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A B S T R A C T   

Direct methanol fuel cell (DMFC) is fueled with liquid methanol coupled with air to produce power at reasonably 
lower operational conditions while resulting in by-products of carbon dioxide and water, which is more envi
ronmentally friendly. Due to the complexity associated with the performance of direct methanol fuel cell, the 
application of artificial neural network (ANN) can significantly predict the characteristic performance of the 
cells. Nevertheless, limited studies have delved into the exploration of artificial neural network in the prediction 
of the transient characteristics of direct methanol fuel cells. The current study however presents a detailed 
investigation into the prediction of the dynamic thermal characteristics of a direct methanol fuel cell stack 
subjected to varying operational environment. Parameters considered in the study as input include methanol 
concentration, anode as well as cathode inlet flow rates, coupled with current. Outcomes for the artificial neural 
network models for three varying learning algorithms were ascertained for anode and cathode temperatures, 
which were forecasted closely by models with higher number of hidden neurons. Such models have coefficients 
of determination of 0.95 or more and mean square error less than 0.04. Thus, the outcome of the study presents 
prospects for artificial neural network methods as optimum control approach in direct methanol fuel cell 
development.   

1. Introduction 

Given the current direction of greener energy demand to curb global 
warming effects, there has been significant amount of research con
ducted to find an alternative to fossil fuel-based energy systems [1–4]. 
The need for the sudden change is due to the accelerated depletion of 
fossil reserves and the harmful effect of fossil commodities on the 
environment [5,6]. Other factors attributed to the sudden drift for a 
more sustainable means of harnessing energy is due to unstable prices of 
fossil product on the world market. Renewable energy is projected by 
the research community as possible replacement for fossil products [7, 
8]. The main limitations associated to conversional means of harnessing 
energy from renewable sources are intermittency and initial capital cost 
required in generating energy via this means. Fuel cells, an energy 
converting device is however one of the projected renewable sources of 
energy receiving lots of media attention from the research community 
because they are environmentally friendly [9–11]. There are different 
types of fuel cells and each of them differ based on several factors like 
the type of membrane used in the development of the cell and their 
general operating conditions [12]. One alternative considered to benefit 

the environment and help in green technology development is direct 
methanol fuel cell (DMFC) [13]. The cell is capable of providing power 
to a load in an application while minimizing environmental effect. This 
electrochemical energy converting unit utilizes liquid methanol solution 
as fuel. The chemical energy in the fuel undergoes a transformation to 
electrical energy. However, the main by-products are carbon dioxide as 
well as water, thus minimal potential hazard to the atmosphere. This is a 
significant improvement compared to conversional energy generating 
units powered by fossil commodities. There is a direct correlation be
tween direct methanol fuel cell and proton exchange membrane fuel 
cells as both electrochemical devices functions at relatively low tem
peratures. The only difference is for proton exchange membrane fuel 
cells, the fuel used is hydrogen unlike DMFC where methanol is utilized. 
However, direct methanol fuel cell can be more advantageous than 
PEMFC in different applications because no reformer is needed to pro
duce hydrogen since liquid methanol is a direct reactant. It must how
ever be highlighted that the energy density of methanol, which is 15.9 
MJ/L, outweighs that of hydrogen under pressurized conditions, which 
is 1.9 MJ/L at a pressure of 20 MPa for example [13]. In terms of safety, 
methanol can be stored under safer conditions compared to hydrogen 
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which in the past has recorded some unfortunate life-threatening events 
like the Hindenburg disaster [13,14] 

For consistent operation of DMFC systems, thermal and power 
management is vital in optimal and efficient performance under dy
namic operating conditions. For example, thermal and water manage
ment is critical to ensure the DMFC is not dehydrated due to possible 
excessive water loss at high cathode flow rates and temperatures, nor 
flooded due to excessive water retained due to low anode and cathode 
flow rates and temperatures, to maintain optimal DMFC cell perfor
mance [15]. To circumvent expensive trial-and-error approaches, many 
studies are being conducted to develop and simulate multiple input and 
multiple output variable techniques to estimate direct methanol thermal 
characteristics subjected to varying operational environments. Despite 
the fact that there are several methods including empirical regression 
and semi-analytical approach to develop such dynamic models, artificial 
neural network (ANN) technique has hardly been utilised for DMFC 
applications, even though its potential can be seen in studies of other 
fuel cells [15–18]. There has been remarkable technological advance
ment in the implementation of ANN for varying purposes including 
energy conversion systems. This modeling technique is capable of 
managing all complexity associated with engineering systems. For 
varying input as well as output parameters, the model is able to present 
nonlinear transient characteristics of most engineering systems. The 
margin for error is very small and the solution can easily converge 
within a limited period of time unlike traditional statistical methods like 
the nonlinear regression models [19–21]. Artificial Neural Network are 
categorized into various types subject to their application but the 
time-series ANN modeling with three different learning algorithms for 
such dynamic empirical modeling approach seem the most suitable in 
energy conversion system applications. 

