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A B S T R A C T

We present two high-performance implementations of the convolution operator via the direct algorithm that
outperform the so-called lowering approach based on the im2col transform plus the gemm kernel on an ARMv8-
based processor. One of our methods presents the additional advantage of zero-memory overhead while the
other employs an additional yet rather moderate workspace, substantially smaller than that required by the
im2col+gemm solution. In contrast with a previous implementation of a similar zero-memory overhead direct
convolution, this work exhibits the key advantage of preserving the conventional NHWC data layout for the
input/output activations of the convolution layers.
1. Introduction

The convolution (operator) is a key computational kernel that con-
centrates a significant part of the arithmetic cost for the type of deep
neural networks (DNNs) that are frequently leveraged in signal pro-
cessing and computer vision tasks [1,2]. Therefore, it is natural that a
considerable effort has been dedicated to the efficient implementation
of this operator. The most common implementation is the lowering (or
im2col-based) approach which transforms the input tensor into an aug-
mented matrix in order to cast the operator in terms of a cache-friendly
general matrix–matrix (gemm) multiplication [3–5]. This approach has
the advantage of exploiting the excellent performance of optimized
matrix product implementations, but it requires a very large amount of
memory. In contrast, the direct algorithm, consisting of 6–7 nested loops
around a multiply-and-accumulate instruction, provides arguably the
simplest implementation while requiring much less extra memory [2].

In this paper, we initially follow the ideas in [6] to design a cache-
friendly, gemm-like formulation of the direct convolution, making the
following new contributions1 with respect to that work:

• In contrast with [7], our solution preserves the standard NHWC
layout for the input tensor and only requires specialized packing
for the filter tensor. To achieve this, (1) we decouple the dimen-
sion of the microkernel from the cache configuration parameters,

∗ Corresponding author.
E-mail address: dolzm@uji.es (M.F. Dolz).

1 The source code of the direct convolution variants presented in this paper is available at https://github.com/hpca-uji/convDirect.

which has the positive side effect of improving performance; and
(2) we integrate a row-wise oriented microkernel, similar to that
introduced in [8].

• In addition, we propose an alternative blocked variant which,
during the execution of the convolution operator, packs a small
piece of the input tensor into a buffer, in order to accesses with
ensure unit stride memory to both the filter and input tensor
during the microkernel execution. This approach permits the use
of the architecture-specific microkernels for gemm in the BLIS
library.

• Third, we conduct a complete performance analysis of the two
new algorithms on an ARMv8 core for two relevant convolutional
DNNs (GoogleLeNet and ResNet-50 v1.5), combined with the
ImageNet dataset, showing their advantages in comparison with
high-performance implementations of the convolution operator
based on the im2col approach and the Winograd transform. Con-
cretely, our experiments with GoogleNet and ResNet-50 show
that new algorithms are 13% to 85% faster than the traditional
im2col-based approach.

The rest of the paper is structured as follows. Section 2 provides
a brief summary of different convolution algorithms and optimization
approaches for the direct convolution variant. In Section 3 we review
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the basics of the convolution operator and several scalar and blocked
algorithms for its computation, including the high-performance imple-
mentation proposed in [7]. Next, in Section 4, we present our new two
NHWC-preserving algorithms for the direct convolution, emphasizing
the differences with respect to previous solutions. Finally, in Section 5
we report the results from a complete evaluation, and in Section 6 we
close the paper with a few concluding remarks.

2. Related work

Among the different methods proposed in the literature for the
convolution operator, we can list (1) the direct algorithm, usually imple-

ented as six nested loops around a multiply-and-add instruction [7];
2) the lowering approach, which applies either im2col or im2row to the
ctivation input matrix to then obtain the result from a gemm [3,4];
3) the FFT-based algorithm, which shifts the computation into the fre-
uency domain in order to reduce the arithmetic requirements [9–11];
nd (4) the Winograd-based convolution, which leverages the Winograd
inimal filtering algorithm to decrease the arithmetic cost of the

onvolution [9,12].
With regards to the direct algorithm for the convolution, the im-

lementation by Zhang et al. [7] proposes a reorganization of the
lgorithm loops around a microkernel, mimicking the conventional
mplementation of high-performance instances of gemm in libraries such
s GotoBLAS, OpenBLAS, and BLIS [13–15]. That work also includes
specialized, cache-friendly data layout for both the input and filter

ensors to operate with standard data layouts (e.g., NCHW or NHWC).
or that, however, the input/output tensors have to be transformed
o/from that format before the first DNN layer and after the last one,
espectively. This need for a specialized layout may offer a reason
hy the direct convolution algorithm is not a widely-adopted. To deal
ith that, in this work we refine this algorithm to preserve the NHWC

nput/output tensor format.
In this line, we can also find optimization approaches for the direct

onvolution algorithm based on exploiting data reuse and the design
f near I/O-optimal data layout strategies. For instance, the work by
hang et al. [16], applies an aggressive design of auto-tuning based
n I/O lower bounds which outperform the optimal solutions by TVM.
imilarly, the work by Li et al. [17] introduces a block hardware-
riendly direct convolution implementation that can completely avoid
he off-chip memory transfers of intermediate feature maps on memory-
imited devices, e.g., FPGAs (field programmable gate arrays) or MCUs
micro-controller units).

Other trends for deriving optimized direct convolution implemen-
ations use meta-programming techniques, such as those proposed by
lateski et al. in [18], or auto-tuning compilation stacks, such as
pache TVM [19]. For instance, the work by Liao et al. [20] uses TVM

o analyse the sparsification opportunities for the acceleration of the
irect convolution by pruning certain some CNNs weights. In a similar
ine, the work by Georganas et al. [21] proposes JIT-based optimization
pproaches for the direct convolution kernels on x86 architectures.

