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We propose a modification of a method based on Fourier analysis to obtain
the Floquet characteristic exponents for periodic homogeneous linear systems,
which shows a high precision. This modification uses a variational principle to
find the correct Floquet exponents among the solutions of an algebraic equation.
Once we have these Floquet exponents, we determine explicit approximated
solutions. We test our results on systems for which exact solutions are known
to verify the accuracy of our method including one-dimensional periodic
potentials of interest in quantum physics. Using the equivalent linear system,
we also study approximate solutions for homogeneous linear equations with
periodic coefficients.
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1 INTRODUCTION

Linear periodic differential equations and systems of equations have an enormous presence in theoretical physics and
engineering: harmonic oscillator, little oscillations, vibrations, etc. However, there is a limited number of them that can
be exactly solvable. In most cases, numerical methods are the only available. In order to obtain solutions of linear systems
with periodic coefficients, one obtains the so called Floquet or characteristic exponents that determine a fundamental
matrix for the system. This determination is usually given by a numerical approximation. In the case of linear equations
with periodic non-constant coefficients, we always have the possibility of constructing the associated linear system, where
the coefficients are again periodic, and then solving the system by means of the Floquet exponents.

One of the most popular procedures to give approximate solutions for linear differential equations with periodic coeffi-
cients uses truncated Fourier series, whose coefficients are determined by the widely used Harmonic Balance method.1–4

A modification of this method, which is particularly suitable for the Mathieu equation and other Hill type equations, has
been proposed in Gadella et al.5 This modification consists in a non-perturbative semi-analytic method to find approxi-
mate solutions of Hill type equations. The characteristic value is determined through algebraic functions so as to obtain
the periodic solution. This method does not restrict the value of the Mathieu coefficient.

Math Meth Appl Sci. 2023;1–19. wileyonlinelibrary.com/journal/mma © 2023 John Wiley & Sons, Ltd. 1
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2 GADELLA AND LARA

Precisely, the Harmonic Balance method has been used as an intermediate tool in order to obtain an approximation of
the Floquet exponents for linear systems with periodic coefficients.6 Lazarus and Thomas6 mix the Harmonic Balance, one
numerical asymptotic method, and the Hill method in order to compute the stability of the continued periodic solutions.

In the present paper, we introduce a modification of the procedure in Lazarus and Thomas6 including a variational
principle, which gives the Floquet exponents as the critical values of this variational principle. This is easy to use and
provides a great accuracy for the Floquet exponents and solutions as an added value. We have tested our procedure in
specific examples such as the Mathieu equation and others. This method is primarily targeted to obtain the Floquet
exponents of linear periodic systems, although the application to obtain analytic algebraic approximate solutions of linear
differential equations with periodic coefficients is then straightforward.

This consideration of the Floquet coefficients as critical points of a variational problem is what makes our point of view
different from previous methods including those in Lazarus and Thomas.6

Before a description of our method and for the benefit of the reader, let us begin with an account of some important
and well known results, which are relevant in our presentation.7

Let A(t) be an n × n real matrix with continuous entries on the variable t and x(t) ∈ Rn for each value of t. In addition,
all these entries are periodic with the same period T, so that A(t + T) = A(t) for all t. Let us consider a linear system of
the form

.x(t) = A(t)x(t), (1)

where the dot means derivative with respect to t. The Floquet theory that refers to this type of systems is well known.7–10

In the sequel, we recall some interesting well known facts that are useful in our discussion7:

i. If Φ(t) is a fundamental matrix of (1), Φ(t + T) is again a fundamental matrix. As is the case for any pair of two
fundamental matrices, there must be a constant invertible matrix C such that

Φ(t + T) = Φ(t)C. (2)

Since C is invertible, it must exist a n × n matrix B such that

C = eBT , (3)

where T is again the period for A(t).
ii. Consider the matrix P(t) ∶= Φ(t)e−Bt. Then, P(t) is periodic with period T and P(t) is invertible.

iii. Let us consider the following new indeterminate y(t) as

y(t) = P−1(t)x(t). (4)

Since Φ(t) is a fundamental matrix of (1) and, considering the definition of P(t), we have that

.
P(t) = A(t)P(t) − P(t)B , (5)

where A(t) and B are as in (1) and (3), respectively. Since P(t) is invertible, using (4) gives

.y = By . (6)

Thus, system (1) is equivalent to a system with constant coefficients. We shall recall in a moment on the importance
of the matrix B.

iv. Then, if we define an initial condition x(t0) ∶= P(t0)y(t0) and taking into account that the solution of (6) satisfying
the initial condition y(t0) is given by

y(t) = e(t−t0)B y(t0), (7)
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GADELLA AND LARA 3

we have that

x(t) = P(t)e(t−t0)B P−1(t0)x(t0). (8)

Let us choose as y(t0) the eigenvector y0 of B with eigenvalue 𝜆0, i.e., By0 = 𝜆0 y0, where 𝜆0 is any of the eigevalues of
B. Then, if x0 ∶= P(t0)y(t0) = P(t0)y0, one has

y(t) = e(t−t0)𝜆0 y0 =⇒ x(t) = P(t)e(t−t0)𝜆0 P−1(t0)x0, (9)

expression, which may be written as

x(t) = 𝜼(t)e(t−t0)𝜆0 , with 𝜼(t) = P(t)P−1(t0)x0. (10)

Since P(t) is periodic with period T, Equations (9) and (10) show that 𝜼(t) is also periodic with period T.
In summary, we can obtain particular solutions of (1) if we can determine the eigenvalues of the matrix B. This eigen-

values are usually called Floquet characteristic exponents or Floquet exponents or simply characteristic exponents. We
shall keep this terminology along our manuscript. There are no general analytic methods to obtain these characteristic
exponents, and, hence, numerical methods for their determination are in order.

In the present article, we propose an analytic approximate method in order to obtain the characteristic coefficients,
with the following organization: In Section 2, we give a standard method to obtain the Floquet characteristic coefficients,
important for a comparison with our proposed method. We introduce our analytic algebraic approximation method in
Section 3, more precisely on Section 3.1, where we propose the variational principle to obtain the Floquet critical expo-
nents. Section 4 is devoted to a test using the Mathieu equation. In Section 5, we consider two or more dimensional systems
in which each component may have different variation rates. In Section 6, we test our results on models of interest in
physics. We close the paper with some concluding remarks.