In this study, ANN modeling is carried out for comparing accuracy in 
prediction of DMFC thermal transient characteristics for different 
learning algorithms. Thermal model of DMFC includes the prediction of 
inlet and outlet temperatures of the fluid flow across the DMFC channels 
through empirical modeling approach using ANN, which can be used in 
temperature and flow control strategy to improve water and thermal 
management of the DMFC system for higher efficiency performance. The 
thermal models obtained are varied by the different algorithms and 
hidden neurons in ANN with a conventional structure. The study is 
systematized as follows: The first part of the study captures an intro
duction of the topic on dynamic DMFC modeling using ANN, Section 2 
describes the experimental setup as well as explains and illustrates the 
ANN and its associated learning algorithms, the third section of the 
study presents the outcome of the experiment conducted as well as 
model results along with a discussion of these results to summarize the 
outcome of the investigation and, finally, Section 4 provides the 
concluding points of the study. 

2. Methodology 

The development of artificial neural network could be likened to the 
nervous system of a human that is modelled mathematically. The evo
lution of artificial neural network can be traced to over half a century 
ago. The applications of the concept have widened in the last couple of 
years because of substantial progress marked in solving advanced 
problems using latest technology. Solutions for most of these thought- 
provoking technical issues are deduced within a limited period with 
high computational capability [22,23]. 

Fig. 1 captures a dynamic neural network with time delay only 
structure made up of an input variable vector that is considered to be 
independent, a hidden layer of neurons with time delay, weight and bias 
matrices, as well as an output layer. The neuron is linked to another 
neuron via weight function w but the response vectors ai and ao are 
generated by the activation function f(). Similarly, it is worth noting that 
the neuron number may vary autonomously. The neurons in succeeding 
layers obtain response of the previous layer. Fig. 1 shows a model that 
has input I, which accounts for all input variables, while the output layer 
of output vector O, which considers the output variable. The perfor
mance of summation coupled with the application of activation func
tions to deduce hidden output layer values for one time step ahead 
occurs due to the composition of the ANN model. The activation func
tion for output layer is taken as linear function while activation function 
for hidden layer is log-sigmoid function. 

To train and validate the models, the experimental data obtained 
from a fuel cell test station at the University of Florida was utilised [15]. 
The experimental setup included a DMFC stack, which were assembled 
and conditioned at the University of Florida laboratory facilities. The 
cell stack was made up of 4 air-breathing direct methanol fuel cell ar
chitecture single cells with passive cathode water recovery [24–26]. The 
experimental hardware is connected to a computer using LabVIEW® and 
corresponding National Instrument input-output boards as an interface 
for the purposes of acquiring data at a sampling frequency of 1–50 Hz 
and adjusting the input signals, the cell current density and the cathode 
air-flow rate. Thus, the primary input variables used were current den
sity in mA/cm2, anode and cathode inlet flow rates (in SLPM or L/min) 
and temperatures (in ◦C) while the key outputs captured for thermal 
characteristics prediction were anode and cathode outlet temperatures 
in ◦C. The various cell components were developed by the team of re
searchers at the University of Florida. With the test station in place, 
testing of the cell for varying step changes of input variable such as air 
flow rate in SLPM was carried out. Data acquisition for dynamic analysis 
of the fuel cell [27] was executed with the aid of LabVIEW® software 
coupled with National Instruments [28] boards. The procedure involves 
the startup of the DMFC unit to reach stable and consistent operation for 
a given temperature and flow rate. Further detailed information per
taining to the fuel cell test station procedures could be harnessed from 