. Algorithms for the direct convolution

.1. Simple implementation of the direct convolution

Let us consider the convolution operator

= Conv(𝐹 , 𝐼), (1)

here 𝐼 is a 4D input tensor consisting of 𝑁 input images of size
𝑖 × 𝑊𝑖 × 𝐶𝑖 each, 𝐻𝑖 × 𝑊𝑖 denote the image height × width, and 𝐶𝑖

tands for its number of input channels (or features). Furthermore, 𝐹 is
4D input tensor consisting of 𝐶𝑜 filters of height × width × channels
𝐻𝑓 × 𝑊𝑓 × 𝐶𝑖 each. The operator in (1) then produces a 4D output

ensor 𝑂, with 𝑁 outputs of size 𝐻𝑜×𝑊𝑜×𝐶𝑜 each, where 𝐻𝑜×𝑊𝑜 stand
2

or the output height × width, and 𝐶𝑜 for the number of output channels
1 void ConvDirect_Naive( 𝐼[𝑁][𝐻𝑖][𝑊𝑖][𝐶𝑖],,
2 𝐹 [𝐻𝑓 ][𝑊𝑓 ][𝐶𝑖][𝐶𝑜],
3 𝑂[𝑁][𝐻𝑜][𝑊𝑜][𝐶𝑜] )
4 {
5 for ( ℎ = 0; ℎ < 𝑁; ℎ++ )
6 for ( 𝑖 = 0; 𝑖 < 𝐶𝑖; 𝑖++ )
7 for ( 𝑗 = 0; 𝑗 < 𝐶𝑜; 𝑗++ )
8 for ( 𝑘 = 0; 𝑘 < 𝑊𝑜; 𝑘++ )
9 for ( 𝑙 = 0; 𝑙 < 𝐻𝑜; 𝑙++ )

10 for ( 𝑚 = 0; 𝑚 < 𝑊𝑓; 𝑚++ )
11 for ( 𝑛 = 0; 𝑛 < 𝐻𝑓; 𝑛++ )
12 𝑂[ℎ][𝑙][𝑘][𝑗] + = 𝐼[ℎ][𝑙 + 𝑛][𝑘 + 𝑚][𝑖] ∗ 𝐹 [𝑛][𝑚][𝑖][𝑗];
13 }

Listing 1: Naive algorithm for the direct convolution.

(which, as stated previously, is equal to the number of filters). For this
purpose, each of the 𝐶𝑜 individual filters combines (or convolves) a
ubtensor of the inputs, with the same dimension as the filter, to render
single scalar value (entry) for one of the 𝐶𝑜 outputs. By repeatedly

pplying the filter to the whole input, in a sliding window manner,
he convolution operator produces the complete entries of this single
utput; see [2] and Fig. 1. For simplicity, hereafter we will consider
hat the filter is applied with unit vertical/horizontal strides; and the
utput is not padded so that 𝐻𝑜 = 𝐻𝑖 −𝐻𝑓 + 1,𝑊𝑜 = 𝑊𝑖 −𝑊𝑓 + 1.

A naive algorithm that computes the convolution is given in Listing
1. Overall, the algorithm traverses the dimensions of the convolution
operator in the order 𝑁 → 𝐶𝑖 → 𝐶𝑜 → 𝑊𝑜(𝑊𝑖) → 𝐻𝑜(𝐻𝑖) → 𝑊𝑓 → 𝐻𝑓 ,
from the outermost to the innermost loop, which results in a certain
pattern of memory accesses depending on the layout of the tensors in
memory. Here we will assume that the operands are laid out following a
generalization of the row-major matrix format for the multidimensional
tensors, which implies that the dimensions are closer in memory from
right to left (closest to farthest; see Fig. 2). Furthermore, we will adopt
the notation

𝐼mem[𝑁][𝐻𝑖][𝑊𝑖][𝐶𝑖], 𝑂mem[𝑁][𝐻𝑜][𝑊𝑜][𝐶𝑜].

to specify this layout in memory for the 4D input/output tensors. Note
that, this corresponds to the standard NHWC format for 4D tensors in
deep learning (DL). Also, the 4D filter tensor is stored following the
standard RSCK format; that is,

𝐹mem[𝐻𝑓 ][𝑊𝑓 ][𝐶𝑖][𝐶𝑜].

We close this short review of the direct convolution by highlighting
that the 7 loops in the algorithm are independent of each other as well
as from the memory layout of the input, output and filter tensors. In
consequence, the algorithm loops can be reorganized in any order while
still producing the correct result.

3.2. Blocking the direct convolution

In [7], the authors propose a complete reorganization of the naive
algorithm for the direct convolution in Listing 1 with the enhancements
described in the following paragraphs.

Reordering the loops to saturate computations. The two innermost loops
of the algorithms are chosen to traverse the 𝐶𝑜 and 𝑊𝑜 dimensions of
he convolution operator (from innermost to outermost) in order to:

1. Favor that the processor floating-point arithmetic units (FPUs)
experience no stalls due to data dependencies between consecu-
tive writes to the same entry of the output tensor; and

2. Accommodate SIMD (single instruction, multiple data) vectoriza-
tion in the innermost loop by exploiting the number of channel
outputs, 𝐶𝑜. (As 𝐶𝑜 is a user-specified parameter, it can be
selected to be a multiple of the size of the SIMD vector.)
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Fig. 1. Sliding window of 𝐶𝑜 filters over an input image producing the output of the convolution operator for each output channel.
Fig. 2. Memory layout for the 4D output tensor 𝑂 assuming 𝑁 = 1 and a generalization of the conventional row-major layout for matrices and the NHWC format for the tensor.
he same layout applies to the 3D input tensor 𝐼 .
Fig. 3. Convolution-friendly memory layout for the 4D output tensor proposed in [7], assuming 𝑁 = 1.
T

C
v

1 void ConvDirect_Reordered( 𝐼[𝑁][𝐻𝑖][𝑊𝑖][𝐶𝑖],,
2 𝐹 [𝐻𝑓 ][𝑊𝑓 ][𝐶𝑖][𝐶𝑜],
3 𝑂[𝑁][𝐻𝑜][𝑊𝑜][𝐶𝑜] )
4 {
5 for ( ℎ = 0; ℎ < 𝑁; ℎ++ )
6 for ( 𝑙 = 0; 𝑙 < 𝐻𝑜; 𝑙++ )
7 for ( 𝑛 = 0; 𝑛 < 𝐻𝑓; 𝑛++ )
8 for ( 𝑚 = 0; 𝑚 < 𝑊𝑓; 𝑚++ )
9 for ( 𝑖 = 0; 𝑖 < 𝐶𝑖; 𝑖++ )

10 for ( 𝑘 = 0; 𝑘 < 𝑊𝑜; 𝑘++ )
11 for ( 𝑗 = 0; 𝑗 < 𝐶𝑜; 𝑗++ )
12 𝑂[ℎ][𝑙][𝑘][𝑗] + = 𝐼[ℎ][𝑙 + 𝑛][𝑘 + 𝑚][𝑖] ∗ 𝐹 [𝑛][𝑚][𝑖][𝑗];
13 }

Listing 2: Algorithm for the direct convolution with re-ordered loops.

rdering the loops to optimize data reuse. After having reordered the two
nnermost loops, the next three loops in the sequence from innermost to
utermost are set to traverse the 𝐶𝑖,𝑊𝑓 ,𝐻𝑓 dimensions of the operator
o as to ensure that the data from the input and output tensors are
ccessed in the same order. For convolutional DNNs, this is beneficial
ecause the output of one convolution layer is often the input to the
ext one. The initial algorithm with the reordered loops in [7] is
eproduced in Listing 2.

locking for the memory hierarchy. In this stage:

1. Due to the limited number of vector registers in any processor
architecture, tiling [22] with block sizes 𝐶𝑜,𝑏,𝑊𝑜,𝑏 is applied
to the two innermost loops of the reordered algorithm. This is
3

performed to avoid register spilling that can result in degraded
performance.

