2020. 

This distracted understanding (as explained in section 3.2) led the BPA to generate inaccurate forecasts below the 

actual load inputs, resulting in significant MSE and MAPE values equal to 50.759.957 and 0.26, respectively. The 

RNNs-LSTM was the second-best approach in providing long-term forecast with MSE and MAPE equal to 

12.845.733 and 0.116, followed by the RBFN approach with values of MSE and MAPE equal to 19.197.960 and 

0.116, respectively.       

 

The impact of data normalisation on the quality of long-term forecasting outcomes using the traditional forecasting 

equation was measured by applying three different ranges of input datasets. Using Equation (8), the range (0,1) 

led to the best forecasts with minimum values of MSE equal to 47.497.616 and MAPE equal to 0.24. After the 

adjustment, Equation (8.4) provided the best forecasts for the dataset range (0,1) with the lowest MSE equal to 

1.195.650 and MAPE equal to 0.045.   

 

This approach's limitation in terms of implementation is that it needs significant differences in behaviour between 

the training and forecasting/validation datasets (high non-stationarity). This dataset's behaviour differences enable 

the proposed ABPA to perform better and improve the expectations based on adjusting the dataset's behaviour.    

Future work is suggested to develop more advanced forecasting models with more than one forecasting output for 

classical ANNs. The relationship between these models for different ANN outputs would be a promising 

opportunity to further investigate robust and reliable prediction purposes.      
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