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Abstract 

Drought is one of the natural phenomena that causes the greatest socio-economic and environmental 

damage. Its impacts are of particular importance in agriculture, as this activity is closely linked to food 

security and quality of life in many territories. Droughts can occur in any climatic regime in the world, 

with arid and semi-arid areas being the most affected and prone to drought events. In regions particularly 

exposed and vulnerable to drought, specific drought studies are needed to help manage and mitigate its 

impacts. This thesis is a contribution to the management of drought and its impacts, specifically on 

agriculture. 

Several novel and bespoke methodologies were developed with the aim of increasing knowledge of 

drought phenomena and providing solutions for water resources and drought management. Freely 

available global scale hydrometeorological data sources were used, so that the methodologies can be 

applied to any country or region of the world. The case studies were Mozambique and Argentina, both 

are developing countries with significant agricultural activity (in terms of cropland extension) and prone 

to drought events. Methodologies focused on defining and understanding the spatio-temporal 

characteristics of droughts; defining and relating drought events to their triggers; validating tools for 

monitoring droughts and their impacts on agricultural activity; and knowledge transfer to all 

beneficiaries and stakeholders involved in drought management in data-scarce regions. The 

methodologies are of general applicability and can be replicated worldwide, providing meaningful 

information to the scientific, technical and management community to develop, calibrate or validate 

existing and new formulations. In addition, they could contribute to the creation of drought mitigation 

and adaptation plans aimed at reducing impacts, especially in agriculture. 

Resumen 

La sequía es uno de los fenómenos naturales que mayores daños socioeconómicos y medioambientales 

causa. Sus impactos son de especial importancia en la agricultura, ya que esta actividad está ligada a la 

seguridad alimentaria y calidad de vida de muchos territorios. Las sequías pueden ocurrir en cualquier 

régimen climático del mundo, siendo las zonas áridas y semiáridas las más afectadas y propensas a 

eventos de sequía en el futuro. En las regiones particularmente expuestas y vulnerables a la sequía, se 

necesitan estudios específicos sobre la sequía para ayudar a controlar y mitigar sus impactos. Esta tesis 

es una contribución a la gestión de las sequías y sus impactos, específicamente en la agricultura. 

Se desarrollaron varias metodologías específicas y novedosas con el objetivo de aumentar el 

conocimiento de los fenómenos de la sequía y aportar soluciones para la gestión de los recursos hídricos 

y de la sequía. Se hizo uso de fuentes de datos hidrometeorológicos alternativos de libre acceso, de 

manera que las metodologías pueden aplicarse a cualquier país o región del mundo y a cualquier escala 

espacial. Los casos de estudio fueron países en vías de desarrollo con una importante actividad agrícola 

(extensión de cultivos) y propensos a eventos de sequía. Se uso Mozambique y Argentina debido a su 

situación económica y compleja disponibilidad de datos. Las metodologías se centraron en definir y 

comprender las características espaciotemporales de las sequías; en definir y relacionar los eventos de 

sequía con sus desencadenantes; en la validación de herramientas para el seguimiento de las sequías y 

sus impactos en la actividad agrícola; y, en la transferencia de conocimientos a todos los beneficiarios e 

implicados en la gestión de la sequía en regiones con escases de datos. Las metodologías y los resultados 

obtenidos pueden ser replicados en cualquier parte del mundo, proporcionando información significativa 

a la comunidad científica, técnica y de gestión para desarrollar, calibrar o validar formulaciones 

existentes y nuevas. Además, son herramientas que podrían contribuir a la creación de planes de 

mitigación y adaptación a la sequía destinados a reducir los impactos, especialmente en la agricultura. 
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Resumo 

A seca é un dos fenómenos naturais que provocan maiores danos socioeconómicos e ambientais. Os 

seus impactos son de especial importancia no agro, xa que esta actividade está moi ligada á seguridade 

alimentaria e á calidade de vida en moitos territorios. As secas poden ocorrer en calquera réxime 

climático do mundo, sendo as zonas áridas e semiáridas as máis afectadas e propensas a sufrir eventos 

de seca. Nas rexións especialmente expostas e vulnerables á seca, son necesarios estudos específicos 

sobre a seca para axudar a xestionar e mitigar os seus impactos. Esta tese é unha contribución á xestión 

da seca e os seus impactos, concretamente na agricultura. 

Desenvolvéronse varias metodoloxías novedosas e a medida co obxectivo de aumentar o coñecemento 

dos fenómenos da seca e proporcionar solucións para os recursos hídricos e a xestión da seca. 

Utilizáronse fontes de datos hidrometeorolóxicos a escala global de libre dispoñibilidade, de xeito que 

as metodoloxías poden aplicarse a calquera país ou rexión do mundo. Os estudos de caso foron países 

en desenvolvemento con actividade agrícola importante (extensión de terras de cultivo) e propensos a 

eventos de seca. Utilizáronse Mozambique e Arxentina debido á súa situación económica e á complexa 

dispoñibilidade de datos. Metodoloxías enfocadas a definir e comprender as características espazo-

temporais das secas; definir e relacionar os eventos de seca cos seus desencadenantes; validación de 

ferramentas para o seguimento das secas e os seus impactos na actividade agraria; e, transferencia de 

coñecemento a todos os beneficiarios e partes interesadas implicadas na xestión da seca en rexións con 

escaseza de datos. As metodoloxías son de aplicabilidade xeral e pódense replicar en todo o mundo, 

proporcionando información significativa á comunidade científica, técnica e de xestión para 

desenvolver, calibrar ou validar formulacións existentes e novas. Ademais, poderían contribuír á 

creación de plans de mitigación e adaptación á seca destinados a reducir os impactos, especialmente no 

agro. 
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1. Overview and background 

Droughts are among the most common natural phenomena worldwide, and can occur anywhere under 

any climate regime (Bryant et al., 2005; Sheffield and Wood, 2012). However, it is one of the least 

understood hazards due to its complexity and difficult quantification (Hagenlocher et al., 2019a). 

Droughts can be perceived by the chains of energy production, food, water supply, etc., being generally 

detected when the consequences of the phenomenon are difficult to mitigate, so it is the disaster that 

causes more socioeconomic losses worldwide (WMO, 2006). Therefore, specific drought studies at 

regional or local levels are needed in order to support drought management stakeholders. 

Droughts must be differentiated from other related phenomena such as scarcity and aridity. Scarcity 

represents a permanent situation of deficit (calculated with the water balance) in relation to the demand 

for water in a regional resource system, characterised either by an arid climate or by a rapid growth in 

water demand. Aridity is a natural structural situation of a region and therefore permanent (Svodova et 

al., 2016). Even in these circumstances, there should not be a deficit if the exploitation systems are 

adequately designed and exploited and the demands are kept within reasonable limits, in accordance 

with the climatic characteristics of the region. This requires planned medium and long-term actions. 

The classification of droughts types are typically four: meteorological, agricultural, hydrological and 

socioeconomic (Wilhite and Glantz, 1985). Meteorological drought is associated to a deficit of 

precipitation over a region for a period of time; agricultural drought is related to a period when crops 

fail, and vegetation condition is affected because of deficits of soil moisture; hydrological drought refers 

to a deficit of water resources in the surface and subsurface; and socioeconomic drought is associated 

with failure in the water resources systems to meet water demands for socioeconomic good. The 

sequence of occurrence of the type of drought and their main impacts are illustrated in Fig. 1.1. 

 

Fig. 1.1 Sequence of occurrence of drought types and their impacts. Source: National Drought Mitigation Center de la 
Universidad de Nebraska –Lincoln. 
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Droughts are commonly evaluated by events, which can be quantified and compared. An event can be 

defined according to the "run theory" (Yevjevich, 1969), which defines the duration, peak or maximum 

intensity, severity and probability or frequency of a drought event. It also makes it possible to delimit 

the affected areas and to calculate the extent of drought in a given area over a period of time. These 

characteristics can then be related to corresponding impacts, for example in agriculture (Yihdego et al., 

2019). 

The effects or impacts of droughts are expected to worsen in the next decades due to climate change. 

Changes in spatial-temporal patterns of precipitation and extreme temperatures could make droughts 

more recurrent (Mishra and Singh, 2011). As stated by the (IPCC, 2014) there are trends of increasing 

intensities and frequencies of droughts around the world, with arid and semi-arid areas possibly being 

the most affected. Recent studies have suggested that future drought events may affect larger areas, 

reaching a higher level of impact than any other climate-related hazard, especially on food supply 

activities (Romm, 2011). Ultimately, there is widespread acceptance that droughts in southern Africa 

and South America will intensify and extend in duration over the coming decades due to reduced 

precipitation and increased evapotranspiration (due to temperature increase effects). Countries such as 

Mozambique and Argentina, the case studies used in this thesis, are vulnerable to potential climate 

change impacts that may bring more severe extreme weather events affecting natural and socio-

economic sectors. 

One of these sectors is agriculture, which is the mainstay of food security in Mozambique y Argentina. 

At the same time, it is highly dependent on the availability of water from the environment, i.e. from 

rainfall, runoff and natural flows, since in these areas there are usually no major regulatory water works 

(e.g. for irrigation or dams). Temporal variability in crop yields can respond to many non-climatic 

influences, such as civil war and conflicts or epidemics (Ben-Ari and Makowski, 2014; Eriksen and 

Silva, 2009; Hellmuth et al., 2007; Schauberger et al., 2018), however, the main driver is climate 

variability (Lobell et al., 2011b). According to FAO, (2019), in developing countries (such as Argentina 

and Mozambique) the agricultural sector absorbs about 80% of the direct impacts caused by droughts, 

while a quarter of the global economic impacts come from crop losses caused by natural hazards, 

especially droughts. Therefore, in regions particularly exposed and vulnerable to drought, specific 

drought studies are needed to help mitigate its impacts. 

The study of drought consists of different components, starting with the characterisation of drought in a 

given area, it encompasses the monitoring, analysis, prediction, visualisation and evaluation of the 

impacts of one or several drought events. According to Wilhite et al., (2000), the process of studying 

droughts in a given area (country or river basin) should start with a spatial division into regions according 

to drought characteristics, then a drought monitoring system should be developed to create early 

warnings of emerging drought conditions, and finally drought forecasting, which can be based on 

predictive models or known relationships between drought indices and indicators of drought triggers 

(e.g., teleconnections). In this last step, it is necessary to understand the climatic drivers that trigger 

drought events in the region and use this climate teleconnection information as a forecasting tool. 

Several drought indices have been developed for the above purposes (World Meteorological 

Organization and Global Water Partnership, 2016). The indices are computed using as inputs climatic 

and hydrological variables. For instance, precipitation (McKee et al., 1993), soil moisture (Hao and 

AghaKouchak, 2013), vegetation condition (Kogan, 1995) and runoff (Mo, 2008). Some multivariate 

indices have been created as well, showing good results. For example, using precipitation and 

evapotranspiration (Vicente-Serrano, 2006a), vegetation condition and ground temperature (Kogan, 

1995), and reservoir storage and water demands (Mehran et al., 2015). Drought indices are very 

powerful tools for identifying water deficits throughout time and monitoring the characteristics of past 

and present events. They also make it possible to monitor the characteristics of past and present drought 

events and to relate them to negative effects, such as reduced water volume in a reservoir or loss of 

vegetation and crops. 
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For the proper application of drought indices, time series of hydrometeorological data for each 

component of the hydrological cycle are required. The inputs used in the calculation of the drought 

indices require a high-level quality. According to the World Meteorological Organization, (2008), in 

situ measurements of the input variables are required with a length of at least 30 years and with a spatial 

distribution of at least one every 250km2. These conditions are particularly difficult to meet in 

developing countries or certain regions of the world due to socio-economic, environmental and other 

conditions (Easterling, 2013). The main reason is often the high cost of set-up and maintenance of the 

instrumentation required to measure the variables needed to calculate drought indices over large 

territories, so that in many areas of the world the availability of data is extremely limited. 

To obtain hydrological and climate data such as precipitation, soil moisture, streamflow, etc., several 

institutions have developed quasi-global databases which are shared openly and free of charge. These 

products are based on gauged (measured) point data that have been interpolated by statistical techniques; 

on results from global climate and hydrological models; and, on remotely sensed information from 

satellite radars. These global data sets offer products that meet the required quality for drought studies 

and have proved to be a valuable source of timely, spatially continuous data with improved information 

on climatic and hydrological monitoring (Funk et al., 2014; Harris et al., 2020). This opens up the 

possibility of widespread use of these data in drought studies. 

The analyses and research conducted in this thesis are intended to address the knowledge gaps and the 

specific management needs in drought-prone areas. This study aimed to define methodologies for 

monitoring drought events and their impacts on crops in data-scarce regions. The methodologies sought 

to improve management systems and contingency plans by filling the gaps that exist in the different 

components of a proper drought study in some regions of the world. The methods were based on drought 

indices calculated with variables from alternative global databases (free and open access). The case 

studies were two large territories: Mozambique in the southern cone of Africa and Argentina in southern 

South America. 

The following sub-sections of this introductory chapter present the justification and motivations for this 

thesis; the main characteristics of the case studies; the main and specific objectives; and an outline of 

the thesis including the main results obtained, the principal conclusions, and future work. 

1.1 Motivation and justification of the thesis 

Adequate drought management is conditioned by several prerequisites. These requirements can be 

framed in terms of the availability of meteorological and hydrological metrics, the understanding of the 

relationships between these two sets of parameters, and methodologies and approaches for their use and 

application (Mishra and Singh, 2010). In an area of interest such as a country or a river basin, these 

requirements will define the scope and effectiveness of drought preparedness and mitigation plans 

(among other aspects of management). In many regions of the world, these requirements are a constraint 

due to various socio-economic reasons that preclude optimal drought management (Easterling, 2013). 

Consequently, this fact results in significant impacts on socio-economic systems, especially in 

agriculture. The impact on this sector is directly related to food security and the quality of life of a large 

part of the population in developing territories. According to Cumani and Rojas, (2016), one third of the 

population in these regions is directly dependent on farming. This thesis is a contribution to the 

management of droughts and their impacts, specifically in agriculture. 

Although global drought studies have increased in recent decades, leading to significant advances in 

understanding of the phenomena (Hagenlocher et al., 2019b), certain aspects are still unresolved, 

especially in developing regions of the world. In this framework, the thesis was motivated by the need 

to define feasible and reproducible methodologies to improve the understanding of droughts and their 

impacts on agriculture. Specifically, the thesis aimed to develop and validate methodologies to 

characterise the development of droughts in space and time, define drought indices that better describe 
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the local drought conditions, explain the impacts on agriculture and find the large-scale climate drivers 

of drought events. In order to be adaptable worldwide, these methodologies were based on the use of 

global, open access and free global hydrometeorological databases. As case studies, the work of this 

thesis was focused on Mozambique and Argentina. 

Globally, Mozambique is involved in many development programmes led by the Food and Agriculture 

Organization of the United Nations (FAO) (Midgley et al., 2012) and the World Food Programme 

(WFP), among others, aimed at implementing climate change adaptation strategies to improve resilience 

to droughts and especially to the sustainability of agriculture. The University of A Coruña, working 

together with the Spanish Regional Government of Galicia (Xunta de Galicia), has carried out several 

collaboration and development projects with Mozambique. This thesis is related to the following 

projects: 

- “Implementation of drought indices as monitoring and early warning tools for the development 

of drought preparedness and management plans in Northern Mozambique (SECARA Project)”. 

Funded by Spanish Regional Government of Galicia (Xunta de Galicia) and Galician 

Cooperation (Cooperación Galega). Research for Development 2017. 

 

Original project title (in Spanish): “Proyecto Implementación de índices de sequías como 

herramientas de vigilancia y alerta temprana para el desarrollo de planes de preparación y 

gestión de sequías en el Norte de Mozambique (Proyecto SECARA)”.  

 

- “Strengthening technical and operational capacities for the improvement of water resources 

management in Mozambique (Aqua-Moz): Phase 1 and 2”. Funded by Spanish Regional 

Government of Galicia (Xunta de Galicia) and Galician Cooperation (Cooperación Galega). 

Research for development 2019. 

 

Original project title (in Spanish): “Fortalecimiento de capacidades técnicas y operativas para 

la mejora de la gestión de los recursos hídricos en Mozambique (Aqua-Moz)”: Fase 1 y 2. 

Within the framework of the efforts to combat climate change, these projects aim to develop 

methodologies, at the technical and operational levels, for the improvement of water resources 

management in Mozambique. The actions identified focused on capacity building (in the administration 

and other relevant stakeholders) and the implementation of technical and management tools. The 

approach of the projects emphasises the replicability of the actions throughout the country with the 

objective that local beneficiaries will progressively become the protagonists of knowledge transfer to 

all Mozambican administrations. 

Mozambique, at the scientific level, is a very complex scenario for conducting specific drought studies. 

The country does not have an operational measurement network that meets the optimal criteria 

established by Easterling, (2013). Furthermore, despite being a country highly dependent on rain-fed 

agricultural labour, data on agricultural yields are limited. In general, previous research on the impacts 

of drought is scarce, so the methodologies proposed during the development of this thesis had to be 

tested and validated in other settings where better-quality data is available, but where specific studies of 

similar droughts are required in order to contribute to water management. For this purpose, Argentina 

was chosen as a suitable complementary case study for this thesis.  

In contrast to Mozambique, Argentina has a better and more reliable database of agricultural data. 

Annual crop yields at departmental level (second order administrative subdivision of the provinces) are 

documented by the Ministry of Agriculture, Livestock and Fisheries of Argentina (Ministerio de 

Agricultura, Ganadería y Pesca de Argentina). This database includes the sowed area, harvested area 

and total production of 30 different crops from 1961 to date. Nevertheless, Argentina, similar to 

Mozambique, also does not meet the optimal requirements of established climate and hydrological 

databases. 
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However, Argentina has made significant progress in terms of understanding droughts. Specific drought 

studies have been carried out in different areas of the country, many of them with a view to minimising 

the impact of the phenomenon on agricultural work. However, there are still many gaps, which coincide 

with those in Mozambique (explained in the following sections).  

For these reasons, this country has been chosen as a second case study for the development of this thesis 

in order to compare and validate methodologies applied in Mozambique, while contributing and creating 

additional knowledge for water and drought managers in Argentina. 

The following is a brief description of the characteristics of these two countries. The focus is on the 

description of the hydrological and climatic characteristics; the relevance of their agricultural activity; 

the drought risks they are prone to; and the specific information gaps they need to address to monitor 

and manage droughts in order to minimise the impact of droughts on crops. 

1.2 Case studies 

1.2.1 Mozambique 

Mozambique (Fig. 1.2) is one of the poorest countries worldwide. It is located in southern Africa in one 

of the most prone to drought areas in the world (Eriksen and Silva, 2009; 2014: Climate Change IPCC, 

2014; Osbahr et al., 2008; Patt and Schröter, 2008). The climate is tropical, with a hot and rainy summer 

season from October to March, and a cool and dry winter season from April to September (Midgley et 

al., 2012). Maximum and minimum averaged temperature varies from 19°C to 30°C, respectively. The 

national annual average precipitation is 1032 mm, which 75% of it falls during summertime. According 

to the International disaster Database (EM-DAT, 2021), Mozambique has suffered various drought 

events affecting more than 20 million people. The most important events were registered in 1982-1983, 

1991-1993 and 2016.   

The country's total population was more than 30 million inhabitants in December 2019 according to the  

National Institute of Statistics (“Instituto Nacional de Estatística”, www.ine.gov.mz), which more than 

60% of them live in rural areas and have their main economic activity related to agriculture (Ministério 

da Agricultura e Segurança Alimentar, 2015).  

According to Hellmuth et al., (2007) extreme hydrological events such as drought will be more frequent 

and more damaging in Mozambique due to climate change. Average rainfall trends generally indicate a 

slight drying, particularly in summer, while Global Circulation Models (GCMs) suggest that 

temperature will warm by between 3.1 °C and 3.4 °C, with warming of up to 4.8 °C possible towards 

the end of the twenty-first century (Midgley et al., 2012). The country is not properly equipped with the 

hydraulic structures it requires to regulate rainwater, nor does it have adequate national mitigation plans 

for this hazard in current and future conditions, so it is at very high risk of impacts such as food shortages 

and associated socio-economic issues. Indeed, historically Mozambican farmers have experienced 

recurrent losses due to water scarcity and climatic variability, with the most vulnerable people in rural 

areas particularly exposed to this climatic phenomenon. (Eriksen and Silva, 2009). 

To the authors' knowledge, there is a lack of comprehensive national drought studies that could serve as 

a basis for the development of national drought monitoring and forecasting systems. Some studies have 

explored small parts of the country, focusing on the Limpopo basin (Dutra et al., 2013; Seibert et al., 

2017; Trambauer et al., 2015). Therefore, there is a clear need to develop specific drought studies in this 

region, which can ultimately contribute to a better drought management. 



 

 

Introduction, main results, and conclusions 

 

10  
 

 

Fig. 1.2 (a) Location of Mozambique in Africa and its topography. Black dots illustrate the CRU grid points (0.5◦ × 0.5◦). Spatial 
distribution of annual mean values of: (b) precipitation (1973–2017), (c) potential evapotranspiration (ETP, 1973–2017), (d) 
Normalized Difference Vegetation Index (NDVI, 1983–2017), (e) Brightness Temperature (BT, 1983–2017), (f) Soil moisture 
(1973–2017), and (g) Terrestrial Water Storage (TWS, 2002–2017), across the country. 

1.2.2 Argentina 

Argentina covers 2791810 km2 and is divided into five main administrative regions according to the 

National Institute of Statistics and Census of the Argentine Republic (INDEC: www.indec.gob.ar), 24 

provinces (including the Autonomous City of Buenos Aires as a province), and 525 departments (Fig. 

1.3). Due to its large surface area, the country has a wide climatic diversity, ranging from arid (south 

and centre-north) to fully humid (northeast) (Beck et al., 2018; Kottek et al., 2006). Argentina has the 

highest per capita crop production in the world (FAO, 2019) and at the same time has significant annual 

and interannual climate variability (Barros and Silvestri, 2002). These facts mean that the probability of 

crop yields in Argentina being reduced due to drought ranges from as high as 80% in some cases (Leng 

and Hall, 2019).  

Argentina is one of the world's leading producers of cereals and oilseeds (FAO, 2017), which are largely 

cultivated in the Argentine Pampas and over half of which are rainfed (Cherlet et al., 2018). Average 

annual precipitation at the departmental scale varies between 70 and 1880 mm per year and, the average 

annual temperature ranges between 2 and 23 °C. Both precipitation and temperature increase from east 

to west and from south to north. Spring and summer are the wettest seasons, while autumn and winter 

are the coldest and driest. The value of Argentina's cereal production was USD 10.2 billion in 2013, 

representing 8.3% of its GDP (FAO, 2017). 

The country is vulnerable to several natural phenomena (earthquakes, floods, etc.); however, droughts 

represent the greatest risk of agricultural losses (Cherlet et al., 2018). The triggers of drought events in 

Argentina have only been studied in specific areas (provinces or river basins), but not at the national or 
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regional level of agricultural production. Therefore, studies are needed to help decision-makers monitor 

the impacts of droughts on agriculture and minimise the associated risk. 

 

Fig. 1.3 Location of a) Argentina; b) regional, providence and department divisions; and c) departments with soybean 
production. 

2. Objectives of the thesis 

The main objective of the thesis was to investigate and develop methodologies, at a technical and 

procedural level, for monitoring drought and evaluating its impacts on agriculture in data-scarce areas. 

The methodologies consider the use of alternative hydrometeorological data sources that are freely 

available, so that they could be replicated and implemented in any region of the world at different spatial 

scales.  

This general objective can be broken down into more specific objectives which are described here in 

terms of the main methodologies required in the study areas for appropriate drought management. 

Understand the spatio-temporal characteristics of droughts and their triggers. 

i. Characterise spatio-temporal conditions and drought trends. 

ii. Identify the influence of large-scale climatic factors on drought events. 

Validate the tools for monitoring droughts and their impacts with a focus on agriculture. 

iii. Use global gauging-based and satellite-derived datasets to calculate several widely known 

drought indices. Compare and validate with historical drought records. 

iv. Analyse the temporal variability between various drought indices to identify those that are 

strongly correlated and potentially provide redundant information. 

v. Develop statistical crop models based on time series to explain and subsequently forecast 

national yields using drought indices as predictors. 
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vi. Propose a new index to improve the assessment and monitoring of agricultural droughts. 

Transfer of knowledge to local beneficiaries and all those involved in drought management. 

vii. Satisfy the need to obtain quickly and efficiently the data necessary for drought management 

and monitoring in any region. 

viii. Create a tested tool for drought management. 

ix. To transfer knowledge to Mozambican administrations and universities. 

3. Thesis outline 

The dissertation of this thesis is presented in the modality of a compendium of scientific papers. The 

results of this work have been published in four international journals, three of which are indexed by the 

Journal Citation Report: Journal of Hydrology: Regional Studies (Ranked Q1 with an Impact Factor of 

5.437 according to the Journal Citation Reports 2021), Agricultural Water Management (Ranked Q1 

with an Impact Factor of 6.611 according to the Journal Citation Reports 2021) and Science of the Total 

Environment (Ranked Q1 with an Impact Factor of  10.753 according to the Journal Citation Reports 

2021); and, the fourth by the Regional Online Information System for Scientific Journals of Latin 

America, the Caribbean, Spain and Portugal, Latindex (Revista Hidrolatinoamericana). Furthermore, 

part of the results presented here have been published in the proceedings of an international congress 

and in an open access manual (book). 

Chapter 1 summarises the main contents of the thesis and gives coherence and unity to the different 

studies that compose it, explaining how the objectives of the project are addressed.  The remaining 

chapters are then organised in a way that each of them can be considered as an individual study, 

including its own specific state of the art, methodology, results, and conclusions.  

The study presented in Chapter 2 aimed to characterise drought conditions and trends in Mozambique 

and to assess the influence of the main climatic factors as triggers of drought events. Drought conditions 

were studied using the Standardised Precipitation and Evapotranspiration Index (SPEI) and the "run 

theory". The SPEI was selected as a hydrometeorological drought index due to its flexibility as a multi-

scalar index and because of its functionality under climate change conditions. Principal component 

analysis technique and k-means clustering method were applied to define homogeneous drought regions. 

The Mann-Kendall trend test and the Rescaled Range statistical analysis were used to define temporal 

characteristics of drought. The cross-correlation method, a spectral analysis based on the Fast Fourier 

Transform and a Cross-Wavelet analysis were used to identify possible climate indicators as drought 

triggers. Several large-scale climate indices were used to analyse their relationships with droughts. 

Chapter 3 proposes a methodology for identifying the most appropriate drought indices and data sources 

for monitoring droughts and their impact on crops. Mozambique is used as a case study, as it represents 

a challenging example due to several characteristics that have already been discussed. A total of seven 

standardised multi-scale drought indices at different scales (1, 3, 6 and 12 months) were obtained from 

global databases: The Standardized Precipitation Index (SPI), the Standardized Precipitation and 

Evapotranspiration Index (SPEI), the Standardized Soil Moisture Index (SSI), the Standardized 

Vegetation Condition Index (SVCI), the Standardized Temperature Condition Index (STCI), the 

Standardized Vegetation Health Index (SVHI) and the Standardized Terrestrial Water Storage (STWS). 

These indices were compared and evaluated both as tools in drought management and as potential 

predictors of annual variability of agricultural yields at the national level. A statistical model of crop 

yields based on time series was used to measure the explanatory power of each index.  

Subsequently, in Chapter 4, the methodologies used in chapters 2 and 3 are applied and validated in the 

Argentinean territory. An evaluation of a set of drought indices and climate indicators (similar to those 

used in Chapter 2 and 3) to monitor agricultural drought in Argentina is presented. First, the link between 

drought indices and climate indicators was investigated at the departmental administrative level and at 
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different time scales. Then, the effectiveness of drought indices in explaining crop yield variability, 

understood as impacts of agricultural droughts, was evaluated using statistical regression models 

(defined in Chapter 3). Complementarily, the results of drought indices and climate indicators were 

compared to explain crop yield variability. 

According to the results obtained in the first chapters, and following the stated objectives, in Chapter 5 

new indices are proposed to improve the assessment and monitoring of agricultural droughts through 

the explanation of annual crop variability. These are two multivariate composite drought indices that 

take into account meteorological and agricultural drought conditions by combining in a probabilistic 

framework the Standardized Precipitation Index (SPI), through precipitation, with the Vegetation 

Condition Index (VCI) and the Vegetation Health Index (VHI). The methodology to validate and 

compare the new indices was to use the statistical crop models developed in chapters 3 and 4. This 

chapter is divided into two parts, the first part studying these indices in Mozambique and part 2 in 

Argentina. 

Chapter 6 responds to the specific objectives vi, vii and ix of the thesis related to collaboration, 

development, and knowledge transfer. A basic introductory tool for drought management is presented. 

It is a manual published in Spanish and Portuguese (original versions) that describes how to obtain the 

necessary data quickly and efficiently for drought management and monitoring in any region. These 

data are products of global databases that can be obtained free and open to everyone, so that the 

application of these data may be used in administrative (countries, cities, etc.) or natural (river basins, 

nature reserves, etc.) boundaries. In addition, the manual presents different uses and applications of these 

data as specific drought management tools. As part of the procedure, a brief introduction to the different 

aspects, concepts, and requirements necessary for the use of the manual is given. The case study for this 

manual was Mozambique. 

As part of the knowledge transfer to Mozambican administrations and universities, the manual (Chapter 

6) was presented in an online course (Fig 1.14) given by the Ph.D. candidate to students of Civil 

Engineering, Geography and Environmental Engineering at the Universidade Eduardo Mondlane - 

ESUDER in Maputo (capital of Mozambique) and to officials of the Regional Water Administrations of 

the South (Administração Regional da Água do Sur) – ARA South of Mozambique.  

Finally, this thesis includes two appendices with additional information. First, a summary of the results 

in Spanish is attached in Appendix A. Secondly, in Appendix B, the poster resulting from the 

communication at the 6th IAHR Europe Congress, 2020, Warsaw, Poland (Chapter 5 Part 1) is shown.  

4. Main results and discussions 

In the development of this PhD research, several methodologies required in for appropriate drought 

management were studied. The complete publications and results are presented in the following 

chapters, while this subsection summarises the main results of the thesis. 

In Mozambican territory Principal Component Analysis with Varimax rotation method was used to 

define 3 homogeneous drought regions located in the North, South, and Centre of the country (Fig. 1.4). 

This regionalisation was validated with hierarchical and non-hierarchical clustering methods and with 

several SPEI accumulations. Monthly precipitation and potential evapotranspiration data were 

downloaded from the Climate Research Unit (CRU) (http://www.cru.uea.ac.uk/data) to calculate SPEI-

12 for the 70-year period from January 1950 to December 2019. The CRU provides monthly climate 

time series with a resolution of 0.5˚ (≈ 55 km at the equator) worldwide (Harris et al., 2014). At this 

resolution, a total of 343 SPEI time series were calculated across Mozambique. 
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Fig. 1.4 Homogeneous drought regions defined in Mozambique. Dots are the centroids of the cells according to the CRU grid. 

In the three defined regions the most important drought events were identified and coincided with the 

major ones at the national level, validating the use of SPEI and this regionalisation for future drought 

management. The Southern and Central regions having the most intense and severe drought events in 

the past. These results were obtained using the "run theory" method. The SPEI trends were negative, 

although in the Northern region they were statistically non-significant at the 5% level for the annual 

index, according with the Mann-Kendall trend test. In terms of persistence, the Hurst index (H) 

suggested that long-term negative trends will persist for the near future across the country, especially in 

the Southern and Central regions. 

A number of large-scale climate indices were selected to analyse their correlations with the variability 

of SPEI time series averaged over homogeneous drought regions. The climate indices are based on 

fluctuations in sea level atmospheric pressure (SLP) from different locations around the globe (Darwin 

SLP, Tahiti SLP, SOI and NAO indices), and sea surface temperature (SST) from the Atlantic (TNA, 

TSA, NAT, SAT and TASI indices), the Pacific (ENSO Niño 1 +2, Niño 3, Niño 4, Niño 3.4 and PDO 

indices) and the Indian Ocean (SWIO, WTIO, SETIO and DMI indices). According to the cross-

correlations, the time series anomalies of the climate indices were negative with Darwin, Niño 3.4, Niño 

3, Niño 4, WTIO and SETIO, and positive with the SOI, showing peaks around 2-3 months before the 

negative peak of the SPEI. The Northern region showed persistently low correlations with the climate 

indices analysed, while the strongest correlations were obtained in the Southern and Central regions. 

The climate indices with the best correlation (Darwin SLP and El Niño 4) and the SPEI series have a 

periodicity associated with high energies between 40 and 120 months (3.5 and 10 years) according to 

the spectral analysis using the Fast Fourier Transform technique and the Cross-Wavelet analysis (Fig. 

1.5). In the Northern region, periods between 35 and 60 months (3 and 5 years) were found. These 

periods are consistent and similar to those reported in other studies in Africa (Oguntunde et al., 2018). 

Both Darwin SLP and El Niño 4 events showed strong impacts on the monthly SPEI series, especially 

in the Southern and Central regions, indicating that they play a relevant role in the characteristics of 

drought evolution in these regions (something that had already been seen with correlations). 
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Fig. 1.5 Cross-wavelet transform between SPEI of a) North, b) South, c) Centre regions and Darwin PSL climatic index; and of 
d) North, e) South, f) Centre regions and the Niño 4 climatic index. The y-axis is equivalent to the periods defined with the FTT 
(Period = 1/Frequency); the coloured bar denotes the energy density (red plus high energy density); the 5% confidence level 
against red noise is shown in an outline with the thick black line; and the relative phase relationship is represented with arrows 
(with the anti-phase pointing to the left, the in-phase pointing to the right). 

Once a framework for understanding the spatio-temporal conditions of droughts and triggers has been 

defined and applied, a methodology for identifying the most appropriate drought indices and data 

sources for monitoring droughts and their impact on crops in Mozambique was investigated. A total of 

seven standardised drought indicators were used: Standardized Precipitation Index (SPI), Standardized 

Precipitation and Evapotranspiration Index (SPEI), Standardized Soil Moisture Index (SSI), 

Standardized Vegetation Condition Index (SVCI), Standardized Temperature Condition Index (STCI), 

Standardized Vegetation Health Index (SVHI) and Standardized Terrestrial Water Storage (STWS) at 

different scales (1, 3, 6 and 12 months). Primary hydrological and vegetation variables were obtained 

from global databases based on measured and satellite data: the CRU, the Center for Satellite 

Applications and Research and the environmental satellites for the U.S. Oceanic and Atmospheric 

Administration (NOAA STAR), the TerraClimate dataset (Abatzoglou et al., 2018) and the GRACE 

satellites (Tapley et al., 2004). 

Both time series of national average values of drought indices and percentage area affected by droughts 

series showed similar detection capability to the historical drought records from EMDAT (EM-DAT, 

2021) and IRI (Hellmuth et al., 2007). In general, the meteorological indices (SPEI and SPI) were the 
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best matched to the historical records, followed by the hydrological index SSI (Fig. 1.6). These facts 

were resolved using performance metrics based on probability of detection (POD) or hit rate, and 

probability of false detection (POFD) or false alarm rate (Wilks, 2006). 

 

Fig. 1.6 Monthly temporal evolution of SPI, SPEI, SSI, SVCI, STCI, SVHI, and STWS at the national scale (−1, −3, −6, and −12-
month aggregations). Intensity levels can be interpreted in conjunction with McKee et al., (1993). Historical drought years 
according to the records are highlighted in yellow. 

Subsequently, the drought indices showed consistency with the physical significance of the different 

indices according a correlation analysis performed between them. Although there is a time lag between 

meteorological forcing and hydrological responses, indices based on meteorological variables with 6- 

and 12-month accumulations showed strong correlations with indices based on vegetation/hydrological 

data. The results suggest that only one of the SPI and SPEI meteorological indices with 6- and 12-month 

accumulations could be used alone in any further analysis. SCVI can be used but considering that it has 

no significant correlation with the hydroclimatic indicators, it should be used together with another 

index. The results observed in this section validated in the first instance the use of the SPEI in Chapter 

1 as a representative drought index of hydro-meteorological conditions in Mozambique. 

Then, using a national crop yield statistical model, the annual yield of 12 crops (maize, millet, sorghum, 

wheat, cashew nuts, cassava, potatoes, sugar cane, tea, tobacco and vegetables) was assumed to be the 

response of a function of independent variables, which in this case were the drought indices and the 

percentages of area affected by drought according to the different categories defined in McKee et al., 

(1993). The results indicated that the best candidate predictors were different for each crop (Fig. 1.7). 

This is because not all crops are equally sensitive to drought, nor do they have the same water harvesting 

or storage capacity. For most crops, variability was explained by two generic indicators: SPEI-3 for 

cereals (maize, millet and sorghum) and SSI-12 for other crops (cashew nuts, cassava, potatoes, tea, 

tobacco and vegetables). SPEI-6 best explained variability for wheat and SVCI-6 for sugar cane. The 

best predictors of agricultural yield variability were predictors incorporating spatial information as the 

national indices lost spatial information in their computation. 
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Fig. 1.7 Crop yields as measured by FAO versus crop yields as calculated using the best explanatory variable candidate 
(indicated as Be). Fitted parameters are also shown. The dashed line corresponds to the 1:1 line. 

Based on these results presented so far, we identified some limitations in the methodology that required 

further work to complement this research and fill in the gaps. On the one hand, due to the large variety 

of climate indicators, the relationship of these with droughts (with drought indices) should be taken with 

caution due to the complexity of the climate system. This topic is covered in Chapters 2 and 3. On the 

other hand, the availability of agricultural data in Mozambique, including special disaggregation, 
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requires that the developed methodologies be tested in other settings. These factors motivated the 

research presented in Chapter 4. 

First, correlations between drought indices and climate indices were tested in other scenarios at smaller 

spatial scales and compared as possible predictors of crop variability. And second, since it was generally 

observed that the introduction of spatial disaggregation improved the results, it was found necessary to 

validate the statistical model with a disaggregation of crop evolution by area, assuming a priori that the 

results would be much more accurate. The study was applied in Argentina and evaluated eight drought 

indices, seven already explained in previous chapters (SPI, SPEI, SSI, SVCI, SVCI, STCI, SVHI, 

STWS) and additionally an eighth, the Standardised Palmer Drought Severity Index (SPDSI) (Ma et al., 

2014), all computed at 3-, 6- and 12-month scales. They were related to 19 climate indices (similar to 

those discussed above in Chapter 2) and their performance was compared to explain variability in 

soybean production. Soybeans were chosen as a representative rainfed crop of the impacts of the drought 

on agriculture. 

Pearson's correlations (r) between climate indices and drought indices aggregated 12 months at 

departmental level across the country were analysed. A seasonal analysis (summer, autumn, winter, and 

spring) was then performed with the 6-month aggregated drought indices and a selected number of 

climate indices selected in the previous step. The seasonal analysis was carried out for the whole country 

and for all soybean-producing departments, prioritising the summer analysis because it is the soybean 

sowing and growing period. Climate indices located in the equatorial Pacific Ocean such as Tahiti, SOI, 

El Niño 3.4 (Fig. 1.8) and El Niño 4 showed stronger correlations with drought indices in Argentina. 