2. Furthermore, the loop traversing the 𝑊𝑜∕𝑊𝑜,𝑏 dimension is
placed between the 𝐻𝑜 and 𝐻𝑓 loops in order to mimic the
ordering of the loops traversing the filter weights.

3. Also, the loop traversing the 𝐶𝑜∕𝐶𝑜,𝑏 dimension is set as the
outermost loop to facilitate parallelization.

4. In addition, the 𝐶𝑖 dimension of the operator is partitioned with
block size 𝐶𝑖,𝑏 so as to split the input dataset into smaller blocks
that fit into the memory hierarchy.

he resulting blocked algorithm in [7] is illustrated in Listing 3.

onvolution-friendly data layout. To ensure that the output of the con-
olution operator is accessed with unit stride:

1. The output tensor is rearranged in memory into sequential
blocks of 𝑁 × 𝐻𝑜 × 𝑊𝑜 × 𝐶𝑜,𝑏 elements, where the entries of
each block are first arranged in the channel dimension, and then
following the row-major order into 𝐻𝑜×𝑊𝑜 blocks of length 𝐶𝑜,𝑏.

2. For compatibility between the outputs and inputs of consecutive
layers in convolutional DNNs, the same layout applies to the
input tensor; see Fig. 3. In our notation, this corresponds to:

𝐼mem[𝑁][𝐶𝑖∕𝐶𝑖,𝑏][𝐻𝑖][𝑊𝑖][𝐶𝑖,𝑏],
𝑂mem[𝑁][𝐶𝑜∕𝐶𝑜,𝑏][𝐻𝑜][𝑊𝑜][𝐶𝑜,𝑏].

3. Finally, the filter tensor is rearranged in memory with its dimen-
sions organized as [7]:
𝐹mem[𝐶𝑜∕𝐶𝑜,𝑏][𝐶𝑖∕𝐶𝑖,𝑏][𝐻𝑓 ][𝑊𝑓 ][𝐶𝑖,𝑏][𝐶𝑜,𝑏].
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1 void ConvDirect_Blocked( 𝐼[𝑁][𝐻𝑖][𝑊𝑖][𝐶𝑖],
2 𝐹 [𝐻𝑓 ][𝑊𝑓 ][𝐶𝑖][𝐶𝑜],
3 𝑂[𝑁][𝐻𝑜][𝑊𝑜][𝐶𝑜] )
4 {
5 for ( ℎ = 0; ℎ < 𝑁; ℎ++ )
6 for ( 𝑗′ = 0; 𝑗′ < 𝐶𝑜∕𝐶𝑜,𝑏; 𝑗′++ )
7 for ( 𝑖′ = 0; 𝑖′ < 𝐶𝑖∕𝐶𝑖,𝑏; 𝑖′++ )
8 for ( 𝑙 = 0; 𝑙 < 𝐻𝑜; 𝑙++ )
9 for ( 𝑘′ = 0; 𝑘′ < 𝑊𝑜∕𝑊𝑜,𝑏; 𝑘′++ )

10 for ( 𝑛 = 0; 𝑛 < 𝐻𝑓; 𝑛++ )
11 for ( 𝑚 = 0; 𝑚 < 𝑊𝑓; 𝑚++ )
12 // Micro-kernel for C+=A*B
13 for ( 𝑖𝑖 = 0; 𝑖𝑖 < 𝐶𝑖,𝑏; 𝑖𝑖++ )
14 for ( 𝑘𝑘 = 0; 𝑘𝑘 < 𝑊𝑜,𝑏; 𝑘𝑘++ )
15 for ( 𝑗𝑗 = 0; 𝑗𝑗 < 𝐶𝑜,𝑏; 𝑗𝑗++ )
16 𝑂[ℎ][𝑙][𝑘′ ⋅𝑊𝑜,𝑏 + 𝑘𝑘][𝑗′ ⋅ 𝐶𝑜,𝑏 + 𝑗𝑗]
17 + = 𝐼[ℎ][𝑙 + 𝑛][𝑘′ ⋅𝑊𝑜,𝑏 + 𝑘𝑘 + 𝑚][𝑖′ ⋅ 𝐶𝑖,𝑏 + 𝑖𝑖]
18 ∗ 𝐹 [𝑛][𝑚][𝑗′ ⋅ 𝐶𝑜,𝑏 + 𝑗𝑗][𝑖′ ⋅ 𝐶𝑖,𝑏 + 𝑖𝑖]
19 }

Listing 3: Blocked algorithm for the direct convolution.

Fig. 4. Microkernel for 𝐶 + = 𝐴 ⋅ 𝐵. The microtile 𝐶 (in brown) is initially retrieved
into the processor registers and updated at each the 𝐶𝑖,𝑏 iterations of a loop via an
outer product between a column of the micropanel 𝐴 (in red) and a column of the
micropanel 𝐵 (in blue). Upon completion, 𝐶 is copied back into the memory. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Gemm-based microkernel. The three innermost loops in the blocked
algorithm for the convolution, traversing the 𝐶𝑖,𝑏,𝑊𝑜,𝑏, 𝐶𝑜,𝑏 dimensions
of the operator (see Listing 3), perform a small gemm, of the form
𝐶 + = 𝐴 ⋅ 𝐵, where 𝐶 is a 𝑊𝑜,𝑏 × 𝐶𝑜,𝑏 microtile of 𝑂; 𝐴 is a 𝑊𝑜,𝑏 × 𝐶𝑖,𝑏
micropanel of 𝐼 ; and 𝐵 is a 𝐶𝑖,𝑏 × 𝐶𝑜,𝑏 micropanel of 𝐹 . Following the
usual implementation of this type of microkernels in high-performance
instances of the BLAS (basic linear algebra subprograms [23]), this is
done by first loading the contents of the microtile 𝐶 into the processor
(vector) registers, to then update these elements via a sequence of 𝐶𝑖,𝑏
outer products, each involving a single column/row of the micropanels
𝐴∕𝐵 consisting of 𝑊𝑜,𝑏∕𝐶𝑜,𝑏 elements; see [15,24] and Fig. 4. For high
performance, vector fused-multiply-add (FMAs) instructions are used to
perform these updates using the processor SIMD FPUs.

The size of the microkernel integrated in the direct convolution
is determined based on the latency and throughput of these type of
instructions, as well as on the available number of architecture vector
registers. Specifically, given a fixed number of SIMD registers available
on the target processor, the design of the microkernel seeks to maximize
the number of output elements computed while staying within the fixed
number of available registers.