Fig. 1. Neural network model.  
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[13,27]. 
During the training process, output values are deduced subject to the 

input parameters, but this only occurs provided the input variables are 
fed to ANN. Evaluation of every pattern within the network highlights 
the fact that the input parameters are utilized to deduce the output. 
There is then a comparison between the trained pattern and output for 
consistency as well as to reduce the error margin. In the event that the 
error margin is significantly high, the model can be made to process all 
input parameters again till the error meet conditions laid out. For the 
completion of the training process, the ANN should maintain estimated 
weight as well as the bias value for the validation process based on 
dedicated validation parameters. Identification of patterns coupled with 
specific decision-making process is then carried out using untrained 
input parameters subject to the overall aim for the model development. 
The utmost goal is reducing the error margin between the experimental 
parameters and the predicted values. There are several approaches that 
can be adopted in ensuring the error margin between the two values is 
reduced significantly, but this is subject to the discretion of the operator. 
An example for this approach includes mean squared error (MSE). The 
mean squared error can be described as 

MSE =
1
n
∑

(Z − Y)2 (1) 

Occurrence for the data points is n whiles the values predicted is Z. 
Experimental data is denoted as Y [19]. The errors are applicable in 
other statistical studies like coefficient of determination. Eq. (2) cap
tures a mathematical representation for the coefficient of determination 

R2 = [Cor(Z,Y)]
2
= 1 −

∑
(Z − Y)2

∑
(Y − Y)2 (2) 

Correlation coefficient is denoted as Cor(Z, Y). The average value for 
the data is represented as Y whiles sum of square is 

∑
(Y − Y)2 [20]. 

The variation for R2 is often between 0 – 1. For the coefficient of 
determination being 0.95, it implies that 95 percent of variability is 
captured by the predictor parameters, which is ideal for excellent fit. 
Attaining a suitable model is equally dependent on training speed 
coupled with reduction in the margin of error but optimizing the model 
is equally important. For fast convergence, the Newton’s method 

Table 1 
Statistical analysis of model results for anode outlet temperature.  

ANN learning 
algorithms 

Number of hidden 
neurons 

Coefficient of 
determination 

Mean squared 
error 

LM 1 0.961 0.295 
LM 10 0.983 0.128 
LM 20 0.993 0.055 
LM 30 0.994 0.043 
LM 40 0.996 0.028 
SCG 1 0.956 0.337 
SCG 10 0.978 0.167 
SCG 20 0.971 0.222 
SCG 30 0.978 0.164 
SCG 40 0.959 0.316 
Bayesian 1 0.961 0.294 
Bayesian 10 0.993 0.055 
Bayesian 20 0.995 0.036 
Bayesian 30 0.997 0.027 
Bayesian 40 0.997 0.024  

Table 2 
Statistical analysis of model results for cathode outlet temperature.  

ANN 
structure 

Number of hidden 
neurons 

Coefficient of 
determination 

Mean squared 
error 

LM 1 0.975 0.196 
LM 10 0.986 0.109 
LM 20 0.971 0.231 
LM 30 0.983 0.137 
LM 40 0.989 0.090 
SCG 1 0.951 0.403 
SCG 10 0.984 0.128 
SCG 20 0.982 0.140 
SCG 30 0.936 0.501 
SCG 40 0.987 0.102 
Bayesian 1 0.977 0.178 
Bayesian 10 0.996 0.035 
Bayesian 20 0.997 0.023 
Bayesian 30 0.997 0.020 
Bayesian 40 0.998 0.016  

Fig. 2. Data from experiment coupled with model responses for anode outlet temperature using ANN with LM algorithm.  
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application to train the ANN is desired, but, for the entire network, the 
Hessian matrix (HM) is singular [29]. The Levenberg-Marquardt (LM) 
algorithm is a substitute to the Hessian matrix that is capable of 
resolving issues pertaining to the Hessian matrix. In the 
Levenberg-Marquardt (LM) algorithm, there is an addition of a term µI 
to HM. This process is done for enhancing conditioning. Detailed in
vestigations have been executed to ascertain suitable values for µ [30]. 
When µ values are smaller, model performance approaches Newton’s 
algorithm. In the case of a large µ values, there is a higher gradient 
descent. A neural network model is captured in Fig. 1. 

Scaled conjugate gradient (SCG) method from study by Moller [25], 
is prefaced on conjugate directions, however unlike other conjugate 
gradient algorithms, this methodology doesn’t execute a line search at 

each iteration, whereas other conjugate gradient algorithms do require 
linear search for every iteration [25]. This raises computational cost of 
the system. SCG was constructed to remove the necessity to perform 
tedious line searches. When using the scaled conjugate gradient 
approach, the MATLAB® training function ’trainscg’ revises weight as 
well as the bias parameter of network during the training process. 
Training of a specific network may occur provided there is a derivative 
function for the weights as well as the transfer functions. Step size in the 
scaled conjugate gradient method is function of a quadratic approxi
mation for error function. This ensures there is robustness as well as 
independency for the values presented by the user. The step size is 
approximating with the aid of varying methods. Second order term 
deduced from Eq. (3): 

Fig. 3. Data from experiment coupled with model responses for anode outlet temperature using ANN with Bayesian based algorithm.  

