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A B S T R A C T   

The accurate estimation of the retained capacity in a lithium-ion battery is an essential requirement for the 
electric vehicles. The aging of the batteries depends on parameters and factors that are not easily monitored by 
the battery management system. This paper analyzes the ability of various machine learning algorithms to deal 
with the data generated by the battery management system during the partial charging/discharging process to 
instantly diagnose and estimate the retained capacity of the battery. Experimental data from an online dataset 
containing thousands of battery cycles are used for training and validation of the different models. Results 
demonstrate that the developed convolutional neural network outperforms the rest of the machine learning 
algorithms implemented, regardless of the portion of the cycle registered by the battery management system. The 
estimates obtained outperform most previous references. However, the estimation error values registered when 
analyzing partial cycles with depths lower than 50 % (above 1.5 %) remain too high to validate any of the 
analyzed algorithms as a solution for commercial systems.   

1. Introduction 

The consolidation of lithium-ion batteries (LIBs) as a mature tech-
nology during the last decade has revolutionized our everyday lives, 
laying the foundation for a potentially fossil-fuel-free society based on 
renewable energies and electric mobility [1]. However, with the electric 
vehicle (EV) market accounting for almost 80 % of current LIB demand 
and a global total market of around 200 GWh in 2021 [2], LIBs have yet 
to reach their full potential as sources of global energy. Analysts project 
that between 2022 and 2030, the global demand for LIBs will increase 
tenfold, reaching over 3 terawatt-hours in 2030 [3]. Such a huge in-
dustry increase will stress the associated supply chain and the mining 
involved. In fact, serious concerns about the limited reserves available 
worldwide for some of the metals used in these batteries [4] suggest the 
sector's future hinges on developments in LIB recycling, battery life 
extension, and potential second life applications. 

For both the extension of a battery's lifetime and its usefulness in 
second life applications, an estimation of its current state-of-health 
(SOH) with an accuracy below 1 % in terms of both mean absolute 
error (MAE) and root mean square error (RMSE) becomes very impor-
tant at any time during service life [5]. This remains a persistent 

challenge—one to which the scientific community is devoting signifi-
cant efforts [6]. LIBs degrade with time as a function of different stress 
factors, particularly temperature and usage pattern. Temperature and 
state-of-charge (SOC) affect LIBs when they are at rest (calendar aging) 
as well as when they are under operation (cycle aging) [7]. However, 
while cycle aging is associated with mechanical strain in the electrode 
active materials and lithium plating, the main causes of calendar aging 
are parasitic reactions between electrolyte and electrodes, such as solid 
electrolyte interface (SEI) creation and growth, electrolyte oxidation, 
and transition metals dissolution. All these mechanisms reduce the 
battery's capacity over time [8]. 

To determine the SOH of a LIB or to analyze its retained capacity, 
various methodologies have been proposed in the literature [9–12], 
including machine learning (ML) solutions [13–15]. These data-driven 
estimation options are advantageous because they do not require the 
deep understanding of the electrochemical reactions and their modeling, 
since they utilize only the degradation patterns registered in the data 
[16]. 

For instance, Roman et al. [17] designed and evaluated an ML 
pipeline to estimate the battery capacity fade on 179 cells cycled under 
various conditions based on segments of the charge voltage and current 
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curves and using two parametric and two nonparametric algorithms: a 
Bayesian ridge regression (BRR), a Gaussian process regression (GPR), a 
random forest (RF), and a deep ensemble of neural networks (NNs). 
Their best model achieved a root mean squared percent error of 0.45 %. 

Paulson et al. [18] analyzed 300 pouch cells to introduce an in-depth 
investigation of strategies for feature selection in battery lifetime pre-
diction, ML models' generalization across multiple battery chemistries 
(including lasso regression, RF, GPR, and artificial NN regression), and 
predictions beyond the training set in the chemical space. 

Yang et al. [19] introduced a three-layer back propagation neural 
network (BPNN) used to estimate the SOH based on the parameters of a 
first-order equivalent circuit model (ECM) of the cells under study. They 
obtained estimation errors around 5 %. 

Fan et al. [20] proposed a hybrid NN called gate recurrent unit- 
convolutional neural network (GRU-CNN) to estimate the SOH from 
the observed voltage, current, and temperature curves during charging. 
The approach provided a maximum estimation error limited to within 
4.3 %. 