The layout chosen for the output (𝑂) and filter tensors (𝐹 ) in [7] en-
sures that the entries of the microtile 𝐶 and the rows of the micropanel
𝐵 can be accessed from the microkernel with unit stride. In contrast,
the layout of the input (𝐼) implies that the micropanel 𝐴 is stored with
consecutive columns but with a row stride (or row leading dimension)
4

ldA= 𝐶𝑖,𝑏. For the microkernel, this results in non-unit stride accesses
1 void ConvDirect_New( 𝐼[𝑁][𝐻𝑖][𝑊𝑖][𝐶𝑖],
2 𝐹 [𝐻𝑓 ][𝑊𝑓 ][𝐶𝑖][𝐶𝑜],
3 𝑂[𝑁][𝐻𝑜][𝑊𝑜][𝐶𝑜] )
4 {
5 // Loops for h, j’, i’, l, k’, n
6 // remain the same as in the blocked
7 // algorithm in Listing 3 and therefore
8 // they are omitted for brevity
9 for ( 𝑚 = 0; 𝑚 < 𝑊𝑓; 𝑚++ )

10 for ( 𝑘𝑘 = 0; 𝑘𝑘 < 𝑊𝑜,𝑏; 𝑘𝑘 + = 𝑀𝑟 )
11 for ( 𝑗𝑗 = 0; 𝑗𝑗 < 𝐶𝑜,𝑏; 𝑗𝑗 + = 𝑁𝑟 )
12 // Micro-kernel
13 for ( 𝑖𝑖 = 0; 𝑖𝑖 < 𝐶𝑖,𝑏; 𝑖𝑖++ )
14 for ( 𝑗𝑟 = 𝑘𝑘; 𝑗𝑟 < 𝑘𝑘 +𝑀𝑟; 𝑗𝑟++ )
15 for ( 𝑖𝑟 = 𝐶𝑜,𝑏; 𝑖𝑟 < 𝐶𝑜,𝑏 +𝑁𝑟; 𝑖𝑟++ )
16 𝑂[ℎ][𝑙][𝑘′ ⋅𝑊𝑜,𝑏 + 𝑗𝑟][𝑗′ ⋅ 𝐶𝑜,𝑏 + 𝑖𝑟]
17 + = 𝐼[ℎ][𝑙 + 𝑛][𝑘′ ⋅𝑊𝑜,𝑏 + 𝑗𝑟 + 𝑚][𝑖′ ⋅ 𝐶𝑖,𝑏 + 𝑖𝑖]
18 ∗ 𝐹 [𝑛][𝑚][𝑗′ ⋅ 𝐶𝑜,𝑏 + 𝑖𝑟][𝑖′ ⋅ 𝐶𝑖,𝑏 + 𝑖𝑖]
19 }

Listing 4: Blocked algorithm for the direct convolution with
decoupled micro-kernel loops.

to the columns of the micropanel 𝐴. However, 𝐶𝑖,𝑏 can be chosen to
be small enough to ensure that the consecutive elements reside in the
same cache line.

4. New blocked NHWC-preserving algorithms for the direct con-
volution

In this paper, we build upon the work in [7] by maintaining part
of the blocking strategy proposed there, but making the major changes
described in the following paragraphs.

Decouple the microkernel dimension from the cache blocking parameters.
The blocked algorithm in [7] ties the blocking parameters 𝐶𝑖,𝑏, 𝑊𝑜,𝑏, 𝐶𝑜,𝑏
to the dimensions of the small gemm performed inside the microkernel.
In our work, we avoid this by introducing two additional loops that
traverse the 𝑊𝑜,𝑏, 𝐶𝑖,𝑏 dimensions of the operator in steps of size 𝑀𝑟, 𝑁𝑟
respectively, as shown in Listing 4. As a result, the microkernel now
performs a small gemm of the form 𝐶 + = 𝐴 ⋅ 𝐵, where 𝐶 is a microtile
of size 𝑀𝑟×𝑁𝑟, and 𝐴,𝐵 are micropanels of size 𝑀𝑟×𝐶𝑖,𝑏 and 𝐶𝑖,𝑏×𝑁𝑟,
respectively.

Preserving the input/output NHWC layout. In contrast with [7], we
preserve the original NHWC layout for the input and output ten-
sors. Accesses with non-unit stride to 𝐶 from the microkernel can
be expected to be well amortized due to the 𝐶𝑖,𝑏 ratio between the
number of memory accesses to load/store the microtile 𝐶 (2𝑀𝑟𝑁𝑟 mem-
ory accesses) and the number of floating-point arithmetic operations
(2𝑀𝑟𝑁𝑟𝐶𝑖,𝑏 flops) to update it. The costs of accessing 𝐵 and 𝐴 from
the microkernel are respectively tackled by arranging the filter tensor
following a particular layout in memory, and preparing the data for the
microkernel, as detailed next.

Ensuring unit-stride accesses to 𝐵: data layout for filter tensor. We aim at
maintaining a micropanel 𝐵, of dimension 𝐶𝑖,𝑏 × 𝑁𝑟, in the L1 cache
during the execution of the microkernel by arranging the entries of the
filter tensor by blocks (tiling), as:

𝐹mem[𝐻𝑓 ][𝑊𝑓 ][𝐶𝑜∕𝐶𝑜,𝑏][𝐶𝑖][𝐶𝑜,𝑏],

combined with an appropriate selection of the cache configuration
parameters 𝐶𝑖,𝑏, 𝑁𝑟, which match the size of the L1 cache and its
associativity degree [24]. This has the additional advantage of ensuring
that the micropanel of 𝐵 is properly arranged in memory so as to

accommodate unit-stride accesses from the microkernel. Also, the cost



Journal of Systems Architecture 135 (2023) 102806S. Barrachina et al.
1 #define VFMA(Creg, Breg, Creg, offset)\
2 Creg = vfmaq_laneq_f32(Creg, Breg, Areg, offset)
3 #define VLD vld1q_f32
4 #define VST vst1q_f32
5
6 #define ACCESS_C(VOP) {\
7 VOP(&C[0], C00); VOP(&C[4], C01);\
8 VOP(&C[8], C02);\
9 // ... Omitted for brevity\