These indices have been found to indicate the triggering of droughts in other parts of the world (Gupta 

and Jain, 2021; Vicente-Serrano et al., 2017), demonstrating the global importance of their variability 

in extreme hydrological events. 
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Fig. 1.8 Spatial pattern of correlations between the 8 drought indices with a 12-month aggregation period and El Niño 3.4 
climate index based on 1982–2019 data (STWSI 2003–2019). Black dots indicate where correlations were not statistically 
significant. 

Persistent negative correlations (with very few exceptions) during spring and summer and positive 

correlations during autumn and winter were observed between El Niño 3.4 and the drought indices. 

Similar patterns were observed for the other three selected indices (Tahiti, SOI, El Niño 3.4 and El Niño 

4). Spatially, regions with weak correlations had the highest number of departments with non-significant 

correlations, and this number increased in the winter and spring seasons. For example, Fig. 1.9 illustrates 

the spatial patterns of correlations between SPEI-6 and El Niño 3.4. Considering only soybean-

producing departments and the summer summation season, when soybean planting and growth occurs, 

SPEI and STWSI had the strongest correlations. 

 

Fig. 1.9 Spatial pattern of correlations between the seasonal time series SPEI-6 and El Niño 3.4 based on 1982–2019 data. 

The effectiveness of drought indices and climate indices in explaining variability in soybean yields, 

understood as impacts of agricultural droughts, was then evaluated using statistical regression models. 

The SVHI, SVCI, STCI, SPEI and SPI, which are based on both meteorological and vegetation 

variables, best explained the variability of soybean yields in the three models applied (time-series, panel 

model and cross-section models). The spatial distributions of the coefficients of determination using the 

time-series model with 6-month aggregate predictors are shown in Fig. 1.10. Soybean yield variability 

(impacts associated with agricultural droughts) responded better to the drought indices than to the 

meteorological indices. The SVHI and SPEI aggregated for 6 months and corresponding to the month 

of March (soybean growing season) were found to best explain the state of soybean production in 

selected regions. 

Then, based on the results obtained in chapters 3 and 4, the investigations described in Chapter 5 were 

generated. Specifically, based on the results of the sections related to the analysis of drought indices as 

predictors of annual crop variability in Mozambique and Argentina. In this chapter, using precipitation 

and VCI/VHI, mixed indices for monitoring agricultural droughts were proposed and compared with 

the traditional primary indices (SPI and SVCI/SVHI) in the two territories through the statistical time-

series crop yield model.  The method developed to characterise agricultural droughts was a multivariate 

approach that depends on two individual variables (Mehran et al., 2015): 3-month cumulative 

precipitation and the VCI or VHI. With the formulation of Gringorten, (1963) the non-exceedance 

probabilities of both variables are calculated and combined using the multivariate framework explained 

in Yue et al., (1999). The empirical probabilities are transformed into a standardised index and the 

Standardised Multivariate (or Bivariate) Precipitation and Vegetation Condition, and Health index 

(MSPVI and MSPHI) are obtained. These indices are interpreted similarly to the original SPI (McKee 

et al., 1993). 
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Fig. 1.10 Spatial patterns of the determination coefficient results of the time-series models between drought indices 
aggregated 6 months (ONDJFM) and soybean yield based on soybean-producing departments and 2004–2019 data. 

The research was conducted in Mozambique and Argentina. In the first case, agricultural data for maize, 

soybean and wheat from FAO and precipitation from CRU were used; in the second, data for soybean 

and maize crops from the Ministry of Agriculture, Livestock and Fisheries of Argentina (Ministerío de 

Agricultura, Ganadería y Pesca de Argentina) and precipitation from TerraClimate were employed. In 

both cases the VCI and VHI were obtained from NOAA STAR.  

The temporal patterns of the proposed indices (the case of Mozambique for the SMPVCI is shown in 

the Fig. 1.11) show that the MSPVCI displays critical information on the onset and recovery of drought 

events. The new indices detect major drought events according to the historical records of the EM-DAT 

International Disaster Database, where for example the period 1991-1992 was one of the most damaging 

drought events (in Mozambique). Within this period, the MSPVCI reported almost 50% of the 

Mozambican territory under extreme drought [index < -2.0 according to McKee et al., (1993)] while the 

SVCI reported 22% and the SPI 11% (the spatial distribution of the 1992 drought event in May is 

represented in Fig. 1.12). The MSPVHI showed very similar spatio-temporal patterns to the MSPVCI, 

indicating that the indices showed a higher sensitivity to these events and that using them to monitor 

droughts would mean being on the safe side (Monteleone et al., 2020). 
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Fig. 1.11 The SPI-3, SVCI and the MSPVI series in 1982-2017 (above) and 1989-1997 (below) in Mozambique. 

 

Fig. 1.12 Spatial distribution of the a) SPI-3, b) SVCI and c) MSPVCI during May/1992 drought event. 

In the comparison of the proposed indices with the conventional ones to explain the annual variability 

of crops in both territories, the results were similar (Argentina and Mozambique). In the Argentinean 

case, the results of applying the statistical model are presented in Table 1.1 and plotted in Fig. 1.13. 

Compared to the classical SPI and SVCI/SVHI, the multivariate indices reported to explain better the 

variability of annual yields of maize and soybean (in Mozambique sorghum, maize, and wheat). 

Table 1.1 Coefficients of determination (R2) between soybean and maize yields and the classical drought indices 2004-2019. 

 SPI SVCI SVHI 

Soybean 0.476 0.572 0.686 

Maize 0.306 0.407 0.670 
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Fig. 1.13 Linear regression and coefficient of determination (R2) between annual soybean and maize yields with MSPVCI (top) 
and MSPVHI (bottom) in Argentina. 

Finally, to conclude this thesis, as a final material of the performed research, Chapter 6 provides a 

manual entitled "Manual for obtaining and applying hydrometeorological variables from global 

databases in drought management". This work gathers a series of concepts and techniques related to 

drought management that have been developed during the thesis that are applied through several scripts 

(programming codes) coded in the R Software (RStudio Team, 2016). These scripts divided into 3 

sections show the step-by-step for i) downloading, extracting, manipulating, and saving 

hydrometeorological variables from global databases; ii) using and applying these variables for drought 

management; and iii) presenting results through graphs in different formats. Mozambique was used as 

an example case study. 

As an additional outcome of this work, a course was conducted by the PhD candidate for students and 

workers in the water sector in Mozambique. The main objectives of the course were to teach concepts 

and tools related to drought monitoring; to obtain and manipulate hydrometeorological data in 

Mozambique; and to apply water balances and drought indices in Mozambique. The course was 

conducted online for 12 hours in November 2021 (Fig 1.14). 



Chapter 1 

23 
 

 
Fig. 1.14 Screenshot of the second session of the online course “Obtenção e aplicação de variáveis hidrometeorológicas de 
bancos de dados globais para a monitororia de secas” (“Obtaining and applying hydro-meteorological variables from global 
databases for drought monitoring”) to students of the Universidade Eduardo Mondlane - ESUDER and public employees of the 
ARA South of Mozambique, taught by the PhD candidate. 

5. General conclusions 

In this thesis, several methodologies were developed with the aim of increasing knowledge of drought 

phenomena and providing solutions for water resources and drought management. The use of freely 

available alternative hydrometeorological data sources was considered, so that the methodologies can 

be applied to any country or regions of the world and at (almost) any spatial scale. The case studies were 

Mozambique and Argentina as they are very drought-prone territories, suffer continuously from its 

effects especially on agriculture, and do not have the necessary management tools to control and manage 

the phenomenon. The methodologies responded to the need to understand the spatio-temporal 

characteristics of droughts and their triggers; to the validation of tools for monitoring droughts and their 

impacts with a special focus on agricultural activity; and, in accordance with the need for local 

beneficiaries to progressively become the protagonists of knowledge transfer to all those involved in 

drought management. The thesis was carried out in 5 independent studies from which the following 

main conclusions have been drawn: 

• In the first study, a five-step methodology consisting of several coherently organised methods 

was proposed for use in Mozambique or any other region (country or river basin) that requires 

a first assessment of the spatio-temporal characteristics of droughts and where local 

meteorological and hydrological monitoring data are extremely limited. With the monthly SPEI-

12 as the drought index from 1950 to 2019 at a high resolution (0.5˚) 3 homogeneous drought 

regions were defined located in the north, south and centre of the country. The southern and 

central regions have had the most intense and severe drought events in the past. In the three 

regions the trends are statistically significant towards a higher incidence of droughts and the 

results suggest that this trend could persist in the near future. Strong correlations were found 

between two climate indices (El Niño 4 (ENSO) and Darwin SLP) and droughts in the southern 

and central regions, with a lag of 2-3 months. The periods of SPEI and these two climate indices 

have a similar periodicity of between 3 and 8 years and are strongly correlated in antiphase for 

periods between 1.4 and 10.4 years. These statements are particularly novel in Mozambique. 

Thus, these climate indices could be used to develop a drought forecasting system, providing 

sufficient lead time to establish prevention strategies. 
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• In the following research, the main objective was to test a methodology that could evaluate 

various drought indices as drought monitoring tools and test their ability to explain annual 

variability in crop yields. The case study was Mozambique, a particularly difficult country due 

to its poor hydrological monitoring system and lack of local/regional crop yield data. The 

proposed indicators successfully detected major drought events from 1973 to 2017 according to 

historical records, and accurately captured their duration and intensity. The SPEI and SSI 

indices had the best ability to detect historical droughts using nationally averaged time series 

and percentage of area affected by drought. Crop yield variability was best explained by indices 

associated with agricultural and hydrological variables and when using the percentage of area 

affected due to the spatial decomposition involved in their computation. This variability was 

explained using SPEI-3 for cereals (maize, millet and sorghum); SSI-12 with other crops such 

as cashew nuts, cassava, potatoes, tea, tobacco and vegetables; SPEI-6 for wheat and SVCI-6 

for sugar cane. The proposed methodology allowed us to confirm the use of these drought 

indices in their different temporal accumulations as a tool for monitoring and characterising 

droughts and modelling annual yields of specific crops in Mozambique. 

 

• Linking the findings observed in the first two studies, 8 drought indices and 19 climate indices 

were evaluated for agricultural drought monitoring in Argentina. The relationship between these 

two groups of indices and their ability to explain the impacts of agricultural drought was 

explored, using the variability of annual soybean yield as a proxy for the impacts of drought on 

agricultural activity. The drought indices are particularly related to climate indices located in 

the Pacific Ocean, including El Niño 3.4 and El Niño 4, with the drought indices that include 

temperature in their calculation (STCI, SPEI and SVHI) being the best correlated with them. 

For soybean-producing areas, SPEI was the drought index that responded best to variations in 

the climate indices. Correlations were positive and strong in the hot and wet season (summer), 

while in the cold and dry season (winter) they were negative and less strong. Soybean yield 

variability responded better to drought indices than to climate indices. The SVHI and SPEI 

aggregated for 6 months and corresponding to the month of March (soybean growing season) 

were found to best explain the state of soybean production in selected regions. The results 

provide useful tools to understand drought in various stages of the water cycle and its association 

with variability in soybean production in Argentina. Therefore, this research could be of interest 

to water managers and especially to soybean producers at the national and regional level in 

Argentina. However, the methodologies could be replicated anywhere in the world. 

 

• Subsequently, following the findings of the previous studies (chapters 3 and 4), a methodology 

for calculating the Multivariate Standardised Precipitation and Vegetation Condition Index 

(MSPVCI) and the Multivariate Standardised Precipitation and Vegetation Health Index 

(MSPVHI) was presented and validated. These indices were calculated by combining 

precipitation (Standardised Precipitation Index, SPI) with the Vegetation Condition Index (VCI) 

and Vegetation Health Index (VHI) in a probabilistic framework. The multivariate (bivariate) 

indices were compared with the original indices both in their ability to detect historical drought 

events and to explain the annual variability of the main crops in the study territories. They were 

applied in Mozambique and Argentina where the results suggested similar conclusions. Both 

indices are shown to be more sensitive to the onset and recovery from drought events, show a 

more significant decreasing trend, report a higher spatial coverage of extreme droughts, and 

better explain the variability of annual yields compared to the conventional SPI and VCI/VHI. 

The proposed drought indices could be useful for water managers in the studied territories, as 

well as in other countries or regions, especially for farmers and drought managers. 

 

• To complete the objectives of the thesis, specifically the one related to the transfer of knowledge 

through tools and procedures, the last chapter of the thesis presented an introductory manual to 
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obtain hydrometeorological variables in any region and apply them to drought management. 

The work gathers a series of concepts and techniques related to drought management studied in 

this thesis that are applied through several scripts (programming codes) developed in the R 

software. These scripts divided in 3 sections show the step-by-step to a) download, extract, 

manipulate and save hydrometeorological variables from global databases; b) use and apply 

these variables for drought management; and c) present results through graphs in different 

formats. A great advantage of this manual is the flexibility of its tools, which can be used in 

different places and allow for the creation of new scripts and the generation of new ways of 

using the information downloaded by users. The methodologies discussed in this document can 

be expanded in future work, such as obtaining data from climate change projection models, 

trend analysis, representation of results for regions within a country (cities or provinces) or river 

basins (sub-basins), among others. The manual was presented to students and public water 

sector workers in Mozambique. 

Overall, research has sought to contribute tools for understanding and modelling droughts, their 

components, impacts, and triggers. The methodologies and results obtained can be replicated anywhere 

in the world, providing meaningful information for the scientific, technical and management community 

to develop, calibrate or validate existing and new formulations. In addition, they are tools that could 

contribute to the creation of drought mitigation and adaptation plans aimed at reducing impacts, 

especially in agriculture. 

6. Future research 

The spatio-temporal characteristics of droughts and their relationship with possible climatic predictors 

of the phenomenon were investigated. The work has provided insight into the spatial and temporal 

distribution of droughts in the case studies. The results are of great use to regional water administrations 

for the development of drought contingency plans. In Mozambique, simplified management regions 

have been defined and characterised; in addition, potential predictors of drought have been significantly 

identified. In Argentina, these relationships were defined at the departmental administrative level and 

taking into account areas of agricultural interest and time of year. Future studies related to drought 

prediction at the regional level could be very useful and complementary to these investigations. 

Although the proposed methodologies can be used anywhere in the world, given their restrictions and 

the large number of topics covered, certain limitations will have to be taken into account in future 

studies. For example, the use of SPEI-12 in Mozambique derives certain conditions, so it would be 

advisable to consider additional time scales in future work to obtain more information on the temporal 

patterns of drought in each region and to strengthen possible predictive models.  

Several multi-scale drought indices were investigated and compared according to their performance in 

explaining the annual variability of rainfed crop yields.In Mozambique with its particular conditions and 

later in Argentina - where agricultural data were more widely available and spatially disaggregated - the 

results were very promising. However, in Mozambique, further analysis of agricultural droughts and 

their impacts at the regional level is needed to provide an improved basis for drought management at 

the local level. While in Argentina, it would be particularly interesting to explore the predictive, rather 

than explanatory, capacity of selected drought indices and climate indices to predict the agricultural 

impacts of droughts in the country. These future studies could follow the prospect of being replicated 

anywhere in the world (of general application) using global databases. 

Linking previous research and possible future studies, two agricultural drought indices were proposed 

to monitor their impacts by explaining annual crop variability (MSPVCI and MSPVHI). In general, the 

results showed better performance according to the statistical models applied and provide an opportunity 

for future studies to improve the use of these drought indices, such as assessing the predictive capacity 

of agricultural yields. However, following the line of improving and increasing monitoring and 
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predictive tools, different methodologies could be chosen to associate meteorological and agricultural 

(including hydrological) variables in a single index or in a single process based on several indices. 

Overall, future studies proposed on the basis of the results and conclusions generated in this thesis are 

mainly associated with drought prediction and its impacts. These studies could be complemented by 

considering several aspects that are a current challenge for scientists, technicians, and decision-makers 

in drought management. For example, climate change, the wide variety of new databases and the 

different institutional and governmental strengths. This wide range of possible future research could 

continue to generate courses and documents such as the manual presented in this thesis, so that the 

knowledge and tools are accessible, used and shared by the different actors involved not only at the 

national but also at the local level. 
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Abstract 

Study Region: Mozambique. Study Focus: Mozambique does not currently have the necessary tools for 

systematic monitoring and forecasting of drought at a subnational scale. The purpose of this study was 

to characterize drought conditions and trends throughout the country and to evaluate the influence of 

major climatic drivers on drought events (period 1950-2019). Drought conditions were studied by means 

of the Standardized Precipitation and Evapotranspiration Index (SPEI) and run theory. The principal 

component analysis technique and the k-means clustering method were applied for defining 

homogenous drought regions. The Mann-Kendall trend test and Rescaled Range statistical analysis were 

used for defining the temporal characteristics of drought. The cross-correlation method, a spectral 

analysis based on the Fast Fourier Transform and a cross-wavelet analysis, were used to identify possible 

climate drivers. The results are ultimately intended to contribute to the development of a drought 

monitoring system in this country. New Hydrological Insights for the Region: Three homogeneous 

drought regions can be defined in Mozambique. The South and Centre regions showed more intense and 

severe drought events. In all regions, a significant trend towards a higher incidence of droughts and 

long-term a persistence was found. El Niño-Southern Oscillation and Darwin Sea Level Pressure 

anomalies were identified as significant drivers of drought variability, especially in the southern regions. 

These climate indices can be used as predictors in drought forecasting models. 

Keywords 

Drought, Standardized Precipitation and Evapotranspiration Index (SPEI), regionalization, trend, 

persistence, teleconnections, climatic indices. 

Highlights 

• A stepwise method for spatio-temporal drought assessment and prediction is proposed. 

• The method is applied to Mozambique, which lacks effective drought monitoring tools. 

• Three regions with distinctive drought characteristics were identified in Mozambique. 

• A significant trend towards a higher incidence of droughts was found in all regions. 

• The El Niño 4 SST and Darwin SLP climatic indices can be used to forecast drought. 
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1. Introduction 

Droughts are among the most common natural phenomena worldwide, and can occur anywhere under 

any climate regime (Bryant et al., 2005; Sheffield and Wood, 2012). However, they constitute one of 

the least understood natural hazards due to their complexity and difficulties in quantification 

(Hagenlocher et al., 2019a). The effects of droughts can be felt in chains of energy production, food, 

water supply, etc., yet are generally detected when the consequences of the phenomenon are difficult to 

mitigate, and thus droughts constitute the disaster that causes the greatest socioeconomic losses 

worldwide (WMO, 2006). In addition, the effects of droughts are expected to worsen in the coming 

decades as a result of climate change. Changes in spatial-temporal patterns of precipitation and extreme 

temperatures are likely to make droughts more recurrent (Mishra and Singh, 2011). As stated by the 

IPCC (2014), there are trends of increasing intensities and frequencies of droughts around the world, 

with arid and semi-arid areas possibly being the most affected. This might invalidate traditional methods 

for examining the impact of environmental factors on drought, based as they are on the assumption of 

stationarity (Jehanzaib et al., 2020). Specific spatiotemporal drought assessments at regional or local 

levels are needed for reliable decision-making in the context of adaptation planning to future climate 

conditions (see, e.g., Jehanzaib and Kim, 2020; Kim and Jehanzaib, 2020; and the references therein). 

According to Wilhite et al. (2000), one of the first steps for drought assessment and management in a 

given zone (country or river basin) should be a spatial division into regions according to drought 

characteristics. The techniques of hierarchical and non-hierarchical clustering (Santos et al., 2010; 

Vicente-Serrano, 2006b) and Principal Component Analysis (Agutu et al., 2017; Lovino et al., 2014; 

Vicente-Serrano, 2006a) can be applied directly to drought indicators for identifying homogenous 

drought regions. The next steps should be aimed at developing a drought monitoring system to create 

early warnings of emerging drought conditions. The temporal variability of droughts in the area under 

analysis must be studied to accomplish this objective. The historical drought variability is usually 

analysed by means of a technique such as run theory (Yevjevich, 1969), accompanied by trend and 

persistence tests of the drought characteristics (Ayantobo et al., 2017; Huang et al., 2016; Zambreski et 

al., 2018). The subsequent step is then to forecast droughts. Thus, it is necessary to understand the 

climate drivers that trigger drought events in the region and to use this teleconnection information as a 

forecasting tool. To achieve this goal, methods such as cross-correlation (Araneda-Cabrera et al., 2021a; 

Hair et al., 1998) and various spectral analysis applied to climate indices and drought indicators have 

become popular as a means of identifying appropriate drought predictors (El Kenawy et al., 2016; 

Espinosa et al., 2019; Fleming et al., 2002; Zeleke et al., 2017). 

A large number of drought indicators serve as a basis for these analyses (Svodova et al., 2016). The 

Palmer Drought Severity Index (PDSI) (Palmer, 1965) is widely used due to its versatility and 

effectiveness (Alley, 1984; Nam et al., 2015; Quiring and Papakryiakou, 2003). The Standardized 

Precipitation Index (SPI) (McKee et al., 1993), currently recommended by the World Meteorological 

Organization, uses rainfall series to define drought periods and has also been used widely in studies 

around the world (Ayantobo et al., 2017; Stagge et al., 2017). One of its main advantages, compared to 

the PDSI, is that it can be computed for multiple time scales, which allows the assessment of water 

availability according to the process under consideration (e.g., 3-month SPI provides a seasonal 

estimation of precipitation, whereas 12-month SPI reflects long-term precipitation patterns) (Guttman, 

1999, 1998). More recently, the Standardized Precipitation and Evaporation Index (SPEI) was 

introduced by Vicente-Serrano et al. (2010). Its versatility is similar to that of the SPI and it has the 

advantage of considering both precipitation and evapotranspiration. Vicente-Serrano et al. (2010) found 

that SPEI had a better performance than SPI and PDSI under global warming scenarios since it could 

reflect the increase in drought severity associated with higher water demand due to evapotranspiration. 

However, the need for long-term and high-quality input data is often a problem for the application of 

these indicators, especially in poorly monitored regions (Easterling, 2013). In recent years, global 

databases such as Climate Research Unit (CRU) (Harris et al., 2014), TerraClimate (Abatzoglou et al., 

2018) and the Global Precipitation Climatology Centre (GPCC) (Rudolf et al., 2011) have emerged as 
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alternative data sources, showing good performance in drought studies (Araneda-Cabrera et al., 2021b, 

2020; Lovino et al., 2014). 

In this study, we evaluate the spatiotemporal distribution of drought in Mozambique, and explore its 

relationships with large-scale climate variability. This country is one of the poorest in the world, highly 

dependent on rain-fed agriculture, and very prone to droughts. It has very little water infrastructure and 

a lack of monitoring systems, so its resilience to extreme hydrological events is very low (Osbahr et al., 

2008). To the best of the authors’ knowledge, there is a lack of comprehensive drought studies at the 

national level that might provide the basis for the development of national drought monitoring and 

forecasting systems. The possibility of drought forecasting has only been explored in small parts of the 

country, with a focus on the Limpopo Basin (Dutra et al., 2013; Seibert et al., 2017; Trambauer et al., 

2015, 2014). Climate variability has also been studied in specific regions as part of vulnerability and 

adaptation assessments (Eriksen and Silva, 2009; Macarringue et al., 2017; Osbahr et al., 2008; Uele et 

al., 2017). Similarly, the relationship between droughts and climate indices has not been widely analysed 

in the country. Manhique et al. (2011) note that El Niño-Southern Oscillation (ENSO) appears to play a 

significant role in the inter-annual frequency of the main summer rainfall over Mozambique. However, 

other climate indices, such as Darwin sea level pressure, have been shown to influence the climate in 

neighbouring countries (Manatsa et al., 2008a, 2008b).  

The main objective of the current study is to characterize drought conditions and trends over 

Mozambique between 1950 to 2019, and to identify the influence of large-scale climatic drivers on 

drought events. We follow a five-step methodology (described in section 2) of general applicability (i.e., 

one that could be used in any other country or region worldwide) comprising drought regionalization, 

characterization, trend analysis, long-term dependence, and cross-dependence with climatic factors. 

Given that Mozambique is heavily reliant on agriculture, the analysis focuses on persistent drought, 

which can affect agricultural production and food security. In this way, the results are intended to be of 

practical value to water managers and users. The ultimate aim is to support drought management 

planning with tools that enable better monitoring and prediction of risk at the regional scale. 

2. Materials and methodology 

The methodology developed in this study involves the following steps: (1) the calculation of the SPEI 

drought index with a 12-month time scale (SPEI-12) for the period 1950-2019; (2) the application of 

Principal Component Analysis (PCA) analysis and the k-means clustering method to define 

homogeneous drought regions that follow the time patterns of the drought index series; (3) the 

characterization of the drought events according to run theory; (4) the application of the modified Mann-

Kendall (MMK) trend test method and the Rescaled Range (R/S) analysis to determine the temporal 

variability of droughts; and (5) the exploration of the relationships between the SPEI time series and 

several large-scale climate indices to find appropriate drought predictors. The cross-correlation method, 

the Fast Fourier Transform (FFT) and cross-wavelet analysis were used for this latter purpose. The 

methods employed at each step were complementary and not exclusive. Fig. 2.1 summarizes the steps 

in a methodological flow-chart.  

The entire methodology was developed and computed using the R Software (RStudio Team, 2016). 

Specifically, we used the R package "SPEI" (Begueria and Vicente-Serrano, 2017), “stat” (Bolar, 2019), 

“lmomRFA” , “trend” (Pohlert, 2020) , “pracma” (Borchers, 2019), “tseries” (Trapletti et al., 2020), 

“stats” (developed by R Core Team and contributors worldwide) and “biwavelet” (Gouhier et al., 2016). 
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Fig. 2.1 Workflow of the overall methodology. 

2.1. Study area 

Mozambique covers an area of 801,000 km2 (Fig. 2.2a). It is in the southern cone of Africa, one of the 

most drought-prone areas worldwide, where extreme hydrological events are expected to become more 

frequent and damaging due to climate change (Eriksen and Silva, 2009; Osbahr et al., 2008; Patt and 

Schröter, 2008). The climate is tropical, with a hot and rainy summer season from November to March 

(80% of the year's precipitation falls during this period), and a cool and dry winter season from April to 

October. The national average annual precipitation varies from 683 mm to 1,276 mm, with the south 

and central west being the drier regions. The mean annual temperature varies from 23°C to 25°C, with 

the coastal regions of the centre and north of the country, plus the centre-west, being the warmest. The 

national average annual precipitation level has high interannual variability and has been below the 

average for most years in the past two decades (Fig. 2.2b). The average annual temperature has increased 

considerably over the last 20 years, where its anomalies have reached +1°C in relation to the period 

1950-2019 (Fig. 2.2c). According to the International Disaster Database (EM-DAT, 2021), the drought 

events of 1987, 1991-1992, 1995 and 2016 were among the severest in the country, causing losses of 

650 million dollars and affecting at least 24 million people (MunichRE, 2018). In these years, low 

precipitation and high temperature anomalies were observed.  
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Fig. 2.2 a) Location of Mozambique and its topography with black marks that illustrate the Climate Research Unit (CRU) grid 
points (0.5° resolution) (Harris et al., 2014). Annual national average series of b) precipitation and c) temperature (solid lines) 
and anomalies with respect to the mean from 1950 to 2019 (bars). Dashed lines indicate linear trends. 

Although rainfall volumes are higher in the north than in the south, droughts are a recurrent problem 

throughout the country, affecting the socio-economic activities and negatively impacting the quality of 

life of the population.  



Revealing the spatio-temporal characteristics of drought in Mozambique and their relationship with 

large-scale climate variability 

34  
 

The National Directorate of Water (DNA) divides the country into three Regional Water 

Administrations—ARAs (Administração Regional de Águas)—which are responsible for managing 

extreme events such as droughts (Conselho de Ministros, 2020): South ARA, from the country's 

southern border to the Save river; Central ARA, running from the Save river to the Licungo river; and 

North ARA, comprising the territory from the Licungo river to the country's northern border with 

Tanzania (Fig. 2a). It should be noted that this division into 3 ARAs is very recent. Five ARAs were 

initially created in Mozambique as part of the 1991 Water Law, based on geographic and infrastructural 

conditions specific to their jurisdictional areas, prioritizing their institutional capacity (Inguane et al., 

2014).  

2.2. The Standardized Precipitation and Evapotranspiration Index (SPEI) 

The SPEI was selected as a hydro-meteorological drought index due to its flexibility as a multi-scalar 

index (unlike the PDSI), and because of its functionality under climate change conditions, in that it can 

account for the role of temperature increase in future drought conditions (unlike the SPI). The SPEI has 

been used successfully for drought monitoring in various studies around the world (Lovino et al., 2014; 

Meresa et al., 2016), and has been found to be more effective than other indices in capturing drought 

responses for ecological, agricultural, and hydrological applications (Vicente-Serrano et al., 2012). 

The SPEI is based on the probability distribution of a long-term climatic water balance (

CWB P ETP= − ) time series, where P is the precipitation and ETP the potential evapotranspiration. It 

is typically computed by summing CWB  over k  months (similar to SPI), termed accumulation periods, 

and fitting these accumulated values to a parametric statistical distribution from which probabilities are 

standardized (u  = 0,   = 1). Given that the CWB series can have values below zero, a three-parameter 

distribution is needed to model them (Vicente-Serrano et al., 2010a). The three-parameter log-logistic 

distribution has been found to fit the CWB series very well across most of the world for most time scales 

(Vicente-Serrano et al., 2010b), so we have used this distribution here.  

We utilized a 12-months accumulation ( 12k = ) to analyse the interannual variability of drought 

conditions. The choice of time scale is driven by the objectives of the study, which ultimately are to 

provide useful information for water managers and users for monitoring and forecasting drought. 

Drought at this scale can cause yield reductions for both rainfed and irrigated crops, posing a severe 

threat to food security in this country. It has also been seen in Mozambique that SPEI-12 is strongly 

correlated to SPEI at other scales, and that it is effective at detecting the country's historical drought 

records.(Araneda-Cabrera et al., 2021b). However, it should be noted that using this timescale presents 

some challenges, such as generating time series of independent measurements and capturing the whole 

drought cycle in a watershed or region.  

Monthly P and ETP data were downloaded from the Climate Research Unit (CRU TS v. 4.04) 

(http://www.cru.uea.ac.uk/data) to compute the SPEI. CRU offers monthly climatic time series at a 0.5° 

resolution (≈ 55 km in the Equator) worldwide (Harris et al., 2014). At this resolution, a total of 343 

time series of SPEI were computed in Mozambique (Fig. 2.2a). The time span of the analysis was from 

January 1950 to December 2019 (70 years).  

For the purposes of this study, a drought event started when the SPEI took values lower than -1 and 

ended when its value returned to values higher than this threshold, which corresponds to moderate 

droughts according to the categories in McKee et al. (1993). In addition, to ensure that drought events 

were independent of each other, and to group mutually dependent droughts, we used the inter-event time 

method introduced by Zelenhasić and Salvai (1987), which is still widely applied in the recent literature 

(e. g. Liu et al., 2020; Rivera et al., 2021). Drought events were designated as independent if the inter-

event time lasted more than 2 months (i.e., 2 consecutive months above the proposed drought threshold); 

while a drought qualified as an event if it lasted more than 2 months. The events were characterized 

according to run theory, explained in detail in Yevjevich (1969). The intensity (Int) is the minimum 

http://www.cru.uea.ac.uk/data
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monthly value that is reached by the index throughout the event, the duration (Du) is the number of 

months that the event lasts, and the severity (Sev) is computed as the sum of monthly SPEI values 

throughout the event.  

2.3. Drought regionalization  

Principal component analysis (PCA) was used to identify drought patterns in the SPEI series, and hence 

define homogeneous regions with similar drought variability and characteristics. It has been widely used 

for similar regionalization purposes in other parts of the world (Espinosa et al., 2019; Lovino et al., 

2014; Santos et al., 2010; Vicente-Serrano, 2006a). 

The method consisted of calculating the covariance matrix of the data (SPEI series) with the 

corresponding eigenvalues and eigenvectors. The principal components (PC) are given by linear 

combinations of the time series (SPEI) with maximum variance (Rencher, 2002). The number of regions 

were defined by the number of chosen PCs. There are several methods for finding the right number of 

PCs (Cangelosi and Goriely, 2007). Here the criterion selected was that they explain at least 75% of the 

accumulated variance, while the following PC represents less than 5%. Then, the main components were 

rotated (rotated principal components, RPC) using the Varimax technique (Espinosa et al., 2019) to 

locate more accurately the spatial patterns of drought variability, to improve their interpretation, and to 

redistribute the final explained variance (Vicente-Serrano, 2006a). To identify the spatial patterns of the 

SPEI, Pearson’s correlation coefficients (r) were calculated between each RPC and the SPEI series of 

each CRU, resulting in smooth and gradual patterns of the SPI-12 field (Espinosa et al., 2019). When a 

group of centroids (CRU cells) had the high correlations r with an RPC, we delimited a new region.  

In parallel, hierarchical clustering analysis was applied through the k-means method (Santos et al., 2010; 

Vicente-Serrano, 2006b; Wilks, 2006). The goal was to compare the number of optimal clusters with 

the number of PCs obtained according to the above criterion to validate the regionalization defined by 

the PCA method. To choose the optimal number of clusters, we used the Euclidean distances between 

the created clusters, which yields the lowest possible number with the greatest possible homogeneity.  

Euclidean distances ensured heterogeneity between clusters, so in order to guarantee the homogeneity 

within clusters, the regional heterogeneity measure Hn proposed by Hosking and Wallis, (1993) was 

used, this as a means of assessing whether the resulting regions were statistically homogeneous. A region 

is considered "acceptably homogeneous" if Hn < 1, "possibly heterogeneous" if 1 < Hn < 2 and 

"definitely heterogeneous" if Hn ≥ 2. 

From this point onwards, all subsequent analyses were performed with SPEI-12 series representative of 

the resulting homogeneous regions, obtained by averaging all the time series contained in each of them. 

2.4. Trend and persistence analysis  

This step sought to analyse the temporal variability of droughts by exploring trends and their long-term 

persistence. On the one hand, the Mann-Kendall (MK) trend test was used to analyse whether the SPEI 

time series presented a significant trend, either positive or negative. The MK trend test is a rank-based 

non-parametric method that analyses the difference in signs between the previous and subsequent data 

points, using the standard normal variant (Z) (Hipel and McLeod, 1994). Although the MK trend method 

requires the measurements to be independent, for simplicity of analysis in the present paper we have 

assumed that monthly SPEI-12 meet this condition, as other studies have also done (García-Garizábal, 

2017; Yao et al., 2018).  

On the other hand, the Rescaled Range (R/S) statistical analysis was applied to the SPEI time series in 

order to quantify the long-term persistence of trends. We ascertained whether the drought trends 

observed to be statistically significant in the study period (past) persist in time (future), since this is 
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related to the predictability of droughts and climate change (Koutsoyiannis, 2005, 2003). This analysis 

was introduced by Hurst (1956). The long-term persistence of trends in the time series is analysed by 

estimating the autocorrelation properties of the time series. For instance, this allows us to see whether 

humid years cluster in multiannual humid periods or if drought years cluster in multiannual dry periods. 

Such an estimation is made by means of the Hurst index (H), which is a measure of long-term 

persistence. The H index classifies the time series into 3 types according to their value. When H = 0.5, 

the series is completely uncorrelated and its future trend is different or equal to the past one; when H < 

0.5, the future trend of the series will the opposite of the past series; and when H > 0.5, the future trend 

of the series will be the same as the past trend. In the latter two cases, with the lowest and highest values 

of H, respectively, the strength of the persistence is greatest. The steps of the computation can be seen 

in Gao et al. (2020). 

These two analyses were applied to the monthly and annual SPEI time series averaged over the 

homogeneous drought regions obtained in the previous step. The annual series was assessed in this 

section to strengthen the limitations of using SPEI-12, as these measures can be considered non-

dependent. 

2.5. Relationships with large-scale climate indices  

A series of large-scale climate indices were selected to analyse their possible relationships with the 

variability of the SPEI time series averaged over the homogeneous drought regions. The climate indices 

are based on the fluctuations of atmospheric pressure at sea level (SLP) of different points around the 

globe (Darwin SLP, Tahiti SLP, SOI and NAO indices), and the sea surface temperature (SST) of the 

Atlantic (TNA, TSA, NAT, SAT and TASI indices), Pacific (ENSO indices Niño 1+2, Niño 3, Niño 4, 

Niño3.4 and PDO) and Indian (SWIO, WTIO, SETIO and DMI indices) oceans. The climate indices 

used are listed in Table 2.1 together with the data sources and the available period of data. For 

consistency with the SPEI time series, a 12-month moving average was applied to the climatic indices 

from 1950 to 2019, with a monthly resolution, except for PDO, SWIO, TASI, NAT and SAT, which 

were not available for the whole time period. 
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Table 2.1 Climate indices considered in the correlation analysis. 

Variable/data set Period available Data availability 

Darwin sea level pressure (Darwin SLP)* Jan 1882-now http://cpc.ncep.noaa.gov/data/indices/darwin 

Tahiti sea level pressure (Tahiti SLP)* Jan 1882-now http://cpc.ncep.noaa.gov/data/indices/tahiti  

Southern Oscillation Index (SOI)** Jan 1866-now https://psl.noaa.gov/gcos_wgsp/Timeseries/SOI/  

ENSO indices (ERSSTv5): El Niño 1+2, El Niño 3, 

El Niño 4, and El Niño 3.4* 
Jan 1950-now https://cpc.ncep.noaa.gov/data/indices/ersst5.nino.mth.81-10.ascii 

Pacific Decadal Oscillation (PDO)** Jan 1948-Dec 2018 https://psl.noaa.gov/data/correlation/pdo.data 

South Western Indian Ocean (SWIO) Nov 1981-now https://stateoftheocean.osmc.noaa.gov/sur/ind/swio.php 

Western Tropical Indian Ocean (WTIO)** Jan 1870-now https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmiwest.had.long.data 

South-eastern Tropical Indian Ocean (SETIO)** Jan 1870-now https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmieast.had.long.data 

Indian Ocean dipole mode index (DMI)** Jan 1870-now https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmi.had.long.data 

Tropical Northern Atlantic Index (TNA)** Jan 1948-now https://psl.noaa.gov/data/correlation/tna.data 

Tropical Southern Atlantic Index (TSA)** Jan 1948-now https://psl.noaa.gov/data/correlation/tsa.data 

North Atlantic Tropical (NAT)*** Nov 1981-now https://stateoftheocean.osmc.noaa.gov/sur/atl/nat.php 

South Atlantic Tropical (SAT)*** Nov 1981-now https://stateoftheocean.osmc.noaa.gov/sur/atl/sat.php 

Tropical Atlantic (TASI)*** Nov 1981-now https://stateoftheocean.osmc.noaa.gov/sur/atl/tasi.php 

North Atlantic Oscillation (NAO)** Jan 1950-now https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nao.long.data  

*; **; *** specifies source:   
* Climate Prediction Centre of NOAA   
** Physical Sciences Laboratory of NOAA   
*** Ocean Observations Panels for Climate of NOAA  

 

The cross-correlation method (Hair et al., 1998) was applied between the monthly and annual SPEI series and the climatic indices to quantify the strength 

of the link between them. Since the relationships between climatic and drought indices necessarily could not occur at the same time, we first analysed the 

correlation with zero lag time and then looked for the time lag (on a monthly scale) in which the correlation is greater between the two series. The time 

lag is associated with the early prediction of one series using the other, while the correlation coefficient indicates how strong that relationship would be. 