2 DETERMINATION OF THE CHARACTERISTIC EXPONENTS: STANDARD
METHOD

Let us go back to Equation (1), in which A(t) is periodic with period T. As initial values, we may choose any of the vectors
of the canonical basis in Rn, i.e., those vectors with all components equal to zero except the ith component, which is
equal to one. Once we have chosen an initial value, a numerical integration such as a fourth order Runge-Kutta13 permits
us to obtain n discrete linearly independent solutions on the finite interval (0,T), where T is the period. Then, by using
interpolation, for instance with splines, we obtain an approximate continuous solution. Using the initial conditions, we
obtain n approximate linearly independent solutions X1(t),X2(t), … ,Xn(t), whose columns determine an approximate
fundamental matrix Φ(t). This procedure is rather simple for n = 2, which will be our case.

After (2) and (3), we readily obtain

C ∶= exp{BT} = Φ−1(0)Φ(T). (11)

The relation between the eigenvalues 𝛿i of C and the characteristic coefficients 𝜆i is well known:

𝜆i =
1
T

log 𝛿i , i = 1, 2, … ,n. (12)

Thus, we have determined the characteristic coefficients and the numerical solution X(t). We have to take into account
that the imaginary part of the characteristic coefficients is not uniquely determined since

𝛿i = exp{𝜆i + 2𝜋i∕T}T = e𝜆iT . (13)

Our choice will always fix this imaginary part in such a way that the exponent coincides with 𝜆iT, being 𝜆i an
eigenvalue of B.

The objective of the present article is to show that a good approximation on the characteristic coefficients may be
obtained through an algebraic analytic approximation based on Fourier analysis.
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4 GADELLA AND LARA

3 APPROXIMATED ANALYTIC SOLUTION

The relation between first-order linear systems of the form (1) and linear equations of order n is well known.7 With this
idea in mind, let us illustrate our method with second-order linear differential equations of the form:

𝑦̈(t) + a(t) .
𝑦(t) + b(t)𝑦(t) = 0, (14)

where a(t) and b(t) are periodic functions with respective periods Ta and Tb, which are not arbitrary, since we have to
impose the condition that the ratio Ta∕Tb be rational. In addition, a(t) is continuously differentiable and b(t) continuous.
The linear system equivalent to (14) is (z1(t) ∶= 𝑦(t), z2(t) =

.
𝑦(t))( .z1(t).z2(t)

)
=
(

0 1
−b(t) −a(t)

)(
z1(t)
z2(t)

)
⇐⇒

.z(t) = A(t)z(t). (15)

With the change

𝑦(t) = x(t) exp
{
−1

2 ∫ a(t)dt
}
, (16)

Equation (14) yields to

ẍ(t) + 𝑓 (t)x(t) = 0, (17)

with

𝑓 (t) = b(t) − 1
2

a′(t) − 1
4

a2(t). (18)

The function 𝑓 (t) is continuous and periodic with a period T = max(Ta,Tb). By the Floquet characteristic exponents,
or just characteristic exponents, of (14), we mean the characteristic exponents of the associated system (15). Analogously,
the characteristic exponents of (17) are the characteristic exponents of its related system.

Let us list in the sequel some of the properties of Equation (14):

• Assume that

𝑓 (t) > 0 and T ∫
T

0
𝑓 (t)dt ≤ 4. (19)

Then, it has been proven in Chicone8 that all solutions are bounded. Consequently, the characteristic exponents
of (14) do not have positive real part.

• If 𝑓 (t) < 0, let us multiply (14) by 𝑦(t) and integrate by parts. Then, we have

d
dt
𝑦2(t) = ∫ [𝑦′(t)]2 dt − ∫ 𝑓 (t)𝑦2(t)dt > 0. (20)

Since 𝑦2(t) ≤ 0, we note that for large values on the variable t, t → ∞, the solution 𝑦(t) is not bounded.
Consequently, the characteristic coefficients must have a positive real part.

• Let us go to Equation (17). It can be proven8,9 that the sum of its characteristic exponents is equal to zero.

3.1 The method
Consider Equation (17) and assume that 𝜆 is one of its characteristic exponents. Choosing for simplicity t0 = 0, we go
back to (17) where it was stated that for each Floquet exponent, there is a solution of the type x(t) = 𝜂(t)e𝜆 t, where 𝜂(t) is
periodic with period T.* The point is that 𝜂(t) and 𝜆 are unknown, and our objective is to find an approximate expression
for them. Using this result in (17), we obtain the following differential equation:

𝜂̈(t) + 2𝜆 .
𝜂(t) + (𝜆2 + 𝑓 (t))𝜂(t) = 0. (21)

*We may assume that a basis of solutions is of this form, provided that B be diagonalizable.
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GADELLA AND LARA 5

We have obtained a second-order equation with a periodic coefficient 𝑓 (t) with period T. Let us expand 𝜂(t) into Fourier
series and then truncate this series. The truncated solution 𝜂n(𝜆, t) is

𝜂n(𝜆, t) =
a0

2
+

n∑
k=1

{ak cos(k𝜔t) + bk sin(k𝜔t)}, (22)

with 𝜔 ∶= 2𝜋∕T. Now, xn(t) = zn(t, 𝜆) exp(𝜆t).
In order to determine the characteristic exponent 𝜆, we propose the following strategy:

i. First of all, we determine the coefficients ak and bk by means of the Harmonic Balance (HB) method.1–3 In summary,
we replace (22) into (21) so as to obtain a new Fourier polynomial. Since Equation (20) must be satisfied, coefficients
for the harmonics in this Fourier polynomial must vanish. This yields to an homogeneous linear algebraic system
of dimension 2n + 1, with indeterminates a0, ak and bk and k = 1, 2, … ,n. In order to obtain non-trivial solutions,
the determinant Δ of the matrix of the system of the coefficients must vanish. Since (21) is linear, this determinant
is a polynomial on 𝜆, so that