10 VOP(&C[ldC*6], C60); VOP(&C[4+ldC*6], C61);\
11 VOP(&C[8+ldC*6], C62);}
12
13 #define LOAD_B(j) {\
14 B0 = VLD(&Bptr[j]); B1 = VLD(&Bptr[4+j]);\
15 B2 = VLD(&Bptr[8+j]);}
16
17 #define UPDATE_C(j) {\
18 VFMA(C00,B0,A0,j); VFMA(C01,B1,A0,j); VFMA(C02,B2,A0,j);\
19 // ... Omitted for brevity \
20 VFMA(C60,B0,A6,j); VFMA(C61,B1,A6,j); VFMA(C62,B2,A6,j);}
21
22 // Load micro-tile of C
23 ACCESS_C(VLD)
24
25 // Iterate inside loop from kr = 0 to Cib-3
26 baseB = 0;
27 for ( kr = 0; kr < Cib-3; kr += 4 ) {
28 // Load 7 x 4 block of A
29 A0 = VLD(&A[kr]);
30 // ... Omitted for brevity
31 A6 = VLD(&A[kr+ldA*6]);
32 // Load 1x12 row of B; Update micro-tile w.r.t column of A
33 LOAD_B(baseB); UPDATE_C(0);LOAD_B(baseB+12);UPDATE_C(1);
34 LOAD_B(baseB+24);UPDATE_C(2);LOAD_B(baseB+36);UPDATE_C(3);
35 baseB += 4*Nr;
36 }
37
38 // Last iterations , from kr+1 to Cib-1, omitted for brevity
39 // Store micro-tile of C
40 ACCESS_C(VST)

Listing 5: Structure of the 7 × 12 microkernel for algorithm A, implemented using ARM NEON intrinsics.
T
s
a

f

of this reorganization is low and only needs to be done once, as the
filters of a DNN model do not vary during the inference process.

We next describe two distinct strategies to deal with the non-unit
accesses to the elements of 𝐴 from the microkernel, leading to two
distinct algorithms, described in the next two subsections.

4.1. New Algorithm A

Amortizing the cost of non-unit stride accesses to 𝐴 with a specialized mi-
crokernel. To illustrate this technique in detail, via a concrete example,
let us consider the IEEE single-precision floating-point (FP32) format as
the baseline datatype for the tensor data and arithmetic, and consider
a target ARMv8 architecture with 32 (SIMD) vector registers of width
128 bits (i.e., with capacity for 4 FP32 numbers). We can follow [8] to
implement a microkernel that operates with a microtile of dimension
𝑀𝑟 × 𝑁𝑟 = 7 × 12, while unrolling the loop that traverses the 𝐶𝑖,𝑏
dimension with a factor 4, with the following implications:

• 21 (7 × 3) vector registers are employed to store the entries of the
microtile 𝐶. As each vector register can store 4 FP32 numbers,
this results in the required 7 × (3 ⋅ 4) = 7 × 12 microtile.

• 7 vector registers are dedicated to storing 4 entries each of 7
consecutive rows of 𝐴.

• 3 vector registers are employed to store (3 ⋅ 4) = 12 entries of 𝐵.
5

• Each iteration of the microkernel uploads 7 rows of 𝐴, to then
repeat four times the following: load a row of 𝐵 (12 elements)
and then update the microtile (7 × 12) 𝐶 with respect to one of
the block columns uploaded from 𝐴 and the row of 𝐵.

• Vector FMAs are used for the updates.

he general structure of the microkernel is illustrated in Listing 5,
howing the use of ARM NEON intrinsics for the vector loads, stores
nd FMAs.

Considering the data layout for the data tensors, we remark the
ollowing details:

• As corresponds to the NHWC format, the entries of the microtile
𝐶 are stored in row-major order with row stride ldC= 𝐶𝑜. The
complete microtile is loaded before the microkernel loop, using
21 vector instructions, and stored after it, also with 21 vector
instructions. The costs of these memory accesses are amortized
over the 𝐶𝑖,𝑏 iterations of the loop.

• For compatibility, the entries of the micropanel 𝐴 are also stored
in row-major order, in this case with row stride LDA= 𝐶𝑖. By
unrolling the loop with a factor 4, at each iteration of the loop
in the microkernel and for each row of 𝐴 we upload 4 consec-
utive entries of the micropanel using a vector instruction. This
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Fig. 5. Memory layout for the 𝑊𝑜,𝑏 × 𝐶𝑖,𝑏 buffer 𝐴𝑐 .

compensates the cost of accessing non-consecutive rows of 𝐴 in
memory.

• The entries of the micropanel 𝐵 are stored in row-major order,
with row stride 𝑁𝑟 = 12. Each iteration of the loop in the
microkernel retrieves (4⋅12) = 48 consecutive entries of the panel,
yielding an access with unit stride.

ther microkernel dimensions. This technique is indeed not exclusive for
he 𝑀𝑟 ×𝑁𝑟 = 7×12 microkernel. For example, the same principles can
e applied to an 𝑀𝑟 ×𝑁𝑟 = 6 × 16 microkernel where:

• 24 (6 × 4) vector registers are employed to store the microtile of
𝐶.

• 6 vector registers are dedicated to 4 entries each of 6 consecutive
rows of 𝐴.

• 2 vector registers are employed to store (2⋅4) = 8 entries of 𝐵, but
these vector registers are reutilized four times during the unrolled
loop iteration.

his yields a total utilization of 32 vector registers in the variant with
6 × 16 microkernel versus the 31 vector registers employed in the
× 12 microkernel.

In general, the dimensions of the micro-kernel are constrained by
he number of vector registers in the processor architecture. Here we
ollow the principles in [24] to select the dimensions that maximize
he usage of vector registers without incurring in register spilling
uring the execution of the micro-kernel. This led us to choose several
onfigurations among which, we will only report results for those that
elivered the best general performance for each algorithm.

mortizing the cost of loading/storing the microtile of 𝐶. We next note
hat the microtile of 𝐶 updated in the new Algorithm A is independent
f the loops traversing the 𝐻𝑓 ,𝑊𝑓 filter dimensions (indexed by 𝑛, 𝑚
n our algorithms). Therefore, it is possible to move these two loops
nside the microkernel, so as to amortize the costs of these accesses to
he 𝐶 operand, which is expected to reside in the main memory and,
herefore, can be expensive to access.

.2. New Algorithm B

nsuring unit-stride accesses to 𝐴 with via packing. The previous algo-
ithm requires a specialized microkernel, different from that available
n the BLIS library for matrix multiplication. Developing this micro-
ernel for each particular processor architecture can be a complex and
ostly process, as this is usually done using assembly instructions to
arefully prefetch the data into the processor vector registers in order
o completely overlap communication with computation [15,25,26].

The alternative strategy adopted in the algorithm proposed next
ollows the BLIS strategy to pack a 𝑊𝑜,𝑏 × 𝐶𝑖,𝑏 block of 𝐷 = 𝐴 into

a temporary buffer 𝐴𝑐 , in blocks of 𝑀𝑟 rows as illustrated in Fig. 5.
This packing is done inside the loop that traverses the 𝑊 dimension
6

𝑜

of the problem in Listing 4. For illustrative purposes, Listing 6 shows
a BLIS-like implementation of an 8 × 12 microkernel for algorithm B
that assumes that 𝐴 is packed into a contiguous buffer 𝐴𝑐 . There:

• 24 (8 × 3) vector registers are employed to store the entries of
the 8 × 12 microtile 𝐶.