Another hybrid NN concatenating a one-dimensional convolutional 
NN (CNN) and active-state-tracking long–short-term memory (LSTM) 
NN is proposed in [21]. By using a Bayesian optimization algorithm to 
build the SOH model, authors achieve a global average RMSE of 0.0269 
in the SOH estimation. 

Kong et al. [22] developed a similar framework-combined deep CNN 
with a double-layer LSTM NN and obtained very accurate results, with 
RMSE as low as 0.0061. Still, Pradyumna et al. [23] present a method to 
estimate capacity using impedance curves obtained from an electro-
chemical impedance spectroscopy (EIS) test and a convolutional neural 
network (CNN). They claim RMS errors to be 0.233 % in capacity 
estimation. 

Ungurean et al. [24] introduced deep learning techniques based on 
recurrent neural networks (RNNs) with memory, such as the LSTM and 
gated recurrent unit (GRU). The solutions implemented provided errors 
in the range between 5.5 % and 2 %. Also, an encoder-decoder model 
based on deep learning and using the battery charging curves were 
introduced in [25], where the proposed model adapted well to different 
types of batteries, was able to adapt to various sampling modes of 
charging curves and presented high estimation accuracies with MAE and 
RMSE values below 1 %. 

Along the same lines to the previous references, this paper focuses on 
the estimation of the retained capacity of the LIBs by means of different 
ML algorithms and analyzes the suitability of the different algorithms 
developed to be accurate enough to be implemented in commercial so-
lutions. The six ML algorithms developed and analyzed —a support 
vector regression (SVR), a K-nearest neighbors (KNN), an RF, a gradient 
boosting decision tree (XGB), a deep neural fully connected network 
(FCN), and a CNN— are trained and validated with data measured 
during the partial cycling (charging/discharging processes) of the cells, 
highlighting the use of portions of the incremental capacity (dQ/dV) 
curve obtained from the voltage profiles and for two different C-rates. 
This combination of factors represents a challenge that has not been 
addressed in the literature very often. 

Several previous studies pursued a similar goal. Yang et al. [26] used 
a combination of a CNN and an RF model to extract changes in SOH 
between two successive charge/discharge partial cycles. They obtained 
accuracies in terms of MAE in the range between 0.62 % and 1.51 %, 
outperforming other models introduced in the same paper for compar-
ison. Also, Wei et al. [27] proposes a multistage artificial NN method to 
estimate the SOH in practical scenarios including heavily partial 
charging of the batteries and with different initial charging voltages. The 
MAE results they achieve are confined in the range from 0.3 % to 2.54 % 
for NCA cells, according to their conclusions. Finally, a very similar 
proposal to the one presented in this paper is found in [28], where the 
authors estimated the SOH of the same LIB cells for segments of their 
charging curves. However, differences can be found with these works 
since the approach in this paper makes use of the dQ/dV curves, 

generated during both full and partial cycles, and analyzes the influence 
of the ΔV value selected to discretize these curves. Moreover, the data 
preparation performed in this work, together with the use of different 
sources of information supplied to the ML algorithms (such as the dQ/dV 
curve and the C-rate parameter during both the charge and discharge 
profiles), allowed us to significantly outperform the results in [28] and 
obtain them in close competence with those in [26] (achieved for a 
different dataset). 

The rest of this paper is organized as follows. Section 2 is devoted to 
introducing the cells used for the analysis and the dataset preparation. 
Section 3 introduces the principles of each ML algorithm analyzed as 
well as the specific model implemented for SOH estimation. Section 4 
presents the results and compares the performance of the various ML 
algorithms for both full cycles and partial cycles. Finally, Section 5 
provides some concluding remarks. 

2. Data preparation 

2.1. Lithium-ion cells under analysis 

The dataset used in this study is developed from the information 
available at the online database provided by the Center of Advanced Life 
Cycle Engineering (CALCE) of the University of Maryland [29]. Among 
the applicable cells, this study employs the experimental results uploa-
ded for six different LiCoO2 prismatic samples labeled as CS2 LIBs, ac-
cording to the nomenclature in [29]. These are rated 1.1 Ah, and the 
specific samples used are CS2-33 to CS2-38. They were tested with an 
Arbin battery tester, cycled under a constant current-constant voltage 
(CC-CV) charging mode until the voltage reached 4.2 V and under a 
constant current discharge mode until the cutoff voltage of 2.7 V. 
However, while the first two cells (numbers 33 and 34) were cycled at 
1C, the other four cells (numbers 35 and 38) were cycled at 0.5C. The 
total number of cycles and the total energy throughput experienced by 
each of these cells during the experiment, which lasted seven months, is 
summarized in Table 1. 