Fig. 4. Data from experiment coupled with model responses for anode outlet temperature using ANN with SCG algorithm.  
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Sk =
E′

(ωk + σkpk) − E′

(ωk)

σk
+ λkpk (3)  

λk is denoted as a scalar unit and changes based on the sign of σk. 

αk =
μk

δk
=

− pT
j E′

qω(y1)

pT
j E′′(ω)pj

(4)  

where ω is denoted as the vector in space Rn, Eω is the global error 

function, E′ω is gradient of error, E′

qw(y1) is quadratic approximation, 

and p1, p2, …..pk weight vectors that are not zero. 
λkcan equally be revised using Eq. (5) 

λk = 2
(

λk −
δk

|pk
2|

)

(5)  

When Δk > 0.75, then λk = λk
4 

Fig. 5. Experimental and model responses of cathode outlet temperature using ANN with LM algorithm.  

Fig. 6. Experimental and model responses of cathode outlet temperature using ANN with Bayesian based algorithm.  
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Δk < 0.25, then λk = λk +
δk(1 − Δk)

|p2
k |

Δkis a comparative value and deduced using Eq. (6). 

Δk =
2δk[E(ωk) − E(ωk + αkpk)]

μk
2 (6) 

The Bayesian estimation and regularization entails a Hessian matrix. 
For Mean square error, cost function as well as regularization by sum
mation of weights highlights the fact that Hessian matrix is quadratic 
hence deduced using LM [26]. Eq. (7) denotes the objective function: 

F = αEw + βED (7) 

For the Bayesian framework, weight related to the network are seen 
as variables arbitrarily chosen. Eq. (8) is the probability function for an 
array w of network weights 

f (wD, α, β, M) =
f (Dw, β, M)f (wα,M)

f (Dα, βM)
(8) 

M symbolizes the neural network model utilized whiles f(wα, M) is 
the prior density. f(Dw, β, M) this is the likelihood function. 

3. Results and discussions 

Fitting of the model was carried out using MATLAB Neural Network 
Toolbox®. Five inputs were considered for the study whiles two output 
variables were equally taken into account in the investigation [31]. The 
developed models utilised >90% of over 4000 data sets for training, 
<5% to test and validate the model. There was variation between the 
number of hidden layer neurons within single hidden layer in order to 
determine the best fit model. Table 1 presents a comparison between the 
mean squared error and the R2 using 3 algorithms for the outlet tem
perature at the anode. Type of algorithm is captured in column 1 whiles 
varying ranges of the hidden neurons are presented in column 2. The R2 

are in column 3 whiles the mean squared error is presented in column 3. 
Similar to Table 1 and Table 2 presents a comparison between the mean 
squared error and R2 for cathode outlet temperature. Fig. 2 shows 
experimental and model responses of the anode outlet temperature 

where the ANN models with LM are of 1, 10 and 20 hidden neurons. The 
y-axis is outlet temperature in ◦C whiles x-axis is time in s. Fig. 3 includes 
plots of experimental and model responses of the anode outlet temper
ature where the ANN models with Bayesian algorithm are of 1, 10 and 
20 hidden neurons. Fig. 4 shows plots of experimental and model re
sponses of the anode outlet temperature where the ANN models with 
SCG algorithm are of 1, 10 and 20 hidden neurons. 

Fig. 5 compares the experimental and model responses of ANN model 
with LM for cathode outlet temperature. Fig. 6 includes plots of exper
imental and model responses of the cathode outlet temperature where 
the ANN models with Bayesian regularization of 1, 10 and 20 hidden 
neurons. Fig. 7 shows the model responses of ANN model with SCG for 
cathode outlet temperature against the response of the experimental 
data. 

From all tables and figures, it can be seen that most models of 
different number of hidden neurons can effectively approximate the 
transient DMFC temperature data. However, models with higher num
ber of hidden neurons (higher than 20) for all three algorithms perform 
better from the mean squared error values as well as R2 values. More
over, Bayesian regularization algorithm consistently predicts more 
accurately for anode and cathode outlet temperatures compared to the 
other algorithms for very high hidden neurons such as at 40 hidden 
neurons. 