Based on the cross-correlation results, a reduced set of climate indices was selected for the next steps of the methodology. 

http://cpc.ncep.noaa.gov/data/indices/tahiti
https://psl.noaa.gov/gcos_wgsp/Timeseries/SOI/
https://cpc.ncep.noaa.gov/data/indices/ersst5.nino.mth.81-10.ascii
https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nao.long.data
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A spectral analysis based on Fast Fourier Transform (FFT) and a cross-wavelet analysis was then 

performed between the monthly SPEI series and the climatic indices that showed the best correlations 

in the previous analysis. The idea was to further explore the relationship between these two types of 

indicators in each homogeneous drought region of the country. 

The FFT is a well-known mathematical procedure that allows us to convert signals (time series) from 

the time domain to the frequency domain. This process is very useful for decomposing a time series 

comprising various pure frequencies (sinuses and cosines) in only a few recurring periods 

(Period=1/Frequency) of different lengths. Here, we looked for the periods in the SPEI and their highly 

correlated climatic indices. For details of the mathematical process, see Fleming et al. (2002).  

Cross-wavelet analysis was initially introduced by Hudgins et al. (1993), and explores the relationships 

between two associated time series (in this case, the SPEI series and the climatic indices). It combines 

wavelet transformation with cross-spectrum analysis and can notionally capture the characteristic 

changes and associated oscillations of these two time series in both the time and frequency fields 

(Grinsted et al., 2004). A detailed description of the calculation method and applications can be found 

in Torrence and Compo (1997).  

These methods have been applied in other similar studies. For example, the cross correlation method 

was used by Lima and AghaKouchak (2017) in Amazonia to correlate the PDSI with climate indices; 

Santos et al. (2010) used FFT in Portugal to determine the periodicity of droughts according to the SPI-

6; and Räsänen et al. (2016) applied cross-wavelet analysis in mainland Southeast Asia to analyse the 

relationship between the ENSO and the Palmer drought Severity Index (PDSI, Palmer, 1965). 

3. Results  

3.1. Spatial distribution of droughts 

Following the procedure described in Section 2.2, a total of 343 time series of SPEI values were 

calculated, these corresponding to the CRU coordinates presented in Fig. 2.2a. Each SPEI-12 time series 

had a length of 840 months (from 1950 to 2019).  

PCA analysis was applied to the matrix that contained the times series of SPEI (with 840 rows 

corresponding to the length of the time series, and 343 columns corresponding to the coordinates of 

CRU), to transform its variables into principal components (PC) by simple linear transformations. The 

first PC explained a large percentage of the total variance (46.83 %). The variance retained by the PC2 

and PC3 were 25.17% and 7.51%, respectively. Following the proposed criteria, these three PCs were 

chosen for the Varimax orthogonal rotation, since together they explained 79.5% of the variance, and 

the part of the total variance retained by the next PC (PC4) was below 5% (4.26%). Inverse Distance 

Weighting (IDW) interpolation was used to plot Pearson's correlations between the three chosen RPCs 

and each of the 343 SPEI series (Fig. 2.3). This technique was applied only for plotting purposes; 

regionalization was based on the values at the CRU grid points. Three regions were clearly defined: 

North (Reg1), South (Reg2) and Centre (Reg3) following the classification obtained by the best 

correlations (r > 0.60). The coordinates of each SPEI series belonging to each RPC are listed in the 

supplementary materials (Table S2.1). 
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Fig. 2.3 Spatial distribution of the correlation coefficients between RPCs and SPEI. The continuous black lines define the regions 
obtained with correlations greater than 0.60. The grey lines show the three Regional Water Administrations (ARAs). 

It should be noted that other temporal aggregations (SPEI-3 and SPEI-6) were also tested in this step, 

obtaining very similar homogeneous drought regions, as can be seen in Fig. S2.1 of the Supplementary 

materials. In what follows we used the regionalization obtained with PCA on the SPEI-12 series. 

The non-hierarchical k-means clustering method was applied to the 343 SPEI time series to validate the 

regionalization obtained by PCA. According to PCA, a successful regionalization would be a 

classification into 3 groups, so here we analysed a clustering of 2, 3 and 4 regions (i.e., a variation of ± 

1 with respect to the PCA result). The spatial extent of the resulting clusters is shown in Fig. 2.4, and 

the coordinates of the SPEI series belonging to each cluster are detailed in the supplementary materials 

(Table S2.1). Using the Euclidean distance between clusters method (Table 2.2), the classification into 

2 groups (Fig. 2.4a) is considered inadequate, since the distance between both clusters in this 

configuration (26.76) is less than the distance between them (37.36) when grouped into 3 clusters (Fig. 

2.4b). When clustering into 4 groups (Fig. 2.4c), the area representing cluster 1 in the 3-group division 

(Fig. 2.4b) is divided into clusters 1 and 4, while cluster 2 remains invariant. To be accepted as a better 

classification, the two distances (cluster 1 and 4) with respect to cluster 2 should be greater than the 

distance between cluster 1 and 2 when grouped into 3 clusters. Since this is not true for the distance 

between clusters 2 and 4 (35.41 < 37.36), the division into 4 clusters is rejected. Although not shown in 

this paper, regionalization was also performed with Ward's hierarchical clustering method (Wilks, 

2006), obtaining similar results. 
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Fig. 2.4 Comparison of clustering in (a) two, (b) three and (c) four groups. 

Based on these results, in what follows we used the regionalization obtained with PCA, which divides 

Mozambique into 3 homogeneous drought regions (Fig. 2.3). In these 3 regions, the Hn index was -

0.111 for the northern region, -0.004 for the central region and -0.024 for the southern region. Thus, 

both heterogeneity between clusters and homogeneity within clusters was guaranteed. The resulting 

regionalisation differs from other divisions created for purposes other than drought management (FEWS 

NET Moçambique, 2014; INGC, 2009). However, as shown in Fig. 3, the regions as defined do not 

entirely coincide with those used by the Mozambican government (ARAs), although the spatial 

positioning patterns (North, Centre, and South) are maintained. Therefore, these regions could be used 

for drought assessment, monitoring, and management. The SPEI series were averaged in each region 

(93 SPEI series on the North, 110 on the South and 140 on the Centre regions) to use in the subsequent 

analysis (Fig. 2.5). 

Table 2.2 Euclidean distances between clusters for the analysis with two, three and four classification groups. 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Two classification groups 

Cluster 1 0 0 0 0 

Cluster 2 26.76 0 0 0 

Three classification groups 

Cluster 1 0 0 0 0 

Cluster 2 22.88 0 0 0 

Cluster 3 37.36 26.16 0 0 

Four classification groups 

Cluster 1 0 0 0 0 

Cluster 2 38.32 0 0 0 

Cluster 3 30.21 22.20 0 0 

Cluster 4 20.44 35.41 23.80 0 
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Fig. 2.5 SPEI time series averaged over the three regions: North (Reg1), South (Reg2) and Centre (Reg3). The thin horizontal 
dashed line represents the threshold considered to define a drought event while the thick dashed line represents the linear 
trend of the time series. 

3.2. Characterization of drought events 

Run theory was adopted to characterize the drought events in the 3 regions previously determined (Table 

2.3). A lower number of drought events, but of longer duration and higher severity, were found in the 

Centre region. On average, drought events were less intense and severe in the North. They occurred on 

average every 4.9 years in the North, every 4 years in the South, and every 5.9 years in the Centre region. 

The longest, most intense, and severest events began in 1982, 1987, 1991, 1994, 2005, 2009, and 2016. 

These drought events have been listed as the major ones at the national level (EM-DAT, 2021; Masih et 

al., 2014), and most of them affected all three regions.  

Table 2.3 Identification of drought events and their characteristics with run theory in the three homogeneous drought regions. 

North South Centre 

Begin Du Int Sev Begin Du Int Sev Begin Du Int Sev 

06/1953 3 -1.04 -3.11 06/1964 3 -1.17 -3.31 08/1968 3 -1.12 -3.22 

01/1961 3 -1.37 -3.70 10/1970 5 -1.93 -6.97 02/1973 2 -1.12 -2.19 

12/1966 4 -1.57 -5.06 05/1973 4 -1.25 -4.56 09/1983 6 -1.44 -7.44 

05/1975 8 -1.37 -9.50 11/1982 14 -2.01 -22.70 10/1987 5 -1.59 -6.66 

04/1977 8 -1.75 -12.91 01/1987 8 -1.64 -11.07 12/1990 3 -1.54 -4.10 

04/1981 9 -1.62 -12.94 10/1987 2 -1.07 -2.10 02/1992 12 -2.26 -25.54 

12/1987 12 -1.80 -18.27 12/1991 15 -2.77 -32.81 03/1994 21 -1.62 -29.40 

12/1990 3 -1.74 -4.72 01/1995 4 -1.48 -5.40 04/2005 16 -1.72 -21.02 

12/1998 3 -1.65 -4.22 09/1995 4 -1.22 -4.35 02/2016 11 -1.66 -14.17 

04/2003 12 -1.48 -13.64 12/2002 2 -1.49 -2.80     

12/2005 3 -1.31 -3.61 09/2005 4 -1.18 -4.49     

02/2009 12 -1.27 -13.62 04/2008 7 -1.41 -7.77     

04/2013 7 -1.15 -7.84 12/2015 12 -1.97 -20.47     

01/2017 5 -1.49 -6.21         

Average: 6.57 -1.47 -8.52 Average: 6.46 -1.58 -9.91 Average: 8.78 -1.56 -12.64 
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3.3. Temporal variability and persistence of droughts 

The representative SPEI time series for each region are shown in Fig. 2.5. They are clearly non-

monotonic, non-stationary according to ACF analysis (autocorrelation function, not shown here), and 

trend-stationary (statistical significance level of 1%) according to the KPSS test (the Kwiatkowski–

Phillips–Schmidt–Shin test). 

The MK test (Z index) and the R/S analysis (H index) applied to the annual and monthly SPEI time 

series of the three homogeneous drought regions are presented in Table 2.4. In all cases and regions, the 

trends were negative (illustrated in Fig. 2.5), although in the North region they were statistically non-

significant at a level of 5% for the annual SPEI. 

Table 2.4 Trends (Z) and Hurst index (H) of monthly and annual SPEI in the period 1950–2019 in the homogenous drought 
regions. 

Region  Annual Monthly 

North 
Z -1.25* -3.86 

H - 0.69 

South 
Z -2.32 -7.88 

H 0.61 0.74 

Centre 
Z -2.10 -6.83 

H 0.61 0.74 

* Trend statistically non-significant (ρ > 0.05) 

In all cases, the Hurst index (H) was greater than 0.5, which suggests that the negative long-term trends 

will persist in the near future. In the South and Centre regions, the H values were higher, suggesting that 

trends will persist with greater strength, while long-term trend persistence strength will be weak in the 

North region.   
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3.4. Identification of large-scale climate drivers 

The cross-correlations and lagged cross-correlations between the proposed climate indices (Table 2.1) and the SPEI of the homogeneous drought regions 

are shown in Table 2.5. The best correlations are shown in the top rows of the table. The anomalies in the time series of the best-correlated climate indices 

are shown in Fig. 2.6. Most of the correlations were negative (Darwin, Niño 3.4, Niño 3, Niño 4, WTIO and SETIO), and only one was positive (SOI), 

indicating they are anti-phase or in-phase, respectively, relative to the SPEI.   

Table 2.5 Cross correlations between the SPEI time series of each region and the climatic indices. r is the correlation coefficient, r_lag is the lagged correlation coefficient obtained when 
lag = lag_months (greater correlation) and r_annual is the correlation coefficient between the series aggregated annually. 

Climatic 

indices 

North  South  Centre 

r r_lag 
lag 

months 
r annual 

 
r r_lag 

lag 

months 
r annual 

 
r r_lag 

lag 

months 
r annual   

Niño 4 -0.20 -0.24 4 -0.24  -0.45 -0.48 3 -0.49  -0.53 -0.56 3 -0.59 

Niño 3.4 -0.17 -0.30 6 -0.23  -0.45 -0.46 2 -0.50  -0.51 -0.57 3 -0.59 

Darwin -0.14 -0.25 7 -0.21  -0.43 -0.44 2 -0.48  -0.50 -0.54 3 -0.58 

Niño 3 -0.15 -0.34 7 -0.23  -0.42 -0.43 1 -0.47  -0.47 -0.53 4 -0.55 

SOI 0.14 0.21 6 0.17  0.37 0.38 2 0.42  0.45 0.48 3 0.52 

WTIO -0.19 -0.20 4 -0.20  -0.38 -0.38 0 -0.40  -0.41 -0.41 0 -0.43 

SETIO -0.28 -0.29 2 -0.24  -0.32 -0.40 -6 -0.35  -0.38 -0.41 -3 -0.39 

Niño 1+2 -0.12 -0.29 8 -0.19  -0.31 -0.31 -1 -0.36  -0.35 -0.40 4 -0.42 

Tahiti 0.10 -0.18 20 0.09  0.27 0.27 1 0.29  0.33 0.35 2 0.36 

PDO** -0.20 -0.21 3 -0.21  -0.22 -0.28 -9 -0.25  -0.30 -0.30 -1 -0.32 

SWIO* -0.13 -0.13 -2 -0.10  -0.17 -0.20 -5 -0.19  -0.24 -0.26 -3 -0.23 

NAO 0.17 0.18 1 0.16  -0.22 -0.29 4 -0.26  -0.22 -0.33 5 -0.32 

TASI* -0.14 -0.24 -10 -0.17  0.30 0.30 -1 0.31  0.18 0.36 11 0.22 

TNA -0.24 -0.24 -2 -0.22  -0.10 -0.20 17 -0.12  -0.17 -0.18 -2 -0.15 

DMI 0.05 -0.21 -11 -0.02  -0.17 -0.30 5 -0.21  -0.16 -0.26 5 -0.22 

NAT* -0.27 -0.28 -1 -0.26  0.08 0.18 7 0.09  -0.13 0.21 11 -0.09 

SAT* -0.12 -0.21 -10 -0.16  0.24 0.27 -3 0.24  0.12 0.29 11 0.13 

TSA -0.12 -0.13 3 -0.14  -0.07 -0.25 -19 -0.09  -0.07 -0.22 -16 -0.08 

* Period Jan1982-Dec2019, ** Period Jan1950-Dec2018 
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The North region persistently showed a poor correlation with the climate indices analysed, while the 

strongest correlations were obtained in the South and Centre regions. In these two regions, strong 

correlations with the different El Niño indices were noticeable (r up to -0.59), with the higher 

correlations being found for the El Niño 4 and El Niño 3.4 SST indices, which showed crests around 2-

3 months earlier than the negative peak of the SPEI. Another strong correlation (r = -0.58) with a similar 

time lag was found with the Darwin SLP index. Based on the above observations, El Niño 4 and Darwin 

indices were chosen for the spectral analysis using the FFT technique and cross-wavelet analysis. 

 

Fig. 2.6 Anomalies of the best correlated climatic indices with the SPEI time series in the period 1950-2019. 

FFT allowed us to appreciate the periodic behaviour of the monthly SPEI patterns in each homogeneous 

drought region, and of Darwin SLP and Niño 4 climatic indices. The periodograms are set out in Fig. 

2.7. The results showed that climatic indices and SPEI series have a periodicity associated with high 

energies between 40 and 120 months (3.5 and 10 years). In the North region, periods of between 35 and 

60 months (3 and 5 years) were found. These periods are consistent and similar to those reported in other 

studies in Africa (Oguntunde et al., 2018, 2017). 

 

Fig. 2.7 Fast Fourier Transform of monthly SPEI time series of a) North, b) South, c) Centre regions, d) the climatic index Niño 
4, and e) the climatic index Darwin SLP. Peaks have been transformed to years.   
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The spectral analysis of the SPEI, Darwin SLP, and El Niño 4 patterns was expanded using cross-

wavelet transform (Fig. 2.8). Both Darwin SLP and El Niño 4 events showed strong impacts on the 

monthly series of SPEI, especially in the South and Centre regions, indicating that they play a relevant 

role in the characteristics of the evolution of droughts in Mozambique. Specifically, the positive events 

of Niño 4 show statistically significant negative links (confidence level 95%) with the monthly SPEI 

series of the South and Centre regions, with a signal of 16 to 128 months (1.3–10.7 years). In the North 

region, climatic indices did not show strong effects on the evolution of droughts (something previously 

seen in the low correlations); however, the statistically significant strongest signals were found for 16 

to 64 months (1.4–5.4 years) over the entire study period. In the three regions, the energy density is 

higher in the periods where drought events were detected (e.g., the major drought event of 1991). 

 

Fig. 2.8 Cross-wavelet transform between SPEI of a) North, b) South, c) Centre regions and Darwin PSL climatic index; and of 
d) North, e) South, f) Centre regions and the Niño 4 climatic index. The y-axis is equivalent to the periods defined with the FTT 
(Period = 1/Frequency); the coloured bar denotes the energy density (red plus high energy density); the 5% confidence level 
against red noise is shown in an outline with the thick black line; and the relative phase relationship is represented with arrows 
(with the anti-phase pointing to the left, the in-phase pointing to the right). 
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4. Discussion 

The above results provide new insights into the spatial and temporal patterns of drought in Mozambique, 

and their relationship with the large-scale climate variability.  

The resulting drought regionalisation differs from other divisions created for other management 

purposes (FEWS NET Moçambique, 2014; INGC, 2009). As shown in Fig. 2.3, the regions as defined 

also do not entirely coincide with those used by the Mozambican government for water resources 

management (ARAs), although the spatial positioning patterns (North, Centre, and South) are 

maintained. The use of the proposed divisions as drought management areas would allow for more 

appropriate regional strategies for assessing, monitoring, and responding to drought (Wilhite et al., 

2000). The most important drought events identified in these regions have been listed and coincided 

with the major ones at the national level.  

The trends observed in the SPEI series were consistent with the trends found for the SPEI input variables 

(i.e., precipitation and temperature) shown in Fig. 2.2b and Fig. 2.2c., where trends were positive for 

temperature and negative for precipitation. In addition, these findings are in line with similar ones 

reported by Jury (2013), who used satellite sensor data to analyse climate trends in southern Africa and 

found that temperature and precipitation trends were positive and negative, respectively, over the period 

1980-2010 in Mozambique as a whole. On the other hand, the persistence analysis points to an increase 

in the incidence of droughts throughout the country. Although these results should be taken with caution 

due to the climate system complexity, they further highlight the need for the development of drought 

forecasting tools and more specific, in-depth studies on drought variability in the homogeneous regions. 

These results are consistent with those found at the continental level and in other regions of Africa 

(Masih et al., 2014; Rouault and Richard, 2005), and with the variations seen in recent years on 

precipitation and temperature in Mozambique (Jury, 2013; Uele et al., 2017).   

Relationships found between droughts and El Niño 4 and El Niño 3.4 SST indices agree with those 

described in Manhique et al. (2011) for southern Africa and Mozambique as a whole, and in Manatsa et 

al. (2008a) for the neighbouring tropical country of Zimbabwe. The strong climatic influence of the 

Darwin SLP index was also found by Manatsa et al., (2008b) in Zimbabwe. Other tropical regions of 

the world have also found El Niño 4 and Darwin to be drought triggers (D’Arrigo and Smerdon, 2008; 

Gu et al., 2020; Lyon and Barnston, 2005), so these (and following) results are also of hydrological 

interest for countries located in these climatic regions.  

The periodic behaviour of the monthly SPEI patterns according to FTT match those reported in section 

3.2., and coincide with the historical drought records documented in EM-DAT, (2020) and Masih et al. 

(2014). Thus, these results are of great importance, as well as being novel for the region. The periodicity 

found in the El Niño 4 (the same oscillation period was observed for Darwin SPL) index is consistent 

with the widely accepted 3-7 year period (McPhaden et al. 1998). 

The results of the spectral analysis consistently point to an anti-phase relationship between the drought 

events detected by SPEI and the climatic indices Darwin SLP and El Niño 4 in the South and Centre 

regions. The North region showed a poor relationship with the climatic indicators. In this region of the 

country, drought events are less intense and severe, although the number of events is higher. This may 

be explained by the relationship between the Temperate Tropical Depressions and ENSO. This 

relationship affects the precipitation patterns in Southeast Africa, making ENSO less influential in the 

North of Mozambique and meaning that it is a wetter area than the rest of the country (Manhique et al. 

2011). 

These climate indices could be used in drought forecasting models as predictors of drought in 

Mozambique, with a lead time of 2-3 months based on the lagged correlations. Such a lead time would 

enable the establishment of preventive measures against possible upcoming droughts (e.g., accumulating 

water in reservoirs, prioritizing water use for different uses, etc.). In this way, a forecasting model could 
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be employed to infer the probability and intensity of drought events in the short-term future, relying on 

past values of the climate indices (Hao et al., 2018), and allowing actions to be implemented when a 

drought is expected. 

5. Conclusions 

The main objective of this study was to investigate the spatio-temporal characteristics of droughts and 

their relationships with possible predictors of the phenomenon in Mozambique. Although Mozambique 

is very prone to droughts and suffers continuously from their effects, it does not have the necessary 

management tools to monitor and predict the phenomenon. The proposed five-step methodology 

consists of several methods organised in a coherent way for use in Mozambique or in any other region 

(country or river basin) that requires a first assessment of the spatio-temporal characteristics of droughts. 

Here, efforts have been made to adapt the methodology specifically to Mozambique, where local 

meteorological and hydrological monitoring data are extremely limited. 

The monthly SPEI-12 was calculated as an indicator of drought from 1950 to 2019 at a high resolution 

(0.5°). Principal Component Analysis with the Varimax rotation method was used to define 3 

homogeneous drought regions located in the North, South, and Centre of the country. This 

regionalization was validated with hierarchical and non-hierarchical clustering methods. The regions as 

delimited do not coincide entirely with those identified by the Mozambican National Directorate of 

Water but are preferable for drought monitoring and management. 

Based on run theory, the South and Centre regions are the ones that have presented the most intense and 

severe drought events in the past. A statistically significant trend towards a higher incidence of droughts 

was found in the three regions and Rescale Range analysis suggests that this trend might persist in the 

near future. This section presented valuable information for Mozambique on the temporal variability of 

droughts. However, given the limitations derived from the use of SPEI-12, it would be advisable to 

consider additional time scales in future studies to gain further insights into the temporal patterns of 

drought in each region. 

Strong correlations between two climatic indices—El Niño 4 (ENSO) and Darwin SLP—and droughts 

were found in the South and Centre regions, with a time lag of 2-3 months. These climate indices are 

representative drought triggers in tropical regions of the world such as Mozambique. With the FFT 

technique, it was found that the periods of SPEI and these two climate indices have a similar periodicity 

of between 3 and 8 years, this being a novel statement with reference to Mozambique. Spectral analysis 

by means of cross-wavelet transform confirmed that SPEI and El Niño 4 and Darwin SLP are strongly 

related in anti-phase for periods between 1.4 and 10.4 years. These climate indices could thus be used 

to develop a drought forecasting system, providing sufficient lead time to establish prevention strategies. 

In summary, this study has provided an understanding of the spatial and temporal distribution of 

droughts in Mozambique. The results are of great potential use for Mozambique's regional water 

administrations towards developing drought contingency plans. Simplified management regions have 

been defined, characterised, and strongly related to potential drought predictors. The proposed 

methodology can be used elsewhere in the world; however, given its limitations and the large number 

of topics it covers, certain limitations will need to be considered in future studies. 
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Supplementary materials 

 

Fig. S2.1 Homogeneous drought regions in Mozambique according to the PCA using the SPEI-3, -6 and -12. It can be seen that 
the regions are roughly equal. 

Table S2.1 The grouping of the 343 CRU coordinates (Lat for latitude and Long for longitude) for the SPEI-12 time series by the 
non-hierarchical k-means clustering method with 2, 3 and 4 clusters (cl) (Fig. 2.4) and PCA analysis (Fig. 2.3). 

Coordinates Grouping method Coordinates Grouping method 

Lat Long 2 cl 3 cl 4 cl PCA Lat Long 2 cl 3 cl 4 cl PCA 

40.3 -14.8 1 2 2 1 35.8 -11.3 1 2 3 1 

40.8 -14.8 1 2 2 1 36.3 -11.3 1 2 3 1 

40.3 -14.3 1 2 2 1 37.8 -11.3 1 2 3 1 

40.8 -14.3 1 2 2 1 38.3 -11.3 1 2 3 1 

40.3 -13.8 1 2 2 1 38.8 -11.3 1 2 3 1 

40.8 -13.8 1 2 2 1 39.3 -11.3 1 2 3 1 

40.3 -13.3 1 2 2 1 39.8 -11.3 1 2 3 1 

40.8 -13.3 1 2 2 1 39.8 -10.8 1 2 3 1 

40.3 -12.8 1 2 3 1 30.3 -14.8 2 3 1 3 

40.8 -12.8 1 2 3 1 30.8 -14.8 2 3 1 3 

40.3 -12.3 1 2 3 1 31.3 -14.8 2 3 1 3 

40.8 -12.3 1 2 3 1 31.8 -14.8 2 3 1 3 

40.3 -11.8 1 2 3 1 32.3 -14.8 2 3 1 3 

40.3 -11.3 1 2 3 1 32.8 -14.8 2 3 1 3 

40.3 -10.8 1 2 3 1 33.3 -14.8 1 3 1 3 

40.8 -10.8 1 2 3 1 33.8 -14.8 1 3 1 3 

40.3 -10.3 1 2 3 1 34.3 -14.8 1 3 1 3 

35.8 -14.8 1 3 1 3 34.8 -14.8 1 3 1 3 

36.3 -14.8 1 3 1 3 31.8 -14.3 2 3 1 3 

36.8 -14.8 1 3 1 3 32.3 -14.3 2 3 1 3 

37.3 -14.8 1 3 1 3 32.8 -14.3 1 3 1 3 
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37.8 -14.8 1 3 2 3 33.3 -14.3 1 3 1 3 

38.3 -14.8 1 2 2 1 33.8 -14.3 1 3 1 3 

38.8 -14.8 1 2 2 1 34.3 -14.3 1 3 1 3 

39.3 -14.8 1 2 2 1 34.8 -13.8 1 3 1 3 

39.8 -14.8 1 2 2 1 34.8 -13.3 1 3 1 3 

35.3 -14.3 1 3 1 3 34.3 -12.8 1 3 1 3 

35.8 -14.3 1 3 1 3 34.8 -12.8 1 3 1 3 

36.3 -14.3 1 3 1 3 34.3 -12.3 1 3 1 3 

36.8 -14.3 1 3 1 3 34.8 -12.3 1 3 1 3 

37.3 -14.3 1 3 2 3 34.3 -11.8 1 3 1 3 

37.8 -14.3 1 2 2 1 34.8 -11.8 1 3 3 1 

38.3 -14.3 1 2 2 1 40.3 -16.3 1 2 2 1 

38.8 -14.3 1 2 2 1 40.3 -15.8 1 2 2 1 

39.3 -14.3 1 2 2 1 40.3 -15.3 1 2 2 1 

39.8 -14.3 1 2 2 1 40.8 -15.3 1 2 2 1 

35.3 -13.8 1 3 1 3 35.3 -19.8 2 1 4 2 

35.8 -13.8 1 3 1 3 35.3 -19.3 2 1 4 3 

36.3 -13.8 1 3 1 3 35.8 -19.3 2 1 4 3 

36.8 -13.8 1 3 1 3 35.3 -18.8 2 1 4 3 

37.3 -13.8 1 3 2 1 35.8 -18.8 2 3 1 3 

37.8 -13.8 1 2 2 1 36.3 -18.8 2 3 1 3 

38.3 -13.8 1 2 2 1 35.3 -18.3 2 3 1 3 

38.8 -13.8 1 2 2 1 35.8 -18.3 2 3 1 3 

39.3 -13.8 1 2 2 1 36.3 -18.3 2 3 1 3 

39.8 -13.8 1 2 2 1 36.8 -18.3 1 3 1 3 

35.3 -13.3 1 3 1 3 35.3 -17.8 2 3 1 3 

35.8 -13.3 1 3 1 3 35.8 -17.8 1 3 1 3 

36.3 -13.3 1 3 1 3 36.3 -17.8 1 3 1 3 

36.8 -13.3 1 3 1 3 36.8 -17.8 1 3 1 3 

37.3 -13.3 1 2 2 1 37.3 -17.8 1 3 1 3 

37.8 -13.3 1 2 2 1 37.8 -17.8 1 3 1 3 

38.3 -13.3 1 2 2 1 35.3 -17.3 2 3 1 3 

38.8 -13.3 1 2 2 1 35.8 -17.3 1 3 1 3 

39.3 -13.3 1 2 2 1 36.3 -17.3 1 3 1 3 

39.8 -13.3 1 2 2 1 36.8 -17.3 1 3 1 3 

35.3 -12.8 1 3 1 3 37.3 -17.3 1 3 1 3 

35.8 -12.8 1 3 1 3 37.8 -17.3 1 3 1 3 

36.3 -12.8 1 3 1 1 38.3 -17.3 1 3 2 3 

36.8 -12.8 1 2 3 1 38.8 -17.3 1 3 2 1 

37.3 -12.8 1 2 3 1 35.3 -16.8 2 3 1 3 

37.8 -12.8 1 2 3 1 35.8 -16.8 2 3 1 3 

38.3 -12.8 1 2 3 1 36.3 -16.8 1 3 1 3 

38.8 -12.8 1 2 3 1 36.8 -16.8 1 3 1 3 

39.3 -12.8 1 2 3 1 37.3 -16.8 1 3 1 3 

39.8 -12.8 1 2 3 1 37.8 -16.8 1 3 1 3 

35.3 -12.3 1 3 3 1 38.3 -16.8 1 3 2 3 

35.8 -12.3 1 3 3 1 38.8 -16.8 1 3 2 1 

36.3 -12.3 1 2 3 1 39.3 -16.8 1 2 2 1 

36.8 -12.3 1 2 3 1 39.8 -16.8 1 2 2 1 

37.3 -12.3 1 2 3 1 35.3 -16.3 2 3 1 3 

37.8 -12.3 1 2 3 1 35.8 -16.3 1 3 1 3 

38.3 -12.3 1 2 3 1 36.3 -16.3 1 3 1 3 

38.8 -12.3 1 2 3 1 36.8 -16.3 1 3 1 3 
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39.3 -12.3 1 2 3 1 37.3 -16.3 1 3 1 3 

39.8 -12.3 1 2 3 1 37.8 -16.3 1 3 1 3 

35.3 -11.8 1 3 3 1 38.3 -16.3 1 3 2 3 

35.8 -11.8 1 2 3 1 38.8 -16.3 1 3 2 1 

36.3 -11.8 1 2 3 1 39.3 -16.3 1 2 2 1 

36.8 -11.8 1 2 3 1 39.8 -16.3 1 2 2 1 

37.3 -11.8 1 2 3 1 35.8 -15.8 1 3 1 3 

37.8 -11.8 1 2 3 1 36.3 -15.8 1 3 1 3 

38.3 -11.8 1 2 3 1 36.8 -15.8 1 3 1 3 

38.8 -11.8 1 2 3 1 37.3 -15.8 1 3 1 3 

39.3 -11.8 1 2 3 1 37.8 -15.8 1 3 1 3 

39.8 -11.8 1 2 3 1 38.3 -15.8 1 3 2 3 

38.8 -15.8 1 3 2 1 35.3 -20.8 2 1 4 2 

39.3 -15.8 1 2 2 1 32.3 -24.8 2 1 4 2 

39.8 -15.8 1 2 2 1 32.8 -24.8 2 1 4 2 

35.8 -15.3 1 3 1 3 33.3 -24.8 2 1 4 2 

36.3 -15.3 1 3 1 3 33.8 -24.8 2 1 4 2 

36.8 -15.3 1 3 1 3 34.3 -24.8 2 1 4 2 

37.3 -15.3 1 3 1 3 34.8 -24.8 2 1 4 2 

37.8 -15.3 1 3 2 3 31.8 -24.3 2 1 4 2 

38.3 -15.3 1 3 2 1 32.3 -24.3 2 1 4 2 

38.8 -15.3 1 2 2 1 32.8 -24.3 2 1 4 2 

39.3 -15.3 1 2 2 1 33.3 -24.3 2 1 4 2 

39.8 -15.3 1 2 2 1 33.8 -24.3 2 1 4 2 

32.8 -19.8 2 1 4 2 34.3 -24.3 2 1 4 2 

33.3 -19.8 2 1 4 2 34.8 -24.3 2 1 4 2 

33.8 -19.8 2 1 4 2 31.8 -23.8 2 1 4 2 

34.3 -19.8 2 1 4 2 32.3 -23.8 2 1 4 2 

34.8 -19.8 2 1 4 2 32.8 -23.8 2 1 4 2 

32.8 -19.3 2 1 4 2 33.3 -23.8 2 1 4 2 

33.3 -19.3 2 1 4 2 33.8 -23.8 2 1 4 2 

33.8 -19.3 2 1 4 2 34.3 -23.8 2 1 4 2 

34.3 -19.3 2 1 4 2 34.8 -23.8 2 1 4 2 

34.8 -19.3 2 1 4 2 31.3 -23.3 2 1 4 2 

32.8 -18.8 2 1 4 2 31.8 -23.3 2 1 4 2 

33.3 -18.8 2 1 4 3 32.3 -23.3 2 1 4 2 

33.8 -18.8 2 1 4 3 32.8 -23.3 2 1 4 2 

34.3 -18.8 2 1 4 2 33.3 -23.3 2 1 4 2 

34.8 -18.8 2 1 4 2 33.8 -23.3 2 1 4 2 

32.8 -18.3 2 1 4 2 34.3 -23.3 2 1 4 2 

33.3 -18.3 2 1 4 3 34.8 -23.3 2 1 4 2 

33.8 -18.3 2 1 4 3 31.3 -22.8 2 1 4 2 

34.3 -18.3 2 1 4 3 31.8 -22.8 2 1 4 2 

34.8 -18.3 2 1 4 3 32.3 -22.8 2 1 4 2 

32.8 -17.8 2 1 4 3 32.8 -22.8 2 1 4 2 

33.3 -17.8 2 1 4 3 33.3 -22.8 2 1 4 2 
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33.8 -17.8 2 1 4 3 33.8 -22.8 2 1 4 2 

34.3 -17.8 2 3 1 3 34.3 -22.8 2 1 4 2 

34.8 -17.8 2 3 1 3 34.8 -22.8 2 1 4 2 

32.8 -17.3 2 1 4 3 31.3 -22.3 2 1 4 2 

33.3 -17.3 2 1 4 3 31.8 -22.3 2 1 4 2 

33.8 -17.3 2 3 1 3 32.3 -22.3 2 1 4 2 

34.3 -17.3 2 3 1 3 32.8 -22.3 2 1 4 2 

34.8 -17.3 2 3 1 3 33.3 -22.3 2 1 4 2 

32.3 -16.8 2 1 1 3 33.8 -22.3 2 1 4 2 

32.8 -16.8 2 1 1 3 34.3 -22.3 2 1 4 2 

33.3 -16.8 2 3 1 3 34.8 -22.3 2 1 4 2 

33.8 -16.8 2 3 1 3 31.8 -21.8 2 1 4 2 

34.3 -16.8 2 3 1 3 32.3 -21.8 2 1 4 2 

34.8 -16.8 2 3 1 3 32.8 -21.8 2 1 4 2 

30.8 -16.3 2 3 1 3 33.3 -21.8 2 1 4 2 

31.3 -16.3 2 3 1 3 33.8 -21.8 2 1 4 2 

31.8 -16.3 2 3 1 3 34.3 -21.8 2 1 4 2 

32.3 -16.3 2 3 1 3 34.8 -21.8 2 1 4 2 

32.8 -16.3 2 3 1 3 32.3 -21.3 2 1 4 2 

33.3 -16.3 2 3 1 3 32.8 -21.3 2 1 4 2 

33.8 -16.3 2 3 1 3 33.3 -21.3 2 1 4 2 

34.3 -16.3 2 3 1 3 33.8 -21.3 2 1 4 2 

34.8 -16.3 2 3 1 3 34.3 -21.3 2 1 4 2 

30.3 -15.8 2 3 1 3 34.8 -21.3 2 1 4 2 

30.8 -15.8 2 3 1 3 32.3 -20.8 2 1 4 2 

31.3 -15.8 2 3 1 3 32.8 -20.8 2 1 4 2 

31.8 -15.8 2 3 1 3 33.3 -20.8 2 1 4 2 

32.3 -15.8 2 3 1 3 33.8 -20.8 2 1 4 2 

32.8 -15.8 2 3 1 3 34.3 -20.8 2 1 4 2 

33.3 -15.8 2 3 1 3 34.8 -20.8 2 1 4 2 

33.8 -15.8 2 3 1 3 32.8 -20.3 2 1 4 2 

34.3 -15.8 2 3 1 3 33.3 -20.3 2 1 4 2 

30.3 -15.3 2 3 1 3 33.8 -20.3 2 1 4 2 

30.8 -15.3 2 3 1 3 34.3 -20.3 2 1 4 2 

31.3 -15.3 2 3 1 3 34.8 -20.3 2 1 4 2 

31.8 -15.3 2 3 1 3 32.3 -26.8 2 1 4 2 

32.3 -15.3 2 3 1 3 32.8 -26.8 2 1 4 2 

32.8 -15.3 2 3 1 3 32.3 -26.3 2 1 4 2 

33.3 -15.3 2 3 1 3 32.8 -26.3 2 1 4 2 

33.8 -15.3 2 3 1 3 31.8 -25.8 2 1 4 2 

34.3 -15.3 2 3 1 3 32.3 -25.8 2 1 4 2 

34.8 -15.3 2 3 1 3 32.8 -25.8 2 1 4 2 

35.3 -24.8 2 1 4 2 31.8 -25.3 2 1 4 2 

35.3 -24.3 2 1 4 2 32.3 -25.3 2 1 4 2 
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35.3 -23.8 2 1 4 2 32.8 -25.3 2 1 4 2 

35.3 -23.3 2 1 4 2 33.3 -25.3 2 1 4 2 

35.3 -22.8 2 1 4 2 33.8 -25.3 2 1 4 2 

35.8 -22.8 2 1 4 2 31.8 -26.8 2 1 4 2 

35.3 -22.3 2 1 4 2 31.8 -26.3 2 1 4 2 

35.8 -22.3 2 1 4 2 31.3 -26.8 2 1 4 2 

35.3 -21.8 2 1 4 2 31.3 -26.3 2 1 4 2 

35.3 -21.3 2 1 4 2       
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Abstract 

Droughts are one of the most damaging and complex natural disasters in the world, and they frequently 

affect agricultural production. Drought monitoring is essential for decision-makers seeking to minimize 

the socio-economic impacts related to drought events. In this study, we propose a methodology to 

identify the most suitable drought indices and data sources for monitoring the impact of drought on 

crops. Mozambique is used as a case study, as it represents a challenging example because of its poor 

hydroclimatic monitoring network and a lack of disaggregated data for agricultural production. A total 

of seven standardized drought indicators (SPI, SPEI, SSI, SVCI, STCI, SVHI, and STWS) at different 

scales (1, 3, 6, and 12 months) were obtained from global databases and evaluated as possible predictors 

of the annual variability of agricultural yields at the national level. A statistical model of crop yields 

based on time series was used to measure the explanatory capacity of each index. SPEI and SSI were 

the most effective at detecting the country's historical drought records regardless of whether nationally 

averaged values or the percentages of area affected by drought (PAA) were used. However, PAA was 

found to be a more accurate predictor of variability in crop yields. The variability of most cereals (maize, 

millet and sorghum) was adequately explained by the PAA of SPEI-3, with that of other crops (cashew 

nuts, cassava, potatoes, tea, tobacco and vegetables) being explained by the PAA of SSI-12. Specific 

indicators were proposed for monitoring wheat and sugar cane. These results can directly support 

managers and decision makers in developing drought contingency plans in Mozambique. To further 

demonstrate the potential of this methodology, it should be tested in other regions with a greater 

availability of agricultural data, including spatial disaggregation. 