• 2 vector registers are dedicated to store 8 consecutive entries of
a column of 𝐴𝑐 .

• 3 vector registers are employed to store 12 entries of a row of 𝐵.
• Each iteration of the microkernel uploads a column of the buffer
𝐴𝑐 and 12 entries in a row of 𝐵 to then update the 8 × 12 microtile
of 𝐶 with respect to them.

• Vector FMAs are used for the updates.

Compared with all the previous algorithms for the direct convolu-
tion, including our new algorithm A, on the negative side:

1. This variant introduces a memory overhead due to the additional
workspace for the 𝐴𝑐 buffer.

2. There is some cost due to the copying of the data into 𝐴𝑐 .

On the positive side:

1. This new algorithm B can leverage the natural BLIS microkernel
to perform the small gemm.

2. The cost of data copying is likely to be well amortized over
enough computations in the inner loops.

3. The rearrangement ensures unit-stride accesses to the
micropanel of 𝐴 from the microkernel; see the algorithm in
Listing 6.

Algorithm B presents an additional advantage for convolution oper-
ators with horizontal and/or vertical strides larger than 1. Concretely,
this type of access to the input tensor can be accommodated when
packing the entries of the 𝑊𝑜,𝑏 ×𝐶𝑖,𝑏 of 𝐴 into the buffer 𝐴𝑐 so that the
high-performance implementation of the microkernel does not need to
be modified.

Amortizing the cost of loading/storing the microtile of 𝐶. A similar idea
to that described at the end of the previous subsection can be applied
to Algorithm B. However, that would imply that the use of the BLIS
microkernel is no longer an option and, therefore, we do not consider
it further for this algorithm.

4.3. Vector intrinsics versus assembly

The implementations of the 7 × 12 microkernel for Algorithm A
and the 8 × 12 microkernel for Algorithm B, respectively shown in
Listing 5 and 6, employed ARM NEON intrinsics. This leaves in the
hands of the compiler the decision on (1) how to translate each intrinsic
into a specific collection of assembly instructions; and (2) which archi-
tecture vector registers to use in order to store each variable, which
often results in large variability in the attained performance. This is
because the characteristics of individual instructions (e.g., latency and
throughput) are significant factors in the design of the microkernel. As
such, we chose to implement the microkernel using inline assembly
to specifically use certain types of instructions. This is illustrated by
redefining the VFMA macro utilized in the two microkernels as in
Listing 7.

For the second issue, we noticed that the compiler tends to produce
code that resulted in a significant amount of register spilling, resulting
in superfluous load and store instructions being generated. We over-
came this issue by implementing the entire microkernel in assembly.
We have done so for some of our simpler cases, including the most used
microkernels for Algorithms A and B. Here it is worth mentioning that
the development of microkernels is a systematic process, which can be
automated to a certain extent with good performance results [27]. We
leave the application of this research line to the convolution operator
as part of future work.
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1 #define VFMA(Creg, Breg, Creg, offset)\
2 Creg = vfmaq_laneq_f32(Creg, Breg, Areg, offset)
3 #define VLD vld1q_f32
4 #define VST vst1q_f32
5
6 #define ACCESS_C(VOP) {\
7 VOP(&C[0], C00); VOP(&C[4], C01);\
8 VOP(&C[8], C02);\
9 VOP(&C[ldC], C10); VOP(&C[4+ldC], C11);\

10 VOP(&C[8+ldC], C12);\
11 // ... Omitted for brevity\
12 VOP(&C[ldC*7], C70); VOP(&C[4+ldC*7], C71);\
13 VOP(&C[8+ldC*7], C72);}
14
15 // Load micro-tile of C
16 ACCESS_C(VLD)
17
18 // Iterate inside loop from kr = 0 to Cib-1
19 baseA = 0; baseB = 0;
20 for ( kr = 0; kr < Cib; kr++ ) {
21 // Load column of A
22 A0 = VLD(&A[baseA]);
23 A1 = VLD(&A[baseA+4]);
24 // Load row of B
25 B0 = VLD(&B[baseB]);
26 B1 = VLD(&B[baseB+4);
27 B2 = VLD(&B[baseB+8]);
28 // Update micro-tile w.r.t column of A and row of B
29 VFMA(C00,B0,A0,0); VFMA(C01,B1,A0,0); VFMA(C02,B2,A0,0);\
30 VFMA(C10,B0,A0,1); VFMA(C11,B1,A0,1); VFMA(C12,B2,A0,1);\
31 // ... Omitted for brevity\
32 VFMA(C70,B0,A1,3); VFMA(C71,B1,A1,3); VFMA(C72,B2,A1,3);}
33 baseA += Mr; baseB += Nr;
34 }
35
36 // Store micro-tile of C
37 ACCESS_C(VST)

Listing 6: Structure of the 8 × 12 microkernel for algorithm B, implemented using ARM NEON intrinsics.
1 #define VFMA(Creg, Breg, Areg, offset)\
2 __asm__ volatile\
3 (\
4 " fmla %[c_reg].4s, " \
5 " %[b_reg].4s, " \
6 " %[a_reg].s[ " #offset " ] \n\t " \
7 : [c_reg] " +w " (Creg)\
8 [b_reg] " w " (Breg),\
9 : [a_reg] " w " (Areg)\

10 );\

Listing 7: Use of assembly inlining.

. Experimental results

.1. Hardware setup

All the experiments in this section were performed using IEEE
ingle-precision (FP32) on a single core of an NVIDIA Carmel
ARMv8.2) processor. This architecture is equipped with a private 4-
ay associative (data) L1 cache of 64 KiB per core, a 16-way associative
2 cache of 2 MiB shared between each pair of cores, a 16-way asso-
iative L2 cache of 4 MiB shared by all 8 cores, and 4 GiB of RAM. To
void the performance distortions caused by the utilization of distinct
7

power modes (and associated processor core frequencies), the operating
core frequency was set to 2.3 GHz. The theoretical peak performance
for a single core of this architecture, operating at such frequency, is
36.8 (FP32) GFLOPS (billions of floating-point operations, or flops, per
second). Moreover, the single worker thread was pinned to a specific
core of the NVIDIA Carmel processor.

There are several approaches to parallelize the convolution al-
gorithms targeted in this work by exploiting multi-threading on a
multicore processor. In [28], we evaluate different parallel approaches
and conclude that the best strategy is to run one instance of the
model per core in the system, and then distribute the batch among
the different instances. From that point of view, we believe that an
evaluation using a single thread is illustrative of the behavior that could
be attained with this parallelization strategy.