Δ(𝜆) = 0 (23)
gives 𝜆 in terms of𝜔 and any other parameter appearing in (20). Although (23) has at most n roots, only two of them
could be the characteristic exponents we are looking for. Moreover, it is not difficult to check that the coefficients ak
and bk, k = 1, 2, … ,n are rational polynomial functions on 𝜆.

ii. After we have completed the previous step, we shall determine the approximate value of 𝜆 by a variational principle.
Since the exact solution x(t) satisfies

∫
T

0
(ẍ(t) + 𝑓 (t)x(t))∗ (ẍ(t) + 𝑓 (t)x(t))dt = 0, (24)

where the star denotes complex conjugation, we propose that the approximate characteristic exponent, 𝜆k, we are
searching for is a critical point (usually a minimum) of E(𝜆) defined as

E(𝜆) ∶= ∫
T

0
(ẍn(t) + 𝑓 (t)xn(t))∗ (ẍn(t) + 𝑓 (t)xn(t))dt. (25)

Note that 𝜆may have an imaginary part and thus x(t). This is the reason why we have to include a complex conjugation
in (24)–(25).

Once we have the Floquet characteristic exponents for the given equation, we determine the coefficients a0, ak, and
bk, k = 1, 2, … ,n for the truncated Fourier series that approximates the solution.

Our variational principle is just an Ansatz, which should be confirmed by numerical experiments. This is the main
objective of the next section.

4 APPLICATION: THE MATHIEU EQUATION

The Mathieu equation is a simple non-trivial equation with periodic coefficients which is well suitable as a laboratory in
order to test the above ideas as shown by previous work of our group.5 The Mathieu equation has been largely studied, as
for instance in previous works.14–19 Let us write the Mathieu equation as

ẍ(t) + 𝜔2(1 − 𝛼 cos t)x(t) = 0. (26)

As is well known, two linearly independent solutions are

x1(t) = C
(

4𝜔2, 2𝛼𝜔2,
t
2

)
, x2(t) = S

(
4𝜔2, 2𝛼𝜔2,

t
2

)
, (27)

where C and S stand for the Mathieu sine and cosine.19 These are exact solutions, so that we can determine exact charac-
teristic exponents just by constructing a fundamental matrix with them and, then, making use of Equations (12) and (13),
which in this case give the exact results.
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6 GADELLA AND LARA

Now, the objective is clear and is the comparison of the results obtained with our proposed variational method with
the exact results that can be obtained as described above. In addition, we shall also compare both with those obtained
following the lines introduced in Section 2.

Before proceeding, a couple of comments are in order. First of all, using (19), we see that for 𝜔 < 1∕4 and for all values
of 𝛼, the solutions are bounded. Also note that whenever 𝜆 = ik, k being an integer number, the solution is periodic with
period equal to 2𝜋. Finally, let us recall that the sum of the critical exponents is equal to zero, an interesting property to
take into account when testing our results.

Let us go back to the determinant (23), which we write now as Δ(𝜆) ≡ Δ𝛼,𝜔(𝜆), due to its dependence on all these three
variables. In our case, it is an even polynomial of degree 2(2n + 1). Furthermore, in all cases studied, it is also an even
polynomial on the variables 𝛼 and 𝜔. As an example, let us take n = 2, so that the polynomial on 𝜆 has degree 10:

Δ𝛼,𝜔(𝜆) =
10∑

k=0,even
ck𝜆

k. (28)

In (28), all odd coefficients vanish, while the even coefficients are given by

c0 = 16𝜔2 + 8
(
−5 + 𝛼2) 𝜔4 +

(
33 − 14𝛼2) 𝜔6𝛼2 − 1

2
(
20 − 14 + 𝛼4) 𝜔8 − 8

(
1 − 𝛼2 + 3

16
𝛼4
)
𝜔10,

c2 = 16 +
(
35 − 6𝛼2)𝜔4 + 10

(
𝛼2 − 2

)
𝜔6 +

(
5 − 3𝛼2 + 3

16
𝛼4
)
𝜔8,

c4 = 40 + 35𝜔2 + 3𝛼2𝜔4 +
(
10 − 3𝛼2) 𝜔6,

c6 = 33 + 20𝜔2 −
(
−10 + 𝛼2)𝜔4,

c8 = 5
(
2 + 𝜔2) ,

c10 = 304 + 80𝜔2.

(29)

Then, using the Harmonic Balance method that, in this case, is a simple algebraic problem in which the equations that
determine the coefficients ak and bk are homogeneous and starting with the initial condition a1 = 1, we obtain for the
first coefficients the following values:

b1 =
(
−𝜆𝛼2𝜔4 + 2𝜆

(
−16𝜆2 −

(
−4 + 𝜆2 + 𝜔2)2

))
∕d1,

b2 = −12𝜆𝛼𝜔2 (−4 + 𝜆2 + 𝜔2) ∕d2,
(30)

a0 = 1
𝛼𝜔2

{
3
(
−2 + 𝜆2 + 𝜔2) − 1

8𝜆
[(

16 + 4𝜆4 − 20𝜔2 −
(
−4 + 𝛼2)𝜔4

+ 𝜆2 (−52 + 8𝜔2)) (−𝜆𝛼2𝜔4 + 2𝜆
(
−16𝜆2 −

(
−4 + 𝜆2 + 𝜔2)2

)
∕d1

]}
,

a1 = 1,

a2 = − 1
2
[
𝛼𝜔2 (−16 − 4𝜆4 + 20𝜔2 +

(
−4 + 𝛼2)𝜔4 + 𝜆2 (52 − 8𝜔2))] ∕d2,

(31)

where

d1 = 1
4
𝛼2𝜔4 (−4 + 𝜆2 + 𝜔2) + (

−1 + 𝜆2 + 𝜔2) (−16𝜆2 −
(
−4 + 𝜆2 + 𝜔2)2

,

d2 = 4𝜆6 + 4𝜆4 (7 + 3𝜔2) + 𝜆2 (32 − 8𝜔2 −
(
−12 + 𝛼2)𝜔4) − (

−4 + 𝜔2) (−16 + 20𝜔2 +
(
−4 + 𝜆2)𝜔4)) . (32)

We may obtain similar expressions for higher values of n, although they are increasingly complicated and do not provide
of any new information. Once we have obtained the roots 𝜆k of (23), only two of them can be chosen to be the critical expo-
nents. They are precisely those which minimize (25). Once we have obtained the critical exponents, we readily determine
an explicit approximated solution of (17).