2.2. Dataset preparation 

For each of the six cells, we extracted the charging and discharging 
voltage profiles (cleaning some outliers that corresponded to cycles that 
have not been completed properly) and generated the corresponding 
dQ/dV curves. The evolving shape of these curves as the cell is cycled 
and degraded, anticipated in the literature [25], can be observed in 
Fig. 1 a) and Fig. 1 b) for the charging and discharging processes, 
respectively. 

These dQ/dV curves were generated using MATLAB and computed 
by differentiating the battery capacity Q with respect to the battery 
voltage V (i.e., calculating how much charge was exchanged by the cell 
at a given voltage level). The derivation from the voltage profiles and the 
discretization of the curves were performed with four different ΔV: 5 
mV, 10 mV, 20 mV, and 50 mV. Then, four different kinds of dQ/dV 
profiles were obtained, as depicted in Fig. 2. Each of the represented 
curves presents a different number of points along the x axes. The total 
charge exchanged by the cell along each of the four curves is the same 
(1.1 Ah). 

In this way, four datasets (one per ΔV value) were assembled for the 
charging processes, and the other four were assembled for the dis-
charging processes of the six cells. Before uploading them to the Python 

Table 1 
Information on the cycling test performed on the cells being used.  

Cell label CS-33 CS-34 CS-35 CS-36 CS-37 CS-38 

Number of cycles 864 777 873 972 989 1028 
Energy throughout (Ah) 725.58 728.69 756.34 787.99 807.09 870.72  

H. Beltran et al.                                                                                                                                                                                                                                 



Journal of Energy Storage 59 (2023) 106346

3

environment, they were preprocessed. First, we truncated them below 
3.48 V because lower voltages presented no dQ/dV value; hence, they 
did not contribute any information to the ML algorithms. Second, we 
took the absolute value of the profiles into account in order to work with 
positive values. And third, we normalized the data to make model 
training less sensitive to the scale of features. This allowed our models to 
converge to better weights and, in turn, achieve better accuracy. Finally, 

the dQ/dV profiles were complemented with the C-rate and the 
measured “retained capacity” for each cycle. This derived in matrixes 
with the structure like the one represented in Fig. 3 with sizes: 5486 ×
253, 5486 × 128, 5486 × 65, and 5486 × 28, (as a function of the ΔV 
value). 

Fig. 1. Voltage profiles and dQ/dV curves derived for: a) charging and b) discharging semi-cycles during the experiment.  

Fig. 2. Typical dQ/dV profiles obtained for the third cycle of a cell as a function of the ΔV value: 5 mV, 10 mV, 20 mV, and 50 mV.  
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3. Machine learning algorithms 

Six different ML algorithms have been considered in this work to 
estimate the SOH. The optimal architecture and/or hyperparameter for 
each algorithm has been optimized by means of Ray Tuner [30]. For the 
case of the NNs, the optimization has been done in terms of both MAE 
and RMSE. The algorithms implemented are the following. 

3.1. Support vector regression 

Support vector machine (SVM) is a well-known ML algorithm used in 
classification problems. It works by representing the data in a higher- 
dimensional space, by means of a kernel specified as a parameter, and 
by finding a soft margin hyperplane that successfully separates the ob-
servations into two classes. Support vector regression (SVR) models—as 
the one implemented in this work—use the same basic idea as SVM but 
apply it to predict values on a real scale, rather than for classification 
tasks. Here, support vectors are used to find the closest match between 
the data points and the actual function that is represented by them. 

SVR models are usually defined by two parameters: the acceptable 
error margin (ϵ) and the tolerance of falling outside that acceptable error 
rate (C). Among the different combinations of these parameters 
analyzed, the one that performs best for our datasets is that with ϵ = 1 
and C = 10. 

3.2. K-nearest neighbors 

The K-nearest neighbors (KNN) algorithm is a supervised ML algo-
rithm that works by finding the “k” most similar data points (nearest 
neighbors) to a given instance. KNN does not make any assumptions 
about the underlying data distribution. It is a nonparametric algorithm 
that relies on an item feature similarity metric. This metric, such as the 
Euclidean distance or the cosine similarity, is used to calculate the 
“distance” between the input and the data points in the training dataset. 
The target is then predicted by a majority vote, in the case of classifi-
cation tasks, or by local interpolation of the targets associated with the 
nearest neighbors, in the case of the regression (as is used in this work). 