5.2. Data setup

For the experiments, we selected the convolution layers present in
two popular DNNs: GoogleLeNet [29] and ResNet-50 (v1.5) [2,30].
From these, we discarded those layers with horizontal/vertical strides
greater than 1, because they are more difficult to tackle efficiently by
the blocked algorithm in [7] and the new algorithm A described in
Section 4. Overall, the convolution layers included in the following
experimental study represent around 70% of the total execution time of
the CNN on the target architecture (though we note that our codes do
not exploit other orthogonal optimization techniques, such as fusion,
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which could increase the contribution of the convolution operators to
the total cost of the inference).

The dataset that was selected in both cases was ImageNet [31] and
the batch size was set to 𝑁 = 1 in order to reflect the single stream
scenario of the ML Commons benchmark for inference on the edge.2

5.3. Algorithms

In the comparison, we include five options for the calculation of the
convolution operators appearing in the corresponding layers of the two
selected DNNs:

• lowering: The lowering approach with the im2col transform imple-
mented as an optimized C routine; and the subsequent gemm per-
formed by invoking BLIS (v0.8.1), with the configuration of this
library adjusted to the NVIDIA Carmel processor. (We also ran the
same option linked with OpenBLAS version v0.3.19 and ARMPL
version v.21.1, in general obtaining lower performance. The-
refore, we do not consider their gemm instances for the lowering
alternative in the following discussion.)

• blocked: The blocked algorithm for the direct convolution de-
scribed in [7]. In this case, we developed a microkernel with 𝑂
resident in registers of dimension 𝑊𝑜,𝑏 × 𝐶𝑜,𝑏 = 7 × 12, following
the ideas in [8], and optimized it using ARM NEON intrinsics
(see Listing 5). We remind that, because of the connection be-
tween consecutive convolution layers, this algorithm enforces the
constraint that 𝐶𝑖,𝑏 = 𝐶𝑜,𝑏.

• new-A: The blocked NHWC-preserving Algorithm A for the direct
convolution introduced in Section 4 of this paper, with 𝑀𝑟×𝑁𝑟 =
7 × 12 and 6 × 16 microkernels optimized using ARM NEON
intrinsics (see, e.g., Listing 5). For this particular case, we also
developed our own assembly versions of these two microkernels.
For this algorithm, we select a value for 𝐶𝑖,𝑏 which favors that
a 𝐶𝑖,𝑏 × 𝑁𝑟 micropanel of 𝐵 (corresponding to a block of the
filter tensor) remains in the L1 cache during the execution of the
microkernel [24].

• new-B: The blocked NHWC-preserving Algorithm B for the direct
convolution in Section 4, with the cache configuration parameters
selected via the analytical model in [24]. In this case, we either
(1) employ our own manually encoded 𝑀𝑟×𝑁𝑟 = 8×12 and 4 × 20
microkernels using ARM NEON intrinsics; (2) utilize our own
equivalent microkernels fully developed in assembly following
the approach in Listing 6; or (3) rely on this specific component
in BLIS for the ARM processor.

• Winograd: The implementation of this algorithm in the NNPACK
library,3 with a 3 × 3 filter.

In most of the following plots, the results are reported in terms of
GFLOPS, using a cost of 2𝐶𝑖𝐶𝑜𝐻𝑜𝑊𝑜𝐻𝑓𝑊𝑓 flops for all the previous
algorithmic options. The GFLOPS rate is inversely proportional to
the execution time of the algorithm and presents the advantage of
being bounded by the peak performance of the target platform (36.8
GFLOPS). The utilization of this count also for the Winograd-based
algorithm (even though it performs a considerably smaller number
of flops,) allows a direct comparison with the other approaches. The
execution of each implementation was repeated for at least 2 minutes,
and the results were then averaged.

We do not include results for the (Apache) AutoTVM tool TVM
because optimizing the convolution operator using it requires a con-
siderable execution time. Concretely, AutoTVM explores about 1,000
options per convolution layer, resulting in between 40 min and 1 h
to optimize each layer. In contrast, our direct convolution algorithms
are straight-forward to tune for a particular architecture, for almost

2 See https://mlcommons.org/.
3 https://github.com/Maratyszcza/NNPACK
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any convolutional layer, independently of its specific parameters. Given
these reasons, we prefer to omit the comparison against TVM as we
would like to preserve the focus of the paper on those optimizations
which can be obtained by mimicking the techniques usually applied in
linear algebra libraries for the matrix multiplication.

5.4. Performance evaluation

Microkernels for the new variants. The performance of new-A and new-B
strongly depends on the implementation of the underlying microkernel.
For this particular work, due to the dimensions of the convolution
operators appearing in the two target models, we ‘‘manually’’ devel-
oped microkernels that employ ARM NEON intrinsics (or, alternatively,
assembly instructions) for the two variants, with 𝑀𝑟 ×𝑁𝑟 = 7 × 12 (see
isting 5) and 6 × 16 for new-A; and 𝑀𝑟 × 𝑁𝑟 = 8 × 12 (see Listing 6)

and 4 × 20 for new-B. In addition, for new-B, we consider the native
microkernel for ARM from BLIS (which also sets 𝑀𝑟 × 𝑁𝑟 = 8 × 12).
As an initial point for our evaluation, we therefore assess the impact
of the selected microkernel on the performance of the variants. The
results in Figs. 6 and 7 for new-A show that the 6 × 16 microkernel is
consistently the best option for GoogleLeNet-ImageNet and dominates
the performance in 24 out of 46 layers for ResNet-50-ImageNet. (The
layers of the GoogleLeNet-ImageNet and ResNet-50-ImageNet models
were respectively split into 3 and 2 plots in these figures to improve
visibility.) For new-B, Figs. 8 and 9 report the clear performance gain
when using the 8 × 12 microkernel for GoogleLeNet-ImageNet model
and, in general, superior performance for the same microkernel for
ResNet-50-ImageNet (in 31 out of 46 layers). In addition, for variant
new-B, the manual microkernels offer superior performance to that
observed when using the native implementation in BLIS. This may be
surprising but in an independent experiment we could deduce that the
reason for this behavior is that the BLIS microkernel is highly optimized
when the actual dimensions of the microtile that is to be processed,
say 𝑚𝑟 × 𝑛𝑟, match the dimensions of the native microkernel. However,
the BLIS implementation suffers a serious drop in performance for the
‘‘border’’ cases, when 𝑚𝑟 < 𝑀𝑟 = 8, 𝑛𝑟 < 𝑁𝑟 = 12, or both.

To increase the readability of the following plots, hereafter we
will refer with the labels new-A or new-B to the implementations that
respectively integrate the optimal microkernel into Algorithm A or B,
which depends on the particular model and layer.