As an example, let us choose 𝛼 = 0.5, 𝜔 = 1 and n = 2. We obtain the following approximate solution:

xA(t) = exp
(
− 1

43
t
)( 267

1069
+ cos t − 4

45
cos 2t − 185

84
sin t + 15

83
sin 2t

)
. (33)
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GADELLA AND LARA 7

Note that the general exact solution has the form xe(t) = c1 x1(t) + c2 x2(t), where xi(t), i = 1, 2 are given in (26). The
constants ci, i = 1, 2 should be determined through the initial conditions xe(0) ∶= xA(0) and .xe(0) ∶=

.xA(0), where the dot
represents derivative with respect to t. These values are obtained with the expression for xA(t) in (33).

We know the exact value of the characteristic exponents, which validates our comparison, take one and denote it as
𝜆e. These characteristic exponents are 𝜆 = ±1∕43. In order to compare the exact solution with the approximation given
in (33), it is natural to choose the exponent with minus sign, so that 𝜆e = −1∕43. Thus, the exact solution has the form
xe(t) = e𝜆et 𝜂(t); see comments before (21). Since we have determined already xe(t) through the above initial conditions,
we have 𝜂(t). Then, expand 𝜂(t) into Fourier series. We obtain an explicit expression of the form:

xe(t) = exp
(
− 1

43
t
) ( 66

265
+ 486

487
cos t − 4

45
cos 2t + 1

340
cos 3t − 131

60
sin t + 7

39
sin 2t − 1

176
sin 3t + …

)
. (34)

The coefficients in both solutions have been adjusted to a rational number with an error upper bound of 0.07%. The
relative difference between approximate (33) and exact (34) solutions is at most less than 0.9%. This is certainly satisfactory.
As expected, a higher value of n gives a higher precision. For instance, take n = 3, 𝛼 = 0.5 and 𝜔 = 1. We have for the
approximate and exact solution, respectively, the following results:

xA(t) = exp
(
− 1

43
t
) ( 267

1069
+ cos t − 5

56
cos 2t + 1

346
cos 3t − 376

171
sin t + 19

105
sin 2t − 1

178
sin 3t

)
(35)

and

xe(t) = exp
(
− 1

43
t
) ( 285

1141
+ cos t − 5

56
cos 2t + 1

346
cos 3t − 596

271
sin t + 19

105
sin 2t − 1

178
sin 3t

)
+ … . (36)

For n = 3, 𝛼 = 1 and 𝜔 = 1, we obtain analogously:

xA(t) = exp
(
− 1

10
t
) (1

2
+ cos t − 1

5
cos 2t + 1

69
cos 3t − 19

9
sin t + 1

3
sin 2t − 1

50
sin 3t

)
(37)

and

xe(t) = exp
(
− 1

10
t
) (1

2
+ cos t − 1

5
cos 2t + 1

69
cos 3t − 19

9
sin t + 1

3
sin 2t − 1

51
sin 3t

)
+ … . (38)

It is important to stress that for n = 2 and n = 3, we have used different initial conditions so that the exact solutions (36)
and (37) do not coincide. These initial conditions are given by the values of xA(t) and its first derivative at the origin. In
particular, for n = 2, we have x(0) = 1.16088 and .x(0) = −1.86793. For n = 3, we have x(0) = 1.16337 and .x(0) = −1.88083.
Since we have changed the initial conditions, we have changed the solution and therefore the critical exponents could be
different, which is the case here.

Observe that we have achieved a better precision. The conclusion is that the higher the harmonic number n is the better
accuracy is obtained. This result is quite satisfactory.

In Table 1, we compare the values of the approximate characteristic exponents given by our method, 𝜆A, the exact, 𝜆e,
and the one detemined by the method sketched in Section 2, 𝜆num, for n = 3, 𝜔 = 1 and different values of 𝛼. The precision
of xA(t) is evaluated through the second moment

𝜶 1/10 3/10 5/10 7/10 1
𝜆e 9.31603 10−4 8.37695 10−3 2.32152 10−2 4.52826 10−2 9.10175 10−2

𝜆A 9.31603 10−4 8.37695 10−3 2.32152 10−2 4.52825 10−2 9.10172 10−2

𝜆num 9.31620 10−4 8.37697 10−3 2.32151 10−2 4.52826 10−2 9.10175 10−2

S 2 0. 4. 10−9 9. 10−8 6. 10−7 4. 10−6

E(𝜆) 2.10−10 4.10−7 6.10−6 7.10−5 5.10−4

TABLE 1 Values of 𝜆e, 𝜆A, 𝜆num, S 2 and E(𝜆) for
some selected values of the parameter 𝛼
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8 GADELLA AND LARA

FIGURE 1 Variation of 𝜆A in terms of 𝛼 for n = 2 and 𝜔 = 1 [Colour figure can be viewed at wileyonlinelibrary.com]

S2 ∶= 1
T ∫

T

0
(xe(t) − xA(t))∗ (xe(t) − xA(t))dt. (39)

Finally, we include E(𝜆) given in (24), which measures the deviation of the solution xA(t) from the exact solution of the
differential equation (16). Since the sum of the exponents vanish, we refer only to one of them. Nevertheless, we must
say that errors in the method that are always present in this kind of estimations make the sum of both critical exponents
not exactly equal to zero. An estimation with six digits of 𝜆A exactly matches the exact result, while 𝜆num has a minor
discrepancy of three units in the last digit. Computational results have been preformed with the use of Mathematica, the
CPU time being negligible.

In Figure 1, we plot the dependence of 𝜆A with 𝛼 for n + 2 and 𝜔 = 1. Note that both solutions appear symmetric with
respect to the abscise axis. Recall that there are always two solutions whose sum is equal to zero.