KNN models are mainly defined by one operational parameter: the 
number of “k” most similar data points to be considered. Values from 1 
to 9 have been explored, with results outstanding for k = 5. 

3.3. Random forest 

Random forest (RF) is another supervised ML algorithm based on 
independent decision trees (DTs). The “forest” in its name stands for an 

ensemble of such DTs usually trained with the bagging method, a 
combination of learning models that improves the overall result. 
Bagging generates models by randomly choosing a subset of features, 
which ensures low correlation among DTs. For classification tasks, the 
output of the RF is the class selected by most trees, while for regression 
tasks, the result is the average of the numerical outputs of the trees. 

RF as a regressor presents many hyperparameters that can be tuned. 
We focused on just one: the number of estimators that, after some 
analysis, was fixed at 100. 

3.4. Gradient boosting decision trees 

Gradient boosting is also an ML technique, based on DTs, that pro-
duces a prediction model in the form of an ensemble of weak prediction 
models. Gradient boosting decision trees (known as GBDT or XGB) use 
each DT as the weak prediction model in gradient boosting. Its perfor-
mance is based on the method of the additive training in which, at each 
iteration, a new tree learns the gradients of the residuals between the 
target values and the current predicted values from the previous tree, 
and then the algorithm conducts gradient descent based on the learned 
gradients. Therefore, it is a sequential algorithm that cannot be paral-
lelized like the RF, and the algorithm execution reduces to parallel DT 
building. It is a slow-to-train model, but it is very fast to predict. 

As with the RF algorithm, XGB presents many hyperparameters that 
can be tuned. We focused on just two of them: the number of estimators, 
which after some analysis was also fixed at 100, and the maximum tree 
depth for the base learners, which we set to 10. 

3.5. Fully connected network 

Deep neural network (DNN) models are composed of units (neurons) 
that combine multiple inputs and produce a single output. These units 
are arranged in layers. Hence, “deep” refers to models with high 
complexity in the number of layers and units per layer. The use of deep 
models allows for capturing higher levels of patterns in the data and thus 
obtaining more accurate results. 

Feedforward networks are the most basic DNNs composed of a series 
of fully connected (FC) layers that form a network. Each successive layer 
is a set of nonlinear functions of a weighted sum of all the FC outputs of 
the previous layer. For regression tasks, these models have a single 
output whose numerical value represents the expected value of the 
approximate function for a given input. 

After running around 1000 simulations with multiple combinations 
of the main hyperparameters of the fully connected network (FCN) 
(mainly the batch size, the number of FC layers, the number of neurons 

Fig. 3. Structure of the dataset used to train, validate, and test the ML algorithms. The number of columns “n” is dependent on the ΔV step value, while the number 
of rows “m” corresponds to the number of cycles registered for the six CS2 cells under consideration (5486 in all). The last two columns, beyond the “n” values of 
voltage, correspond to the C-rate and the measured retained capacity, respectively. 
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in each layer, the number of outputs from each layer, and the learning 
rate), we selected the best-performing combination. Fig. 4 presents this 
architecture, with four dense layers (the first two included a 0.25 ratio 
dropout layer), a batch size of 32, and a learning rate of 0.001, trained 
during 100 epochs. 

3.6. Convolutional neural network 

A convolution is a mathematical operation often used for image 
processing and recognition since its effect is similar to filtering. The 
convolutional layer is the core building block of a convolutional neural 
network (CNN). This type of layer applies a set of learnable filters to the 
input, generally an image (2D), by executing convolution operations. 
These filters, or feature detectors, are applied to an area of the input as a 
sliding window, extracting high-level features that can be consequently 
passed on to the next layer. Typically, convolutional layers are followed 
by a pooling layer, which downsamples the outputs to provide local 
translation invariance by summarizing the presence of features in the 
previous convolutional output. By applying various convolutional fil-
ters, CNN models can capture a high-level representation of the input 
data, which is then sent to an FCN to reduce the dimension of features to 
the expected dimension of the output. 