Keywords 

Drought index, drought impacts, crop yield, statistical model, Mozambique. 

Highlights 

• A method to identify indices (DIs) for monitoring drought impact on crops is proposed. 

• SPEI and SSI were the DIs that best detected historical droughts in Mozambique. 

• Percentage area affected by drought (PAA) better indicates crop yield variability than 

nationally averaged DIs values.  

• PAA of SPEI-3 and SSI-12 explained the variability of most crop yields. 

• The usefulness of regional disaggregated data for such impact analysis is recognized. 
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1. Introduction 

Droughts represent one of the most extensive, costly, recurrent, and complex types of natural disasters 

worldwide (Bryant et al., 2005; Mishra and Singh, 2010). Given that it is related to water availability, 

the agricultural sector is especially sensitive to this natural phenomenon. Negative impacts, like a 

decrease in quantity and/or quality of crops, directly affect food security and consequently, the quality 

of life within a region or country (Backlund et al., 2008). Such impacts are more perceptible in high 

drought risk regions (e.g., Southern Africa) and rainfed agriculture systems (Tigkas et al., 2019). 

Droughts are classified into four widely accepted types: Meteorological, agricultural, hydrological, and 

socio-economic (Wilhite and Glantz, 1985). Each type is typically characterized and described through 

drought indices (DIs) (Hayes et al., 2011); several DIs have been developed over the last century (World 

Meteorological Organization and Global Water Partnership, 2016). Most DIs require climatic and/or 

hydrological data with at least 30 years of observation as inputs for a reliable temporal drought analysis, 

whereas at least one data station per 5000 km2 is recommended for spatial analyses (AghaKouchak et 

al., 2015).  

In recent decades, different institutions have constructed and updated various large-scale climate and 

hydrological data sets (e.g. Abatzoglou et al., 2018; Beck et al., 2017a; Harris et al., 2020; Thomas et 

al., 2014). These products provide gauge-based, satellite-derived, or reanalysis-based estimates, and can 

constitute a suitable alternative for calculating DIs in data-scarce regions (e.g., Nashwan et al., 2020). 

Though these global products are not without limitations (Beck et al., 2017b; Sun et al., 2018), they 

have been used in several drought and agriculture-related studies worldwide and constitute a reliable 

data source (Agutu et al., 2017; Champagne et al., 2019; Du et al., 2018; García-León et al., 2019; 

Jayanthi et al., 2013; Lawal et al., 2019; Potopová et al., 2020; Rojas et al., 2011). 

Drought studies related to agriculture usually use correlation tests and statistical models to explain the 

relationship between farming yields and drought indicators (Shi et al., 2013). These models can be based 

on a single point or area (time series methods), spatial and temporal variations (panel methods), or solely 

spatial variations (cross-section methods) (Lobell and Burke, 2010). The type of model can be chosen 

depending on the spatial and temporal detail of the crop yield series (Shi et al., 2013). García-León et 

al. (2019) and  Peña-Gallardo et al. (2019a) researched the relationships between drought indices and 

crop yields at the provincial and regional scale in Spain using panel methods. For the same purpose, 

Jayanthi et al. (2013) used the time series method in Malawi because they only had data on agricultural 

yields at the national level. Regardless of the method chosen, crop yields are frequently subject to a 

detrending process to extract the yield trend and remove the variability in productivity caused by non-

climate factors (e.g., improvements in farming techniques, seed hybrid development, and irrigation 

optimization) (Champagne et al., 2019; Peña-Gallardo et al., 2019b), before developing the statistical 

model.  

The above studies showed that site- and crop-specific studies are required to identify the most suitable 

DI and data sources for monitoring the impact of drought on crops. However, there is currently no 

standard methodology to assess the performance of DIs in explaining crop yield variability. To fill this 

research gap, in this study we propose a methodological framework to be applied at the national scale, 

comprising three steps. First, we use global gauge-based and satellite-derived datasets to calculate 

several well-known DIs and validate them with historical drought records. In addition to nationally 

average drought indicator values, new aggregated descriptors based on the areas affected by drought are 

considered to better capture regional variability when working at this scale. Second, we analyse the time 

variability among DIs to identify those that are strongly correlated and potentially provide redundant 

information. Then, we develop a time-series based statistical crop model to predict national yields using 

DIs as predictors. Building on the above analysis, we identify a DI or set of DIs, as well as the data 

sources to compute them, that can be used to monitor crop yields.  
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The proposed methodology is applied to Mozambique as a case study, with an emphasis on determining 

a climatic drought-related explanation of the national crop yield variability. The case study is 

challenging because this country does not currently have an operational measurement network that 

meets optimum criteria (Easterling, 2013), data on agricultural yields are limited, and previous research 

on drought impacts is scarce. However, it is also of considerable interest because of the role played by 

agriculture in the sustainable development in this region and the concerns raised by climate change. 

Mozambique is one of the poorest and least developed countries in the world. Approximately 70% of 

the population works in agriculture, representing 24% of the GDP (Ministério da Agricultura e 

Segurança Alimentar, 2015). It is also located in one of the most drought- and climate change-prone 

areas (Eriksen and Silva, 2009; 2014: Climate Change IPCC, 2014; Osbahr et al., 2008; Patt and 

Schröter, 2008), which increases the vulnerability of its agricultural sector. For these reasons, this 

country is immersed in several development programs led by the Food and Agricultural Organization 

(FAO) (Midgley et al., 2012) and the World Food Programme (WFP) (WFP, 2007), among others, aimed 

at implementing climate change adaptation strategies to enhance the resilience and sustainability of 

agriculture. It is in this context that this work explores the impact of drought on agricultural production 

in Mozambique.  

The overall aim of this study is to develop a methodology of general applicability to identify the most 

suitable DIs and data sources for monitoring the impact of drought on crops at national scale. Two 

methodological aspects are worth noting: (1) the reliance on freely global-scale datasets to obtain a 

comprehensive set of potential DIs, and (2) the exploration of alternatives to averaging DI values over 

the entire country, that are intended to better capture the local and regional drought conditions when 

working at such scale. The proposed methodology may thus be of special interest in countries with data 

scarcity, where ground data observations are neither sufficient nor timely available for drought 

monitoring, and countries with significant regional variability in drought occurrence, where nationally 

average drought indicator values may conceal regional differences. The methodology is tested in 

Mozambique. To the knowledge of the authors, this is the first study that compares drought indices for 

an agricultural drought risk assessment in this country. This study endeavours to act as a tool for 

supporting decision-makers, focusing on the performance of DIs in explaining yields and yield 

variability at the national scale. The results can help assess drought-related risks to crop production and 

are ultimately intended to contribute to developing an agricultural drought monitoring system in this 

country. As such, we acknowledge the need to reconcile the demands for highly detailed analysis with 

the extent of the resource requirements (infrastructure, operational needs, etc.) and data availability. 

2. Materials and methods 

2.1.Study area 

Mozambique lies in southeast Africa (Fig. 3.1a) and covers a continental area of 801.590 km². The 

weather system is dominated in the north by the Inter-Tropical Convergence Zone and in the south by 

Antarctic Polar Fronts and Tropical Temperate Troughs (Manhique et al., 2011). The climate is tropical, 

with a hot and rainy summer season from November to March, and a cool and dry winter season from 

April to October (Midgley et al., 2012). The annual average temperature varies from 17.8°C to 32.8°C 

(Fig. 3.1e), and has increased by 1.25–2.0°C in the last 60 years (Ragab and Prudhomme, 2002). The 

annual average precipitation is 1032 mm, 75% of which occurs during summertime.  

Owing to these conditions, the sowing and harvesting season generally extends from November to April 

(Rojas et al., 2011). Farming is one of the main activities in the country (70% of the population 

depending on subsistence farming), with over 80% of the total cultivated area used to produce staple 

food crops. Because of the lack of hydraulic infrastructure for irrigation, over 95% of this agricultural 

production is mainly rainfed and without fertilizer consumption (FAO, 2016a).  
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Fig. 1. a) Location of Mozambique in Africa and its topography. Black dots illustrate the CRU grid 

points (0.5°×0.5°). Spatial distribution of annual mean values of: b) precipitation (1973–2017), c) 

potential evapotranspiration (ETP, 1973–2017), d) Normalized Difference Vegetation Index (NDVI, 

1983–2017), e) Brightness Temperature (BT, 1983–2017), f) Soil moisture (1973-2017), and g) 

Terrestrial Water Storage (TWS, 2002–2017), across the country. 

 

Fig. 3.1 The country is prone to drought, which has caused temporary food insecurity in the past (FAO, 2016a). According to 
the International Disaster Database (EM-DAT, 2021) and the International Research Institute for Climate and Society (IRI) 
(Hellmuth et al., 2007), Mozambique has experienced various annual and interannual drought episodes in recent decades. In 
terms of socio-economic impacts, the most important were the droughts that occurred in 1979–1980, 1983–1984, 1987, 1991–
1992, 1994–1995, 1998, 2001–2003, 2005, 2007–2008, 2010, and 2016.  

2.2.Meteorological, hydrological and vegetation data 

The data used for calculating the DIs (Table 3.1) comprises Precipitation (P) and Potential 

Evapotranspiration (ETP) as meteorological information, the Normalized Difference Vegetation Index 

(NDVI) and Brightness Temperature (BT) related to vegetation conditions, and the Soil Moisture (SM) 

and Terrestrial Water Storage (TWS) as hydrological measures. 

Monthly P and ETP were obtained from Climatic Research Unit CRU TS3.10 (CRU) at the University 

of East Anglia (Harris et al., 2020) for the period between 1973 and 2017 

(https://crudata.uea.ac.uk/cru/data/hrg/) at a 0.5° resolution. A total of 343 CRU grid points covering 

the entire Mozambican territory were used for the study (Fig. 3.1).  

NDVI and BT are derived from spectral reflectance at the blue, red, and near-infrared (NIR) wavelengths 

observed from space by orbiting satellites (Deering, 1978). These data were obtained from the Center 

for Satellite Applications and Research (STAR) and the environmental satellites for the U.S. Oceanic 

and Atmospheric Administration (NOAA). Datasets consist of 7-day value composites at 8 km 

resolution from 1982 to 2017 (https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php). 

http://www.noaa.gov/
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Monthly SM time series from 1973 to 2017 and a 1/24° resolution were obtained from the TerraClimate 

dataset (https://climate.northwestknowledge.net/TERRACLIMATE/index_directDownloads.php) 

(Abatzoglou et al., 2018). These values have been derived using a one-dimensional soil water balance 

model based on the primary climate variables of this dataset.  

The GRACE satellites can accurately observe and measure the TWS changes over global land areas 

(Tapley et al., 2004). Monthly TWS data at a 1° resolution (https://grace.jpl.nasa.gov/data/get-

data/monthly-mass-grids-land/) from 2003 to 2016 were used in this study. The gridded TWS data were 

scaled following the process explained by Landerer and Swenson (2012). 

To establish consistency with the CRU spatial and temporal resolution, the NDVI, BT and SM data were 

resampled to a 0.5° resolution and monthly scale. Four-point bilinear resampling was applied to TWS 

data for the same reason. The spatial distribution of the annual mean values of each variable for the 

study period is shown in Fig. 3.1b-g. 

2.3.Drought indices and area affected by droughts 

The drought indices (DIs) used in this study (Table 3.1) rely on the meteorological, vegetation condition, 

and hydrological data described in the previous section. Although several DIs exist (Dai, 2011; World 

Meteorological Organization and Global Water Partnership, 2016), we selected seven widely known 

DIs that have been successfully used in drought and agriculture-related investigations (Agutu et al., 

2017; Sun et al., 2012). 

Table 3.1 Summary of drought indices and data sources used in this study. The temporal accumulations (n) were 1, 3, 6, and 
12 months. 

Index Input Data source 

Original 

temporal 

resolution 

Original 

spatial 

resolution 

Time span 

SPI-n P CRU Monthly 0.5⁰ 1973–2017 

SPEI-n P, ETP CRU Monthly 0.5⁰ 1973–2017 

SSI-n SM TerraClimate Monthly 1/24⁰ 1973–2017 

SVCI-n NDVI NOAA STAR Weekly 1/24⁰ 1982–2017 

STCI-n BT NOAA STAR Weekly 1/24⁰ 1982–2017 

SVHI-n VCI, TCI NOAA STAR Monthly 0.5⁰ 1982–2017 

STWS-n TWS GRACE Monthly 1⁰ 2002–2017 

 

The Standardized Precipitation Index (SPI-n) (McKee et al., 1993) shows precipitation anomalies with 

respect to the long average of P, considering a window period of n months. Its computation consists of 

fitting P time series accumulated at a chosen n-months period with a two-parameter gamma probability 

distribution and later standardizing this result. The Standardized Precipitation and Evapotranspiration 

Index (SPEI-n) (Vicente-Serrano et al., 2010), the Standardized Soil Moisture Index (SSI-n) (Hao and 

AghaKouchak, 2013), the Standardized Vegetation Condition Index (SVCI-n), the Standardized 

Temperature Condition Index (STCI-n), the Standardized Vegetation Health Index (SVHI-n) and the 

Standardized Terrestrial Water Storage (STWS-n) (Agutu et al., 2017) were calculated following the 

same mathematical procedure as the SPI, but used the corresponding variables as inputs rather than P. 

The SPEI-n uses the difference between P and ETP, which is understood as the climatic water balance. 

SSI, SVCI-n, STCI-n, and SVHI-n used the SM, VCI, TCI, and VHI, respectively, as previously 

calculated according to Kogan (1995), whereas the STWS-n used the TWS. The SPEI-n and STWS-n 

were fitted to a three-parameter log-logistic probability distribution following Vicente-Serrano et al. 

(2010). The seven indices were calculated for four temporal accumulations (n) of 1, 3, 6 and 12 months, 

considering that farming periods for selected crops are less than one year.  The indices were evaluated 
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according to the categories explained in Table 3.2 for standardized indexes, following the 

recommendations of McKee et al. (1993). 

We computed the DIs time series for each CRU cell and then aggregated them into a single national 

time series. For this purpose, we averaged the DIs values over the entire territory (343 cells), weighted 

by cell area in the country (a), to obtain a single national monthly time series for each DI. We also 

calculated the percentage area affected by droughts (PAA) by considering the intensity thresholds 

indicated in Table 3.2. We determined the percentage of cells under the different intensity categories 

using the DIs time series for each cell on a monthly scale. The annual PAA was obtained through 

aggregating from a monthly to annual series over the calendar year. The idea behind the calculation of 

the PAA is to evaluate alternatives to national averaged DI values that can better capture, in a single 

value, subnational differences in drought conditions. The spatial averaging performed for computing the 

national DI values can, in some cases, hide extreme drought conditions occurring at a more regional 

scale, which is not the case with the PAA computation. The time span covered by the DIs and PAA 

series depended on the availability of main data, as indicated in Table 3.1. 

Table 3.2 Intensity categories of droughts used in this study for standardized indices. 

Standardized 

Indices 
Category 

< -2.00 Extreme drought 

< -1.50 Severe drought 

< -1.00 Moderate drought 

2.4.Crop yield data 

The country-level annual crop yield data (Y ) for Mozambique was obtained from the FAO data portal 

(http://www.fao.org/faostat/en/#data/QC) for the period of 2002–2017 (Fig. 3.2). Crops included maize, 

millet, sorghum, wheat, cashew nuts, cassava, potatoes, sugar cane, tea, tobacco, and vegetables. 

According to Kasnakoglu and Mayo, (2004), this data source represents one of the most credible, readily 

available Y  dataset because of its monitoring data quality and statistical process. More recently, Agutu 

et al. (2017) used it successfully in a nearby region to characterize agricultural drought. 

Crop statistics are not routinely compiled in Mozambique at the sub-national level (e.g., by 

agroecological zones or provincial levels). The availability of sub-national production statistics is, in 

fact, very limited in the majority of sub-Saharan African countries (You et al., 2009). At present, 

regional yields in Mozambique are available for around 8 non-consecutive years (depending on the 

specific crop and region) from sources like the FAO Agro-MAPS database  

(http://kids.fao.org/agromaps) (George, 2006) or the Agricultural Statistics Yearbooks (Ministério da 

Agricultura e Segurança Alimentar, 2015). However, these data are insufficient to support the type of 

analysis proposed in this paper and were, therefore, not considered in this study. 

Mozambique has only recently started to improve its farming techniques. This could be attributed to the 

social, economic and political issues Mozambique has faced in recent decades, causing limited 

developments in agriculture (FAO, 2016a). However, we decided that it might be necessary to apply a 

detrending process to the crop data in order to eliminate variations that may result from abiotic factors 

(market prices, government policy, etc.). Y  trends were calculated using the Mann-Kendall (MK) trend 

test method (Mann, 1945): Millet, cashew nuts, cassava, potatoes, sugar cane, tobacco, and vegetables 

had positive and significant trends; tea showed a negative and non-significant trend, whereas the other 

crops had positive and non-significant trends. The crop yield series were detrended by fitting a linear 

regression model and extracting the residuals. The average crop yield was added to the residual series 

to produce the detrended yield data. The analyses shown in this paper were conducted on the detrended 

http://www.fao.org/faostat/en/#data/QC
http://kids.fao.org/agromaps
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data series, and the detrending process was applied only for Y  with significant trends (hereafter 

detrended crops yield are simply referred as Y ). 

 

Fig. 3.2 Time series of the main yield crops in Mozambique after applying a detrending process (Source: FAO data portal 
http://www.fao.org/faostat/en/#data/QC). Drought years according to the records are shaded in grey. NOTE: Yields of 
cassava, potatoes and vegetables are divided by 10, and that of sugar cane is divided by 40 for visualization. 

2.5.Skill assessment and benchmarking of drought indices 

In the first step of the proposed methodology, the performance of the different drought indices for 

drought detection was analysed. For this purpose, the historical drought record from EMDAT and IRI 

was compared with the time series of the average national DIs values and the annual PAA for each DI. 

The EMDAT is part of the Centre for Research on the Epidemiology of Disasters (CRED), which 

initiated its active disaster data collection in 1973 (Guha-Sapir et al., 2015); hence, skill assessment was 

conducted from 1973 to 2017 on a yearly basis. In this work, a year qualified as a drought year if at least 

two consecutive months were under moderate drought intensity (Table 3.2) according to the DIs series. 

This two-month criterion allows the exclusion of short droughts, which are presumably of minor 

importance, as done in previous studies (Spinoni et al., 2019). In the case of the PAA series, a drought 

year was designated if the annual PAA value reached 30%. Although this is an arbitrary threshold, the 

percentage of land impacted by drought is directly related to the number of agricultural households 

affected, and therefore with the drought impact on productivity (Rojas et al., 2011). The performance 

metrics used were the probability of detection (POD) or hit rate, and the probability of false detection 

(POFD) or false alarm rate, computed according to Wilks (2006): 
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+
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+
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where H are hits, M misses, FA are false alarms, and CN are correct negatives. H represents the 

coincidence of drought of both series (historical records and DIs/PAA series), and M corresponds to the 

presence of a drought in the records and the absence of this event in the DIs/PAA series. FA occurs if 

there is no drought in the records, but one occurs in the DIs/PAA series, and finally, CN represents the 

years in which there is no drought in both series. The Euclidean distance between the point (x1=POFD, 

y1=POD) of each DI and PAA series and the point with the best possible performance (x2=POFD=0, 

y2=POD=100) was used to benchmark performance. Shorter distances thus indicated better 

performance.  

http://www.fao.org/faostat/en/#data/QC
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A correlation analysis between the DIs series was performed in the second step of the methodology. We 

calculated the Pearson correlation coefficients between all monthly DIs series averaged at the country 

scale. The correlation coefficients were analysed to assess if the information provided by the different 

DIs was redundant. 

2.6.Statistical crop yield model 

In the third step of the methodology, we developed a statistical crop yield model for Mozambique by 

assuming that Y  was the response of a function of k  independent variables X which, in this context, 

included the DIs and PAA as possible predictors. Given [0, )Y   , and following Shi et al. (2013), an 

exponential (time series) model was adopted as follows:  

 
( ) ( ) ( )1 2 0

1

ln , ,...,
k

t t t tk j tj t

j

Y f X X X X  
=

= = + +  (3) 

where Y  is the vector of annual crop yields (Fig. 3.2), t is the year, X represents the vector with the 

candidate predictors, j  are the constant coefficients and   the error.  

Both single and multiple candidate predictors are considered to develop the models. Equation (3) 

transforms in a simple linear regression model with one explanatory variable or in a multiple linear 

regression, respectively. The times series considered as candidate predictors for the models are: 1) The 

national average DIs of all months of the year (January to December), 2) the annual national average 

DIs, 3) the annual average PAA under a certain intensity category (moderate, severe, or extreme). The 

multiple linear regression models use the annual average PAA under the three aforementioned intensity 

categories as candidate predictors (i.e., three independent variables). Fig. 3.3 summarizes the steps in a 

methodological flow-chart. 

 

Fig. 3.3 Methodological flow-chart of the study. 



Assessment of the performance of drought indices for explaining crop yield variability at the national 

scale: Methodological framework and application to Mozambique 

65 
 

3. Results and Discussion 

3.1.Comparison with historical drought records  

The temporal patterns of the national averaged DIs series are plotted in Fig. 3.4. Each DI detected several 

droughts of different intensity categories: Moderate (green), severe (orange), and extreme (red). The 

longer the temporal accumulation (n) for each DI is, the later the dry periods are detected, and they are 

also less frequent. This result can be explained by the time scale of the DI and the drought propagation 

through the hydrological cycle. The historical droughts of 1987, 1991–1992, 1994–1995, 2005, and 

2016 were the main drought events detected by the majority of DIs. According to the DI linked to soil 

moisture (SSI), an extreme intensity was reached in up to four of these events. The DIs related to 

vegetation conditions (SVCI, STCI, and SVHI) also classified the 1991–1992 event as extreme. The 

remaining DIs (SPI, SPEI, and STWS) distinguished several drought events (including the five named 

above), but the intensities were lower (moderate and severe). In these DIs, extreme intensities were 

completely smoothed out by the spatial averaging process. 

 

Fig. 3.4 Monthly temporal evolution of SPI, SPEI, SSI, SVCI, STCI, SVHI, and STWS at the national scale (-1, -3, -6, and -12-month 
aggregations). Intensity levels can be interpreted in conjunction with Table 2. Historical drought years according to the records 
are highlighted in yellow. 

STCI-n and STWS-n indicated drought conditions in Mozambique between 12.0% and 14.1% during 

the analysed period. SPI-n and SVCI-n reported the shortest time under drought conditions (less than 

7.2%). When the extreme drought threshold was considered, SCVI-n indicated that such conditions were 

present less than 2.1% of the time, whereas less than 0.4% of the time was classified in this intensity 

category, according to SPI-n.  

Similar to the DIs time series observations, the historical droughts in 1987, 1991–1992, 1994–1995, 

2005, and 2016 were the events that were most clearly detected by majority of the PAA series. These 

drought periods have also been highlighted in previous studies (Brida and Owiyo, 2013; Jayanthi et al., 

2013; Trambauer et al., 2014). In these significant events, the total area affected by drought and its 

distribution in intensity categories differed between DIs. In 1992, up to 74 % of the Mozambican 
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territory was below the moderate drought threshold, and 53 % reached the extreme intensity according 

to SPEI-12. In 2016, STWS-6 showed that 90 % of the country was facing a moderate drought, 5% of 

which corresponded to an extreme intensity; however, SPEI-12 indicated a PAA greater than 20% in 

the extreme category. 

To benchmark the capacity of detection of historical drought events by the different indices, the POD 

and POFD metrics were computed, as described in Section 2.5. Table 3.3 shows the skill assessment of 

the national averaged DIs series and PAA series according to the distance (d) to the point with the best 

possible performance. The rankings of DIs according to their performances were quite similar for both 

series (DIs and PAA). In both cases, the best performance was obtained by SPEI-3 and SPEI-6, with 

more than 50% of POD and with POFD ranging from 7% to 26%. Similar performances were obtained 

with these two indices when considering thresholds for drought detection between 20 and 35 % of the 

annual PAA value, demonstrating that the indexes are robust with respect to slight variations in the 

definition of a drought year. These results are consistent with previous studies that found that EMDAT 

drought disasters were best matched with severe droughts identified using meteorological DIs for mid-

high temporal accumulations (United Nations, 2009). The worst detection performance was provided 

by the DIs related to vegetation conditions (SVHI and SVCI). Nonetheless, all the DIs detected the most 

important drought events because they affected the entire hydrological cycle.  

Table 3.3 Skill assessment results according to POD and POFD. The DIs not included in the table have distances (d) to the point 
with the best possible performance larger than 62. 

DIs H M FA CN POD POFD d  PAA H M FA CN POD POFD d 

SPEI-6 9 9 2 25 50.00 7.41 50.55  SPEI-3 9 9 2 25 50.00 7.41 50.55 

SPEI-3 10 8 7 20 55.56 25.93 51.45  SPEI-6 9 9 2 25 50.00 7.41 50.55 

STCI-3 8 8 4 16 50.00 20.00 53.85  SPEI-12 8 10 2 25 44.44 7.41 56.05 

SPEI-12 8 10 1 26 44.44 3.70 55.68  SSI-3 8 10 2 25 44.44 7.41 56.05 

STCI-1 8 8 5 15 50.00 25.00 55.90  SSI-6 8 10 2 25 44.44 7.41 56.05 

SPI-6 7 11 1 26 38.89 3.70 61.22  SPI-6 7 11 0 27 38.89 0.00 61.11 

SSI-1 7 11 1 26 38.89 3.70 61.22  SPI-12 7 11 1 26 38.89 3.70 61.22 

SSI-3 7 11 1 26 38.89 3.70 61.22  SSI-1 7 11 1 26 38.89 3.70 61.22 

 

The national averaged DIs series are likely missing some climatic, hydrological, or vegetative 

information of specific regions within the country. For example, drought conditions that affect an area 

of the country might be concealed by wet conditions in another region. This is not the case for the PAA 

series, which a priori makes them a better option for working at a national scale. However, both the DIs 

and the PAA series showed a similar detection capability of historical records. Overall, the 

meteorological indices (SPEI and SPI) most closely matched the historical records. However, none of 

the DIs were able to perfectly capture all the drought periods collected from historical records (i.e., POD 

lower than 100), and they identified drought conditions outside the drought years recorded in the 

historical disaster databases (i.e., POFD greater than 0).This may be attributed to the following reasons: 

On the one hand, unrelated circumstances might have worsened the consequences of what would 

otherwise be considered as a mild drought, being recorded as drought year in the records. For example, 

a) other natural disasters occurring between dry periods, such as the heavy floods in 1981 and 1985 and 

between 2000 and 2001 (Brida and Owiyo, 2013; Midgley et al., 2012; Patt and Schröter, 2008), b) civil 

war and conflicts, such as the conflict from 1982–1984 against Zimbabwe (Hellmuth et al., 2007), c) 

epidemics, such as the cholera outbreak in 1983–1984 (Eriksen and Silva, 2009), or d) food security 

crises, as in the 2001–2005 period (FAO, 2006). On the other hand, the drought events in Mozambique 

were reported at the national level, even if they occurred only in a specific region of the country. 

Therefore, the national DIs series obtained after averaging at national level and the PAA may not 

adequately reflect regional information.  
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3.2.Correlation between drought indices 

The occurrence, intensity, and duration of drought periods in Mozambique showed some variability 

between the different DIs. In this step, we compared the drought variation patterns between each DI. 

Fig. 3.5 shows the Pearson coefficients between the DIs time series; the strongest correlations are 

painted blue, and non-significant (ρ>0.05) correlations are denoted as struck through. 

 

Fig. 3.5 Correlation coefficients (R) between the DIs, where the non-significance level (ρ>0.05) is indicated by strikethrough. 

Overall, the strongest correlations were found between the indices associated with meteorological 

variables (SPI and SPEI) and between those related to soil moisture (SSI). These were followed by those 

associated with soil conditions and temperature (STCI and SVHI). In general, a DI with a temporal 

accumulation of 1 month had a very high or nearly perfect correlation with the same DI at a 3-month 

scale. The same was observed between the temporal aggregations of 3 and 6 months, and between 6 and 

12 months. 

The indexes associated with the vegetation condition, albeit without meteorological variables such as 

temperature in their calculation (SVCI), as well as STWS exhibited considerably different variabilities 
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from the rest of DIs, with low correlation values. These two DIs also had the most non-significant 

correlations with other DIs. The SVCI is an index that indicates the condition of the vegetation, and thus 

can reflect other factors external to the climate (e.g., irrigation, forestation, and afforestation). STWS, 

on the other hand, characterizes the total availability of surface and underground water, so its variation 

depends on the complete hydrological process of the area and not solely on one or two climatological 

parameters. The lowest correlations were found for the highest temporal accumulation (SWT-12), which 

could be related to multiannual droughts (not analysed in this paper). 

The results of the correlation analyses are consistent with the physical meaning of the different DIs. 

Although there is a time lag between the meteorological forcing and the hydrological responses, DIs 

based on meteorological variables with 6- and 12-month accumulations showed strong correlations with 

DIs based on vegetation/hydrological data. The results suggest that only one of these meteorological 

DIs (SPI and SPEI with n=6 and n=12 months) could be used alone in any subsequent analysis, as they 

provided very similar information and had high correlations with other DIs. SCVI may be used but 

considering that it does not have an important correlation with hydroclimatic indicators, it should be 

used in conjunction with another DI.  

3.3.Explanation of crop yield variability 

Because of the close relationship between Y  and drought conditions, especially in areas with little 

hydraulic infrastructure such as Mozambique (non-irrigated agriculture), a time-series statistical model 

was proposed to find the DI that better explains the annual yield variability of the 11 selected crops, as 

explained in Section 2.6. The candidate predictors were the averaged national DIs of each month (Jan 

to Dec), the annual averaged national DIs (annual), the annual PAA at moderate (a_mod), severe (a_sev) 

and extreme (a_ext) intensities, and the sum of the annual PAA at moderate, severe, and extreme 

intensities (a_sum), totalling 17 time estimates for each DI. Because 28 DIs were analysed, this created 

a total of 17x28=476 candidate predictors for each type of crop. Fig. S3.1 (supplementary materials) 

shows all R2 values of the statistical model results for each crop. The crop types are represented on the 

y-axis and the candidate predictors are on the x axis. The strongest positive correlations are plotted as 

red. Many of the estimates were non-significant (p < 0.05).  

The main reason for such low coefficients has already been mentioned: there are no regional data on 

crops. Droughts can, however, affect specific regions of the country that contribute little to the overall 

national yield. The use of national aggregated estimates in these cases means that we are searching for 

correlations between droughts affecting one area of the country and yields produced in others. It is also 

worth noting that this study is focused on rainfed agriculture, but some crops (e.g., vegetables or sugar 

cane) might be irrigated in some areas, adding noise to the yield data. Mozambique is thus a highly 

complex scenario. Area-based analysis in countries where disaggregated data are available will certainly 

improve the results. 

However, if a certain number of indicators containing reasonable correlations with crops are determined, 

this can act as a valuable tool for decision-makers, who currently do not have objective data to guide 

their policies. As more data become available, the same methodology can be applied to improve drought 

monitoring. 

The best candidate predictors of Y  were different for each crop. This is because not all crops are equally 

sensitive to drought, nor do they have the same water harvesting or storage capacities. In general, the 

best predictors were those based on the PAA and related to agricultural and hydrological droughts. Being 

predictors that incorporate spatial information below the national level, they showed a better relationship 

with Y  than national indicators that lost spatial information in their computation. Again, we note that 

introducing spatial disaggregation improved the results. If, in addition to incorporating spatial 
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information from the DIs, data for the evolution of crops by area were available, the results would be 

much more accurate. 

Considering that some of the indicators had high correlations between themselves, which meant that 

their spatial-temporal drought patterns were similar, the determination coefficients resulting from the 

proposed model were understandably similar between themselves. For example, SPI-6 and SPEI-3 best 

explained the variability of the sorghum, with R2 values of 0.70 and 0.67, respectively (with a correlation 

of 0.70 between them). To limit the number of indicators, the predictive capacities between these two 

DIs can be considered highly similar; SPEI-3 can ultimately be chosen, as it also provides reasonable 

results in other crops such as millet and maize. Thus, the proposal of indicators should be compacted to 

a minimum number that can explain the variability of the 11 crops. Fig. S3.1 (supplementary materials) 

allows for an analysis of which DI reasonably explains the evolution of each of the crops. 

Of the 11 crops analysed, 8 of them showed a high correlation with 2 predictor candidates: SPEI-

3_a_sum reasonably explained the evolution of cereals (maize, millet, and sorghum) and SSI-12_a_sum 

explained the rest of the crops (cashew nuts, cassava, potatoes, tea, tobacco and vegetables) (Fig. 6). 

This suggests that DIs that consider not solely precipitation but soil moisture conditions, either directly 

or indirectly, can provide a better assessment of the potential impacts on agricultural production. The 

differences in the phenological characteristics and the cultivation period of the studied crops can justify 

the need for considering different DIs (SPEI and SSI) at both short and long timescales (3 months and 

12 months). The variability of the cereal yields is typically best explained by short term meteorological 

DI (Chen et al., 2016; Peña-Gallardo et al., 2019a), whereas other crops such as tubers and vegetables 

respond to soil moisture drought conditions at a longer timescale (Daryanto et al., 2016; Sorensen, 

2005). It should also be noted that the choice of a limited set of indices, for the sake of simplicity and 

operational use, comes at the cost of more difficult physical interpretation of the results. 

There were some crops that did not neatly fit into these general trends. Wheat also responded well to 

SPEI, as did all other cereals, but SPEI-6_Aug presented a much better fit than SPEI-3_a_sum, used for 

all other cereals; thus, the former predictor stands out. One possible reason may be a widespread or 

uniform distribution of wheat crops, where the zoning provided by PAA-based indicators does not offer 

an added value. This is however a hypothesis, as disaggregated data are not available. 

The last peculiarity is that of sugar cane. This crop had acceptable correlations with other indicators, so 

it could have been included within the general block. However, sugar cane also had an excellent 

correlation with the SVCI-6_a_sum indicator, as demonstrated in Fig. 3.6, so the best-fit DI was selected 

in this case. It is difficult to estimate the reason for the adjustment, although Lisboa et al. (2018) 

highlighted the good strong predictive capacity of sugarcane yields using NDVI data. The modelled and 

measured Y are compared for all crops in Fig. 3.6. 

The lack of spatially detailed agricultural data made Mozambique a difficult place to find relationships 

between Y  and DIs. Nevertheless, the method applied here discovered relationships that adequately 

explained the variance of Y  for some crops, proving that it can be used in other regions or countries. 

However, as these are national approximations for a considerable territory, these results should be 

considered with care. 
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Fig. 3.6 Crop yields as measured by FAO versus crop yields as calculated using the best explanatory variable candidate 
(indicated as Be). Fitted parameters are also shown. The dashed line corresponds to the 1:1 line. 

4. Concluding remarks 

The aim of this research was to test a methodology that could evaluate various drought indices as tools 

for monitoring drought and to test their ability to explain the annual variability of crop yields. The case 
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study was carried out for Mozambique, which was especially challenging given its poor monitoring 

system and lack of local/regional data on crop yields; thus, data from global databases and national 

agricultural data were used. 

The proposed indicators successfully detected the main drought events from 1973 to 2017 according to 

historical records, and accurately noted their duration and intensity. The SPEI and SSI indicators had 

the best capacity to detect historical droughts through using both nationally averaged time series and the 

PAA. 

Variability in crop yields was associated with agricultural and hydrological droughts. This variability 

was explained for the majority of crops using two generic indicators: SPEI-3_a_sum explained the 

performance of various cereal crops (maize, millet, and sorghum), whereas SSI-12_a_sum correlated 

well with several other crops (cashew nuts, cassava, potatoes, tea, tobacco, and vegetables). Some 

specific indicators were proposed for two specific crops: SPEI-6 of August (wheat) and SVCI-6_sum 

(sugar cane). SPEI and SSI also offered the best results in terms of their ability to explain historical 

drought events. In addition, because the state level agricultural data were used, the annual area affected 

by drought (PAA used in both SPEI-3_a_sum and SSI-12_a_sum) explained the variance of agricultural 

yields more effectively than the national level drought indicators. 

In summary, the proposed methodology allowed us to confirm the use of these drought indicators - in 

their different temporal accumulations - as a tool to monitor and characterize droughts and model the 

annual yields of specific crops in Mozambique. This methodology should be tested in other regions with 

a greater availability of agricultural data, including spatial disaggregation. These results can be used as 

a support mechanism by managers and decision makers for drought contingency plans in Mozambique. 

However, there is a need to deepen the analysis of droughts in this country at the regional level, to 

provide an improved basis for drought management at the local level. 
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Supplementary materials 

 

Fig. S3.1 Determination coefficients (R2) of the statistical crop models. The different candidate predictors (x-axis) represent 
the monthly DI values (Jan to Dec), the average annual values (annual), and the PAA for the multilinear regression model 
(a_sum) and each intensity category: moderate (a_mod), severe (a_sev), and extreme (a_ext). The strongest positive 
correlations are shown in red. Non-significance values (p > 0.05) are marked with a cross. 
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Abstract 

Site-specific studies are required to identify suitable drought indices (DIs) for assessing and predicting 

drought-related impacts. This study presents a benchmark of eight DIs and 19 large-scale climate indices 

(CIs) to monitor agricultural drought in Argentina. First, the link between the CIs and DIs was 

investigated at the departmental-administrative level and at different temporal scales. Then, the 

effectiveness of the DIs in explaining the variability of crop yields, understood as impacts of agricultural 

droughts, was evaluated using statistical regression models. Soybeans were used as the reference crop. 