We finish this discussion with the presentation of some simple physical models, which can be described via the Mathieu
equation. Among all possibilities, let us choose the following one dimensional models:

• The Schrödinger equation of the quantum pendulum is given by

− ℏ2

2ml2
d2𝜓(𝜂)

d𝜂2 + mgl(1 + cos 𝜂)𝜓(𝜂) = E𝜓(𝜂), (40)

where 𝜂 is the angle variable.
• The Kapitza pendulum: This is an inverted pendulum for which one point have fast oscillations upwards and

downwards. Its equation is given by

𝜃̈(t) −
g
𝓁

sin 𝜃(t) = A
l
𝓁𝜔2 sin𝜔t sin 𝜃(t). (41)

For small oscillations, we have sin 𝜃 ≈ 𝜃 and, consequently, (41) becomes the Mathieu equation, which is now
periodic for the variable time t.

• One equation that is reducible to the Mathieu equation is the one-dimensional Schrödinger equation with potential
given by

V(x) = V0cos2
(2𝜋
𝜆

x
)
, (42)

where V0 > 0 and 𝜆 is the wave length of two interfering lasers.20
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GADELLA AND LARA 9

5 SOLUTIONS GROWING AT DIFFERENT RATES

Along this section, we shall investigate a situation in which the behavior of solutions grow at different rates. Tian and
Wang10 discuss the case in which A(t) and the matrix obtained by integrating its entries with respect to the variable t
commute. We are going to explore how to apply our method when this is the case. It is noteworthy that we now have an
explicit expression for the fundamental matrix Φ(t). Let us go back to (1) and pose a result that has been proven in Tian
and Wang.10 Here, we use the following hypothesis:

i. All entries of A(t) in (1) are integrable on the interval [0, t].
ii. The matrix A(t) fulfills the following commutation relation:[

∫
t

0
A(v)dv

]
A(t) = A(t)

[
∫

t

0
A(v)dv

]
, (43)

where the integral of a matrix is the matrix resulting of integrating all its entries. A sufficient condition for this
commutation is given by Tian and Wang.10, corollary 2.3 However, it is not necessary, and we are not using it in this
presentation. Our hypothesis is just (43).

Then Tian and Wang,10 its general solution can be written as x(t) = Φ(t)x(0), where the initial condition x(0) is arbitrary
and the fundamental matrix Φ(t) is given by

Φ(t) = exp
{
∫

t

0
A(v)dv

}
. (44)

Since we are mainly interested in equations of the type (21), we shall restrict ourselves to the case n = 2. First of all, let
us use the following notation:

D(t) ∶= ∫
t

0
A(v)dv, (45)

so that (43) takes the form:

D(t)D′(t) = D′(t)D(t). (46)

We construct the matrix D′(t) by taken the derivative with respect to t of all entries in D(t). A straightforward integration
of (46) shows that there exists two non-zero constants 𝛼 and 𝛽 such that, if we denote by ai𝑗(t) the entries of A(t),

a21(t) = 𝛼a12(t) , a22(t) = a11(t) + 𝛽 a12(t), (47)

so that

D(t) =
(
𝑓 (t) g(t)
𝛼 g(t) 𝑓 (t) + 𝛽 g(t)

)
, (48)

with

𝑓 (t) = ∫
t

0
a11(v)dv , g(t) = ∫

t

0
a12(v)dv. (49)

The converse is also true, in the sense that (47) implies (46).
Then, we may obtain the fundamental matrix (44) in the following form:

Φ(t) = Q(t) exp
{
𝑓 (t) + 1

2
𝛽 g(t)

}
, (50)

with

Q(t) =
⎛⎜⎜⎝

cosh
(

1
2
𝛾 g(t)

)
− 𝛽

𝛾
sinh

(
1
2
𝛾 g(t)

)
2
𝛾

sinh
(

1
2
𝛾 g(t)

)
2𝛼
𝛾

sinh
(

1
2
𝛾 g(t)

)
cosh

(
1
2
𝛾 g(t)

)
+ 𝛽

𝛾
sinh

(
1
2
𝛾 g(t)

) ⎞⎟⎟⎠ . (51)
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10 GADELLA AND LARA

Here, 𝛾 ∶=
√

4𝛼 + 𝛽2. Observe that the dependence on t of Q(t) comes solely with g(t) and, hence, of a12(t) only. An
explicit expression for Φ(t) is only possible if we know the primitives for a11(t) and a12(t). Otherwise, we have to resort to
numerical estimations of 𝑓 (t) and g(t).

Let us prove that the fundamental matrix is given by (50)–(51). We perform this proof into two steps. First of all, take
𝛽 = 0, and then, remove this condition.

i. The case 𝛽 = 0. Now, D(t) may be written as

D(t) = 𝑓 (t)I + g(t)
(

0 1
𝛼 0

)
, (52)

where I is the identity matrix. Since any matrix commutes with the identity, by exponentiation, we have

Φ(t) = eD(t) = exp{𝑓 (t)I} · exp
[

g(t)
(

0 1
𝛼 0

)]
. (53)

In order to calculate the second exponential in (53), we proceed by direct exponentiation of the involved matrix.
Then, (53) becomes

Φ(t) = exp{𝑓 (t)}
⎛⎜⎜⎝

1 + g2𝛼

2
+ g4𝛼2

24
+ … g + g3𝛼

6
+ g5𝛼2

120
+ …

𝛼

(
g + g3𝛼

6
+ g5𝛼2

120
+ …

)
1 + g2𝛼

2
+ g4𝛼2

24
+ …

⎞⎟⎟⎠ . (54)

It is obvious that the entries of the matrix in (54) are Taylor series corresponding to sinh and cosh centered at the
origin. Thus, we obtain Q(t) as in (48) for 𝛽 = 0.

ii. The case 𝛽 ≠ 0. The procedure is essentially the same. In this case, we decompose D(t) as

D(t) =
{
𝑓 (t) + 𝛽

2
g(t)

}
I + g(t)

(
−𝛽∕2 1
𝛼 𝛽∕2

)
, (55)

so that

Φ(t) = eD(t) = exp
{
𝑓 (t) + 𝛽

2
g(t)

}
· exp

{
g(t)

(
−𝛽∕2 1
𝛼 t 𝛽∕2 t

)}
. (56)

Since A(t) is periodic with period T, we have from (2), (3), and Φ(T) = eD(T), the following relation:

C = eBT = Φ(T) = eD(T), (57)

so that

B = 1
T

D(T). (58)