In this case, since the information is generated in a vector format, 1D 
convolutional layers were implemented. After the corresponding simu-
lations run with Ray Tune (other 1000 trials) while varying the com-
binations of the main hyperparameters of the NN—mainly the number 
of layers (both 1D convolutional and FC), the number of neurons in each 
layer, the kernel composition, and the learning rate—we selected once 
again the best-performing combination. This corresponds to the archi-
tecture shown in Fig. 5, with four convolutional (with one pooling layer 
in the middle) and two dense layers, a batch size of 32, and a learning 
rate of 0.001, trained during 100 epochs. Also note how the C-rate is 
only provided to the NN after the convolutional operations and the 
dropout are executed. 

4. Results 

All the simulations and calculations were performed using the 

PyTorch framework and some specific Python libraries such as “pandas”, 
“numpy”, and “scikit-learn.” Datasets were divided into training (60 %), 
validating (20 %), and test (20 %) data. At this point, it is important to 
highlight that to avoid the variability in the results inevitably derived 
from the aleatory partitioning introduced to the datasets for training, a 
fivefold cross-validation strategy [31] was implemented with each of the 
models simulated. 

Results were initially calculated for the datasets containing the 
complete dQ/dV curve. This allowed us to analyze how the various ΔV 
values selected influence the performance of the ML algorithms. Then, 
we evaluated the final performance of the algorithms with partial sec-
tions of the dQ/dV curves—just for the better-performing datasets—and 
compared with previous works. The results are as follows. 

4.1. Full charge/discharge dQ/dV profiles 

Fig. 6 and Fig. 7 display the resulting capacity fade estimation error 
in terms of MAE and RMSE, respectively, achieved by each of the five ML 
algorithms when using any of the four datasets under consideration 
(with ΔV being 5, 10, 20, and 50 mV). 

It becomes clear that the NN models (represented as FCN and CNN in 
the figures) outperform the other algorithms when the whole dQ/dV 
profile is available. Among them, the SVR model works clearly worse 
than the rest, followed by the KNN (which gets much worse as the ΔV is 
reduced), the RF, and the XGB. If the two NN-based models are 
compared, results are similar in both MAE and RMSE. The best perfor-
mance among them is the CNN, with an MAE value as low as 0.002 (i.e. 
0.2 %, when considering the unit would be the whole initial capacity of 
the battery) and an RMSE as low as 0.003 (0.3 %). The good accuracy of 
the retained capacity estimation achieved with the CNN is evident in 
Fig. 8, in which the estimation values offered by the CNN with the 
fivefold cross-validation methodology are depicted over the actual 
retained capacity labels registered in the dataset for each of the test data 
instances. Note how the estimated capacity values, calculated as the 
average value of the estimations obtained for a given test instance at 
each of the cross-validation tests, almost overlap the actual values in all 
the cases with just a few exceptions in which the standard deviation of 
the estimation is observed. Such estimation error levels, obtained with 

Fig. 4. Architecture of the proposed FCN with four FC layers and two dropout layers.  
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the two NN models, clearly outperform those obtained in [28] and are in 
close competence with those in [26], which were achieved for a different 
type of Li-ion cells and are, therefore, more difficult to compare. 

Apart from that, when comparing results among the four datasets, 
the larger the ΔV value the better the performance for all the ML algo-
rithms because a larger ΔV implies shorter dQ/dV vectors and more 
pronounced/characteristic profiles, Fig. 2. Within this general trend, 
results for both the FCN and CNN models present similar responses to 
both the 20 mV and the 50 mV datasets in terms of both MAE and RMSE, 
producing the best resulting combinations of those analyzed in this 
work. Therefore, given the similarity in the best-case response for these 
two datasets, both are analyzed in the partial dQ/dV profiles evaluation. 

4.2. Partial charge/discharge dQ/dV profiles 

When the dQ/dV profiles are not complete and only a part is regis-
tered (obtained from a partial charge or discharge process), the results 
vary significantly. Five different scenarios have been analyzed. These 
correspond to the cases with portions of the dQ/dV, compiling the 20 %, 

30 %, 40 %, 50 %, and 80 % portions of it. Fig. 9 and Fig. 10 summarize 
the respective MAE and the RMSE values obtained for each of the ML 
algorithms with the two datasets under consideration: the ΔV = 20 mV 
and the ΔV = 50 mV datasets. 

When comparing the results among datasets, the 20 mV dataset al-
lows the ML models to better estimate the retained capacity with a lower 
MAE and a similar RMSE. The difference gets more significant, espe-
cially for the MAE value, as the registered portions of the dQ/dV curve 
decreases below the 50 % of the whole cycle. 