Additionally, the performances of DIs and CIs in explaining the variability of crop yields were 

compared. The CIs located in the Pacific Ocean (El Niño 3.4 and El Niño 4) were found to have the best 

correlations with the DIs (R values up to 0.49). These relationships were stronger with longer temporal 

aggregations and during the wet and hot seasons (summer), showing a significant role in the triggering 

of droughts in Argentina. The DIs that best corelated with CIs were those that included temperature in 

their calculations (STCI, SVHI, and SPEI). The impacts of droughts on soybean production were better 

explained using DIs than with CIs (up to 89% vs 8% of variability explained) as predictors of the 

statistical models. SVHI-6 and SPEI-6, depending on the area of interest, were, during the phenological 

period of crop growth (summer), the most effective DIs in explaining annual variations in soybean 

yields. The results may be of interest in water resource management, drought risk management, and the 

Argentinean soybean production sector. Furthermore, they provide a foundation for future studies aimed 

at forecasting agricultural droughts and their impacts.  

Graphical Abstract 
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Drought indices, agricultural drought, teleconnections, statistical models, soybean yield. 
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Highlights 

• El Niño 3.4 and 4 climate indices (CIs) are best correlated with drought indices (DIs). 

• The spatial patterns of CI-DI correlations can be used to define homogenous drought regions. 

• DIs were better predictors of soybean yield variability than CIs. 

• SPEI-6 and SVHI-6 indices were the best DIs in explaining the variability of soybean yields. 

• A foundation is laid for finding suitable indicators for the forecasting of drought. 
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1. Introduction 

Drought is a natural stochastic hazard that causes substantial socio-economic and environmental losses 

worldwide (Golnaraghi et al., 2014). It is a complex phenomenon, usually initiated when precipitation 

presents with volumes below normal in a particular place (meteorological drought). Such anomalies go 

on to affect agriculture and hydrology (agricultural and hydrological drought, respectively), an issue 

reviewed in Mishra and Singh (2010). To date, several drought indices (DIs) have been developed with 

the intention of characterising and monitoring the phenomenon (World Meteorological Organization 

and Global Water Partnership, 2016; Zargar et al., 2011). These include the Standardised Precipitation 

Index (SPI; McKee et al., 1993) and the Standardised Precipitation Evapotranspiration Index (SPEI; 

Vicente-Serrano et al., 2010) for meteorological droughts, the Vegetation Condition Index (VCI) and 

the Vegetation Health Index (VHI; Kogan, 1995) for agricultural droughts, the Standardised Streamflow 

Index (SSI; Hao and AghaKouchak, 2013), plus the Palmer Hydrological Severity Index (PHSI; Palmer, 

1965; Zargar et al., 2011) for hydrological droughts. Each DI has advantages and disadvantages, which 

have been discussed in previous studies (Keyantash and Dracup, 2002; Mishra and Singh, 2010). 

Since the introduction of the concept of a drought timescale by McKee et al. (1993), DIs have been used 

to quantify drought events in each component of the terrestrial water cycle (e.g. precipitation, soil 

moisture, and groundwater). In turn, these DIs can be associated with certain water uses (e.g. agriculture 

and electric generation) (Guttman, 1998). Agricultural activity, on which food security and much of the 

global economy depends, has increased significantly in recent years due to the growing demand for food 

by an increasing population (Tester et al., 2010). However, growth in farming has not been linear in 

time, as annual variations have been characterised by significant decreases in production. Although crop 

yields can be affected by a variety of factors, including wars, social crises, and plagues, drought is a key 

factor in yield variability, especially for rainfed crops (Leng and Hall, 2019; Lobell et al., 2011a, 2011b; 

Zampieri et al., 2017). Several studies have successfully correlated DIs with variability in crop yields 

worldwide (Araneda-Cabrera et al., 2021b; García-León et al., 2019; Peña-Gallardo et al., 2019a; 

Quiring and Papakryiakou, 2003; Vicente-serrano et al., 2012). Generally, these relationships are 

assessed using statistical models (Shi et al., 2013). DIs can thus be used as predictors of crop yields in 

such models and may explain the impact of agricultural drought.  

Drought variability can be linked to large-scale climate oscillations (Hassan and Nayak, 2020; Singh, 

2012), which are quantified by climatic indices (CIs) that rely on sea surface temperature (SST) and sea 

pressure level (SPL). Some well-known CIs based on SST are the ENSO indices (in the Pacific Ocean: 

The El Niño 3.4, for instance), the Caribbean Index (CAR; in the Caribbean Sea), and the south-eastern 

tropical Indian Ocean (SETIO; in the Atlantic Ocean). On the other hand, CIs based on SPL include 

Darwin and Tahiti (in the Pacific Ocean) and North Atlantic Oscillation (NAO; in the Atlantic Ocean) 

in the Atlantic Ocean. Several studies have linked climate indices to DIs (Huang et al., 2016; Manatsa 

et al., 2008b; Oñate-Valdivieso et al., 2020; Santos et al., 2019). Other studies have used climate indices 

to forecast droughts (Dutra et al., 2013; Tan and Perkowski, 2015). 

Because variability in crop yields can be related to DIs, which in turn can be linked to CIs, some studies 

have directly connected crop yield variability with CIs (Anderson et al., 2017; Iizumi et al., 2014; Leng 

and Hall, 2019; Wang et al., 2020). Correlations between crop yields and CIs are usually lower than 

those with DIs, although no research which specifically addresses and supports this assertion currently 

exists. For instance, in the United States, Anderson et al. (2017) found correlations between soybean 

yield and the Oceanic Niño Index (ONI) of up to r = 0.30, while Peña-Gallardo et al. (2019b) highlighted 

correlations between the same crop yield and the SPEI of as much as r = 0.70. 

There is no single DI that can explain variability in crop yields (i.e., drought-related impacts on 

agricultural production). Similarly, there is no single CI (teleconnection) that can represent all climate 

variability and can thus be used to predict drought conditions over large regions (Stenseth et al., 2003). 
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This is due to the very large differences in environmental physical factors (climate, soil composition, 

topography, etc.) that make both climate and crop development respond differently in each location. 

Hence, the present study compares the performance of eight DIs and 19 CIs to determine which are the 

most appropriate for use in agricultural drought monitoring throughout Argentina.  

Argentina has the highest per capita crop production in the world (FAO, 2019) and is also the third 

largest soybean producer (Food and Agriculture Organization, FAO; http://faostat.fao.org). The country 

has substantial annual and inter-annual climate variability (Barros and Silvestri, 2002), and the 

likelihood of soybean yield reduction due to droughts ranges from 70 to 81% (when experiencing 

moderate to exceptional droughts, respectively) (Leng and Hall, 2019). In Argentina, DIs have been 

related to crop variability (e.g. D’Ambrosio et al., 2013; Seiler et al., 2007) and to CIs (e.g. Díaz et al., 

2018; Rivera et al., 2018; Vicario et al., 2015) for specific regions, such as certain provinces or river 

basins. Similarly, relationships have been established between some crop yields and CIs, but only for 

specific regions (e.g. Anderson et al., 2017; Iizumi et al., 2014; Podestá et al., 1999). However, to the 

best of the authors' knowledge, there are no studies that benchmark different DIs and large-scale CIs for 

explaining agricultural drought and associated crop variability. 

The goals of this study are: a) to determine which climate index (or indices) is best associated with 

droughts and with which drought index; b) to establish a drought index (or a set of indices) that can 

explain the annual variability in crop yield using soybeans as a benchmark crop; and c) to compare 

drought and climate indices as predictors of crop yield variability through three statistical models. The 

study was conducted throughout the country at the level of administrative departments. The ultimate 

aim is to support decision makers, farmers, and agricultural drought managers in Argentina. However, 

the methodology can be applied to other countries or regions and at any spatial scale. 

2. Materials and methods 

2.1.Study area 

Continental Argentina was defined as the case study (Fig. 4.1a). It covers 2,791,810 km2 and is divided 

into five main administrative regions according to the National Institute of Statistics and Censuses 

Argentine Republic (Spanish acronym INDEC: www.indec.gob.ar), 24 provinces (including the 

Autonomous City of Buenos Aires as a province), and 525 departments (m number of departments) (Fig. 

4.1b). Due to its extensive area, the country sees wide climatic diversity, from arid (south and centre-

north) to fully humid (northeast) (Beck et al., 2018; Kottek et al., 2006). However, 55% of the country 

has drylands (Cherlet et al., 2018). Argentina is one of the major worldwide producers of cereals (FAO, 

2017), which are cultivated largely in the Argentine Pampas. The departmental average annual 

precipitation varies between 70 and 1880 mm per year and, the average annual temperature ranges from 

2 to 23 °C. Both precipitation and temperature increase from east to west and from south to north. The 

spring and summer seasons are the most humid, while autumn and winter are the coldest and driest. The 

value of Argentina’s cereal production was $10.2 billion in 2013, representing 8.3% of its GDP (FAO, 

2017). The country is vulnerable to several natural phenomena (earthquakes, floods, etc.); however, 

droughts represent the greatest risk for agricultural losses (Cherlet et al., 2018). Argentina's agricultural 

year is defined as July to June (https://www.argentina.gob.ar/agricultura-ganaderia-y-pesca), while the 

hydrological year varies across the country according to regional precipitation patterns. At the national 

level, the precipitation data used in this study (see Section 2.2) show that the driest month is June; 

therefore, in this study, the hydrological year was taken to coincide with the agricultural year. 

http://faostat.fao.org/
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Fig. 4.1 Location of a) Argentina; b) regional, providence and department divisions; and c) departments with soybean 
production.  

2.2.Drought indices 

Various indices based on meteorological, vegetation condition, and hydrological variables were 

calculated for each department on a monthly scale: SPI, SPEI, SSI, SPDSI, SVCI, STCI, SVHI, and 

STWSI. Each index, together with its data source, is briefly described, as follows:  

The Standardised Precipitation Index (SPI) is one of the best-known DIs and is recommended by the 

World Meteorological Organization (WMO). It was introduced by McKee et al. (1993). It is based on 

transforming precipitation into a normal function (𝑥 = 0 and 𝜎 = 1) by means of a probability 

distribution function of two gamma parameters. It is very versatile because it can be calculated for any 

time scale n . The detailed procedure for its computation can be found in Kumar et al. (2009). Monthly 

precipitation data were downloaded from the TerraClimate database (Abatzoglou et al., 2018) at 

http://www.climatologylab.org/terraclimate.html at a spatial resolution of 1/24° (≈4 km at the equator) 

and were averaged for each department before calculating the SPI. 

The Standardised Precipitation and Evapotranspiration Index (SPEI) was introduced by Vicente-Serrano 

et al. (2010). It is similar to the SPI but is computed by standardising the water deficit (

D=Precipitation - Evapotranspiration ). Here, D  is fitted to a three-parameter log-logistic function: 

precipitation and potential evapotranspiration series data were downloaded from the TerraClimate 

database and calculated for each department from the average prior to the computation of the SPEI. 

The Standardised Soil Moisture Index (SSI) (Hao and AghaKouchak, 2014) is based on the 

standardisation of soil moisture following the mathematical steps of the SPI. Here, we used soil moisture 

obtained from the Climate Change Initiative (CCI) program of the European Space Agency (ESA) at 

http://www.climatologylab.org/terraclimate.html
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https://www.esa-soilmoisture-cci.org, version v04.7, at a 0.25° spatial grid (Dorigo et al., 2017). These 

data were downscaled to the departmental level using a bilinear resampling of their centroids.  

The Standardised Vegetation Condition Index (SVCI), Standardised Temperature Condition Index 

(STCI), and Standardised Vegetation Health Index (SVHI) (Agutu et al., 2017) were calculated 

following the standardisation procedure of the SPI to the VCI, TCI, and VHI time series, as defined by 

Kogan (1995). These data were downloaded from the Center for Satellite Applications and Research 

(STAR) and the Environmental Satellites for the U.S. Oceanic and Atmospheric Administration 

(NOAA) at https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php. Datasets consist of 7-day 

value composites at 8 km resolution that were averaged to monthly and departmental scales before being 

standardised. 

The Standardised Palmer Drought Severity Index (SPDSI) (Ma et al., 2014) is the result of standardising 

the widely-used drought index PDSI (Palmer, 1965). The PDSI was downloaded from the TerraClimate 

database and averaged at the departmental scale. Then, the time series were processed according to the 

SPEI computing steps. 

The Standardised Total Water Storage Index (STWSI) (Agutu et al., 2017) was computed using the 

SPEI procedure. Instead of D , the input is the total water storage anomaly (TWS) – surface water and 

groundwater – derived from the Gravity Recovery and Climate Experiment (GRACE) developed by the 

National Aeronautics and Space Administration (NASA) and the German Aerospace Centre (Landerer 

and Swenson, 2012). In this study, we used data (level water thickness in cm) provided by the Jet 

Propulsion Laboratory (JPL) as part of the GRACE Follow On mission JPL RL06_v02 (Landerer et al., 

2020) at https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC-

GRFO_MASCON_CRI_GRID_RL06_V2. Because the data are represented on a 0.5° grid, the time 

series were downscaled to the departmental scale using bilinear resampling towards their centroids prior 

to the standardisation procedure. 

The datasets used in this study have been validated and used successfully in other drought-related studies 

(Araneda-Cabrera et al., 2020; Rojas et al., 2011; Thomas et al., 2014; Y. Wang et al., 2019). The 

TerraClimate database offers data from January 1958; however, only the data since August 1981 were 

downloaded, so as to have the same time span as that offered by NOAA STAR. GRACE began its 

mission in April 2002; thus, we have data from that date. All variables were obtained up to December 

2019. The DIs were calculated for seasonal and annual time scales ( n ) of 3, 6, and 12 months, since 

crop data that reflect agricultural droughts have sub-annual cycles (cf Section 2.4, below). Because of 

the aggregation of n  months as part of the computation of the DIs, the time length of the DIs is  months 

less than their primary variables. Therefore, the final common timespan covered by the DIs was from 

August 1982 and April 2003 (STWSI) to December 2019. Some data was missing for certain months 

due to technical problems (VCI, TCI, VHI, and TWS), and here a linear interpolation method was 

adopted to complete the data based on the neighbouring months. This method is effective and widely-

used for handling missing data (Noor et al., 2015). As previously noted, the VCI, TCI, VHI, PDSI, and 

TWS variables were standardised according to the recommendations proposed for the calculation of the 

SPI and SPEI. In this way, all DI values could be interpreted in the same, with values below -0.5 

indicating droughts with variable intensities (McKee et al., 1993).  

2.3.Large-scale climatic indices 

A wide variety of climate indices were considered in this study. These are based on the SST from the 

Atlantic (TNA, TSA, NAT, SAT, and TASI), Pacific (ENSO indices ERSSTv5: Niño 1+2, Niño 3, Niño 

4, Niño3.4, and PDO), and Indian (SWIO, WTIO, SETIO, and DMI) Oceans, and SPL from various 

locations across the world (Darwin, Tahiti, SOI, and NAO). Additionally, we used the CAR associated 

with the SST from the Caribbean Sea. Thus, we used a total of 19 monthly aggregated climate indices 

that can be freely obtained in near real-time, the details of which are shown in Table 4.1. For this study, 

n

http://www.noaa.gov/
https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC-GRFO_MASCON_CRI_GRID_RL06_V2
https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC-GRFO_MASCON_CRI_GRID_RL06_V2
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we downloaded the climate indices for the same time span as for the Dis, from August 1981 and April 

2002 (STWSI) to December 2019. To establish consistency in the DIs, 3-, 6-, and 12-month running 

means were applied to the CIs.  
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Table 4.1 Selected climatic indices and associated free sources. 

Variable/Data set Period available Data availability 

Darwin Sea Level Pressure (Darwin SLP)* Jan 1882-now http://cpc.ncep.noaa.gov/data/indices/darwin 

Tahiti Sea Level Pressure (Tahiti SLP)* Jan 1882-now http://cpc.ncep.noaa.gov/data/indices/tahiti 

Southern Oscillation Index (SOI)** Jan 1866-now https://psl.noaa.gov/gcos_wgsp/Timeseries/SOI/ 

ENSO indices (ERSSTv5): El Niño 1+2, El Niño 3, El 

Niño 4, and El Niño 3.4* 
Jan 1950-now https://cpc.ncep.noaa.gov/data/indices/ersst5.nino.mth.81-10.ascii 

Pacific Decadal Oscillation (PDO)** Jan 1948-Dec 2018 https://psl.noaa.gov/data/correlation/pdo.data 

Caribbean Index (CAR)** Jan 1950-now https://psl.noaa.gov/data/correlation/CAR_ersst.data 

South Western Indian Ocean (SWIO) Nov 1981-now https://stateoftheocean.osmc.noaa.gov/sur/ind/swio.php 

Western Tropical Indian Ocean (WTIO)** Jan 1870-now https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmiwest.had.long.data 

Southeastern Tropical Indian Ocean (SETIO)** Jan 1870-now https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmieast.had.long.data 

Indian Ocean Dipole Mode Index (DMI)** Jan 1870-now https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmi.had.long.data 

Tropical Northern Atlantic Index (TNA)** Jan 1948-now https://psl.noaa.gov/data/correlation/tna.data 

Tropical Southern Atlantic Index (TSA)** Jan 1948-now https://psl.noaa.gov/data/correlation/tsa.data 

North Atlantic Tropical (NAT)*** Nov 1981-now https://stateoftheocean.osmc.noaa.gov/sur/atl/nat.php 

South Atlantic Tropical (SAT)*** Nov 1981-now https://stateoftheocean.osmc.noaa.gov/sur/atl/sat.php 

Tropical Atlantic (TASI)*** Nov 1981-now https://stateoftheocean.osmc.noaa.gov/sur/atl/tasi.php 

North Atlantic Oscillation (NAO)** Jan 1950-now https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nao.long.data  

" * ";" ** ";" *** ";" **** " specifies Source   

*Climate Prediction Center of NOAA   

**Physical Sciences Laboratory of NOAA   

***Ocean Observations Panels for Climate   

 

http://cpc.ncep.noaa.gov/data/indices/darwin
http://cpc.ncep.noaa.gov/data/indices/tahiti
https://psl.noaa.gov/gcos_wgsp/Timeseries/SOI/
https://cpc.ncep.noaa.gov/data/indices/ersst5.nino.mth.81-10.ascii
https://psl.noaa.gov/data/correlation/CAR_ersst.data
https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nao.long.data
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2.4.Crop yield data 

Annual crop yields at the departmental level were obtained from the Ministry of Agriculture, Livestock, 

and Fisheries of Argentina (Ministerio de Agricultura, Ganadería y Pesca de Argentina) at 

https://datos.agroindustria.gob.ar/dataset/estimaciones-agricolas. This database includes the sowed 

area, harvested area, and total production of 30 different crops from 1961 to 2019. Each year was 

measured from July to June (agricultural year). Soybeans were chosen as a representative rainfed crop 

because since 2000 it has been the cereal with the highest growth both in farmed areas and total 

production in the country. It is the most important crop in Argentina (Anderson et al., 2017; FAO, 2016b; 

Leng and Hall, 2019; Magrin et al., 2005). The annual soybean yield (kg/Ha) was calculated by dividing 

production by the sowed area. All departments showing continuous series over time were considered, 

representing a total of 193 soybean-producing departments (Fig. 4.1c), where the annual yield data 

timespan was 16 years, from July 2004 to June 2019 (Fig. 4.2). In the case of soybeans, sowing is carried 

out from October to December, and harvesting from April to June. Notably, lower median and mean 

soybean yields were obtained in 2009 and 2018, years affected by significant drought episodes (EM-

DAT, 2021). 

 

Fig. 4.2 Temporal series of detrended soybean yields for the 193 departments for the period 2004–2019. The solid black line 
shows the median, and the black dot shows the mean. 

Because crop yields are affected by factors other than climate, including agricultural innovations, 

technological improvements in sowing practices, and seed selection, crop yields generally have a 

positive trend (Peña-Gallardo et al., 2019b; Tian et al., 2018). This is also evident in Argentina; 

therefore, the yield series were detrended to remove the variability in productivity caused by non-climate 

factors using a linear regression model adjusted to the soybean yield series of each department. The 

average crop yield of each series was added to the residual model series to produce non-trend yield data 

in Kg/Ha (hereafter Y ) following the procedure explained in detail in Lobell et al., (2011b) and used 

in other studies (e.g. Tian et al., 2018).  

2.5.Relationship between drought indices and climatic indices 

Pearson correlations (r) were calculated between CIs and DIs aggregated for 12 months at the 

departmental level throughout the country. Because the sign of the correlations is important (positive or 

negative indicate in-phase or anti-phase relation), r values were used instead of other metrics as the 

coefficient of determination (R2). Then, a seasonal analysis was also performed with DIs and a selected 

number of CIs (in the previous step) with 6-month aggregations (for summer: March, for autumn: June, 

for winter: August, and for spring: December). Seasonal computing was performed for the entire country 

(m=525) and for all soybean producing departments (m=193). In the latter, we prioritised the summer 

analysis because this is the sowing and growing period for soybeans. The STWSI, with a shorter data 

length, may show better correlations with the CIs than the other DIs; thus, statistical significance will 

be a determining factor in the comparison of results. 
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2.6.Statistical crop yield models 

To compare DIs as explanations for the variability of crop yields, we trained three statistical models 

(Lobell and Burke, 2010; Shi et al., 2013) over the 193 soybean producing departments: time-series, 

panel, and cross-section models. In all three cases, we assumed Y  (in each department) was the 

response of a function of k  independent variables X , which, in this context, are the DIs as possible 

predictors. 

Given [0, )Y   , the time series model was implemented in each department as follows:  

 
( ) ( ) ( )1 2 0

1

ln , ,...,
k

t t t tk j tj t

j

Y f X X X X  
=

= = + + , (4) 

where Y is the departmental vector of annual soybean yields, t is the year, X represents the vector of the 

candidate predictors, 0  and j  are the parameters (intercept and constant coefficients) to be fit, and   

is the error. 

A panel regression model was executed combining the 193 departments:  

  
( ) ( ), ,0 , , ,

1

ln
k

i t i i j i tj i t

j

Y X  
=

= + + , (5) 

where i  represents each soybean-producing department, and ,0i  is an intercept. 

Finally, the average departmental yields and DIs were computed to estimate the cross-sectional model.  

  
( ) ( ), 0 ,

1

ln
k

i avg j i avgj i

j

Y X  
=

= + +  (6) 

The predictor candidates were: the June DIs with a 12-month aggregation period, this for consistency 

with the annual crop yield data; the March DIs with a 6-month aggregation period, coinciding with the 

sowing and growing periods of soybeans; and the December and March DIs with a 3-month aggregation 

period, this to capture the sowing and growing periods of soybeans, respectively. The coefficients of 

determination of the models were used as the comparative statistics. 

Moreover, to compare the performance of DIs and CIs as crop yield predictors, those CIs that showed 

the highest correlations with the DIs in the analysis described in Section 2.5 were evaluated as candidate 

predictors in the time-series model, following equation (1). A 3-, 6-, or 12-month running mean from 

June, March, or December was applied to the CIs for consistency with the DIs. 

The overall procedure for identifying suitable DIs and CIs for monitoring agricultural drought in 

Argentina is summarized in Fig. 4.3. 
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Fig. 4.3 Methodological flow-chart of the study. 

3. Results  

3.1.Identification of the large-scale climate drivers of drought 

The spatiotemporal patterns of the correlations between CIs and DIs in Argentina were seen to vary 

significantly. The greater the temporal aggregation, the greater the correlations and the higher the 

percentage of departments with significant correlations (Table S4.1). Table 4.2 shows the correlations 

between the DIs and CIs with a 12-month aggregation. The STWSI showed the strongest correlation 

with all the CIs. However, some DIs (SPI, SPEI, STCI, SVHI, and SPDSI) showed a higher percentage 

of departments with significant correlations. The CIs that best correlated with all the DIs were Tahiti 

and SOI, with negative correlations, and El Niño 3.4 and El Niño 4, with positive correlations. These 

four CIs showed percentages of departments with statistically significant correlations of at least 74% 

(ρ<0.05) and were selected for further analysis. The spatial patterns of the correlations between the DIs 

and selected CIs were similar (Fig. 4.4 and Fig. S4.1). DIs that included temperature in their calculus 

(STCI, SPEI, and SVHI) had the highest percentage of departments with significant correlations. The 

Pampas and NEA regions had the strongest negative correlations, followed by Cuyo and NWA with 

negative correlations, and finally Patagonia, where correlations were low and negative (Fig. 4.4). Table 

4.3 shows the results of the correlations by region, which support the spatial patterns shown in Fig. 4.4 

and Fig. S4.1. 
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Fig. 4.4 Spatial pattern of correlations between the 8 DIs with a 12-month aggregation period and Tahiti SLP CI based on 
1982–2019 data (STWSI 2003–2019). Black dots indicate where correlations were not statistically significant. 
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Table 4.2 Median correlations between DIs and CIs aggregated for 12 months based on all departments (m=525) and 1982-2019 (STWSI 2003-2019). Percentage of departments with 
significant correlation at 5% level (ρ ≤ 0.05) are showed. 
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SPI-12 

* 0.18 -0.33 0.24 0.19 0.23 0.18 -0.27 -0.01 -0.03 0.09 -0.02 0.08 -0.05 -0.13 -0.16 -0.07 -0.09 -0.13 0.11 

*

* 
88.2 85.9 77.0 89.1 74.1 75.6 87.2 55.2 65.9 48.6 65.7 61.3 49.1 75.0 82.5 42.9 49.3 70.1 57.1 

SPEI-

12 

* 0.21 -0.36 0.24 0.21 0.20 0.21 -0.29 0.04 -0.03 0.12 -0.01 0.09 -0.07 -0.15 -0.11 -0.07 -0.05 -0.08 0.10 

*

* 
90.1 86.3 84.0 90.1 79.8 79.6 86.9 64.6 53.3 55.8 57.9 65.9 48.6 77.3 63.0 43.4 31.6 41.9 55.4 

SSI-12 

* 0.07 -0.06 0.07 0.13 0.04 0.22 -0.08 -0.10 0.32 0.06 0.13 -0.04 0.23 0.15 0.04 0.07 0.00 -0.02 -0.16 

*

* 
40.8 48.8 43.6 74.7 39.4 86.9 49.7 61.5 94.3 50.5 82.5 38.9 89.7 71.2 31.0 57.3 14.9 18.1 83.8 

SVCI-

12 

* 0.02 -0.09 0.11 0.10 0.14 0.04 -0.06 -0.03 0.21 0.02 0.11 0.11 0.01 0.14 -0.01 0.08 -0.01 -0.01 -0.07 

*

* 
51.8 73.7 60.8 60.4 67.2 38.5 68.2 39.4 81.5 41.9 59.0 61.9 44.6 69.5 42.3 53.9 23.8 30.7 54.5 

STCI-

12 

* 0.34 -0.43 0.28 0.29 0.17 0.26 -0.42 0.20 -0.13 0.04 -0.07 0.02 -0.10 -0.28 -0.24 -0.18 -0.13 -0.16 0.27 

*

* 
97.1 98.9 93.9 95.6 89.3 97.3 99.0 85.9 64.8 25.7 50.1 25.9 55.6 94.7 95.6 81.1 78.3 86.3 95.6 

SVHI-

12 

* 0.24 -0.34 0.25 0.25 0.20 0.20 -0.32 0.11 0.03 0.05 0.03 0.09 -0.06 -0.12 -0.17 -0.08 -0.08 -0.10 0.16 

*

* 
91.6 91.0 93.3 93.5 86.5 90.3 92.8 59.8 53.1 41.5 49.5 52.4 47.2 68.4 76.4 55.8 49.0 56.8 75.6 

STWSI

-12 

* 0.40 -0.37 0.38 0.30 0.48 0.25 -0.42 0.54 0.49 0.02 0.40 0.21 0.08 -0.17 0.25 -0.03 0.11 0.16 0.31 

*

* 
86.9 87.6 86.1 78.9 88.6 83.4 92.4 90.9 87.2 14.7 89.0 69.3 60.8 59.4 81.0 21.0 36.0 62.7 85.0 

SPDSI-

12 

* 0.15 -0.30 0.18 0.12 0.16 0.15 -0.27 0.06 0.01 0.06 -0.03 0.08 -0.06 -0.19 -0.10 -0.15 -0.06 -0.08 0.07 

*

* 
73.5 83.8 73.0 71.2 78.5 70.9 81.7 69.1 73.0 37.1 69.0 60.4 47.0 68.2 60.2 62.7 33.3 46.7 45.0 

  * r; ** Percentage of departments with 5% significance level      
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A seasonal analysis was conducted correlating the seasonal series between the 6-month-aggregated DIs 

at the national level (Table S4.2 in the supplementary materials). The El Niño 3.4 and El Niño 4 had 

stronger correlations than did the other two indices. The SSI and STWSI showed stronger correlations 

for the cold seasons (winter and spring), while the rest of the DIs did so during the warmer seasons 

(summer and autumn). Persistent (very few exceptions) negative correlations during spring and summer 

and positive correlations during autumn and winter between El Niño 3.4 and the DIs were observed 

(Table S4.3). Similar patterns were observed for the other three selected CIs (Table S4.4 in the 

supplementary materials). Spatially, regions with weak correlations had the most departments with non-

significant correlations, and this number increased in the winter and spring seasons. For example, Fig. 

4.5 illustrates the spatial patterns of correlations between SPEI-6 and El Niño 3.4.  

Table 4.3 Median correlations between DIs and CIs aggregated for 12 months based on the departments of Cuyo (m=44) 
Patagonia (m=53), Pampas (m=233), NEA (m=76), and NWA (m=119) and 1982–2019 data (STWSI 2003–2019). 

DI CI 
Region 

Cuyo Patagonia Pampas NEA NWA 

SPI-12 

Tahiti SLP 

-0.009 -0.319 -0.376 -0.533 -0.094 

SPEI-12 -0.083 -0.397 -0.375 -0.505 -0.010 

SSI-12 -0.004 0.067 -0.085 -0.116 -0.056 

SVCI-12 0.112 -0.075 -0.189 -0.027 0.147 

STCI-12 -0.433 -0.369 -0.481 -0.399 -0.360 

SVHI-12 -0.247 -0.350 -0.407 -0.263 -0.130 

STWSI-12 -0.263 -0.330 -0.545 -0.346 -0.076 

SPDSI-12 -0.263 -0.330 -0.545 -0.346 -0.076 

SPI-12 

El Niño 3.4 

0.045 0.235 0.250 0.501 0.049 

SPEI-12 0.075 0.250 0.262 0.478 -0.021 

SSI-12 0.015 0.064 0.092 0.141 0.050 

SVCI-12 0.032 0.185 0.157 0.061 -0.044 

STCI-12 0.295 0.204 0.301 0.330 0.239 

SVHI-12 0.274 0.299 0.273 0.255 0.137 

STWSI-12 0.087 0.225 0.502 0.438 0.228 

SPDSI-12 0.087 0.225 0.502 0.438 0.228 

SPI-12 

El Niño 4 

-0.106 0.181 0.326 0.390 -0.050 

SPEI-12 -0.055 0.169 0.303 0.363 -0.128 

SSI-12 -0.007 0.105 0.059 0.083 -0.014 

SVCI-12 0.089 0.194 0.172 0.121 0.050 

STCI-12 0.143 0.134 0.217 0.251 0.115 

SVHI-12 0.176 0.236 0.230 0.214 0.081 

STWSI-12 0.148 0.338 0.610 0.519 0.246 

SPDSI-12 0.148 0.338 0.610 0.519 0.246 

SPI-12 

SOI 

-0.092 -0.328 -0.283 -0.499 -0.109 

SPEI-12 -0.152 -0.387 -0.303 -0.474 -0.027 

SSI-12 -0.014 0.006 -0.094 -0.132 -0.068 

SVCI-12 0.069 -0.121 -0.148 0.032 0.146 

STCI-12 -0.466 -0.358 -0.452 -0.377 -0.355 

SVHI-12 -0.336 -0.373 -0.362 -0.221 -0.153 

STWSI-12 -0.275 -0.332 -0.567 -0.411 -0.196 

SPDSI-12 -0.275 -0.332 -0.567 -0.411 -0.196 
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Table 4.4 Median correlations between DIs and the selected CIs (Tahiti SLP, El Niño 3.4, El Niño 4, and SOI) aggregated for 6 months based on soybean producing departments (m=193) 
and 1982–2019 data (STWSI 2003–2019). 

DI Tahiti El Niño 3.4 El Niño 4 SOI 

SPI-6 

Summer-ONDJFM 

-0.29 0.35 0.38 -0.34 

SPEI-6 -0.29 0.37 0.38 -0.35 

SSI-6 -0.12 0.03 -0.03 -0.15 

SPDSI-6 -0.16 0.10 0.13 -0.14 

SVCI-6 -0.20 0.22 0.24 -0.23 

STCI-6 -0.27 0.29 0.33 -0.35 

SVHI-6 -0.26 0.28 0.32 -0.32 

STWSI-6 -0.32 0.28 0.40 -0.41 

 

Considering only the soybean-producing departments and the summer season, when soybean sowing and growth occurs, the SPEI and STWSI had the 

strongest correlations with the four selected CIs (Table 4.4). For these specific departments and seasons, the r medians were persistently higher than the 

correlation found when all departments were considered. However, similar patterns were found in other seasons (Supplementary Table S4.5). 

Table 4.5 Determination coefficient results of the a) time-series model (medians), b) panel model, and c) cross-section model between the DIs and soybean yield based on soybean-
producing departments (m=193) and 2004–2019 data.  

a) b) c) 

R² - 

Time-

series 

model 

3-

months 

JFM 

3-

months 

OND 

6-months 

ONDJFM 

12-

months 

Year 

R² - 

Panel 

model 

3-

months 

JFM 

3-

months 

OND 

6-months 

ONDJFM 

12-

months 

Year 

R² - 

Cross-

section 

model 

3-

months 

JFM 

3-

months 

OND 

6-months 

ONDJFM 

12-

months 

Year 

SPI 0.188 0.148 0.298 0.268 SPI 0.128 0.071 0.175 0.154 SPI 0.380 0.196 0.504 0.504 

SPEI 0.233 0.160 0.313 0.253 SPEI 0.160 0.072 0.174 0.148 SPEI 0.437 0.220 0.503 0.482 

SSI 0.195 0.024 0.142 0.247 SSI 0.207 0.021 0.062 0.157 SSI 0.255 0.003 0.119 0.346 

SPDSI 0.335 0.016 0.152 0.173 SPDSI 0.176 0.000 0.065 0.087 SPDSI 0.608 0.007 0.228 0.262 

SVCI 0.575 0.134 0.467 0.333 SVCI 0.268 0.073 0.234 0.185 SVCI 0.847 0.470 0.771 0.504 

STCI 0.556 0.215 0.452 0.345 STCI 0.319 0.119 0.275 0.262 STCI 0.743 0.475 0.631 0.507 

SVHI 0.625 0.199 0.494 0.416 SVHI 0.324 0.106 0.276 0.274 SVHI 0.821 0.511 0.711 0.549 

STWSI 0.249 0.094 0.189 0.204 STWSI 0.195 0.040 0.143 0.161 STWSI 0.392 0.139 0.288 0.286 
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Fig. 4.5 Spatial pattern of correlations between the seasonal time series SPEI-6 and El Niño 3.4 based on 1982–2019 data. 

3.2.Comparison of the performance of DIs in explaining soybean yield 

variability 

The results of the three statistical models with the soybean yield data and DIs are presented in Table 4.5. 

The determination coefficients (R2) of the cross-section model were consistently higher than those of 

the other models. The SVHI, SVCI, STCI, SPEI, and SPI, which are based on meteorological and 

vegetation variables, better explained the variability of soybean yields in all three models and performed 

better using their 3- and 6-month aggregations for the summer season (in March) as a predictor. The 

other DIs (SSI, SPDSI, and STWSI) had a lower explanatory power and performed better with the 12-

month aggregation in June. 

The spatial distributions of the determination coefficients using the time-series model with predictors 

aggregated for six months are shown in Fig. 4.6. For all DIs, the models produced positive coefficients. 

This was not surprising, given that when DI values are lower (indicating more intense/severe drought 

events), reductions in crop (soybean) yields are expected. Specifically, the time-series model estimated 

positive coefficients in more than 96% of the departments (except SSI, which did so in 84%). The SVHI, 

which has the highest median determination coefficients, provided the best explanation of the variability 

of soybean yields in the central areas of the Pampas region. This zone obtained the highest R2 values 

using any of the DIs as predictors. The SPEI was the best predictor of soybean yield in departments 

located in the southern and northern parts of the soybean belt. 
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Fig. 4.6 Spatial patterns of the determination coefficient results of the time-series models between DIs aggregated 6 months 
(ONDJFM) and soybean yield based on soybean-producing departments (m=193) and 2004–2019 data. 

3.3 Comparison of the performance of CIs in explaining soybean yield variability  

Table 4.6 highlights the results of the time series models computed using the soybean yield data and 

four selected CIs (Tahiti, SOI, El Niño 3.4, and El Niño 4). Similar to the results with the DIs as 

predictors, the CI 3- and 6-months running-mean in summertime (March) explained the variability of 

soybean yields better than the CI 12-months running mean. The highest R2 was found using El Niño 3.4 

and El Niño 4. However, this maximum goodness of fit explained only 11.90% of the variability in 

soybean yield. In other words, the performance of CIs as possible predictors of soybean yield was very 

poor in Argentina for these specific timescales (6 and 12 months) and months (March and June).  

Table 4.6 Median correlations between the selected CIs (Tahiti SLP, El Niño 3.4, El Niño 4 and SOI) aggregated for 3,6, and 12 
months and the soybean yield based on soybean-producing departments (m=193) and 2004–2019 data. 

R² - Time-series 

model 

3-months 

JFM 
3-months 

OND 

6-months 

ONDJFM 

12-months 

Year 

El Niño 3.4 0.087 0.074 0.073 0.004 

SOI 0.129 0.025 0.044 0.000 

TAHITI 0.110 0.110 0.027 0.015 

El Niño 4 0.119 0.082 0.063 0.002 
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4. Discussion 

4.1.Drought indices and teleconnections 

CIs located in the equatorial Pacific Ocean (Tahiti, SOI, El Niño 3.4, and El Niño 4) showed stronger 

correlations with the DIs in Argentina. Although relatively low r values were found for this type of 

study, they can be considered acceptable (Lovino et al., 2018; Robledo et al., 2013). These CIs have 

been found to indicate the triggering of droughts in other parts of the world (Gupta and Jain, 2021; 

Vicente-Serrano et al., 2017), demonstrating the global importance of their variability in extreme 

hydrological events. On a larger time scale (12 months), correlations were persistently higher, something 

that has also been found in other studies (Lovino et al., 2018; Singh and Shukla, 2020). However, it 

might be possible to find stronger relationships on other time scales, although this was not investigated 

in the present study. Some DIs (i.e., SSI and SVCI) showed strong correlations with other CIs, which 

suggests that the explanations for droughts in Argentina are highly complex and cannot be covered by 

a single climate driver. 