We see that the matrix B of (6) is the average in the mean of A(t). Since the Floquet exponents are the eigenvalues of
B, we easily determine these Floquet coefficients. In addition, we provide of an interesting interpretation to the entries of
the matrix A(t). Here, the Floquet exponents have the following form:

𝜆± = 1
T

(
𝑓 (T) + 1

2
(𝛽 ± 𝛾)g(T)

)
. (59)

It is important to remark that this procedure makes sense if (45) holds. Otherwise, the eigenvalues of A(t) may differ
from the critical exponents, as in the case of the Marcus-Yamabe equation to be discussed next. In addition, in our case,
the critical exponents also coincide with the eigenvalues of the average of A(t) over a period, which is the matrix given by

A(t) ∶= 1
T ∫

T

0
A(t)dt. (60)
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GADELLA AND LARA 11

5.1 An example
The results of the previous subsection allow us to test the method introduced in Section 3. Now, A(t) is a 2 × 2 periodic
matrix so that relations (48) are valid. For the independent entries and parameters in (48), we choose

a11(t) = −1 , a12(t) = 2 + sin t , 𝛼 = −1 , 𝛽 = 0. (61)

Relations (61) fully determine A(t), which is periodic with period 2𝜋. Using (10) and (11), we have

Φ(t) = e−t
(

cos(1 + 2t − cos t) sin(1 + 2t − cos t)
− sin(1 + 2t − cos t) cos(1 + 2t − cos t)

)
. (62)

Using these data, let us write Equation (1) as a second order linear equation. This gives

(2 + sin t)ẍ(t) + (4 − cos t + 2 sin t) .x(t) + (10 − cos t + 13 sin t + 6sin2t + sin3t)x(t) = 0. (63)

Next, we determine the critical exponents by our method for n = 3. The result is a double 𝜆A = −1 − 1.9998i (we recall
that the exponents are unique modulus k𝜋i∕T, k being integer). Here, it is possible to obtain the exact value, which gives
𝜆e = −1 − 2i. The conclusion is that our method gives far more precision than the standard numerical method.

Finally, let us integrate (63) using our method, approaching coefficients by their nearest rational number and use
trigonometric relations. We have the following approximation for the solution:

xA(t) = e−t
(1

8
i + 8

17
cos t − 7

8
i cos(2t) + 1

2
cos(3t) + 1

8
i cos(4x) − 1

42
cos(5t)

−10
19

i sin t − 26
30

sin(2t) − 1
2

i sin(3t) + 1
8

sin(4t) + 1
42

i sin(5t) + …
)
.

(64)

Using (62), let us obtain the first terms of the exact solution by using the initial conditions x(0) = xA(0) and .x(0) = .xA(0)
and expanding the entries of Φ(t) in Fourier series. The result is

xe(t) = e−t
(1

8
i + 7

15
cos t − 7

8
i cos(2t) + 1

2
cos(3t) + 1

8
i cos(4x) − 1

45
cos(5t)

−6
7

i sin t − 26
30

sin(2t) − 1
2

i sin(3t) + 1
8

sin(4t) + 1
45

i sin(5t) + …
)
.

(65)

The coincidence between both results is high showing the remarkable accuracy of our method.

5.2 A second example: The Marcus-Yamabe equation
As a second example, let us consider the Marcus-Yamabe system, which is of second order. This has been given as a
counter-example of a periodic system such that the eigenvalues of A(t) are constant, i.e., independent of t, equal to
(−1±

√
7 i)∕4 and yet being the zero solution not stable.9,11 The Marcus Yamabe system is of the form (1), with matrix A(t)

given by

A(t) =

(
−1 + 3

2
cos2t 1 − 3

2
cos t sin t

−1 − 3
2

cos t sin t −1 + 3
2

sin2t

)
. (66)

System (64) has two linearly independent solutions of the form:

x1(t) =
(
− cos t

sin t

)
et∕2 , x2(t) =

(
sin t
cos t

)
e−t. (67)

It is easy to write the associated differential equation of the Marcus-Yamabe system, the Marcus-Yamabe equation.
This is

(8 − 6 sin 2t)ẍ(t) + (4 + 12 cos 2t − 3 sin 2t) .x(t) + (−5 + 3 cos 2t + 9 sin 2t)x(t) = 0. (68)
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12 GADELLA AND LARA

This equation does not have singular points. Its Floquet characteristic coefficients are −1 and 1/2; see (67). If we apply
the method introduced in Section 3 with n = 3, we obtain the same critical exponents and the following basis of the space
of solutions:

x1(t) = e−t sin t , x2(t) = et∕2 cos t, (69)

with coincide with the exact solution as we see from (67). The conclusion is that our approximate method has yield to the
exact solution with n = 3.

5.3 A third simple example
Dieci et al12 propose a multiple shooting method combined with continuous orthonormalization in order to solve
multi-periodic problems. We want to comment one of their examples and show that we arrive to the same solution using
the ideas we have introduced in the present section. In fact, we choose their example 5.2, in which

A(t) =
(

0 𝛽 sin(𝛼 t)
−𝛽 sin(𝛼 t) 0

)
. (70)

Let us choose 𝛼 = 𝛽 = 1 for simplicity. Note that in (70), we have used the notation in Dieci et al,12 so that the parameters
𝛼 and 𝛽 in this matrix have nothing to do with others previously introduced by us.

Then, after (60), we conclude that the average matrix A(t) is the zero matrix, so that the critical exponents are zero. In
consequence, all solutions are periodic.

Following the above notation, we have
𝑓 (t) ≡ 0 , g(t) ≡ 1 − cos t. (71)

Consequently, matrix D(t) defined in (45) satisfies the commutation relation (46). Observe that 𝛾 in (51) is here given
by 𝛾 = 2i, so that the fundamental matrix Φ(t) obtained after (50)–(51), is now given by(

cos(1 − cos t) sin(1 − cos t)
− sin(1 − cos t) cos(1 − cos t)

)
, (72)

which is exactly the result given in Dieci et al.12

6 SOME MODELS OF INTEREST IN PHYSICS

In this section, we propose some other examples of application of the general formalism as described in Sections 2 and 3.
All the following examples are one-dimensional quantum models of interest in physics, are periodic and governed by a
second order linear equation such as the Schrödinger equation. We intend to develop with some detail one of them and
leave the others for the reader consideration.