If we focus the analysis on comparing the performance of the 
different algorithms versus the same dataset, results indicate that, as for 
the case of the whole dQ/dV profiles, the SVR algorithm works signifi-
cantly less effectively than the others (especially with the 50 mV data-
set). Also, the CNN performs marginally better in this scenario than its 
FCN counterpart. Both the FCN and the CNN models are consistently 
superior to the rest of algorithms. Only when portions of the dQ/dV 
curve are below 40 % do the RF and the XGB models become competi-
tors to the NNs, although even in the worst case (for 20 % portions) the 
CNN keeps being the best solution. 

Fig. 5. Architecture of the CNN implemented with four convolutional 1D layers, one pooling, one flatten and one dropout layer, and two FC dense layers.  

Fig. 6. Resulting MAEs of the retained capacity estimation results for the six ML algorithms with each of the four datasets under test.  
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However, even though the CNN algorithm would be the selection of 
choice when just partial curves were available, the best CNN model 
explored would not appear to be a good solution for industrial appli-
cations due to the resulting MAE and RMSE values. It presents errors (in 
MAE) of 0.0106 (1.1 %), 0.0187 (1.9 %), 0.027 (2.7 %), and 0.035 (3.5 
%) for the 50 %, 40 %, 30 %, and 20 % portions, respectively. Although 
these values surpass results offered in previous references, such as [28], 
they would still imply a poor estimate for a reliable commercial system 
such as the BMS of an EV. 

The limited accuracy of the retained capacity estimation capability 
can be observed in Fig. 11. This has been obtained for the CNN with the 
50 mV dataset at 20 % partial curves. With a MAE value of 0.038 (3.8 %) 
for the whole test dataset, estimated values (in red, calculated as the 
average of the capacity estimates obtained for each test instance during 
the fivefold cross-validation strategy) clearly differ along most of the 
capacity range from actual measured values (in blue). The standard 
deviation of the estimates (grey band around the red points) would be 

also too high to consider the estimation acceptable, or accurate, espe-
cially for low SOH values. 

In fact, the performance of the algorithm gets clearly worse as the 
battery SOH diminishes, Fig. 11. While the battery operates within its 
healthy range (retained capacity above 80 %) the MAE is 0.028, which 
would still represent an acceptable estimation error value. However, 
when the retained capacity gets below 80 % the MAE drops to 0.061 and 
the estimation becomes highly inaccurate. 

4.3. Discussion about the results 

Results demonstrate that the ΔV value used to discretize dQ/dV 
curves influences the MAE and RMSE results provided by the different 
algorithms. Changing the ΔV value from 5 mV to 50 mV involves a 
reduction in the MAE error for full cycles from 0.25 % to 0.17 % when 
using the best-performing algorithm, the CNN. Differences between the 
20 mV and the 50 mV datasets are not so significant and both have been 
considered for the partial cycles' analysis. Then, as the available portion 
of cycle decreases, the better the 20 mV dataset performs in relation to 
the 50 mV dataset. For the 20 % portions case, the 20 mV provides better 
results than those achieved for the 50 mV dataset. 

Among the different ML algorithms under evaluation, those based on 
NN outperform the rest (SVR, KNN, RF, and XGB), by between 0.5 % and 
4 % depending on the case, and they achieve so both when the whole 
dQ/dV curve is available and when just a portion of the curve (cycles 
ranging from 30 % to 80 % of full scale) is registered. Between them, the 
CNN model works better than the FCN counterpart for all the datasets 
and portions analyzed, with values as low as 0.002 (0.2 %) in MAE and 
0.003 (0.3 %) in RMSE for the whole curve case, and 0.035 in MAE and 
0.066 in RMSE for the cases with dQ/dV curve portions as low as 20 %. 
Therefore, when comparing the algorithms in terms of SOH estimation 
accuracy, the defined CNN model would be the best option to analyze 
retained battery capacities. 

However, although retained capacity estimation outcomes with the 
whole dQ/dV curve result accurate (significantly below 1.5 %, as 
observed in Fig. 8) for most of the algorithms analyzed, the error level 
achieved with partial charge/discharge operations is still high for all of 
them, especially when SOH actual values get below 80 %. Even the CNN 
model provides estimations (0.014 (1.4 %), 0.020 (2.0 %), 0.027 (2.7 
%), and 0.035 (3.5 %) for the 50 %, 40 %, 30 %, and 20 % portions, 
respectively) that would be, in our opinion, too inaccurate for a reliable 
diagnose (as observed in Fig. 11). 