Stronger negative correlations between CIs and DIs were found in warm seasons, whereas in cold 

seasons they were less strong yet positive. These findings coincide with the results in Hurtado and 

Agosta (2020) and De La Casa and Ovando (2006), in which the climatic drivers were better correlated 

with the characteristic patterns of the summer than with the winter rainfall regime. Such results, then, 

suggest that extremely hot and humid summers and extremely dry and cold winters are associated with 

the variability of these CIs, and may be used for monitoring and forecasting droughts in Argentina, 

similar to other regions (Dikshit et al., 2021; Seibert et al., 2017). 

Spatially, the DIs and CIs showed a stronger correlation in regions with high rainfall regimes and high 

temperature variability (Pampas and NEA), where the climate classification is semi-arid (temperate 

climate) according to the Köppen-Geiger climate classification (Kottek et al., 2006). The weakest 

correlations were found in the arid regions (NEA and north of Cuyo). In the Patagonia region, where the 

climate is cold, correlations were persistently weaker throughout the year. Similar results have been 

obtained by Robledo et al. (2013), who found stronger relations between drought conditions and climate 

drivers in the northeast and central regions of Argentina than in the south. In these regions, CIs might 

be used in conjunction with other variables (e.g., measurements of streamflow in rivers, water levels in 

lakes or reservoirs, or snow cover) to better monitor and predict droughts. The reader is referred to Hao 

et al., 2018 for a review of commonly used predictors for statistical drought prediction. 

The spatial patterns of correlations between DIs and CIs indicated that the five administrative regions 

used were not the most suitable for drought monitoring based on climate drivers (Fig. 4.5). Therefore, 

at the national level, we believe that it is necessary to define the climate drivers of droughts in 

homogeneous drought regions. As an example, Fig. 4.7 sets out how four regions, based on correlations, 

can be defined: i) northern Patagonia + eastern Pampas + southern NEA; ii) northern NWA; iii) western 

Cuyo and Patagonia; and iv) the central part of the country from central NWA to northern Patagonia 

across eastern Cuyo and western Pampas. The precise definition of homogeneous drought regions is, 

however, beyond the scope of this work. Specific clustering methodologies, such as principal component 

analysis and hierarchical and non-hierarchical clustering methods, should be used to establish this 

regionalisation, ensuring a robust definition of drought regions. These techniques could be applied to 

identify patterns in the DI and CI series, hence defining regions with similar drought variability and 

characteristics, as done for example in Espinosa et al., (2019).  
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Fig. 4.7 Spatial distribution of positive (r > 0.2), negative (r < -0.2), and near zero (-0.2 ≤ r ≤ 0.2) correlations between SPEI-6 
and the El Niño 3.4. The black lines show the regional divisions. 

Because each DI is associated with a specific part of the water cycle, and it is not common for the entire 

water cycle also to be under stress at the time due to the drought development process (from 

meteorological to hydrological) (Huang et al., 2017; Mishra and Singh, 2010), the DIs showed different 

relationship levels with the CIs. Nevertheless, the STWSI (associated with the total amount of water in 

the environment, both ground and surface) was notable, showing strong correlations with all CIs. It was 

also interesting that STWS showed stronger correlations with CIs in the cold than in the hot seasons. 

This is possibly due to the time lag between hydrological droughts and agricultural and meteorological 

droughts (Huang et al., 2017; Van Loon, 2015). However, although STWSI primary variables (GRACE 

data) have been used to successfully detect some significant drought events in Argentina (Aragón et al., 

2011; Chen et al., 2010), to claim that the STWSI is the DI that best correlates with the CIs may imply 

a bias, due to the short time that its data have been available. Thus, a longer time series needs to be used 

to verify these results. 

The STCI, SPEI, and SVHI showed high percentages of departments with significant correlations with 

CIs (better than the percentage obtained by STWSI, this perhaps due to the length of the time series), 

indicating that they could be used throughout the country, despite having a lower correlation than the 

STWSI. These DIs all include temperature in their calculus, which is a very important variable in the 

relationship between droughts and climate drivers, especially in Argentina (Carcedo and Gambin, 2019). 

Furthermore, the SPEI showed the strongest correlations with the CIs in the analysis based on soybean-

producing departments (Fig. 4.1c), particularly with El Niño 3.4, and specifically for warm seasons (the 

growing season for crops such as soybeans). These findings might be of particular interest to drought 

managers and farmers in Argentina. Further research could define CIs, such as El Niño 3.4, as predictors 

of agricultural drought in this area. 

4.2.Drought indices and soybean yield variability 

This study has indicated that the utilisation of a cross-section model resulted in the highest R2, followed 

by the time-series model. Such a pattern of results between statistical models is consistent with the 

results shown in Lobell and Burke (2010). However, statistical models based on a time-series show a 
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better spatial understanding of the relationship between drought and crop yield, which was expected, 

since having subnational data would a priori provide better approximations (Lobell and Burke, 2010).  

The time-series model allowed us to identify areas (or departments) in which soybeans were more 

sensitive to drought. Soybeans responded better to the SVHI in departments where yields were higher 

(explaining up to 88.8% of agricultural variability). These areas are located in the north of the Buenos 

Aires Province (Fig. 4.8). DIs based on vegetation condition variables (e.g., SVHI) have been associated 

with crop variability with other crop yields. For instance, in Spain, García-León et al. (2019) found 

better responses in wheat, barley, oat, rye and maize to the VHI (non-standardised SVHI), and in 

Argentina, Seiler et al. (2007) explained corn yield variability with the VCI and TCI (non-standardised 

SVHI SVCI and STCI). The SPEI, on the other hand, accurately explains areas with low yields in the 

south and north of the soybean belt (up to 71.5% of variability). The SPEI has also been widely 

associated with the response of crop yields to droughts (Chen et al., 2016; Peña-Gallardo et al., 2019a). 

Interestingly, the STWSI, which has a strong relationship with the CIs, performed poorly in explaining 

soybean responses to droughts, which can be explained by the fact that this index is associated with 

longer drought timescales, more representative of hydrological droughts (reservoirs, aquifers, etc.) than 

meteorological or agricultural droughts (Zhou et al., 2020).  

 

Fig. 4.8 Spatial distribution of average annual soybean yield (period 2004–2019). 

The findings also indicate that CIs explain variability in soybean yield very poorly. This does not 

necessarily mean that climate drivers and crop (soybean) production are not associated. Relations 

between ENSO and crop yields have been established by Anderson et al. (2018) and Podestá et al. 

(1999). Furthermore, in this study, we analysed three timescales (3, 6, and 12 months) for specific 

months (December, March, and June); therefore, an extension of this study using a variety of different 

time scales may be necessary to verify the results. However, for the purposes of annual/seasonal 

monitoring of soybean production in Argentina, based on our results, we recommend using a DI rather 

than a CI. 

One of the limitations of this study was the lack of data associated with irrigation. In areas with purely 

rainfed crops, meteorological variables are more important for crop development (Kuwayama et al., 
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2018). Therefore, the disparity in the results using the SPEI and SVHI could be attributed to the fact that 

in areas with higher yields, there might have been some type of additional irrigation. According to (FAO 

et al., 2015), there are some small-scale irrigated areas irrigated fields in the northern Buenos Aires 

Province. This should be studied in detail in each departmental unit. In other locations, crops (including 

soybeans) usually have short time dependencies (1–4 months) (Peña-Gallardo et al., 2018). In future 

studies, it will be necessary to refine the analysis of the link between soybean yields and droughts using 

various other time scales, for instance, following the methodology used by Peña-Gallardo et al. (2019b) 

in the United States. However, at the national level, but with a focus on specific regions, the use of SPEI 

and SVHI aggregated for 3 and 6 months during phenological growth to monitor the state of soybean 

production is recommended. This information might prove useful for local farmers. 

5. Conclusions 

In this study, 8 DIs, and 19 CIs were benchmarked for agricultural drought monitoring in Argentina. 

First, the relationship between DIs and CIs was explored. Then, DIs were evaluated based on their 

capacity to explain the impacts of agricultural drought (annual soybean yield variability). Finally, the 

best response of crop production to DIs, rather than to CIs, was presented. 

DIs were particularly related to the CIs located in the Pacific Ocean, including El Niño 3.4 and El Niño 

4. DIs that include temperature in their computation (STCI, SPEI, and SVHI) correlated best with CIs 

across the country. For soybean production areas, SPEI was the DI that best responded to variations in 

CIs. Correlations were positive and strong in the warm and wet season (summer), while in the cold and 

dry season (winter), they were negative and less strong. Droughts were strongly linked to the CIs defined 

in some Argentinian regions. 

The time series model showed a sound spatial characterization of the relationship between drought and 

crop yield. Soybean yield variability (impacts associated with agricultural droughts) responded better to 

DIs than to CIs. The SVHI and SPEI aggregated for 6 months and corresponding to the month of March 

(soybean growth season) were found to best explain the state of soybean production in certain regions.  

The results provide useful drought insight tools in various parts of the water cycle and their association 

with variability in soybean production in Argentina Therefore, this research might be of interest to water 

managers and especially soybean producers, at national and regional level in Argentina. It may also 

serve as a foundation for future studies on drought in Argentina. It would be particularly interesting to 

explore the predictive rather than the explanatory capacity of the selected DIs and CIs for forecasting 

droughts in the country. The methodology is also of general applicability and relies on freely global-

scale datasets, so it could be replicated in other regions of the world. 
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Supplementary materials 

Table S4.1 Median correlations between DIs and CIs aggregated for 6 and 12 months based on all departments (m=525) and 1982–2019 data (STWSI 2003–2019). The percentage of 
departments with significant correlations at 5% level (ρ ≤ 0.05) are shown. 
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SPI-3 
* 0.03 -0.12 0.18 0.13 0.16 0.06 -0.19 -0.02 -0.05 0.09 0.00 0.00 0.01 -0.07 -0.09 -0.06 -0.05 -0.10 -0.09 

** 3.6 65.0 72.4 66.5 62.7 19.2 75.2 39.2 48.0 48.6 50.3 23.8 44.6 38.5 47.6 26.7 26.3 56.8 47.2 

SPEI-3 
* 0.04 -0.13 0.20 0.14 0.16 0.07 -0.20 0.02 -0.05 0.14 0.01 0.03 -0.02 -0.08 -0.06 -0.06 -0.01 -0.06 -0.10 

** 5.9 71.0 80.2 77.9 71.2 23.4 83.8 49.5 43.8 73.0 49.5 33.9 41.0 42.9 27.8 22.5 18.9 35.4 52.0 

SSI-3 
* 0.02 -0.03 0.06 0.07 0.04 0.08 -0.07 -0.08 0.24 0.04 0.09 -0.02 0.13 0.11 0.01 0.05 -0.03 -0.06 0.14 

** 0.0 6.1 29.1 25.0 28.8 27.2 38.1 46.9 91.0 34.3 50.9 16.6 72.2 63.8 11.2 43.4 4.0 18.7 68.0 

SVCI-3 
* 0.01 -0.06 0.13 0.10 0.15 0.03 -0.07 -0.01 0.24 0.04 0.11 0.12 0.00 0.15 0.04 0.09 0.00 0.01 0.19 

** 1.3 38.7 63.8 53.5 76.4 9.3 55.0 38.3 85.3 43.0 61.1 64.6 37.3 70.9 35.4 53.7 18.3 25.9 77.3 

STCI-3 
* 0.10 -0.18 0.19 0.14 0.15 0.08 -0.32 0.23 -0.12 0.04 -0.04 0.02 -0.07 -0.19 -0.09 -0.15 -0.09 -0.11 -0.21 

** 60.0 86.5 90.9 85.1 82.9 29.7 94.9 90.1 60.4 28.0 42.1 27.4 29.5 82.9 49.9 72.4 42.9 65.9 90.9 

SVHI-3 
* 0.07 -0.15 0.19 0.14 0.18 0.06 -0.25 0.15 0.05 0.06 0.03 0.10 -0.07 -0.07 -0.03 -0.06 -0.05 -0.06 -0.05 

** 25.5 70.5 89.3 83.0 84.2 28.2 88.8 74.1 58.1 46.7 47.0 58.1 43.4 54.5 32.8 43.4 30.3 39.8 53.9 

STWSI-

3 

* 0.11 -0.15 0.27 0.15 0.39 0.06 -0.33 0.47 0.41 0.08 0.37 0.14 0.12 -0.03 0.28 0.00 0.12 0.16 0.19 

** 14.9 61.3 79.6 54.5 86.7 1.0 84.6 90.7 81.3 19.4 86.7 57.9 60.2 13.7 81.5 18.7 45.3 62.7 79.8 

SPDSI-3 
* 0.03 -0.15 0.16 0.10 0.14 0.08 -0.20 0.06 0.00 0.07 0.00 0.08 -0.04 -0.12 -0.05 -0.07 -0.03 -0.05 -0.08 

** 12.0 68.8 70.3 53.9 72.8 42.7 76.4 57.1 70.5 41.9 60.6 58.3 38.5 59.6 32.0 41.7 22.7 34.7 53.7 

SPI-6 
* 0.07 -0.20 0.22 0.15 0.20 0.09 -0.24 -0.02 -0.04 0.09 -0.01 0.01 0.00 -0.09 -0.12 -0.04 -0.06 -0.09 0.07 

** 32.6 73.5 76.4 79.2 70.1 47.0 79.2 49.9 60.4 50.5 59.6 37.9 47.6 50.5 65.5 24.0 31.8 48.2 40.4 

SPEI-6 
* 0.08 -0.22 0.24 0.17 0.20 0.11 -0.26 0.03 -0.04 0.12 0.01 0.04 -0.03 -0.10 -0.07 -0.04 -0.01 -0.04 0.08 

** 46.1 78.3 83.4 84.6 73.5 64.0 84.6 59.4 51.0 56.6 57.5 44.0 43.2 57.0 37.5 19.6 27.6 30.1 43.6 

SSI-6 
* 0.02 -0.04 0.05 0.08 0.02 0.11 -0.06 -0.06 0.31 0.05 0.13 -0.04 0.19 0.16 0.08 0.07 0.02 0.00 -0.14 

** 1.5 17.0 28.8 42.7 33.0 61.5 38.1 43.0 94.1 40.8 82.9 25.0 87.0 71.4 45.5 54.1 13.5 16.2 79.8 

SVCI-6 * 0.01 -0.07 0.12 0.09 0.16 0.04 -0.07 -0.02 0.23 0.04 0.11 0.11 0.01 0.13 0.02 0.09 0.00 0.01 -0.06 
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** 6.3 52.8 62.5 51.2 73.7 13.1 63.2 38.3 86.1 43.0 58.7 59.4 39.6 67.0 34.9 53.7 18.3 25.9 47.0 

STCI-6 
* 0.14 -0.26 0.25 0.20 0.17 0.13 -0.38 0.22 -0.12 0.04 -0.04 0.01 -0.07 -0.22 -0.14 -0.15 -0.09 -0.11 0.19 

** 86.5 93.9 93.1 91.6 88.8 79.8 96.8 90.3 61.7 28.0 45.5 27.4 31.8 87.0 73.7 72.4 42.9 65.9 88.0 

SVHI-6 
* 0.10 -0.21 0.23 0.19 0.20 0.11 -0.30 0.14 0.04 0.06 0.04 0.09 -0.06 -0.09 -0.07 -0.06 -0.05 -0.06 0.10 

** 61.3 82.3 92.0 91.4 87.8 64.8 91.2 72.6 57.1 46.7 49.7 55.0 41.9 61.1 48.0 43.4 30.3 39.8 57.7 

STWSI-

6 

* 0.13 -0.22 0.32 0.21 0.43 0.13 -0.37 0.51 0.45 0.05 0.39 0.18 0.12 -0.07 0.30 0.01 0.14 0.19 0.15 

** 28.8 79.0 82.7 73.9 87.4 27.0 86.3 90.9 83.2 9.3 87.0 62.7 63.8 24.2 84.0 21.5 51.0 82.7 56.4 

SPDSI-6 
* 0.05 -0.18 0.16 0.10 0.15 0.09 -0.23 0.06 0.00 0.04 -0.01 0.08 -0.04 -0.14 -0.06 -0.09 -0.05 -0.06 0.02 

** 21.5 73.5 71.4 58.3 76.6 50.7 79.6 61.9 72.0 28.4 64.0 59.2 40.6 62.5 38.7 48.0 26.7 36.6 33.7 

SPI-12 
* 0.18 -0.33 0.24 0.19 0.23 0.18 -0.27 -0.01 -0.03 0.09 -0.02 0.08 -0.05 -0.13 -0.16 -0.07 -0.09 -0.13 0.11 

** 88.2 85.9 77.0 89.1 74.1 75.6 87.2 55.2 65.9 48.6 65.7 61.3 49.1 75.0 82.5 42.9 49.3 70.1 57.1 

SPEI-12 
* 0.21 -0.36 0.24 0.21 0.20 0.21 -0.29 0.04 -0.03 0.12 -0.01 0.09 -0.07 -0.15 -0.11 -0.07 -0.05 -0.08 0.10 

** 90.1 86.3 84.0 90.1 79.8 79.6 86.9 64.6 53.3 55.8 57.9 65.9 48.6 77.3 63.0 43.4 31.6 41.9 55.4 

SSI-12 
* 0.07 -0.06 0.07 0.13 0.04 0.22 -0.08 -0.10 0.32 0.06 0.13 -0.04 0.23 0.15 0.04 0.07 0.00 -0.02 -0.16 

** 40.8 48.8 43.6 74.7 39.4 86.9 49.7 61.5 94.3 50.5 82.5 38.9 89.7 71.2 31.0 57.3 14.9 18.1 83.8 

SVCI-12 
* 0.02 -0.09 0.11 0.10 0.14 0.04 -0.06 -0.03 0.21 0.02 0.11 0.11 0.01 0.14 -0.01 0.08 -0.01 -0.01 -0.07 

** 51.8 73.7 60.8 60.4 67.2 38.5 68.2 39.4 81.5 41.9 59.0 61.9 44.6 69.5 42.3 53.9 23.8 30.7 54.5 

STCI-12 
* 0.34 -0.43 0.28 0.29 0.17 0.26 -0.42 0.20 -0.13 0.04 -0.07 0.02 -0.10 -0.28 -0.24 -0.18 -0.13 -0.16 0.27 

** 97.1 98.9 93.9 95.6 89.3 97.3 99.0 85.9 64.8 25.7 50.1 25.9 55.6 94.7 95.6 81.1 78.3 86.3 95.6 

SVHI-

12 

* 0.24 -0.34 0.25 0.25 0.20 0.20 -0.32 0.11 0.03 0.05 0.03 0.09 -0.06 -0.12 -0.17 -0.08 -0.08 -0.10 0.16 

** 91.6 91.0 93.3 93.5 86.5 90.3 92.8 59.8 53.1 41.5 49.5 52.4 47.2 68.4 76.4 55.8 49.0 56.8 75.6 

STWSI-

12 

* 0.40 -0.37 0.38 0.30 0.48 0.25 -0.42 0.54 0.49 0.02 0.40 0.21 0.08 -0.17 0.25 -0.03 0.11 0.16 0.31 

** 86.9 87.6 86.1 78.9 88.6 83.4 92.4 90.9 87.2 14.7 89.0 69.3 60.8 59.4 81.0 21.0 36.0 62.7 85.0 

SPDSI-

12 

* 0.15 -0.30 0.18 0.12 0.16 0.15 -0.27 0.06 0.01 0.06 -0.03 0.08 -0.06 -0.19 -0.10 -0.15 -0.06 -0.08 0.07 

** 73.5 83.8 73.0 71.2 78.5 70.9 81.7 69.1 73.0 37.1 69.0 60.4 47.0 68.2 60.2 62.7 33.3 46.7 45.0 

 * |R|                   

 
** 

Percentage of departments with 5% significance level 
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Fig. S4.1 Spatial pattern of correlations between the 8 DIs with a 12-month aggregation period and El Niño 3.4 CI based on 
1982–2019 data (STWSI 2003–2019). Black dots indicate where correlations were not statistically significant. 
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Table S4.2 Median correlations between the seasonal time series of the DIs and the selected CIs (Thaiti SLP, El Niño 3.4, El Niño 
4, and SOI) aggregated for 6 months based on all departments (m=525) and 1982–2019 data (STWSI 2003–2019). 

Medians Tahiti El Niño 3.4 El Niño 4 SOI 

SPI-6 

Summer-ONDJFM -0.24 0.30 0.30 -0.31 

Autumn-JFMAMJ -0.23 0.22 0.27 -0.23 

Winter-AMJJAS -0.13 0.13 0.15 -0.15 

Spring-JASOND -0.23 0.22 0.21 -0.21 

SPEI-6 

Summer-ONDJFM -0.26 0.33 0.32 -0.33 

Autumn-JFMAMJ -0.26 0.27 0.30 -0.27 

Winter-AMJJAS -0.14 0.15 0.16 -0.15 

Spring-JASOND -0.21 0.19 0.18 -0.18 

SSI-6 

Summer-ONDJFM -0.10 0.02 -0.06 -0.11 

Autumn-JFMAMJ -0.12 0.04 -0.06 -0.11 

Winter-AMJJAS -0.11 0.10 -0.03 -0.18 

Spring-JASOND -0.13 0.07 -0.02 -0.18 

SPDSI-6 

Summer-ONDJFM -0.15 0.11 0.12 -0.15 

Autumn-JFMAMJ -0.27 0.24 0.24 -0.29 

Winter-AMJJAS -0.18 0.22 0.22 -0.27 

Spring-JASOND -0.14 0.08 0.09 -0.13 

SVCI-6 

Summer-ONDJFM -0.14 0.17 0.19 -0.19 

Autumn-JFMAMJ -0.17 0.17 0.17 -0.19 

Winter-AMJJAS -0.07 0.12 0.15 -0.06 

Spring-JASOND -0.08 0.13 0.18 -0.06 

STCI-6 

Summer-ONDJFM -0.21 0.25 0.24 -0.30 

Autumn-JFMAMJ -0.32 0.32 0.30 -0.37 

Winter-AMJJAS -0.19 0.26 0.22 -0.31 

Spring-JASOND -0.18 0.13 0.16 -0.25 

SVHI-6 

Summer-ONDJFM -0.20 0.25 0.27 -0.28 

Autumn-JFMAMJ -0.31 0.30 0.29 -0.34 

Winter-AMJJAS -0.17 0.24 0.23 -0.24 

Spring-JASOND -0.16 0.15 0.20 -0.19 

STWSI-6 

Summer-ONDJFM -0.25 0.25 0.36 -0.34 

Autumn-JFMAMJ -0.38 0.39 0.48 -0.45 

Winter-AMJJAS -0.26 0.40 0.50 -0.47 

Spring-JASOND -0.25 0.17 0.34 -0.33 
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Table S4.3 Median correlation coefficients between the seasonal time series of the DIs and El Niño 3.4 aggregated for 6 months 
based on the departments of Cuyo (m=44), Patagonia (m=53), Pampas (m=233), NEA (m=76), and NWA (m=119) and 1982-
2019 data (STWSI 2003–2019). 

Region DI 
Summer - 

ONDJFM 

Autumn - 

JFMAMJ 

Winter - 

AMJJAS 

Spring - 

JASOND 

Cuyo 

SPI-6 0.08 0.02 -0.07 -0.02 

SPEI-6 0.00 0.11 0.02 -0.12 

SSI-6 -0.07 -0.05 -0.11 -0.06 

SPDSI-6 0.00 -0.04 -0.10 -0.03 

SVCI-6 -0.04 -0.01 -0.02 -0.06 

STCI-6 -0.26 0.30 0.21 -0.35 

SVHI-6 -0.18 0.22 0.12 -0.27 

STWSI-6 -0.27 0.21 0.26 -0.30 

Pampas 

SPI-6 -0.26 0.26 0.32 -0.25 

SPEI-6 -0.27 0.31 0.34 -0.29 

SSI-6 -0.15 0.04 -0.05 -0.14 

SPDSI-6 -0.33 0.27 0.34 -0.32 

SVCI-6 -0.24 0.22 0.27 -0.25 

STCI-6 -0.37 0.34 0.35 -0.40 

SVHI-6 -0.35 0.33 0.37 -0.37 

STWSI-6 -0.54 0.54 0.62 -0.62 

Patagonia 

SPI-6 -0.17 0.12 0.10 -0.19 

SPEI-6 -0.25 0.26 0.21 -0.30 

SSI-6 -0.09 0.05 0.04 -0.10 

SPDSI-6 -0.28 0.26 0.20 -0.29 

SVCI-6 -0.23 0.17 0.14 -0.25 

STCI-6 -0.34 0.24 0.19 -0.34 

SVHI-6 -0.36 0.24 0.18 -0.36 

STWSI-6 -0.30 0.32 0.42 -0.33 

NEA 

SPI-6 -0.45 0.53 0.47 -0.49 

SPEI-6 -0.43 0.53 0.46 -0.48 

SSI-6 -0.17 0.10 0.00 -0.18 

SPDSI-6 -0.36 0.39 0.32 -0.39 

SVCI-6 -0.17 0.19 0.20 -0.17 

STCI-6 -0.32 0.40 0.39 -0.37 

SVHI-6 -0.29 0.36 0.35 -0.33 

STWSI-6 -0.36 0.51 0.53 -0.46 

NWE 

SPI-6 -0.02 0.10 0.05 -0.07 

SPEI-6 0.05 0.04 -0.01 -0.01 

SSI-6 -0.10 0.02 -0.09 -0.10 

SPDSI-6 0.03 0.01 -0.06 0.00 

SVCI-6 -0.04 0.05 0.03 -0.05 

STCI-6 -0.19 0.24 0.19 -0.27 

SVHI-6 -0.14 0.16 0.11 -0.19 

STWSI-6 0.04 0.17 0.13 -0.05 
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Table S4.4 Median correlation coefficients between the seasonal time series of the DIs and the selected CIs (Thaiti SLP, El Niño 3.4, El Niño 4, and SOI) aggregated for 6 months based on 
the departments of Cuyo (m=44), Patagonia (m=53), Pampas (m=233), NEA (m=76), and NWA (m=119) and 1982–2019 data (STWSI 2003–2019). 

Region DI 
Tahiti El Niño 3.4 El Niño 4 SOI 

a b c d a b c d a b c d a b c d 

Cuyo 

SPI-6 0.03 0.02 -0.07 -0.02 0.08 0.02 -0.07 -0.02 0.00 0.08 -0.04 -0.12 -0.03 0.06 -0.06 -0.09 

SPEI-6 -0.01 0.07 -0.01 -0.08 0.00 0.11 0.02 -0.12 -0.03 0.11 0.00 -0.12 -0.01 0.03 -0.07 -0.02 

SSI-6 -0.07 -0.04 -0.08 -0.06 -0.07 -0.05 -0.11 -0.06 -0.10 0.03 -0.08 -0.14 -0.13 0.03 -0.05 -0.15 

SPDSI-6 -0.01 -0.04 -0.08 0.01 0.00 -0.04 -0.10 -0.03 0.00 0.01 -0.09 -0.08 -0.03 0.02 -0.06 -0.04 

SVCI-6 -0.03 0.02 0.03 -0.05 -0.04 -0.01 -0.02 -0.06 0.01 0.04 0.02 0.00 0.03 0.07 0.09 0.00 

STCI-6 -0.16 0.23 0.20 -0.28 -0.26 0.30 0.21 -0.35 -0.18 0.27 0.18 -0.34 -0.19 0.14 0.14 -0.28 

SVHI-6 -0.10 0.19 0.17 -0.23 -0.18 0.22 0.12 -0.27 -0.12 0.20 0.12 -0.26 -0.10 0.15 0.15 -0.19 

STWSI-6 -0.19 0.16 0.25 -0.25 -0.27 0.21 0.26 -0.30 -0.24 0.19 0.26 -0.36 -0.25 0.12 0.25 -0.30 

Patagonia 

SPI-6 -0.21 0.27 0.24 -0.32 -0.17 0.12 0.10 -0.19 -0.11 0.13 0.09 -0.23 -0.27 0.33 0.29 -0.42 

SPEI-6 -0.26 0.33 0.30 -0.36 -0.25 0.26 0.21 -0.30 -0.15 0.16 0.10 -0.27 -0.26 0.30 0.25 -0.40 

SSI-6 -0.06 0.00 0.01 -0.09 -0.09 0.05 0.04 -0.10 -0.08 0.11 0.02 -0.16 -0.09 0.05 0.00 -0.14 

SPDSI-6 -0.21 0.24 0.25 -0.33 -0.28 0.26 0.20 -0.29 -0.19 0.22 0.16 -0.29 -0.25 0.21 0.21 -0.34 

SVCI-6 -0.15 0.20 0.20 -0.25 -0.23 0.17 0.14 -0.25 -0.10 0.13 0.12 -0.12 -0.08 0.16 0.20 -0.13 

STCI-6 -0.23 0.23 0.22 -0.31 -0.34 0.24 0.19 -0.34 -0.20 0.21 0.17 -0.31 -0.19 0.18 0.23 -0.29 

SVHI-6 -0.23 0.26 0.27 -0.36 -0.36 0.24 0.18 -0.36 -0.21 0.23 0.20 -0.30 -0.21 0.27 0.33 -0.33 

STWSI-6 -0.14 0.27 0.40 -0.34 -0.30 0.32 0.42 -0.33 -0.19 0.28 0.39 -0.30 -0.17 0.20 0.38 -0.31 

Pampas 

SPI-6 -0.31 0.35 0.40 -0.36 -0.26 0.26 0.32 -0.25 -0.14 0.16 0.17 -0.17 -0.30 0.23 0.26 -0.26 

SPEI-6 -0.31 0.36 0.40 -0.37 -0.27 0.31 0.34 -0.29 -0.15 0.18 0.18 -0.18 -0.28 0.22 0.24 -0.24 

SSI-6 -0.10 0.01 -0.06 -0.11 -0.15 0.04 -0.05 -0.14 -0.14 0.12 -0.01 -0.20 -0.14 0.07 -0.02 -0.18 

SPDSI-6 -0.21 0.15 0.22 -0.22 -0.33 0.27 0.34 -0.32 -0.22 0.24 0.30 -0.28 -0.21 0.08 0.17 -0.19 

SVCI-6 -0.20 0.21 0.25 -0.24 -0.24 0.22 0.27 -0.25 -0.10 0.17 0.23 -0.09 -0.12 0.16 0.23 -0.08 

STCI-6 -0.27 0.28 0.32 -0.35 -0.37 0.34 0.35 -0.40 -0.22 0.27 0.25 -0.35 -0.22 0.15 0.19 -0.28 

SVHI-6 -0.27 0.29 0.34 -0.34 -0.35 0.33 0.37 -0.37 -0.20 0.26 0.27 -0.28 -0.22 0.18 0.24 -0.24 

STWSI-6 -0.33 0.29 0.41 -0.43 -0.54 0.54 0.62 -0.62 -0.39 0.50 0.61 -0.61 -0.37 0.21 0.41 -0.40 

NEA 
SPI-6 -0.33 0.53 0.47 -0.42 -0.45 0.53 0.47 -0.49 -0.28 0.34 0.28 -0.29 -0.25 0.36 0.28 -0.22 

SPEI-6 -0.30 0.50 0.43 -0.39 -0.43 0.53 0.46 -0.48 -0.25 0.33 0.25 -0.26 -0.22 0.29 0.23 -0.17 
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SSI-6 -0.12 0.06 -0.01 -0.14 -0.17 0.10 0.00 -0.18 -0.13 0.17 0.03 -0.20 -0.14 0.11 0.03 -0.19 

SPDSI-6 -0.16 0.18 0.14 -0.16 -0.36 0.39 0.32 -0.39 -0.27 0.39 0.32 -0.35 -0.15 0.16 0.14 -0.11 

SVCI-6 -0.11 0.18 0.19 -0.11 -0.17 0.19 0.20 -0.17 -0.06 0.11 0.15 -0.02 -0.03 0.10 0.14 0.03 

STCI-6 -0.18 0.25 0.23 -0.25 -0.32 0.40 0.39 -0.37 -0.14 0.29 0.28 -0.23 -0.06 0.06 0.12 -0.07 

SVHI-6 -0.16 0.25 0.26 -0.20 -0.29 0.36 0.35 -0.33 -0.12 0.24 0.26 -0.15 -0.04 0.09 0.15 -0.01 

STWSI-6 -0.18 0.27 0.35 -0.32 -0.36 0.51 0.53 -0.46 -0.23 0.46 0.54 -0.45 -0.15 0.16 0.33 -0.25 

NWE 

SPI-6 -0.12 0.13 0.11 -0.12 -0.02 0.10 0.05 -0.07 0.08 -0.05 -0.11 0.11 -0.03 0.00 -0.03 0.03 

SPEI-6 -0.07 0.06 0.03 -0.04 0.05 0.04 -0.01 -0.01 0.12 -0.08 -0.13 0.16 0.02 -0.08 -0.11 0.12 

SSI-6 -0.10 0.02 -0.07 -0.11 -0.10 0.02 -0.09 -0.10 -0.10 0.09 -0.06 -0.16 -0.14 0.07 -0.04 -0.18 

SPDSI-6 0.01 -0.03 -0.09 0.03 0.03 0.01 -0.06 0.00 0.06 -0.06 -0.12 0.04 0.06 -0.07 -0.15 0.05 

SVCI-6 -0.07 0.13 0.11 -0.12 -0.04 0.05 0.03 -0.05 -0.01 -0.01 0.01 0.03 -0.05 0.10 0.10 -0.05 

STCI-6 -0.12 0.10 0.12 -0.17 -0.19 0.24 0.19 -0.27 -0.09 0.23 0.16 -0.23 -0.06 0.05 0.07 -0.13 

SVHI-6 -0.10 0.12 0.13 -0.16 -0.14 0.16 0.11 -0.19 -0.05 0.12 0.09 -0.15 -0.06 0.08 0.11 -0.13 

STWSI-6 0.10 0.05 0.05 -0.01 0.04 0.17 0.13 -0.05 -0.05 0.25 0.27 -0.28 0.01 0.08 0.15 -0.18 

 a: Summer-ONDJFM  c: Winter-AMJJAS          

 b: Autumn-JFMAMJ  d: Spring-JASOND          
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Table S4.5 Median seasonal correlations between DIs and the selected CIs (Thaiti SLP, El Niño 3.4, El Niño 4, and SOI) 
aggregated for 6 months based on soybean-producing departments (m=193) and 1982–2019 data (STWSI 2003–2019). 

DIs Tahiti El Niño 3.4 El Niño 4 SOI 

SPI-6 

Summer-ONDJFM -0.29 0.35 0.38 -0.34 

Autumn-JFMAMJ -0.26 0.28 0.33 -0.27 

Winter-AMJJAS -0.15 0.19 0.19 -0.18 

Spring-JASOND -0.26 0.22 0.22 -0.22 

SPEI-6 

Summer-ONDJFM -0.29 0.37 0.38 -0.35 

Autumn-JFMAMJ -0.28 0.33 0.35 -0.31 

Winter-AMJJAS -0.15 0.19 0.19 -0.18 

Spring-JASOND -0.24 0.19 0.20 -0.20 

SSI-6 

Summer-ONDJFM -0.12 0.03 -0.03 -0.15 

Autumn-JFMAMJ -0.17 0.06 -0.03 -0.16 

Winter-AMJJAS -0.16 0.14 0.01 -0.23 

Spring-JASOND -0.17 0.09 0.01 -0.22 

SPDSI-6 

Summer-ONDJFM -0.16 0.10 0.13 -0.14 

Autumn-JFMAMJ -0.29 0.26 0.31 -0.30 

Winter-AMJJAS -0.20 0.25 0.29 -0.28 

Spring-JASOND -0.15 0.08 0.11 -0.12 

SVCI-6 

Summer-ONDJFM -0.20 0.22 0.24 -0.23 

Autumn-JFMAMJ -0.23 0.22 0.27 -0.24 

Winter-AMJJAS -0.09 0.15 0.23 -0.08 

Spring-JASOND -0.12 0.16 0.22 -0.07 

STCI-6 

Summer-ONDJFM -0.27 0.29 0.33 -0.35 

Autumn-JFMAMJ -0.37 0.36 0.38 -0.40 

Winter-AMJJAS -0.22 0.28 0.28 -0.35 

Spring-JASOND -0.23 0.15 0.20 -0.28 

SVHI-6 

Summer-ONDJFM -0.26 0.28 0.32 -0.32 

Autumn-JFMAMJ -0.34 0.33 0.37 -0.36 

Winter-AMJJAS -0.20 0.26 0.29 -0.27 

Spring-JASOND -0.22 0.17 0.23 -0.23 

STWSI-6 

Summer-ONDJFM -0.32 0.28 0.40 -0.41 

Autumn-JFMAMJ -0.50 0.49 0.58 -0.59 

Winter-AMJJAS -0.37 0.48 0.59 -0.59 

Spring-JASOND -0.35 0.20 0.40 -0.38 
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Part 1: A hybrid framework for assessing agricultural drought: a 

multivariate standardized precipitation and vegetation drought index 

Abstract 

Droughts are one of the most costly and harmful hazards worldwide. Several drought indices have been 

developed in order to characterize and monitor this phenomenon and help decision-makers to reduce the 

associated socio-economic risks. In this study, we present a methodology for calculating a multivariate 

standardized precipitation and vegetation index (MSPVI). It uses as input the precipitation and the 

satellite-based vegetation condition index. We show the statistical procedure for calculating it and then 

applied it in Mozambique as a case of study. We found the MSPVI is more sensitive to the onset and 

recovery of agricultural droughts than the SPI and SVCI. The MSPVI series has significantly negative 

trends with Mann-Kendall Z values higher than SPI and SVCI. The MSPVI can be a useful tool for 

decision-makers. 

Keywords 

Agriculture drought; multivariate; crop yield; drought index; monitoring. 
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1. Introduction 

Many areas of the world face droughts events and according to IPCC, 2014 these events will increase 

in frequency and intensity because of climate change. Among others, one of the most important fields 

affected by droughts is agriculture, which is related to food security and socio-economic crisis. For this 

reason, various drought indices have been developed in order to characterize and monitor agricultural 

droughts and reduce the associated socioeconomic risk.  

The drought indices are an integration of one or more hydrological variables (Hao et al., 2015). For 

instance, the Standardized Precipitation Index (SPI) (McKee et al., 1993) accumulated to three months 

is extended and used in agricultural drought monitoring. Nevertheless, nowadays satellite observations 

let us obtain new indicators for this purpose, related to vegetation condition. The Vegetation Condition 

Index (VCI) has been used in various agricultural droughts studies showing good results  (Kogan, 1995). 

In this contribution, we propose a methodology that integrates both meteorological and satellite-based 

vegetation variables. Under the assumption that the bivariate extreme value distribution with the Gumbel 

marginal distributions can be used to model the monthly precipitation data (P) and the monthly VCI, 

precipitation (P) and VCI are joined into a new multivariate standardized index. This index could 

characterize agricultural drought with the advantage of explaining the condition of vegetation and 

precipitation variations at the same time showing a complete status of a region or river basin. Then, we 

apply this index over Mozambique (case of study) and compare its performance with the SPI and 

standardized VCI (SVCI). 