• Schrödinger equation with potential given by a periodic function with compact support. This is (ℏ∕(2m) = 1)

− d2

dx2 𝜓(x) + V(x, a)𝜓(x) = E𝜓(x), (73)

where a > 0 is a fixed real number and

V(x, a) ∶=

{
0 if |x| ≥ a,

N exp
(
− 1

x2−a2

)
if −a ≤ x ≤ a. (74)

We choose the constant N in such a way that the area under each bump be one. This gives

N = e1∕a2√
𝜋aU

(
1
2
, 0, 1

a2

) , (75)

where U(a, b, z) is the second kind Kummer function. This potential is extended by periodicity as shown in Figure 2.
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GADELLA AND LARA 13

FIGURE 2 The potential of compact support (74) extended by periodicity [Colour figure can be viewed at wileyonlinelibrary.com]

Prior to the study of (73), let us make some considerations. To begin with, let us write the Hill equation

𝜓 ′′(x) + 𝛼(x)𝜓(x) = 0, (76)

with x real and 𝛼(x) is periodic with period T. Since we want to compare (46) with the Schrödinger equation, let us
choose the following form for 𝛼(x):

𝛼(x) = E − V(x), (77)

with a normalization condition of the type

∫
T∕2

−T∕2
V(x)dx = 1. (78)

An interesting property of the Hill equation is the following8,11: Let us assume that 𝛼(x) is strictly positive, 𝛼(x) > 0
and

0 < T ∫
T∕2

−T∕2
𝛼(x)dx ≤ 4. (79)

Then, all solutions of (76) are bounded. In particular and taking into account (77) and (78), we have bounded solutions
of (76) and, therefore, of (73) if and only if E satisfies the inequalities

T < E ≤ T + 4
T
. (80)

This result is an obvious consequence of (19).
Next, let us consider the Sturm-Liouville associated to the boundary conditions:

𝜓

(
−T

2

)
= 𝜓

(T
2

)
, 𝜓 ′

(
−T

2

)
= ±𝜓 ′

(T
2

)
, (81)

and E the eigenvalue to be determined. In order to connect this Sturm-Liouville problem to our original periodic
potential Schrödinger equation, let us write a = T

2r
with r > 0, a fixed real number. On the interval of the form

[−T∕2,T∕2], the potential is equal to (70) if |x| ≤ T
2r

and vanishes in the two subintervals for which T
2r
< |x| < T

2
. In

Figure 2, we have chosen a = 1 and T = 2𝜋.
Boundary conditions (81) imply that the solution𝜓(x) is periodic with period T. After the Floquet theorem, the solution
can be written as

𝜓(x) = exp{𝜆x}P(x), (82)

where 𝜆 is the Floquet exponent and P(x) is T-periodic. Note that we write 𝜓(x) in the form (82) in order to implement
our method and its algorithm, as was implemented in Section 4, concerning the example after the Mathieu equation.
As in Figure 2, we may choose T = 2𝜋 without loss of generality.
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14 GADELLA AND LARA

Next, we want to apply our harmonic balance based method to the above situation. To this end, we write both 𝛼(x)
and P(x) by means of respective Fourier polynomials of period T, for which the coefficients depend on the Floquet
exponent and the energy E, to be determined. Since we are looking for periodic solutions, then 𝜆 = ik, k being an
integer number, which we choose equal to one for simplicity. Also, the sum of the two Floquet exponents for the Hill
equation is zero,8 so that these exponents can be chosen to be 𝜆± ∶= ±i.
We obtain the energy levels with a slight modification of the application of the harmonic balance method as exposed
in Section 3.1. There, the objective was the computation of the Floquet exponents. Now, it is of the energy levels. To
this end, use (82) into (73), so as to obtain the following differential equation:

P′′(x) + 2𝜆P′(x) + (𝜆2 + E − V(x, a))P(x) = 0. (83)

As for (21), we approximate a solution for P(x) through a Fourier polynomial as

Pn(x) =
a0

2
+

n∑
k=1

{an cos(k𝜔x) + bk sin(k𝜔x)}, (84)

where 𝜔 = 2𝜋∕T.
Next, we fix 𝜆, either i or −i. Then, apply the harmonic balance method so as to determine the Fourier coefficients ak
and bk as functions of the energy, ak(E) and bk(E), n = 1, 2, … ,n. Let us use (84) in (53). These coefficients must vanish,
which gives a homogeneous linear system in the indeterminates a0, ak and bk, k = 1, 2, … ,n, so that the determinant
of the coefficients must vanish. This determinant is a polynomial Δ(E), which yields to the algebraic equation:

Δ(E) = 0. (85)

In relation to the degree of this polynomial, some comments are in order. For the Mathieu equation, discussed in
Section 4, if we approximate the solution with the Fourier polynomial with two frequencies, the degree is 10. With
more frequencies, it must be higher. For instance, with three frequencies the polynomial degree is 14. Similar for the
other worked examples. For instance, for the Harbola comb (see below) and the potential in (74), we have used a
polynomial (55) of degree fourteen. This is obvious: When we use two harmonics, we have five coefficients so that the
matrix for which the determinant isΔ(E) is a 5×5 matrix with argument E2, so that the determinant is of degree 10 on E.
If we had chosen three harmonics, we need to determine seven coefficients, and this is the order of the corresponding
determinant on E2, so that the polynomial is of order fourteen, and so on.
However, not all solutions of (55) are good solutions, since good solutions must approximate the exact solutions. This
gives a manner to choose the “good” solutions. As in (23) and (24) and taking into account that the exact solution,
{𝜓(x),E}, for of the Sturm-Lioville problem should satisfy:

∫
T

0
(𝜓 ′′(x) + (E − V(x, a))𝜓(x))∗ (𝜓 ′′(x) + (E − V(x, a))𝜓(x))dx = 0. (86)

Then, we propose the Ansatz according to which the correct approximate value for the energy, which we denote here
as Er should minimize the following expression:

D(Er) = ∫
T

0
(P′′

n,r(x) + (Er − V(x, a))Pn,r(x))∗ (P′′
n,r(x) + (Er − V(x, a))Pn,r(x))dx, (87)

where Pn,r(x) = exp{𝜆x}𝜓n,r(x) is the solution of the form (53) with ak = ak(Er) and bk = bk(Er), n = 1, 2, … ,n.
Needless to say that a Sturm-Liouville like this one under our study shows an infinite number of the energy levels. In
this approximation, we obtain just a finite number of these levels, number that depends on the number of harmonics
chosen in (84). The more harmonics the more solutions one may expect to find (although with increasing calculation
difficulty). Also, one may look for “even” or the “odd” solutions, which are those for which we choose the bk or the ak
coefficients equal to zero, respectively.
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GADELLA AND LARA 15

In Figure 3, we represent the dependence of the values of the energy with the parameter r. The growing curves in the
energy represent even solutions, while the decreasing curves correspond to odd solutions. Observe that, for the ground
state, no distinction is shown between the energies of even and odd solutions.
For the potential (71), a = T∕(2r), we have the following:

i. The limit limr→∞V(x, a) = N∞ 𝛿(x), where N∞ is a constant.
ii. The limit limr→0V(x, a) = 1∕T, for −T∕2 < x < T∕2.

iii. If we consider just the odd solutions and take the limit r −→ 0, we may obtain the exact value of all energy levels.
These values are

En = 1
T
+ n2 , n = 0, 1, 2, … . (88)

Same for even solutions. In this case, we obtain in the limit r −→ 0 the following energy levels:

En = 1
T
+ (2n + 1)2

4
, n = 0, 1, 2, … . (89)

Finally, in Figure 4, we depict the potential (70) for r = 2 and 𝜆 = i.

FIGURE 3 Three first energy levels in terms of r. The growing and decreasing curves correspond to even and odd solutions, respectively

FIGURE 4 Potential for r = 2 and 𝜆 = i
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16 GADELLA AND LARA

In addition to above model, we have studied some others with detail. Methods and results are essentially identical to
those discussed so far, so that there is no serious point in a detailed analysis of those. Nevertheless, an account of the
models studied may be interesting. These models are as follows:

• The Harbola comb
This is a periodic potential, for which the basic cell is given by the function21:

𝑓 (x, a, b) ∶= N√
x2 + b2

, x ∈ [−a, a] , N = 1
2 arc sinh (a∕b)

. (90)

Then, we extend it by periodicity outside the interval [−a, a]. This periodic potential (Harbola comb) is depicted in
Figure 5. Observe that for high energy values, this potential resembles a Dirac comb.22

• One dimensional periodic Coulomb potential
Here, the function for the basic cell is

𝑓 (x, a, 𝜀) =

{
− k
𝜀

if |x| ≤ 𝜀,

− k
x

if 𝜀 < |x| < 𝜋, (91)

so that the basic cell is the interval [−𝜋, 𝜋]. Then, we extend this potential by periodicity. This potential is depicted
in Figure 6. Observe that we have avoided the singularity with this choice.

• Other potentials We give the equations that use these potentials, being their explicit form evident.

i. The Kroning-Penney model is very well known in solid state.23

FIGURE 5 Harbola comb [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Periodic Coulomb potential with k = 1 and 𝜀 = 1 [Colour figure can be viewed at wileyonlinelibrary.com]
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GADELLA AND LARA 17

FIGURE 7 Meissner potential given in (92) (to the left) and (93) (to the right) [Colour figure can be viewed at wileyonlinelibrary.com]

ii. The Meissner equation, which is a particular case of the Hill equation.24 This is rather similar to the
Kroning-Penney model, although in this case, the equation is periodic with respect to time instead of the spatial
variable. It is usually presented into two equivalent forms, either as

d2𝑦(t)
dt2 + (𝛼2 + 𝜔2 sgn (cos t))𝑦(t) = 0, (92)

or

d2𝑦(t)
dt2 +

(
1 + r sin(𝜔t)| sin(𝜔t)|

)
𝑦(t) = 0. (93)

Here, the Floquet exponents may be exactly determined.25 In Figure 7, we see the form of periodic potential.
iii. Lamé equation. It has the form26:

d2𝑦(x)
dx2 + (A + B℘(x))𝑦(x) = 0, (94)

where A and B are constants and ℘(x) the Weierstrass elliptic function.27,28

7 CONCLUDING REMARKS

The Hill-Harmonic Balance method was designed in order to obtain the Floquet characteristic exponents for linear differ-
ential equations and systems with periodic coefficients. These exponents are solutions of an algebraic equation of degree
2n + 1, where n is the order of a Fourier polynomial that it is used in order to obtain an approximate analytic solution
for the equation. Since in general, 2n + 1 is much larger than the order of the equation, that in many practical cases is
two, Hill-Harmonic Balance is not efficient. We propose a modification of this method that permits to choose the Floquet
exponents among the solutions of the algebraic equation efficiently. Following our method, the Floquet coefficients are
determined through a variational principle. It is precisely the use of this variational principle that determines the Flo-
quet exponents as its critical points, which makes our procedure different from other discussed in the literature. These
tools are easy to implement for practical applications. We obtain an excellent precision in function of the number of
harmonics used.

We have compared our results with the exact results known for the Mathieu equation. They show a good accuracy even
if we just take the first two nodes (up to n = 2) in the Fourier series. The precision obtained for n = 3 is excellent. We also
have compared our results with those obtained with the standard method described in Section 2. The conclusion is that
we obtain better results with little effort and negligible computational time.

One-dimensional periodic models are of great interest in Quantum Physics as they serve as toy models in the search for
crystal properties, starting with the celebrated Kroning-Penney model. We have studied a variety of these models under
the perspective of the formalism introduced in the present article. We have listed some of the most relevant among the
studied models and give a detailed analysis on one of them. Results for the others are similar.

We have also given Floquet exponents for two-dimensional models and added some examples thereof.
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18 GADELLA AND LARA

In conclusion, this is a method to obtain Floquet characteristic coefficients which is simple, efficient, and with an
excellent precision as shown in the testing examples. Although we have not proposed an explicit formula to evaluate the
error, once we have determined critical exponents and approximate solutions, formula (24) may serve to test the accuracy
of a given solution.
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