Although there are several investigations conducted on fuel cells 
especially for DMFCs [32–34], there are a handful of research work in 
estimating dynamic thermal behavior. One of the few studies includes 
the development of an adaptive fuzzy neural networks control of DMFC 
stack temperature. For this study, dynamic temperature models with the 
aid of radial basis function artificial neural network were developed [17, 
35]. There was a perfect correlation between the developed model and 
the experimental data. The outcome of the investigation highlights the 
fact that the temperature response could be maintained at ideal tem
perature range using the developed controller. Similarly, other methods 
using artificial neural network for the prediction of dynamic voltage as 
well as thermal characteristics of different types of fuel cells have 
equally been presented. For instance, dynamic proton exchange mem
brane fuel cell stack model with the aid of recurrent neural network was 
carried out [16]. The authors used two varying artificial neural networks 

Fig. 7. Experimental and model responses of cathode outlet temperature using ANN with SCG algorithm.  
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in their investigation. The model was established with the aid of actual 
load data for demonstrating good correlation with the gathered data 
where their eXogenous and nonlinear output error models forecasted 
voltage of the cell with error lower than 2%. Thus, the results obtained 
from the models presented in this paper for DMFC are comparable to the 
results of the data and studies found in literature for mainly PEMFC. 
Although there are a handful of relevant studies on DMFC modeling 
using ANN, there are not any studies like this to compare to that could be 
found. 

4. Conclusion 

In summary, the present investigation explored a comparison be
tween the utilization of artificial neural network modeling method for 
varying learning algorithms on a DMFC. The models are comparable and 
consistent with the empirical data. Although most dynamic ANN model 
responses had high coefficients of determinations (greater than 0.93), 
artificial neural network model using any of three algorithms with 
higher number of hidden neurons showed the best fit. So, it can however 
be argued that dynamic artificial neural network with higher number of 
hidden neurons (>20) combined with Bayesian regularization algorithm 
will have better performance when implementations of such models are 
made for optimization of related control design in thermal management 
of DMFC systems. For example, the optimal ANN model to estimate the 
anode outlet temperature used Bayesian algorithm and 40 neurons to 
result in mean square error of only 0.024 and coefficient of determina
tion of 0.997. Similarly, the most optimal ANN model to estimate the 
cathode outlet temperature also involved Bayesian algorithm and about 
40 neurons to result in mean square error of only 0.016, which is the 
lowest error from the data collected, and coefficient of determination of 
0.998. Moreover, majority of these modeling techniques remain valu
able tools in building a control architecture for similar systems to 
enhance efficiency as well as ensure stabilization of operation for real- 
time transient conditions. The optimized models of outlet tempera
tures for the DMFC using artificial neural network can be used to 
develop such control architecture to improve water and thermal man
agement to thus consequently in reduce parasitic power consumption 
and improve DMFC performance efficiency. 
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Hussam Jouhara, The utilisation of useful ambient energy in residential dwellings 
to improve thermal comfort and reduce energy consumption, Int. J. Thermofluids 9 

(2021), 100059, https://doi.org/10.1016/j.ijft.2020.100059. VolumeISSN 2666- 
2027. 

[5] Daniel Hill, Adam Martin, Nathanael Martin-Nelson, Charles Granger, 
Matthew Memmott, Kody Powell, John Hedengren, Techno-economic sensitivity 
analysis for combined design and operation of a small modular reactor hybrid 
energy system, Int. J. Thermofluids 16 (2022), 100191, https://doi.org/10.1016/j. 
ijft.2022.100191. VolumeISSN 2666-2027. 

[6] Ammar Alkhalidi, Khalid Alqarra, Mohammad Ali Abdelkareem, A.G. Olabi, 
Renewable energy curtailment practices in Jordan and proposed solutions, Int. J. 
Thermofluids 16 (2022), 100196, https://doi.org/10.1016/j.ijft.2022.100196. 
VolumeISSN 2666-2027. 

[7] Ammar Alkhalidi, Tuqa Alrousan, Manal Ishbeytah, Mohammad Ali Abdelkareem, 
A.G. Olabi, Recommendations for energy storage compartment used in renewable 
energy project, Int. J. Thermofluids 15 (2022), 100182, https://doi.org/10.1016/j. 
ijft.2022.100182. VolumeISSN 2666-2027. 
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