2. The multivariate standardized precipitation and vegetation index 

(MSPVI) 

The developed method for characterizing agricultural droughts is a multivariate approach that depends 

on two individual variables (Mehran et al., 2015): P and VCI. First, P is averaging in three months 

periods. Then the non-exceedance probabilities of both variables are calculated following the formula 

(Gringorten, 1963): 

 
t

I-0.44
P =

N+0.12
 (7) 

where tP
 is the cumulative frequency at month t  (1… N ), I  is the position from the smallest to largest 

and N  denotes the sample size. Later, we transform the empirical probabilities into a standardized index 

( SI ): 

 1

tSI ( )tP−=  (2) 

where 


 denotes the standard normal distribution function. Next, the two univariate indicators are 

combined using the multivariate framework explained in Yue et al., 1999. Changing in (1) the position 

I  for the number of occurrences of the pair ( ( ), ( ))SI P SI VCI  for  
( ) ( )tSI P SI P

 and 

( ) ( )tSI VCI SI VCI
we obtained the joint bivariate empirical probability at month t . Finally, using 

(2) we calculate the multivariate standardized precipitation and vegetation index (MSPVI). This index 

is interpreted similarly to the original SPI and can be computed for various time spans accumulating the 

raw variables. Based on our methodology, SPI and SVCI have different temporal patterns than the 
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originals due to the probability correspondent to any given quantile of a joint distribution of two 

variables is not identical to that of the univariate distribution of each individual variable. 

3. Case of study: Mozambique 

Mozambique is one of the poorest and least developed countries in the world. About 60% of the 

population of this country works in agriculture, representing about 24% of the GDP. It is located in one 

of the most drought and climate change prone areas and has a very high risk of food scarcity. Using 

monthly country-averaged P data obtained from the Climatic Research Unit CRU TS3.10 (CRU) from 

1981 to 2017 and monthly VCI obtained from NOAA STAR (same period), we calculated the MSPVI. 

Additionally, the SPI-3 and SVCI were calculated in order to compare them with the new index. 

The temporal patterns are shown in Fig. 5.1. It can be seen that MSPVI shows critical information about 

the onsets and recoveries of drought events. Furthermore, it detects the main historical drought record 

according to the International Disaster Database EM-DAT, where the 1991-1992 was one of the most 

harmful drought events. The MSPVI shows a significantly decreasing trend of -3.53 (z-value), while 

SPI and SVCI -1.72 and -3.28 respectively. Spatial distribution of the 1992 (May) drought event are 

plotted in Fig. 5.2. It can be seen the MSPVCI identified a major area affected by droughts. At national 

scale correlation between annual benchmark crops yields and DI of July are sowed in Table 5.1. 

Improvements using MSPVCI instead SPI or SVCI are noted. 

 

Fig. 5.1 The SPI-3, SVCI and the MSPVI series in 1982-2017 (above) and 1989-1997 (below). 
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Fig. 5.2 Spatial distribution of the a) SPI-3, b) SVCI and c) MSPVI during May/1992 drought event 

Table 5.1 Pearson correlation coefficients between Mozambican annual crop yields and drought indices from July. 

Crop MSPVCI SPI-3 SVCI 

Maize 0.593 0.515 0.172 

Sorghum 0.833 0.3735 0.247 

Wheat 0.538 0.363 0.003 

4. Conclusions 

In this study, we present a methodology for calculating the multivariate standardized precipitation and 

vegetation index (MSPVI). We calculated the MSPVI from open global datasets over Mozambique as a 

case of study. The proposed agricultural drought index is more sensitive to the onset and recovery of 

droughts, while it detects a more conservative spatial distribution of droughts than the SPI and SVCI. 

The MSPVI series has significantly negative trends higher than SPI and SVCI. Further it explains better 

the annual variability of maize and sorghum yield. The MSPVCI may be used for evaluating and 

monitoring agricultural drought being a useful tool for decision-makers. 

Supplementary materials 

 

Appendix B shows the complementary poster exposed in the 6th IAHR Europe Congress, 2020. 
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Part 2: Bivariate standardized precipitation and vegetation indices for 

assessing and monitoring agricultural drought 

Abstract 

In this study, we assess two bivariate standardized precipitation and vegetation indices (BSPVCI and 

BSPVHI) as a tool for monitoring agricultural droughts, which are associated with losses in crop 

production and related to food security. These indices combine in a probabilistic framework the 

Standardized Precipitation Index (SPI) with the Vegetation Condition Index (VCI) and Vegetation 

Health Index (VHI). We found that both indices are more sensitive to drought onset and recovery, and 

explain crop variability considerably better than SPI, VCI or VHI alone in Argentina (case study). 

Keywords 

Agriculture drought; bivariate; crop yield; drought index; monitoring. 
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1. Introduction 

Droughts are among the natural phenomena that cause the greatest socio-economic and ecological 

damage (Golnaraghi et al., 2014). They are classified into meteorological, agricultural, hydrological and 

socio-economic droughts. The first are understood as a deficit in the normal precipitation volumes in a 

given region from which the others are triggered (Wilhite and Glantz, 1985). Agricultural droughts are 

of particular interest as they can influence the variability of agricultural production, potentially 

compromising food security. 

To assess and monitor droughts, several drought indices (DI) have been developed in recent decades 

(Svodova et al., 2016). Among the most widely used DIs for monitoring agricultural droughts is the 

Standardised Precipitation Index (SPI) (McKee et al., 1993), which is based on precipitation and 

recommended by the World Meteorological Organisation. Other DIs are the Vegetation Condition Index 

(VCI) and Vegetation Health Index (VHI) (Kogan, 1995) based on remotely sensed data that detect and 

classify vegetation stress caused by drought. 

In this research we propose two new agricultural drought indices for assessment and monitoring. These 

are two composite DIs that take into account meteorological and agricultural drought conditions by 

combining precipitation (the SPI) with VCI and VHI in a probabilistic framework. These new DIs are 

evaluated and compared with the traditional SPI, VCI and VHI. 

2. Methodology 

2.1 Case study 

Continental Argentina (Fig. 5.3) has a wide climatic variability. The average annual precipitation per 

department varies between 70 and 1880 mm per year, and the average annual temperature ranges 

between 2 and 23 °C. Both precipitation and temperature increase from east to west and from south to 

north. Argentina is one of the largest grain producers in the world, with soybean and maize being the 

most important crops (FAO, 2017). The South American country has faced important drought events in 

the past, with the most important ones occurring in 1988-1989, 1994-1996, 2009 and 2018 (EM-DAT, 

2021), with strong links to the El Niño Southern Oscillation (ENSO) (Araneda-Cabrera et al., 2021a). 

In these years, a significant decrease in agricultural production was detected, which is concentrated in 

the northwest of the country (Fig. 5.3) and is mostly rainfed (> 95%). For these reasons, Argentina was 

taken as a case study to evaluate the new agricultural drought indices. 

2.2 Data 

Monthly precipitation series were downloaded from the TerraClimate database (Abatzoglou et al., 

2018), while weekly VCI and VHI series were downloaded from NOAA STAR. The two databases 

provide their products at a spatial scale of 1/24° (≈ 4.62km), which were obtained for the period 1981-

2019 over the whole country. The 3 variables were aggregated at departmental level (525 departments) 

and monthly over the whole of Argentina. 

In each department, the 3-month cumulative SPI was computed following the steps described in McKee 

et al., (1993). The 3-month temporal accumulation was chosen since agricultural droughts are a seasonal 

phenomenon and have been found in other studies to be the best option to explain agricultural variability 

(McKee et al., 1993). To be comparable with the SPI, the same standardisation process was applied to 

the VCI and VHI series, obtaining the SVCI and SVHI. Annual agricultural yield data for soybean and 

maize were downloaded from the Ministry of Agriculture, Livestock and Fisheries of Argentina for the 

period 2004-2019. 
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Fig. 5.3 Location of Argentina and its departments. The departments with soybean and maize crops are detailed. 

2.3. Bivariate Standardised Precipitation and Vegetation Indices (BSPVCI and BSPVHI) 

The approach of each index depends on two individual variables, precipitation and VCI for the BSPVCI 

and VHI for the BSPVHI. In both cases the procedure starts by accumulating precipitation (Pr) in 3-

month periods. Then, the non-exceedance probabilities of both variables are calculated following the 

formula of (Gringorten, 1963): 

 
t

I-0.44
P =

N+0.12
 (8) 

Where tP
 is the cumulative frequency in month t  (1… N ), I  is the position from lowest to highest and 

N denotes the sample size. Subsequently, the empirical probabilities are transformed into a standardised 

index ( SI ): 

 1

tSI ( )tP−=  (2) 

where 


 denotes the standard normal distribution function. Next, the two univariate indices are 

combined using the multivariate framework explained in Yue et al. (1999). Changing in (1) the position 

I  by the number of occurrences of the pair ( (Pr), ( / ))SI SI VCI VHI  by (Pr) ( )tSI SI P  and 

( / ) ( / )tSI VCI VHI SI VCI VHI  we obtain the joint bivariate empirical probability in month t . 

Finally, using (2) we calculate the standardised bivariate precipitation and vegetation indices (BSPVCI 

and BSPVHI). These indices are interpreted similarly to the original SPI. Based on our methodology, 
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the BSPVCI and BSPVHI have different temporal patterns from the original variables, because the 

probability corresponding to any quantile in a joint distribution is not identical to that of the distribution 

of each individual variable. 

 

Fig. 5.4 SPI, SVHI and BSPVHI national time series. 

2.4.  Statistical crop model 

In order to compare DI as predictors of variability in maize and soybean yields (associated with 

agricultural droughts), the time-series model used in Araneda-Cabrera et al., (2021): 

 t 0 1ln(Y )= ( ) tX  + +  (3) 

where Y  is the vector of the annual yield of each crop in the whole country, X  is the vector with the 

predictors, which in this case were the SPI, SVCI, SVHI, BSPVCI and BSPVHI for the month of March 

(maize and soybean harvest season), 0  y 1  are the parameters to be adjusted and t  is the error. 

Since variations in yields can be affected by factors external to the weather (e.g., improved technologies 

and/or seeds), the crop yield series was previously trend extracted using a fitted linear regression model 

3. Results and discussion  

3.1 Assessment of BSPVCI and BSPVHI 

The SPI, SVHI and BSPVHI detected the main drought events that have been recorded in recent years 

(Fig. 5.4). However, the BSPVHI showed a higher sensitivity to these events. For example, in March 

2009 (major drought of the last decades in Argentina) it reached an intensity of -4.79, much higher than 

-3.51 or -1.98 of the SVHI and SPI, respectively. Spatially (Fig. 5.5), during March 2009, the BSPVHI 

reported almost 50% of the Argentinean territory under extreme drought (IS < -2.0) while the SVHI 

reported 22% and SPI 11%. The BSPVCI showed very similar spatio-temporal patterns to the BSPVHI.  

These results indicate that bivariate DI are more sensitive to drought events, so using them as an 

agricultural drought monitoring tool would imply being on the safe side, a result that Monteleone et al., 

(2020) agrees with. However, the use of these indicators needs to be further developed through specific 

drought validation and characterisation studies. 
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Fig. 5.5 Spatial distribution of droughts in Argentina in March 2009 according to a) SPI, b) SVHI and c) BSPVHI. 

3.3 Relationship between drought indices and crop yields 

Table 1 shows the results of applying the statistical crop model using the traditional DIs as predictors. 

Both SVHI and SVCI explained up to 68% of the annual variability of soybean and 67% of maize yields. 

However, both BSPVCI and BSPVHI improved model performance by explaining approximately 77% 

of the annual variability for soybean and 73% for maize (Fig. 5.6). The SVHI and BSPVHI introduce 

temperature in their computation, so it could explain the better performance compared to SVCI or 

BSPVCI. Nevertheless, both DI could be used to monitor soybean and maize crops at the national level. 

These indices could be used as predictors of agricultural yields. However, specific studies are needed to 

analyse this predictive capacity. 

Table 5.1 Coefficients of determination (R2) between soybean and maize yields and drought indices 2004-2019. 

 SPI SVCI SVHI 

Soybean 0.476 0.572 0.686 

Maize 0.306 0.407 0.670 

4. Conclusions 

The bivariate indices BSPVCI and BSPVHI were shown to be more sensitive to the onset and end of 

droughts across Argentina. Compared to the classical SPI and VCI/VHI, these indices report higher 

spatial coverage of extreme droughts and better explain the variability of annual maize and soybean 

yields. The proposed drought indices could be useful for water managers in Argentina and other 

countries or regions, especially for soybean and maize farmers. This study opens the door to future 

studies to improve the use of these drought indices, such as assessing the predictive capacity of 

agricultural yields. 
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Fig. 5.6 Regression between annual soybean and maize yields with BSPVCI (top) and BSPVHI (bottom). 
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Abstract 

The main objective of this manual is to provide a basic introductory tool for drought management. This 

extreme hydrological phenomenon is one of the most important in water resources management, as it 

causes immense economic and ecological losses worldwide every year, affecting food security and 

people's quality of life. Due to climate change, drought events will become more frequent and severe in 

the future. Therefore, understanding, characterising, and monitoring this phenomenon is essential to 

create contingency plans to reduce risk and become more resilient to droughts. To achieve this purpose, 

data, tools and procedures are required to understand and model the phenomenon. However, different 

socio-economic realities, which vary widely in different regions of the world, mean that access to certain 

data of sufficient quality is limited in some regions and countries. This manual is a tool to overcome this 

problem through tools developed to obtain the necessary data quickly and efficiently for drought 

management and monitoring in any region. These data are products of global databases that are free and 

open access to everyone, so that the application of these data can be used in administrative (countries, 

cities, etc.) or natural (river basins, nature reserves, etc.) contexts. In addition, the manual presents 

different uses and applications of these data as concrete drought management tools. As part of the 

procedure, a brief introduction to the different aspects, concepts, and requirements necessary for the use 

of the manual is given. 

Keywords 

Drought, Mozambique, Handbook, Hydrology, Meteorology, Drought management, Water resources, 

Drought management. 
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Section I: Introduction 

1. General objective 

The main objective of this manual is to provide a basic introductory tool for drought management. This 

extreme hydrological phenomenon is one of the most important in water resources management, as it 

causes immense economic and ecological losses worldwide every year, affecting food security and 

people's quality of life. 

Due to climate change, drought events will become more frequent and severe in the future. Therefore, 

understanding, characterising, and monitoring this phenomenon is essential to create contingency plans 

to reduce risk and become more resilient to droughts. To achieve this purpose, data, tools, and 

procedures are required to understand and model the phenomenon. However, different socio-economic 

realities, which vary widely in different regions of the world, mean that access to certain data of 

sufficient quality is limited in some regions and countries. 

This manual is a tool to overcome this problem through tools developed to obtain the necessary data 

quickly and efficiently for drought management and monitoring in any region. These data are products 

of global databases that are free and open access to everyone, so that the application of these data can 

be used in administrative (countries, cities, etc.) or natural (river basins, nature reserves, etc.) contexts. 

In addition, the manual presents different uses and applications of these data as concrete drought 

management tools. As part of the procedure, a brief introduction to the different aspects, concepts, and 

requirements necessary for the use of the manual is given. 

2. Scope and limitations of the manual 

The conceptual and practical information presented in this manual is intended as an introductory tool 

for data collection and application in drought monitoring and characterisation. The manual presents 

information for understanding the phenomenon and its components in a general way, and therefore the 

practical tools and results are limited to these concepts. 

The key concepts synthesised here are generally accepted and recognised by experts and international 

organisations; however, they are limited to the objectives of the manual and can be expanded and even 

show differences to other bibliographic sources. Similarly, the tools used, the procedures and 

interpretations applied for the practical exercises may contain errors and may be improved or applied in 

other scenarios. All the computational tools used are free for public use and can be replaced by others 

that serve similar purposes. 

3. Document organisation 

This document consists of three sections. The first section provides an introduction to the concepts, tools 

and requirements needed to make use of the manual. First, a compilation of the concepts associated with 

the study, its classification, characterisation, and management of droughts is presented. Then, a general 

explanation is given of the technical and computational requirements needed to use the manual. This is 

followed by an introduction to the various global databases that exist, and the data needed for drought 

management, with emphasis on those used in the manual. Finally, the specific objectives of this work 

are explained. 

In the second section, the steps necessary to obtain the series of different variables required for drought 

management are detailed and explained. The third section makes use of the data obtained in Section II 

and explains the steps to apply them concretely to the characterisation and monitoring of droughts in a 

specific region. In the annexes, three scripts (programming codes) are provided as a complementary 
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final product to follow the manual. As case studies we have chosen Mozambique located in the southern 

cone of Africa and the Licungo river basin in the north-central part of this country. 

4. Drought Management 

4.1. Water cycle 

The hydrological cycle or water cycle is the process of water circulation between the different 

compartments of the hydrosphere (Fig. 6.1). Water from land and oceans enters the atmosphere by 

evaporation or sublimation, where it condenses into clouds and precipitates as rain or snow. Water that 

falls as precipitation runs off into freshwater bodies or infiltrates into the ground. The cycle is completed 

when surface or groundwater flows back into the ocean. The main processes involved in the water cycle 

that are important variables in drought analysis are: 

- Precipitation (P): The atmosphere loses water through condensation (rain, snow and dew) or reverse 

sublimation (snow and frost), which, depending on the case, is transferred to the ground, to the sea 

surface or to the sea ice (ice cover over the oceans).  

- Evapotranspiration (ET): On the one hand, water evaporates (E) at the ocean surface, on the ground 

and also in organisms; in the latter (plants and trees in this case) there is also the phenomenon of 

transpiration (T), so that ET refers to the combined phenomenon. Potential evapotranspiration (PTE) is 

the maximum amount of water that can be evapotranspired from a soil completely covered with 

vegetation, which is growing under optimal conditions, and assuming that there are no limitations in the 

availability of water. The actual or effective evapotranspiration (ETr) is that which actually occurs under 

the existing conditions in each case. 

- Infiltration: The phenomenon occurs when water reaching the soil penetrates through its pores and 

becomes groundwater. The proportion of water that infiltrates and that which circulates on the surface 

(runoff) depends on the permeability of the substrate, the slope and the vegetation cover. The amount of 

water contained at a given time is the soil moisture and can be measured at different depths. 

- Runoff: This term refers to the various means by which liquid water flows downhill over the land 

surface. When it reaches a body of water (rivers, lakes, reservoirs, etc.) the volume that flows through 

it for a given time is referred to as the flow rate. 

- Underground circulation: It is produced in favour of gravity, like surface runoff. It occurs in aquifers 

through the pores of permeable rock, involving phenomena such as pressure and capillarity.  
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Fig. 6.1 The water cycle. Source: U.S. Geological Survey (USGS). 

4.2. Water balance 

The water cycle can be formulated mathematically using the water balance, which is derived from the 

concept of conservation of matter, i.e., it is the balance between all water resources entering and leaving 

a system (river basin, country, region, etc.) in a given time interval: 

 

1

1 1

n m

t t i j

i j

Status Status Inputs Outflows+

= =

= + −   (9) 

Where the inputs of water are precipitation (P), which can be in the form of rain, hail, snow, or 

condensation; groundwater input from adjacent groundwater systems; and water transfers from other 

systems, such as dam discharges or sewage. Outflows can be evapotranspiration; deep seepage feeding 

aquifers; water diverted to external adjoining systems, human consumption, and industry; and water 

leaving the system to an external receptor such as a large sea or the sea. The status refers to the volume 

contained in the system after adding and subtracting inflows and outflows from the volume of water in 

the previous time step. 

In general, for each time step eq. (1) can be formulated as follows: 

in in out out out outP I U I A ETr Q U V+ + − − − − − =   (10) 

Where P is precipitation, I is infiltration, U the different uses of water (in the same or another system), 

ETr is real evapotranspiration, Q the outflow of the system and ∆V the variation of water volume in the 

system. In the long term, the variation tends to zero, however, in each time step there may be times when 

the system has a deficit or surplus. Each of the processes can be measured and the balance can be 

completed. 
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By simplifying the balance, we are able to detect wet and dry months (3); and, to calculate the volume 

of water available (4): 

P ETP V− =   (11) 

P ETr Q I U− = + +  (12) 

  

Where, in eq. 3 the variation ∆V defines a dry month or deficit (∆V < 0) or a wet month with surplus 

(∆V > 0) in the system in a given time period. Meanwhile, in eq. 4 the second part of the equality is 

called useful precipitation and is the water available to recharge the soil, rivers and other existing water 

bodies. 

The water balance also allows the calculation of the water deficit (D): 

ETP ETr D− =  (13) 

Where, a deficit (D > 0) is the amount of water lacking to cover the potential water needs for evaporation 

and transpiration. 

4.3. Definition and classification of drought 

Drought is an extreme hydrological phenomenon which geographical and temporal limits are difficult 

to determine, being a particularly dangerous natural disaster when there is a lack of good management 

of water resources. Drought is understood as a prolonged temporary precipitation anomaly, 

characterised by a period with precipitation values below normal. It may or may not affect yield crops, 

soil degradation and/or insufficient water supplies, depending on the level of demand and the 

characteristics of the water resource exploitation systems. 

Many classifications of drought have been developed in recent years. However, the most widely 

accepted and widespread is that which defines meteorological, agricultural, hydrological, and socio-

economic drought. The first three measure drought as a physical phenomenon, while the last deals with 

drought in terms of supply and demand, based on tracking the effects of water deficit as it churns through 

socio-economic systems. Each of them is related to a part of the hydrological cycle and develops one 

after the other initiated by climatic anomalies (precipitation and temperature) that are part of natural 

climate variability (Fig. 6.2). 

Meteorological drought occurs when negative anomalies or absence of precipitation dominate an area. 

These anomalies may be accompanied by an increase in temperatures, resulting in increased 

evapotranspiration. Agricultural drought occurs when crops are affected by this lack of precipitation and 

low soil moisture. Hydrological drought occurs the low available volume of water becomes evident, 

especially in rivers, streams, reservoirs, and groundwater levels, usually after many months of 

meteorological drought. Socio-economic drought relates supply and demand for various commodities 

to drought (water for drinking, irrigation, industries, hydropower, etc.). Meteorological drought can 

begin and end quickly, while hydrological drought takes much longer to develop and recover from. 
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Fig. 6.2 Sequence of occurrence of drought types and their impacts. Source: National Drought Mitigation Center de la 
Universidad de Nebraska –Lincoln. 

Drought must be distinguished from other related phenomena such as scarcity and aridity. Scarcity 

represents a permanent situation of deficit (calculated with the water balance) in relation to water 

demand in a regional resource system, characterised either by an arid climate or by a rapid growth in 

demand. Aridity is a natural structural situation of a region and therefore permanent. Even in these 

circumstances there should not be a deficit if the exploitation systems are adequately designed and 

exploited and the demands are kept within reasonable limits, in accordance with the climatic 

characteristics of the region. This requires planned medium- and long-term actions.  

4.4. Drought indices 

Indices are numerical representations that display information associated with the drought seriousness, 

determined by climatic or hydrometeorological data. They are used to quantify the intensity, location, 

timing, and duration of drought events. Intensity refers to the deviation from normality of an index based 

on a previously established threshold. In this way we can identify when a drought has started, when it 

has ended, and the geographical area affected. Location refers to the geographical area in which the 

drought conditions are recorded. The approximate dates of onset and ending determine the duration of 

the drought event. Indices can also serve another essential function in that they can provide a historical 

reference for planners or decision makers. This reference provides users with information on the 

probability of occurrence or recurrence of droughts of different intensity levels. However, it should be 

noted that climate change has begun to alter historical trends. It is recommended that the phenomenon 

be represented at various time scales, as this recognises short-term wet periods within long-term 

droughts or short-term dry periods within long-term wet periods. 
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Since the classification of drought responds to analysing anomalies in each stage of the hydrological 

cycle, there are indices to characterise each type of drought based on the variables in each stage. For 

example, precipitation for meteorological drought or flows for hydrological drought. In recent years, 

mixed indices have been developed that attempt to quantify droughts in all or parts of the water cycle. 

However, using several indices based on several variables is best suited to characterise the state of 

drought in the whole system. 

Due to the complexity of the phenomenon, dozens of indices have been proposed in recent decades. 

These indices can be calculated with one or several hydrometeorological input variables at different time 

scales (daily, weekly, or monthly), the most common and accepted being the monthly scale. Only 5 

indices, which have been extensively evaluated and validated worldwide, are explained in detail in this 

manual. For more information on some drought indices, additional literature can be consulted such as 

the Drought Indicators Handbook (Svodova et al., 2016) where more than 100 drought indices are shown 

and explained.   

4.4.1. Standardised Precipitation Index (SPI) 

The SPI was introduced by McKee et al., (1993) and is defined as a value representing the number of 

standard deviations of precipitation over a defined accumulation period from the mean (standardisation), 

once the original distribution of precipitation has been transformed to a normal distribution. As an 

example, a 3-month SPI value of -2.3 would indicate that the amount of precipitation that has been 

recorded over a period has been 2.3 times the standard deviation below the mean value. The step-by-

step for its full calculation can be reviewed in several papers, e.g., Kumar et al., (2009). It is currently 

recommended by the World Meteorological Organization for drought status monitoring. It is very 

flexible, easy to interpret, applicable to and comparable across different climate zones and depends on 

a single variable, precipitation. 

Through the use of SPI, it is possible to quantify and compare the intensities of precipitation deficits 

between areas with very different climates and it has the property that it can be integrated at any time 

scale, which means that it can be used as an indicator of different types of droughts. Short time scales 

(2-6 months) capture droughts mostly in the agricultural and forestry sectors and are useful for 

meteorological and agricultural droughts, while long time scales (12-24 months) are associated with 

hydrological droughts as they represent drought effects on reservoirs, rivers, and aquifers. 

The SPI calculation requires at least 30 years of historical monthly precipitation series. Precipitation 

series in daily, weekly, or other aggregations are admissible in the computation of the SPI; however, it 

is recommended to follow the scales in which droughts normally develop, commonly monthly, seasonal 

or interannual. Once the SPI has been computed over a time series of precipitation, the monthly SPI 

values can be evaluated according to Table 6.1.  

 

4.4.2. Standardised Precipitation and Evapotranspiration Index (SPEI) 

SPEI is a drought index with similar properties to SPI, with the difference that it takes into account 

temperature through evapotranspiration in its calculation, in addition to precipitation. This difference 

makes it suitable for analysing trends and changes in drought characteristics due to climate change. Its 

computation requires monthly historical series of water variation in the system (∆V = P - ETP), where 

ETP includes temperature information. The standardisation process followed by SPEI is the same as 

SPI, with the difference that the ∆V series is previously transformed to a log-normal distribution. Like 

SPI, SPEI can be calculated for various time scales allowing to assess droughts in various parts of the 

water cycle and to relate it to different types of droughts. Its evaluation follows Table 6.1. 
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4.4.3. Vegetation Condition Index (VCI) 

The VCI is an index used for the detection and monitoring of agricultural drought. It makes it possible 

to evaluate the duration, the area covered, the intensity and the impacts of a drought on vegetation. For 

a given point or region, and for each time step (monthly in our case), the VCI is derived from the 

Normalized Difference Vegetation Index (NDVI), obtained from the historical series of satellite images 

obtained by the AVHRR (Advance Very High-Resolution Radiometer) sensor in operation since 1984: 

min

max min

NDVI NDVI
VCI

NDVI NDVI

−
=

−
 (14) 

Where, max and min is the maximum and minimum NDVI value available in the analysed time series 

and NDVI is the value at each time step. The NDVI is itself a vegetation index used to estimate the 

quantity, quality and development of vegetation based on the measurement from satellite sensors of the 

intensity of radiation from certain bands of the electromagnetic spectrum that vegetation emits or 

reflects. The assessment of the degree of drought intensity according to the VCI is shown in Table 6.1. 

4.4.4. Temperature Condition Index (TCI) 

Similar to the VCI, the TCI is an index derived from measurements from the AVHRR satellite sensor, 

in this case of surface temperature. Its use is related to meteorological and agricultural drought 

monitoring. Its estimation uses the estimated brightness of the thermal infrared band (10.3-11.3 μm) 

detected by sensors from space. According to the measured brightness, the Brightness Temperature (BT) 

is estimated, which by itself is an indicator directly correlated with the Earth's surface temperature. Its 

formulation is: 

max

max min

BT BT
TCI

BT BT

−
=

−
 (15) 

Where, within a time period, BT is the value at each time step (monthly in this case) and min and max 

refer to the maximum and minimum values of BT within that period. Their evaluation follows Table 

6.1. 

4.4.5. Vegetation Health Index (VHI) 

The VHI is calculated by the weighted combination of two anomalies already described: the VCI and 

the TCI, both derived from satellite observations. The basic idea of the indicator is as follows: the lower 

the observed VCI (relatively poor green vegetation) and the lower the observed TCI (relatively warm 

temperature), the lower the VHI. Low VHI values are indicators of drought, especially when they persist 

for long periods of time. 

 The equation used is: 

(1 )VHI w VCI w TCI=  + −   (16) 

Where w is the pondered value, the range of which is between 0.0 and 1.0, with 0.5 being the usual 

value. The assessment of drought intensity according to the VHI is given in Table 6.1. 
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Table 6.1 Drought categories according to index values. 

Categories SPI/SPEI VCI/TCI/VHI 

Wet 

> 2.00 90 - 100 

1.50 - 2.00 75 - 90 

1.00 - 1.50  60 - 75 

Normal 
0.00 - 1.00 50 - 60 

0.00 - -1.00 40 - 50 

Moderate drought  -1.00 - -1.50 25 - 40 

Severe drought  - 1.50 - -2.00 10 - 25 

Extreme drought < -2.00 0 - 10 

4.5. Drought characteristics 

Drought characterisation is essential in drought management. Defining and quantifying the 

characteristics of each drought event helps to plan continuous monitoring campaigns and apply 

predictive models. It consists of defining the seriousness of a given event so that a policy maker or 

technician can make decisions and implement appropriate mitigation plans to avoid severe water 

shortages, so this methodological component is essential for stakeholders. 

Among the different methods proposed to characterise droughts, the "run-theory" method described in 

Yevjevich, (1969) has become widespread, due to the objectivity in the definition of drought. The 

method allows analytical derivation of probability distributions of drought characteristics, showing 

better performance than other approaches. The implementation method can be applied to a time series 

of interest, which in our case will be the drought indices, assuming a threshold at which an event is 

framed. The thresholds are defined according to the drought category to be characterised. 

A drought event is defined by its duration, intensity, severity and geographic extent. Duration is the 

length of time in weeks or months that the drought lasts, understood as the time that the index was 

consecutively below a threshold, defining a start and end of the drought event as it passes through that 

threshold in time. Maximum or average intensity is the maximum absolute value and the average of the 

values of an index over the duration of the event. Severity is defined as the sum of the intensities or 

values taken by the index over the duration of the drought. Fig. 6.3 shows these three characteristics for 

three drought events. Geographic extent is the area or percentage of area within a region or area under 

study that is affected by drought at one or more intensity categories during each time step. 

In order to quantify these characteristics, it is necessary to calculate drought indices over several points 

of the territory under study. This spatial distribution should be as dense as possible, with the World 

Meteorological Organization, (2008) recommending at least one station or geographical point where the 

index is evaluated every 250km2. 

Suitable drought indices are selected according to the type of drought of interest. Indices can be 

considered general for the whole system or specific to the part of the hydrological cycle for which they 

are designed. It is understood that making this distinction is not always easy; therefore, the use of several 

indices is recommended to obtain a complete characterisation of droughts in a region. Here we will use 

the indices previously discussed. 
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Fig. 6.3 Characteristics of droughts according to the "run-theory". 

5. Requirements 

For the use and application of this manual, in addition to the theoretical background associated with 

drought management, it is necessary to be clear about the computational tools that are used. The two 

groups of tools required are Geographic Information Systems (GIS) and Numerical Computing Systems 

(NCS). While there are many similar programs to those discussed below, the concepts related to the 

architecture of these programs are the same as those followed by other tools designed to perform similar 

functions. 

5.1. Geographical Information Systems (GIS) 

GIS are computer programmes (software) that provide tools for the collection, processing, management, 

analysis and representation of data with a cartographic component (geographic information) in digital 

format. They make it possible to represent the physical space in which we live on maps and tables 

through thematic layers that can be overlapped. Any record of information with a geographical 

reference, such as a street address, the name of a city, a land parcel identifier, GPS coordinates, etc., can 

be located and made available on a map (Fig. 6.4).  

GIS can be classified into two main groups exemplified in Fig. 6.4:  

Vector GIS: Use vectors for the description of geographical objects. They are commonly presented as 

shapefiles (common extensions: SHP, SHX, DBF, PRJ, etc.). Geographic features are represented by 

three basic structures: points, lines, and polygons. Lines are represented by segments that join points 

and these, in turn, are closed to form polygons.  There are therefore three different shapefile types. Each 

of them has specific qualities so that it is not possible to perform certain processes with them. Thus, it 

is impossible to calculate areas for points since area is a property of polygons. Or it is not possible to 

calculate lengths for polygons, but we can fragment polygons into multiple parts. 

Raster GIS: Raster Information Systems base their functionality on graphic bitmap formats (common 

extensions: ECW, JPG, GRID, TIF, GIF, SID, etc.). They (usually) store information by dividing space 

into a regular grid or matrix of small cells - referred to as pixels - and attribute a numerical value to each 

cell as a representation of a physical spatial quality or property (altitude, temperature, distance, slope, 

etc.). If the position of the coordinates of the centre of one of the cells is known, all pixels can be said 

to be georeferenced. 
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Fig. 6.4 Thematic layers available in a GIS and comparison between raster and vector data. Source: 
https://geopaisa.blog/2017/03/08/que-es-un-sig/. 

Two of the most common and developed GIS software are ArcGIS and QGIS. Both are widely used and 

cover most users' needs. The main difference is that QGIS is a free open-source software, while ArcGIS 

is a paid software commercialised by ESRI. However, the geographic information that can be 

represented, analysed, and displayed in the form of maps in such software can also be manipulated 

through NCSs that offer these options in their functionalities.  

The global data discussed in this manual are in raster formats, while vector files defining an area (country 

or river basin) are used for extraction in study areas of interest. This information can be downloaded 

from free databases. 

5.2. Numerical Computing Systems (NCS) 

NCSs are programmes (software) or tools designed to solve complex numerical problems and 

calculations through the use of numerical methods. The general procedure consists of introducing data 

or input variables to an existing function in the software, which will perform pre-programmed 

calculations and produce a result. NCSs have their own environment and programming language that 

allow users to use both the tools and functions already existing in the program (simple operations such 

as addition or subtraction to complex ones such as solving integrals or differential equations) and to 

create new functions (specific and personalised programming). 

There are many NCSs applicable to water engineering and therefore to drought management. By way 

of example, among the most widely used are MATLAB from the company MathWorks, Phyton, R, C++, 

among others. Each of them is oriented and specialised in solving problems with specific numerical 

bases. This manual uses R in its most user-friendly environment RStudio, which is specialised in 

statistical computing and graphics creation. 

5.2.1. R and RStudio 

R is a free, open source and free programming environment conceptualised for statistical data processing 

and analysis (Durán, 2000). It consists of a set of very flexible tools that can be easily extended by means 

of freely available packages and libraries or by programming its own functions. 

R packages are collections of functions and toolkits developed by the user community. They increase 

the potential of R by improving the existing base functionalities and adding new ones. The thousands of 

packages that exist are found in repositories (CRAN) from which their user manuals, architecture and 
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conceptualisation can be downloaded. CRAN (Comprehensive R Archive Network) is the official 

website of the software, which offers different resources for the use of the programme: user manuals, 

online courses, general information, package downloads, information on installed packages, etc. 

To install R, download the installer according to the operating system to be used from its official website 

(https://cran.rstudio.com/). In addition, it is advisable to install RStudio (RStudio Team, 2016), a more 

user-friendly environment that allows computational processes based on the R language. The free 

version can be downloaded from the programme's website 

(https://www.rstudio.com/products/rstudio/download/). 

RStudio is an integrated development environment (IDE) for the R programming language, dedicated 

to statistical and graphical computing. It includes a console, syntax editor supporting code execution, as 

well as tools for plotting, debugging and workspace management. It consists of 4 windows (Fig. 6.5): 

Top left window: this is the syntax editor; this is the place where we edit the syntax for later execution. 

Nothing will happen when you write there unless you press a button to execute the commands. This is 

the window where new scripts are written and where the scripts given in this manual will be opened. 

Upper right window: this is the working environment of the programme, where the data set and the 

objects (results, variables, graphs, etc.) that are stored when running different analyses are shown. Lower 

right window: it has several sub-tabs: (i) the “Files” tab allows viewing the history of files worked with 

the programme; (ii) the “Plots” tab allows viewing the graphics generated; (iii) the "Packages" tab allows 

viewing the packages downloaded and saved on the hard disk, as well as managing their installation or 

update; (iv) the “Help” tab permits accessing the CRAN; (v) the "Viewer" tab shows the results when 

building reports. Lower left window: this is the console, corresponding to what would be the R software 

in its basic version. There, the software executes the operations performed from the syntax editor. 

 

Fig. 6.5 RStudio environment. 

Of the thousands of existing packages for R, there are several developed specifically for water resources 

and drought management (Slater et al., 2019). Some of the packages required in the scripts attached in 

the annexes are the "SPEI" package developed by Begueria and Vicente-Serrano, (2017), which contains 

functions that allow direct calculation of SPI and SPEI drought indices; the "ggplot2" package allows 

https://www.rstudio.com/products/rstudio/download/
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professional graphics, including the graphing of shapefiles and rasters; the "tmap" package allows the 

R user to manipulate geographic information, typically manipulated through GIS with R; among others. 

The scripts presented in this manual (ANNEXES: Scripts in R and RStudio for drought management) 

are analysed and developed step by step in Sections II and III. The specific information required for 

each of them is obtained from free databases. The scripts are written in a logical and orderly manner so 

that they can be used, replicated, manipulated, improved and complemented by the users of this 

document. 

As general information R allows working with all types of data: matrices, vectors, vector and raster 

geographic information, etc. Each file can be read and assigned a name (using the <- symbol). Different 

loops and existing algorithms (e.g., sine, cosine functions) can be created. Graphs can be generated and 

viewed in the viewer and exported to any storage folder on the computer in different formats (.pdf, .jpg, 

.png, etc.). The following manual is recommended to get started with R programming: R for Beginners 

(Ahumada, 2003). However, there are hundreds of online manuals and blogs that can be used as a source 

of guidance. 

6. Global databases 

As stated above, optimal drought management requires time series of hydrometeorological data for each 

component of the water cycle. These data must be of long duration (at least 30 years) and have been 

measured with sufficient distribution over the natural territory (one meteorological station every 

250km2). However, measuring these variables under these conditions is a complex task. The main reason 

is often their high cost of installation and maintenance, so that in many areas of the world the availability 

of data is extremely limited. 

To obtain data such as precipitation, soil moisture, flow rates, etc., several institutions have developed 

global databases in which they offer such time series of hydrological and climatic interest openly and at 

no charge. These products are based on measured point data that have been interpolated, developed, and 

obtained using statistical techniques, global climate and hydrological models, and remote sensing 

products from satellite radars. 

In addition to specific databases for water and drought management, alternatives are presented to obtain 

the geographic information necessary for the representation of hydrological variables, maps, and results. 