In terms of efficiency and time consumption, the different types of 
algorithms implemented would be valid for commercial products 

Fig. 7. Resulting RMSEs of the retained capacity estimation results for the six ML algorithms with each of the four datasets under test.  

Fig. 8. Actual retained capacity labels (blue) vs. retained capacity estimations 
(red) and its corresponding standard deviation (grey band) achieved with the 
CNN model for the test data from the 50 mV dataset when the whole dQ/dV 
profile is available. MAE = 0.002, RMSE = 0.0032. 
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because, even though the training of the models can be time consuming 
(specially for the deep learning cases), all of them could provide retained 
capacity estimations in a timely manner without a great computing 
burden once they are trained. Therefore, although some of the algo-
rithms would be more efficient in terms of time consumption and 
computing requirements, this would not be a critical parameter for the 
application under consideration. 

Nonetheless, attending to the different simulations performed and to 
the results achieved for the various portions of curves and with the 
different algorithms, it can be concluded that none of the algorithms 
analyzed would conform by itself a reliable methodology to estimate 
from partial cycles smaller than 50 % the retained capacity of batteries. 
In fact, any SOH estimation method with MAE and RMSE values above 
0.015 (1.5 %) would not seem an acceptable solution to implement in 
rigorous commercial systems or to analyze the potential use of the 
batteries, for instance, in second life applications. This implies the KNN, 
the RF and the XGB algorithms would only be acceptable when the 
whole charging cycles were available; the SVR model would not be 
suitable even in this case; and the FCN or CNN models could be valid 
potential solutions when the depth-of-discharge of the cycles was above 
80 %. 

In any case, ML SOH estimation models would require large cycles to 
provide accuracy and potentially complement the partial dQ/dV curve 
portion with further information when implemented in commercial so-
lutions. Also, external influences on the dQ/dV curve profile such as the 
temperature would require some analysis. This is an open topic to be 
taken into consideration in future works. 

Fig. 9. Resulting MAEs of the retained capacity estimation results for the six ML algorithms with partial cycles.  

Fig. 10. Resulting RMSEs of the retained capacity estimation results for the six ML algorithms with partial cycles.  

Fig. 11. Actual retained capacity labels (blue) vs. retained capacity estimations 
(red) and its corresponding standard deviation (grey band) achieved with the 
CNN model for the test data from the 50 mV dataset when just the 20 % of the 
dQ/dV profile is available. MAE = 0.042, RMSE = 0.072. 
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5. Conclusions 

This paper analyzed the suitability of six different ML algorithms 
(SVR, KNN, RF, XGB, FCN, and CNN) to diagnose and estimate the 
retained capacity of a Li-ion battery at a given moment during its 
operation lifetime using the data registered by the battery management 
system during the last partial or full charging/discharging process. Data 
available online from long-term degradation experiments on LCO pris-
matic cells have been used to generate the training datasets and test the 
models. These data allowed generating the dQ/dV curves (with four 
different formats) during full and partial charging/discharging processes 
which were combined with the C-rate values of the corresponding cy-
cles. The main conclusions extracted are summarized as follows:  

1) The ΔV step used to discretize the dQ/dV curve (5 mV, 10 mV, 20 
mV, and 50 mV) influences the performance of the ML algorithms. 
The best results arise with the 20 mV and the 50 mV step-size to 
datasets for partial and full cycles, respectively.  

2) Among the six different ML algorithms implemented, the defined 
CNN model would be the best option to analyze retained battery 
capacities with both full and partial cycles.  

3) The proposed methods present strong robustness to the cell C-rate 
and state-average of-charge of the partial cycles since no significant 
differences are registered in the estimation results when varying 
these parameters. 

4) Although the retained capacity estimation results become very ac-
curate for most of the algorithms analyzed when the whole dQ/dV 
curve is registered, the error with partial charge/discharge opera-
tions is too high (above 1.5 %) even for the CNN model, especially 
when the battery SOH gets below 80 % and for partial cycles smaller 
than 80 %. Only within the framework with cycles larger than 80 % 
could the FCN or CNN models be valid potential solutions to be 
implemented in commercial applications. The KNN, RF and XGB 
algorithms would only be acceptable when the whole charging cycles 
were available and the SVR model would not be suitable even in that 
case. 
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