Winograd. While we recognize that the Winograd-based convolution
may offer competitive performance, depending on the layer properties,
this alternative approach reduces the number of arithmetic operations
at the cost of sacrificing numerical accuracy and flexibility. Therefore, a
comparison based only on raw performance is incomplete. Nonetheless,
we evaluated the Winograd-based algorithm in NNPACK for ResNet-
50 model. The first aspect to note is that the package could be used
with very few convolution layers of the model: 17 out of 46 (around
37% only). The second issue is that the performance in all these cases
varied between 7.5 and 9.5 GFLOPS, therefore being much lower than
that observed for the direct convolution implementations applied to
the ResNet-50 model with ImageNet presented earlier. Therefore, we
exclude the Winograd-based algorithm from the global evaluation in
the following experiments.

Global comparison. Figs. 10 and 11 report the performance rates for
the distinct implementations of the convolution operator and the two
DNN models considered in this work. These results show fair benefits
for the new-A and new-B implementations, which outperform the other
options for most layers of both models.

In particular, for the GoogleLeNet-ImageNet pair, the new variants
new-B and new-A outperform the (best) lowering approach by an av-
erage speed-up of 1.22 and 1.09 respectively. For new-B, the highest
speed-up is 1.88 (layer #84) and the lowest one is 0.49 (layer #1). In
comparison, for new-A the highest speed-up is 1.85 (layer #14) and the

lowest one is 0.5 (layer #1).

https://mlcommons.org/
https://github.com/Maratyszcza/NNPACK
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For RestNet-50, the average speed-up of new-A/new-B with respect
o the (best) lowering approach is 1.08 and 1.23 respectively, with
he highest speed-up being 1.87 (layer #167) and the lowest one 0.90
layer #92) for new-B; and 1.62 (layer #160 and #170) and 0.79 (layer
80) for new-A, respectively.

While the speed ups attained for the individual layers for
oogleLeNet-ImageNet or ResNet-50-ImageNet can be regarded as a
9

A

seful piece of information, to put them into perspective we need to
onsider their impact on the cost of each layer. In order to do this, we
ntegrated the distinct convolution algorithms into our PyDTNN frame-
ork for deep learning [32,33], and performed a complete evaluation
f the inference process. Fig. 12 displays the absolute (aggregated)
ime of the two options: lowering and the new-B algorithm. (The new-

algorithm could not be considered in this comparison as it neither
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i

upports padding nor stride, which are required by the evaluated
NNs.4) These results show that new-B offer an overall speed-up factor
f over 1.25× over lowering for the GoogleLenet-ImageNet case and
.22× for the ResNet-50-ImageNet model. For reference, the line labeled
s ‘‘Best’’ in the figure corresponds to an option that chooses the fastest
lgorithm between lowering and new-B on a per-layer basis.

We have also performed a similar analysis from the point of view
f energy consumption using power the hardware counters that are
vailable in the NVIDIA Carmel processor. The results of this study
how a trend for the energy savings which mimic closely that of the
eduction in execution time reported in Figs. 12.

.5. Memory consumption

The convolution methods also differ in the workspace they require.
he main advantage of the blocked algorithm and the new-A variant is
hat they both incur a zero-memory overhead. In contrast, the new-B
ounterpart needs a small yet non-negligible workspace, of dimension

in(𝑊𝑜,𝑏,max
𝑙
(𝑊 𝑙

𝑜 )) × min(𝐶𝑖,𝑏,max
𝑙
(𝐶 𝑙

𝑖 )),

4 Both padding and stride can be supported in algorithm New-A. However,
his will have a strong negative impact on performance. For example, with a
tride different from one, the loads of elements from 𝐴 inside the loop of the

micro-kernel cannot be vectorized. This may result in the micro-kernel being
memory-bound instead of compute-bound, resulting in very low performance.
A similar effect can arise from padding. For that reason, we decided not to
10

offer support for this in the New-A variant. i
Table 1
Memory requirements (in Mbytes) to store the DNN models and the workspaces for
the lowering and new-B methods.

DNN Model lowering new-B

ResNet-50 v1.5 32.06 6.89 0.05
GoogleLeNet 1049.29 220.50 0.23

where 𝑊 𝑙
𝑜 and 𝐶 𝑙

𝑖 respectively denote the output width and num-
er of input channels of the convolutional layer 𝑙. Here, the block-

ing parameters 𝑊𝑜,𝑏, 𝐶𝑖,𝑏 are experimentally determined to maximize
performance.

The lowering algorithm in principle requires a workspace of size
ax𝑙(𝑊 𝑙

𝑓 ) ⋅ max𝑙(𝐻 𝑙
𝑓 ) times than that of the largest input tensor 𝐼 at

any layer. (In practice, this can be reduced by applying the im2col
ransform by blocks and interleaving it with the matrix multiplication.
n the negative side, this will have an impact on performance, as the
ultiplications will now involve smaller matrix operands.)

Finally, the memory requirements of the Winograd algorithm are
ery implementation-dependent. Given that we use the realization of
his operator in a external library (NNPACK), we prefer not to theorize
ver its memory usage.

Table 1 illustrates the memory consumption of the lowering and
ew-B algorithms. For perspective, we also include there the memory
equired to store the model parameters for the two use cases.

. Concluding remarks and future work

The convolution is an important operation for inference (and train-
ng) of DNNs, especially relevant in computer vision and signal process-
ng tasks. While there exist several approaches to implementing this
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Fig. 9. Performance evaluation of the new-B variant for ResNet-50.
Fig. 10. Performance evaluation of the convolution operators for GoogleLeNet.
perator, many DL libraries implementing this operator either adopt
he lowering approach or the less expensive, yet also less accurate and
ore ‘‘rigid’’, FFT and Winograd algorithms. In this paper, we refine

nd extend the original ideas in [7] to demonstrate that the direct
onvolution algorithm can be reformulated as a collection of loops
round a microkernel that presents many similarities with the high
erformance, state-of-the-art implementations of gemm. As a result, our

new algorithms (1) preserve the conventional NHWC data layout for
the layer input tensors; (2) (for the new-B variant) easily accommodate
11
stride, dilation, and padding in the layer input tensor; (3) outperform
the lowering approach by a fair margin; and (4) either require no
memory overhead (new-A) at all or a very small workspace (for new-B).
All in all, this work paves the road to considering the direct convolution
as a first-class citizen, on par with other algorithms for this crucial
operator.

As part of future work, we plan to analyze the extensions of the same

ideas to the backward pass required in DNN training; the application
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Fig. 11. Performance evaluation of the convolution operators for ResNet-50.
Fig. 12. Aggregated time of the convolutional layers for GoogleLeNet and ResNet-50.
-

f the discussed approach to the NCHW format; and its multithreaded
arallelization using OpenMP.
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