These data are vector files corresponding to the administrative boundaries of countries and the 

boundaries of the main river basins worldwide. There are hundreds of sources of geographic data, 

products offered by governmental, environmental, and other organisations, which offer this type of 

information free and openly. You can also find raster files with topographic and climatic information, 

among others. 

6.1. Complementary databases 

Vector files (shapefiles) of georeferenced country or river basin boundaries are downloaded from the 

public geographic databases GADM and FAO (Food and Agricultural Organization). GADM is a high-

resolution database of the administrative areas of the entire world, which provides for all countries, all 

administrative levels and at any time-period. GADM created the spatial data for many countries from 

spatial databases provided by national governments, NGOs, and/or from maps and lists of names 

available on the Internet. The database is available in several export formats, including the shapefiles 

used in most GIS applications. These files can also be used with the R data analysis language. The 

shapefiles delimit areas for data download and analysis, as well as being necessary for the creation of 

descriptive data graphics including geographic maps. The web address is https://gadm.org/. It has a very 

intuitive environment where within the "Data" tab it is possible to choose the country of interest and 
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download the vector files distributed in levels from 0 to 5 where 0 is the national limit and 5 is the 

smallest division that each country has (not all of them have 5 levels) 

FAO's “GeoNetwork” section offers a wide variety of interactive maps, GIS datasets, satellite imagery 

and applications related to its work. It provides a wide range of basic global spatial information 

developed to support decision making, promote multidisciplinary approaches to sustainable 

development, and improve understanding of the benefits of geographic information. GeoNetwork is an 

open data source that allows easy sharing of geographically referenced thematic information between 

different organisations. The web address is http://www.fao.org/geonetwork/srv/en/main.home; where 

from the "Hydrology and Water Resources" tab it is possible to obtain geo-referenced vector files 

corresponding to the boundaries of river basins around the world at different levels (basins and sub-

basins), riverbeds and others. 

6.2. Databases of hydrometeorological variables 

6.2.1. Types of databases 

This manual explains how to download, extract and apply time series of the following variables: 

precipitation in mm/month, mean temperature in ˚C per month, ETP in mm/month and ETr in 

mm/month. In addition to the monthly drought indices VCI, TCI and VHI. Each of these variables is 

measured or estimated differently, therefore, the databases that provide these products come from 

different sources. In general, existing data are obtained from 4 techniques: from in situ measurements, 

data obtained from satellite measurements, data modelled numerically using algorithms and data 

generated from reanalysis techniques. Some databases integrate these techniques to improve the 

accuracy of their products. 

The traditional way of measuring precipitation and temperature (the most common and basic variables) 

is using rain gauges and thermometers. Each of these stations is located at a specific point on the 

territory. In recent years these variables have also been estimated through remote sensing from infrared 

radars from satellites orbiting the Earth. This last methodology is the mechanism by which the variables 

from which the VCI, TCI and VHI agricultural drought indices are derived are estimated.  

ETr and ETP, soil moisture and flow rates (runoff) are other important variables in the water cycle and 

thus for drought studies. Measuring these requires lysimeters, drilling in the ground and flow 

measurement stations at various locations in the watercourse. However, these methods are often costly 

to install and maintain, making these variables less common to measure, especially in countries and 

regions with socio-economic limitations.  The most common solution to obtain these data is through 

global (large scale) or local (point scale) hydrological/climate models. The models use measured input 

variables (precipitation and temperature) to estimate missing variables. Another form of estimation is 

through mathematical and statistical formulations based on empirical relationships between measured 

and estimated variables. A clear example is the calculation of ETP using formulations such as 

Thornthwaite's Thornthwaite, 1948) which estimates ETP based on temperature and precipitation. 

The great variety of methodologies for estimating hydrological variables leads to the existence of 

different databases, generally belonging to large scientific institutions (NASA, Universities, 

governments, etc.). The products measured in the traditional way (through insitu measurement stations) 

are usually intermittent (with gaps) and contain errors resulting from the measurement process. In 

addition, the global coverage is very variable in different parts of the world. To overcome this limitation, 

institutions have automated the analysis of various point data and calculated a distribution of these 

values in space with the use of interpolation models, downscaling methods, and reanalysis techniques. 

The application of these approaches has been supported by data obtained from numerical models and 

satellite measurements. 
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Depending on the database, various download formats are available. Although generally, when dealing 

with time-varying parameters, spatial and temporal information is unified in a single file. This union is 

performed in layers, as a 3-dimensional matrix (or multi-matrix). For example, a single file may contain 

a grid of precipitation data for the month of January, another grid of data for the month of February, 

another for the month of March, etc., with 12 grids (corresponding to the 12 months of a year) being 

stored one after the other. The grids of the mesh are associated with a value (precipitation, temperature, 

etc.) comparable to that of a station located at the centroid of each grid, so that several cells can be 

aggregated within an area or region to form a single average time series. 

Due to the large amount of information available in each database, the files containing the data are 

typically fragmented into several files corresponding to each year, month, or part of the territory. 

Although there are several types of files, the most common ones we will encounter and the ones we will 

mostly use in this manual are the “netCDF” (network common data form). This is a file format intended 

to store multidimensional scientific data (in this case variables of hydrological interest). Each of these 

variables can be displayed in one dimension (e.g., time). These files (common extension: .NC) are 

comparable to raster files and are managed with the R package "ncdf4". 

For other extensions, however, it is necessary to extract a particular layer and convert it to the desired 

format (by trimming the information corresponding to the study area), requiring the use of specific 

algorithms. The processing of the products requires consulting the specific documentation of each 

database in order to know how to explore the different layers of information. Database managers tend 

increasingly to facilitate this task and even publish file reading codes.  

In this manual we will focus on historical data, however, there are several databases that offer 

hydrological variables projected up to the year 2100, which can be obtained in a similar way. These 

projections are supported by global climate models that, based on historical measurements, project 

estimates according to different human actions in the context of climate change. As an example, the 

Climate Change Knowledge Portal (https://climateknowledgeportal.worldbank.org/download-data) 

offers a wide set of variables of hydrological interest that can be downloaded and used in a similar way 

to what will be explained in chapters 2 and 3 for future periods. 

In the following, the databases from which the hydrological variables will be obtained are presented. It 

is explained where the information comes from, which variables and at which temporal and spatial scales 

they are offered. 

6.2.2. CHIRPS 

CHIRPS es el acrónimo de Estimación de las precipitaciones a partir de observaciones de pluviómetros 

y satélites (Rainfall Estimates from Rain Gauge and Satellite Observations). CHIRPS, de la Universidad 

de California en Santa Barbara (Funk et al., 2015) ofrece series de precipitación diaria y mensual a una 

escala de 0.05° (≈ 5.6km en el ecuador) desde 1981. Los productos parten de mediciones de 

observaciones satelitales de la NOAA (National Oceanic and Atmospheric Administration) y la NASA 

(National Aeronautics and Space Administration). Posteriormente son calibrados y validados a partir de 

un gran número de estaciones pluviométricas ubicadas en toda la superficie terrestre. 

CHIRPS is the acronym for Rainfall Estimates from Rain Gauge and Satellite Observations. CHIRPS 

from the University of California, Santa Barbara (Funk et al., 2015) provides daily and monthly 

precipitation series at a scale of 0.05° (≈ 5.6km at the equator) since 1981. The products are based on 

measurements from NOAA (National Oceanic and Atmospheric Administration) and NASA (National 

Aeronautics and Space Administration) satellite observations. They are then calibrated and validated 

from a large number of rainfall stations located all over the earth's surface. 

Version V2.0 (https://www.chc.ucsb.edu/data/chirps) is used here. Its spatial accuracy motivates the use 

of this database in hydrological studies and drought management as it is particularly useful in small area 

or catchment studies and can be aggregated to any surface area (e.g., K. Wang, Li, y Wei 2019). 
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Although the scope is stated to be global, data are only available for the area within 50° north and south 

of the equatorial plane. Updates are provided on a weekly basis, allowing for near real-time monitoring. 

6.2.3. TerraClimate 

TerraClimate (http://www.climatologylab.org/terraclimate.html) from the Climatology Lab at the 

University of Idaho has provided several monthly-scale products since 1958 (Abatzoglou et al., 2018). 

Using interpolation, downscaling and reanalysis techniques they have created grids at a spatial 

resolution of 1/24° (≈ 4.6 km at the equator) of precipitation, temperature (maximum and minimum), 

vapour pressure, wind speed and surface shortwave radiation data over the globe. With this information 

using the Thornthwaite-Mather global water balance model (WBM) (Willmott et al., 1985), ETP 

(following the Penman-Montieth formulation), flow or runoff, ETr, water deficit (D), soil moisture and 

snow water equivalent in each cell have been derived. 

The updating of variables is carried out every year, so its use as a source of data for short-term 

monitoring is not possible. However, due to its high spatial resolution it can be used in the analysis of 

droughts or water balances in regions of all sizes. Here precipitation, mean temperature (derived from 

maximum and minimum temperature) and water deficit will be downloaded and processed. 

6.2.4. NOAA STAR 

El Center for Satellite Applications and Research (STAR) y la National Oceanic and Atmospheric 

Administration (NOAA) de la NASA proporcionan distintos productos de sensores satelitales globales 

relacionados con la vegetación (Kogan, 1995). Las principales variables son el NDVI y BT (Kogan, 

1997), del que se puede derivar el VCI, el TCI y VHI que también se ofrecen ya computados. Estos 

productos se han usado en varios estudios relacionados a contenido de agua en el suelo, rendimientos 

agrícolas y sequías, entre otros (e.g., Agutu et al. 2017; Bento et al. 2018). 

Los datos se pueden descargar libremente a una resolución espacial de malla de 4x4 km y una resolución 

temporal semanal, desde 1983 hasta el presente desde 

https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php. Sus actualizaciones se realizan cada 

una o dos semanas, permitiendo tener una monitorización en tiempo casi instantánea. Nosotros 

descargaremos los índices el VCI, el TCI y VHI semanales y los agregaremos a escala mensual. 

The Center for Satellite Applications and Research (STAR) and NASA's National Oceanic and 

Atmospheric Administration (NOAA) provide several global satellite sensor products related to 

vegetation (Kogan, 1995). The main variables are NDVI and BT (Kogan, 1997), from which VCI, TCI 

and VHI can be derived and are also available already computed. These products have been used in 

several studies related to soil water content, agricultural yields and droughts, among others (e.g., Agutu 

et al. 2017; Bento et al. 2018). 

Data can be freely downloaded at 4x4 km grid spatial resolution and weekly temporal resolution, from 

1983 to the present from https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php. It is updated 

every one to two weeks, allowing for near real-time monitoring. We will download the weekly VCI, 

TCI and VHI indices and aggregate them on a monthly scale. 

7. Specific objectives: 

After a brief introduction to the concepts associated with drought management and a description of the 

relevant databases, the following specific objectives will be followed in Sections II and III: 

a) Download and plot vector files with the boundaries of Mozambique and the Licungo river 

basin. 

http://www.noaa.gov/
https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php
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b) Download and plot monthly rainfall data from CHIRPS, obtain them within Mozambique 

and plot their annual averages. Calculate SPI and plot its characteristics. 

c) Download weekly VCI, TCI and VHI data from NOAA STAR, obtain them within 

Mozambique, aggregate them on a monthly scale and plot their development during an event of interest. 

d) Download monthly precipitation, ETr and ETP data from TerraClimate, obtain the data within 

the Licungo river basin, calculate monthly water balance and deficit and plot their annual averages. 

Calculate the SPEI and tabulate its characteristics. 

e) Plot the drought/non-drought status based on the SPI in Mozambique. 

f) Plot the area affected by drought according to SPEI in the Licungo river basin. 

g) Plot the spatial characteristics of droughts in Mozambique. 

To achieve each of these objectives, 3 scripts are presented in the ANNEXES, which are explained step 

by step in Sections II and III. 

8. Following up on the manual 

The working environment is designed for the Windows operating system. To follow the manual, it is 

necessary to install R and RStudio, from where the steps detailed in Sections II and III can be followed 

according to the scripts provided in the annexes, which are organised as follows: 

a) ANNEX I presents the code necessary to extract the information from the different databases. 

In a destination directory, the data will be saved, sorted and ready for use. 

b) ANNEX II contains the necessary tools to read the downloaded and sorted information 

obtained in Annex I and use it both to characterise droughts through indices and to perform water 

balances. 

c) ANNEX III presents the scripts needed to read the information generated in Annexes I and 

II, plot it and export it in different formats. 

At the beginning of each script, the packages that must be downloaded (only once per CPU used) and 

activated (each time a new RStudio session is opened) to use these codes are detailed. R has internal 

functions that allow you to download and activate packages directly from the working environment. To 

use the codes it is necessary to open a new "R Script" file in RStudio and copy the codes from the 

annexes. To execute each line of code it is necessary to position yourself at the beginning of each line 

and press the "run" option at the top right of the work window. Both in the manual and in the code, the 

step-by-step instructions are specified. 

Within each script there are several sections corresponding to each of the subsections of the Manual 

(packages are required for all the code). If you wanted to follow a single process of downloading data, 

calculating indices and graphs for any region you could copy each required part of the 3 scripts presented 

and put them in order in a new file. This manual is intended to be a guide from which you can expand 

and modify its contents. As you go through the manual you will find similar steps, which will be 

explained in detail the first time they appear. 

The vector files (.shp) for Mozambique and the Licungo river basin need to be downloaded from GADM 

and FAO and saved in a folder within Windows Explorer. The folder in the scripts is named 

"Layer_Mozambique", and each of the shapefiles "mozambique.shp" and "basin_Licungo.shp". 

However, the names of the folders and the files can be changed according to the user's taste.. 
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Section II: Data collection   

9. Study area 

This section follows the graphics script in which we simply check that the files containing the boundaries 

of interest are correctly located geographically. This requires a shapefile of all the countries of the world 

downloaded from the GADM (https://gadm.org/download_world.html). 

1) The necessary packages are installed and loaded. Some functions of these packages are used, 

however, to learn more about them or about all the functions offered by the packages, the 

manuals provided by the programmers of these packages can be searched in CRAN. 

 

2) The shapefiles of Mozambique and the Lacungo river basin are read, the names mz and cl have 

been assigned respectively. The file with the boundaries of all the countries of the world is also 

read. Note the address where the file is located and the direction of the slanting line ("/"). 

 

3) The shapefiles are plotted in a simple way to check that the files I have uploaded are correct. 

The results are displayed in the viewer. 
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4) The files of interest are plotted and imported as .pdf and .png to a folder where they are checked 

for their appropriate geographical location. Take into account the folder address and the 

direction of the slanted line. In this case the files are checked to ensure that they correspond to 

the required boundaries. 

 

 

Fig. 6.6 Location and representation of the boundaries of Mozambique and the Licungo river basin. 

In case the files require projection changes on the globe or are not correctly located, GIS software should 

be used to fix the errors. 
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10. Precipitation: CHIRPS 

In this section the files containing the precipitation data are downloaded from the CHIRPS website. The 

monthly data is then obtained for all pixels within Mozambique. The data are aggregated on an annual 

scale and plotted in a simple and elegant manner with high quality. The steps to follow are: 

1) From the CHIRPS website https://data.chc.ucsb.edu/products/CHIRPS-

2.0/global_monthly/netcdf/ download the file: chirps-v2.0.monthly.nc. This file weighs about 

6Gb and contains the global monthly precipitation data since 1981. It is stored in a known folder. 

From this web page, you can download other files such as daily, quarterly, and other precipitation 

data. 

 

2) The necessary packages are installed and loaded. 

3) Mozambique shapefile is read, named mz. 

4) The file chirps-v2.0.monthly.nc. is read following the script (variable called "chi" that can be 

changed to whatever is desired).  

 

5) The variable "chi" is displayed in the console by means of the print function, which allows to see 

the characteristics of the file. Here all the necessary information is extracted to understand how 

the files are stored and thus extract them in the area of interest correctly. This step will be 

common for all files with .nc extension. 

The first section shows the number of variables contained in the file. In this case it contains a single 

variable called "precip" which stores its data in a three-dimensional array based on longitude, latitude, 

and time. The unit of each data is mm/month, the monthly time step and for a cell with missing data a 

value of -9999 is assigned: 

 

The next section reports the characteristics of the dimensions in which the file stores the information. 

In this case it divides the world in longitudinal direction into 7000 parts from the east and in 



 Chapter 6 

139 
 

latitudinal direction into 2000 parts from the north. These matrices exist for 468 time steps (months) 

which are denoted by a number of days since 1 January 1980 (i.e. the number 29 refers to 29 January 

1980). 

 

Finally, the file contains several attributes relating to the source of information. In this case, there 

are 15 attributes including the version, the title, a contact email to the creator, the date of update, 

developer institution, etc. 

 

6) The variable "time" is extracted from the file "chi" to create a vector with the dates to which each 

time step belongs. Additional year and month vectors are generated in numerical form. 

 

7) At the end of the information analysis and extraction of the dates to which the data belong, the 

file is closed. It is recommended not to leave it open as these variables normally use a large 

amount of memory space on the disk, which may slow down the programme or prevent the 

creation of new variables. 

 

8) The precipitation data is extracted. Here the CHIRPS file is opened again with the particularity 

of reading directly the variable "precip" that was previously analysed. The variable that was 

assigned this information is examined for class and mode, in which it is checked that it is type 

"RasterBrick" and "S4" that corresponds to raster information. 

 

9) As the dimension of each raster has 468-time steps, one of them (the first one in the script) is 

extracted to analyse its composition. When extracting this information, its dimension is verified. 
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In addition, it is plotted first on its own and then with the shapefile of the area of interest 

(Mozambique) to check that it is correctly georeferenced. 

 

In the viewer something like this is obtained: 

 

Where the correct spatial coincidence of the raster precipitation information with the "mz" shapefile can 

be confirmed. It can also be seen how the global precipitation for this particular time step (January 1981) 

varies from 0 to just over 1400 mm.. 

10) Once the location of the raster information has been checked against the shapefiles, only the data 

within the Mozambican area is extracted. The procedure is carried out in three steps: 

 

The graph allows to check that the data were correctly extracted: 

 

11) The coordinates of each pixel with precipitation information within the Mozambique shapefile 

are extracted. Follow the steps in the script and get a matrix with two columns of ordered pairs 

as longitude and latitude. 
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To find out how many pixels there are, the function dim (26868 pixels) is used, and plotted to see in the 

viewer if the ordered pairs were extracted correctly: 

 

This matrix (called coordinates) is saved in a folder of interest in .txt format. This file is very 

important as it contains the location of the cells contained in the shapefile of interest and the order 

in which it is saved should not be changed later (next step). 

 

12) During the coordinate extraction process (using the "extract" function), in addition to the 

coordinates, the precipitation data associated with each coordinate is extracted. In this step a loop 

is executed where "i" varies from 1 to the number of time iterations contained in the "precip" 

file. The data extraction process is repeated for each of the time steps and stored in a matrix. This 

process takes time depending on the number of pixels, i.e., the size of the region under study. At 

the end of the loop its dimension is checked, which should have one row of data for each time 

step and a column from left to right corresponding to the coordinate series sorted from top to 

bottom of the previous step. It is very important to keep the co-ordinate file and the precipitation 

data file together, as their order is essential for the correct use of the data. 

 

13) The monthly data series are stored in .RDS format, which is an RStudio compatible format that 

is more efficient than text when the matrices are large. The matrix can be reloaded (function 
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"readRDS") and with the use of the "head" function the upper left composition of the matrix data 

is observed, and the correct storage of the data is checked.: 

 

14) Monthly data is aggregated to annual data by means of a loop. The code filters the information 

for each pixel associated with each year (12 months), sums it and accumulates it in a new matrix. 

This new matrix will have dimensions of number of years per number of pixels. This new 

variable is saved as an .RDS or .txt file. 

 

15) From the annual data matrix the mean annual precipitation can be estimated for each pixel. It is 

computed by generating a 3-column matrix. The first two with the ordered pair of coordinates to 

which each data belongs and a third one with the vector resulting from averaging the annual 

precipitation. This file is saved in a folder of preference. 

 

16) To plot the annual mean precipitation in an elegant and professional way, the file with this 

information is opened. The matrix is converted into a raster (see code with the functions used), 

and the "levelplot" function is used to generate a high quality graph. The colour range, the values 

shown in the legend, whether or not to show geographic quadrants, frames, etc. can be 

manipulated. This plot can be saved in any desired format. 
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The result of this graphic will look like this, which also includes the shapefile of the Licungo river basin: 

 

11. Vegetation indices from NOAA STAR 

In this section the VCI, TCI and VHI drought indices are downloaded for Mozambique from NOAA 

STAR. The process can be applied to other products such as NDVI or BT. A different data download 

strategy than the one used from CHIRPS is used. The data series come on a weekly scale, so they are 

aggregated on a monthly scale to be comparable with precipitation or other drought indices. The monthly 

state is plotted for 6 consecutive months to analyse its change. 

1) The files containing the NOAA STAR products are downloaded from the website: 

https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php. The following information 

can be found there: 
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Where, it is specified that the products are stored in 3 NetCDF files (extension .NC). It is indicated 

which files contain the various data available and there is access to a user manual which is recommended 

for review. Therefore, the "VH files" containing the VCI, TCI and VHI indexes are required here. Click 

on the link of interest to download data at a scale of 4km: 

 

All VH files are downloaded one by one and saved in a preferred folder. Each of these files presents the 

VCI, VHI and TCI index series worldwide at a 4km scale for each week since 1981. Being a very small 

grid, NOAA STARR has decided to provide one file for each week. Although there are programming 

mechanisms to download directly, in this manual we will do it manually. 

Additionally, in the folder where we save the files (1946 files from week 35 of 1981 to week 52 of 

2019), a text file (.txt) containing the names of each of the downloaded files is required. 
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2) Once in RStudio, the necessary packages are installed and loaded. 

3) The Mozambique shapefile, assigned with the name mz, is read.  

4) The file containing the names of the VH files is read. Data on the area of interest is extracted 

from each of them. 

 

5) As with the CHIRPS data files, one of the VH files is loaded and printed to view its 

configuration. Here the list of file names in .txt is used to read the files. 

 

The first thing to note is the number of variables contained in each of these files: 

 

Of the 4 variables or products, the VCI, TCI and VHI are identified by the same name and come with a 

configuration that depends on the variables "WIDTH" and "HEIGHT". They vary from 0 to 100 and are 

located on the Cartesian system. 
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The next thing that can be seen is the size of the dimensions "WIDTH" and "HEIGHT". This means that 

each matrix containing each variable has 10000 x 3616 cells. Furthermore, you can see that it has no 

dimensions, this means that it is not possible to directly extract the data using the strategy used in 

CHIRPS. What is done in these cases is explained below. 

 

 

Finally, various other attributes of the file are displayed, such as the measuring instrument, the satellite, 

the date on which the data collection mission took place, the year and the week to which the data 

contained therein correspond, among others. Relevant data are the range in which each pixel is 

geographically located. 

6) In this step the VCI values are extracted as an example from this file. This is done to observe 

its composition and to know how to treat the data later. We store in a variable (vci in this case) 

the matrix of dimension 10000 x 3616 (we check it with the function "dim"). We also check the 

class and mode of the variable, which should be an array with numeric values. 

 

7) Once the inspection of the data is finished, two vectors are created: one for longitude and latitude 

corresponding to the dimensions "WIDTH" and "HEIGHT". Since they are not georeferenced, 

they are created manually using the information extracted in step 5. 
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8) The longitudinal and latitudinal coordinates of all the pixels that conform the database are 

delimited according to the limits that mark a rectangle containing the shapefile of interest. In 

this way the matrix containing the coordinates from which the coordinates contained in the 

shapefile of interest will be extracted will not be excessively large. The longitudinal and 

latitudinal limits used are those shown in Fig. 6.6. 

 

9) Using the longitude and latitude vectors already delimited to the shapefile boundaries (lon_b 

and lat_b), a matrix is created with the ordered pairs corresponding to all the coordinates 

contained in the proposed boundaries. This matrix is then plotted and superimposed on the 

shapefile of interest so that it can be visually checked that the coordinates created cover the 

whole territory of interest. 
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10) The next step is to extract the coordinates contained in the shapefile.  This can be done using a 

GIS or directly in R, which is how it is done here. First, the coordinate matrix is transformed to 

a spatial class file (points with geographic information) where the projection must be defined, 

in this case the WGS84 geographic projection is used. Then, the coordinates contained in the 

shapefile of interest, in this case "mz", are extracted. Finally, the file is transformed again to a 

matrix with numerical data (without geographic information), the dimension of this file is 

checked, it is plotted to see if the operation has been performed correctly and the matrix is saved 

in a known folder. 

 

11) Since the variables to be extracted depend on the dimensions "WIDTH" and "HEIGHT", and 

these vary from 1 to 1000 and 1 to 3616, respectively, the position to which each coordinate 

contained in the shapefile corresponds is searched. For this search, the decimals of the 

coordinates of the target matrix (contained in mz) and those of the vectors containing all possible 

longitudes and latitudes are rounded. The result will be a matrix with a number of rows equal 

to the number of coordinates contained in mz and 2 columns corresponding to the positions of 

"WIDTH" and "HEIGHT", they have been named "lo1". 
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12) Se A loop is executed with a number of iterations equal to the number of weekly files to extract 

the information. Each iteration follows the order of the vector containing the file names, so care 

needs to be taken to correctly spell the name of the folders where the original .nc files are stored. 

The results will be 3 matrices, corresponding to the VCI, TCI and VHI values of all the cells 

contained in the shapefile. Their dimension will be the number of rows equal to the number of 

weeks with data and the number of columns equal to the number of pixels. It should be noted 

that the order of the coordinates from left to right is coincident with the order from top to bottom 

of the coordinates obtained in step 10. 

This step may take several hours, depending on the size of the region of interest. 

 

13) The created matrices are saved in .RDS format files. This type of file is recommended over .txt 

files as it compresses the information resulting in variables that are easier and faster to read in 
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RStudio. The matrices can be loaded again, the upper left composition of the data can be 

observed, and it is possible to check that the data storage was correct: 

 

14) The next step will be to aggregate the weekly data into monthly data by means of a loop. First 

the weekly data is read and any unusual values that may have been generated are replaced by 

NA. An NA is an unmeasured but operable value, while others such as NANs represent an error 

with which no calculations can be performed.  

 

The code filters the information of each pixel associated to the weeks of each month (12 months), 

averages it and saves it in a new matrix. This new matrix will have dimensions of number of months by 

number of pixels. This new variable is saved as an .RDS or .txt file. 



 Chapter 6 

151 
 

 

 

15) The last section shows how to generate several graphs corresponding to the state of a variable 

over the whole territory of interest, how to put them together in a matrix and export them. The 

monthly VHI is used as an example. The VHI matrix is converted into a raster (see code with 

the functions used), and the function "levelplot" is applied to generate a high quality graph. The 

process is repeated for 12 consecutive rows, corresponding to the months from October 1992 to 

September 1993, a period in which the development of a major drought in Mozambique can be 

observed. 
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Finally, to export the 12 generated graphs, the function "grid.arrange" is used, in which it is necessary 

to define how to arrange the graphs. Here a 2 x 6 matrix is defined. This array must be defined according 

to the desired size of the graph. The code needed to perform this step and the final result is: 
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12. Various: TerraClimate 

In this section precipitation, ETr and ETP data are downloaded from the TerraClimate database over the 

Licungo river basin. A mixed strategy between the two applied above will be used. The data series are 

on a monthly scale. Although only these three variables are shown, the process will be identical for all 

the products offered by this database. 

1) The TerraClimate files can be downloaded from the website: 

https://climate.northwestknowledge.net/TERRACLIMATE/index_directDownloads.php. The 

following information can be found there: 
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The variable of interest is chosen, and the required annual files are downloaded one by one. The data 

extraction from 1958 to 2019 is shown here. The files are saved in a folder of interest. The names of the 

files vary only in the number of the year to which they correspond. 

 

2) The necessary packages are installed and loaded. 

3) The shapefile of the Licungo river basin, assigned with the name cl, is read. 

4) As with the other sources of data, a file is read and its composition is analysed.  

5) The characteristics of the file are displayed in the console by applying the "print" function to 

the variable "aux". As for any .nc file, all the necessary information is analysed to understand 

how the files are stored and to extract them in the area of interest correctly.  

The first section shows the number of variables contained in the file. In this case it contains a single 

variable called "ppt" which stores its data in a three-dimensional array based on longitude, latitude 

and time. The unit of each data is mm and the time step is monthly: 
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The next section reports the characteristics of the dimensions in which the file stores the information. 

In this case it divides the world in longitudinal direction into 8640 parts from the east and in 

latitudinal direction into 4320 parts from the north. These matrices contain 12 time steps (months) 

which are denoted by a number of days since 1 January 1900 (i.e. the number 29 refers to 29 January 

1900). The variable "crs" indicates the projection with which the data is stored.  

 

Finally, the file contains several attributes relating to the information source. 

6) The next step is to analyse the variables contained in each of the annual files. The precipitation 

information is extracted as an example. Here the TerraClimate file is read again with the 

particularity of reading directly the "ppt" data that was previously analysed. This variable is 

examined for class and mode, where it is checked for "RasterBrick" and "S4" which corresponds 

to raster information. As it is known that the dimension of each world raster contains 12-time 

steps, one of them (the first one in the script) is extracted to analyse its composition. When 

extracting this information, its dimension is verified, which must be of 2 dimensions with values 

equal to the number of longitudinal and latitudinal divisions in which the database offers its 

products.  
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To check the location of the information and the shapefile of interest, the raster "precip_1" is plotted 

with the shapefile of the area of interest (Licungo river basin). In the viewer something like this is 

obtained: 

 

7) Once it has been verified that the raster information is correctly georeferenced, only the data 

within the area of interest is extracted, following similar steps to those used in the extraction of 

data from CHIRPS. The procedure is performed in three steps: 

 

 

8) The coordinates of each pixel with precipitation information within the shapefile of the Licungo 

river basin are extracted. Following the steps of the script, a matrix with two columns of ordered 

longitude and latitude pairs is obtained. Using the dim function, the number of cells contained 
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in the area (1119 pixels) is obtained, and plotted to check in the viewer if the ordered pairs are 

correct: 

 

This matrix (called coordinates) is saved in a folder of interest in .txt format. This file is very 

important as it contains the location of the cells inside the shapefile of interest and the order in which 

it is saved should not be changed later (step 10). 

 

9) Since each .nc file has 12 raster files containing the variable information for each month, a 

vector of dates, years and months corresponding to the period of interest is created. All files 

from 1958 to 2019 are downloaded here. 

 

10) A loop is executed with a number of iterations equal to the number of annual files we want to 

extract the information. The variable "k" varies according to the year corresponding to each file, 

so each iteration will follow the annual order of the files according to their names. Care shall be 

taken to correctly spell the name of the folders where the original .nc files are stored. In each 

iteration of the loop, the composition of the data in each file is checked and the variable 

information within the shapefile of interest is stored in a matrix. The result will be 3 matrices, 

corresponding to the precipitation, ETP and ETr values of all the pixels contained in the 

shapefile. The dimension of each matrix will be a number of rows equal to the number of months 

with data and a number of columns equal to the number of pixels. Note that the order of the 

coordinates from left to right is coincident with the order of the coordinates from top to bottom 

obtained in step 8. 

This step may take several hours, depending on the size of the region of interest. 
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11) To the three matrices that contain data, the 3 vectors of dates, years and months are added and 

saved in .RDS format.  

 

In the console the results of applying the head function to the three matrices can be observed, where the 

final composition of the matrices can be seen and checked. 
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13. Solution to unify spatial scales: 

This section will explain simple solutions in the case of requiring two variables to have exactly the same 

coordinates. Two options are analysed, the first one will be the case of requiring a single time series 

representative of a specific area; and the other one when all the variables, even if they come from 

different databases, need to have the same number of pixels. 

To exemplify these cases, the precipitation series and the monthly VHI obtained for Mozambique from 

CHIRPS and NOAA STAR are used. The following graph shows a 60 x 60 km random area zoom within 

Mozambique, where the blue dots indicate NOAA STAR coordinates and the red triangles indicate 

CHIRPS coordinates. 

 

1) Coordinates are read from the CHIRPS and NOAA STAR databases. As example variables, 

precipitation and VHI are also read. The dimensions of the coordinates are different between 

the two databases since the pixel size is different. 
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2) In this step the precipitation values for the whole of Mozambique are averaged. Following the 

code, a matrix is obtained with the same number of rows (corresponding to the number of 

months), and only columns corresponding to the dates and the average rainfall of the whole 

country. In order to average several sub-sections of the country, it would be necessary to filter 

the coordinates of interest and use the same function. This work is not shown here but can be 

done using various tools shown in the manual. 

 

 

3) From this section onwards, an artifice to obtain data of one variable in the coordinates of another 

database will be explained. There are many techniques that can be used such as linear or bilinear 

interpolation. However, when the grid cell size is relatively small compared to the area of 

interest, this process does not generate significant accuracy, but it does demand a lot of time and 

computational effort. Here, the information (VHI) of the coordinate closest to the coordinate of 

interest (CHIRPS) will be searched and that vector of information will be assigned to the 

CHIRPS coordinate. As an example, first a matrix of target coordinates is defined, in this case 

the CHIRPS coordinates, and the matrix with initial coordinates, which will be the NOAA 

STAR coordinates. The minimum distance "d" from the first initial coordinate to all the target 

coordinates is calculated, then the position of the smallest distance will be the position of the 

initial coordinate from which the information will be extracted. 

 

The target and initial coordinates are displayed on the console. It can be seen that they are very close in 

latitude and longitude. 
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4) This process is repeated for all initial coordinates (VHI) with a loop varying from the first to the 

last coordinate. At each step, the VHI vector belonging to the closest coordinate is extracted and 

stored in a new matrix. This matrix (called "di1") shall have the same initial number of rows as 

the VHI data, but shall have the same number of columns as the number of CHIRPS coordinates. 

The order of the CHIRPS coordinates from top to bottom indicates the order of VHI vectors 

from left to right. Finally, the matrix is saved in a known folder in .RDS format. 

 

5) With the aim of comparing the new version of VHI data with the original, both databases are 

plotted for a random date (sep/2019 in this case). The process is followed to plot the raster in 

space following the code. The result will be: 

 

The original resolution of the VHI data is finer than that of CHIRPS. However, the spatial distribution 

of the information has not decreased in significant detail. 
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Section III: Drought management applications 

14. Water balance applications 

This section is aimed at the calculation and representation in maps of the dry months (eq. 3), the water 

deficit (eq. 4) and the volume of available water (eq. 5) over the Licungo river basin. Precipitation, ETr 

and ETP variables extracted from TerraClimate will be used. Three different applications are shown that 

could be used in other ways according to the needs of the users. 

1) The necessary packages are installed and loaded. 

2) The shapefile of the Licungo river basin is read, it has been assigned the name cl. 

3) The file with the TerraClimate coordinates that are within the Licungo river basin is read. 

 

4) The files needed for the calculations are read, these are the precipitation, ETP and ETr matrices. 

Their dimensions and composition are checked. 

 

5) The months with deficit or super-habit in each of the cells are calculated by subtracting the ETP 

matrix from the precipitation matrix. This variable is called "dry". 

 

6) The volume of available water per cell is calculated by subtracting the ETr matrix from the 

precipitation matrix. This variable is called "available". 

 

7) The water deficit per cell is calculated by subtracting the ETr matrix from the ETP matrix. This 

variable is called "deficit". 

 

8) The three resulting matrices are checked for dimensions that must match the original 

precipitation, ETP and ETr matrices, and saved as .RDS files. 
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9) With the matrix of dry months, the percentage of time (number of months within the period of 

analysis) with dry months is calculated. The corresponding coordinates are added to this vector 

and the matrix is saved in a known folder. As always, the dimension and composition of the 

variable is checked before saving. 

 

 

10) To the available water matrix, filter the data corresponding to each month (January, February, 

etc.) and average all the values (of 62 years in this case). The 12 vectors are added, one for each 

month, with their respective coordinates and the matrices are stored in a known folder. The 

dimension and composition of the variable is checked before saving. 
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11) The deficit matrix is transformed from mm/month to km3. For this procedure, an area per cell 

is calculated, using the cell size to which each pixel corresponds, in the case of TerraClimate it 

is ≈ 21.43 km2. Subsequently, the average of all cells is calculated and a vector in km3 of the 

average deficit in each of the monthly time steps is obtained. The corresponding coordinates are 

added to this vector and the final matrix is stored. The dimension and composition of the 

variable is checked before saving. 

 

 

12) For graphing, the shapefile of the Licungo river basin and the matrices of percentage of dry 

months, available water, and deficit in km3 are read. 

 

13) The plotting steps used previously (in the example of step 16 in section 10) are followed to plot 

the dry months percentage and deficit km3 matrices. The result should look something like this: 
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14) Following the steps of the graphs defined for the VHI (in the example of step 15 of section 11), 

the average monthly volumes in km3 for each month in the Licungo river basin are plotted. The 

result should look something like this: 
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15. Calculation and application of SPI and SPEI drought indices 

In this part, the calculation of the SPI and SPEI drought indices is explained step by step. The CHIRPS 

precipitation data obtained over Mozambique will be used for SPI, and the precipitation minus ETP (dry 

and wet months) data from TerraClimate over the Licungo river basin will be used for SPEI. The process 

for computing a single time series in each case is shown first, and then for the entire matrix of pixels 

contained in the areas of interest. This section ends by showing two common and very useful 

applications of the indices. The first is the calculation of percentage of area affected by drought at each 

time step and the second, spatial plots where drought/non-drought states can be shown for a specific 

period. 

1) The necessary packages are installed and loaded. The main package is "SPEI", in which the 

necessary functions for the direct computation of SPI and SPEI have been programmed. 

2) The shapefiles of the Licungo and Mozambique river basin are read, they have been assigned 

with the name cl and mz respectively. 

3) The coordinates of the CHIRPS data located within Mozambique and of the TerraClimate data 

corresponding to the Licungo river basin are read. 

4) For a random vector of the CHIRPS precipitation matrix, understood as a monthly time series 

at a point within Mozambique, the SPI is calculated. First, a vector containing the time scales 

to be calculated is defined; here, as an example, the scales of 1, 3, 6 and 12 months have been 

considered. The result will be a vector of SPI-1, -3, -6 and -12 months corresponding to the 
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original precipitation vector. The 4 vectors are plotted to compare the difference, and the 

threshold of 0 and -1 (moderate drought) is delimited.  

 

 

 

5) For a random vector of the matrix of dry and wet months, understood as a monthly time series 

at a point within the Licungo river basin, the SPEI is calculated. As for the SPI, a vector 

containing the time scales to be calculated is first defined, here the scales of 1, 3, 6 and 12 

months have been proposed as an example. The result will be a vector of SPEIs at scales of -1, 

-3, -6 and -12 months corresponding to the vector of the original D deficit. The 4 vectors are 

plotted (not shown) to compare the difference, and the threshold of 0 and -1 (moderate drought) 

is delimited.  
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6) Using a loop that varies for all columns of the precipitation matrix (all time series of all 

coordinates), the same SPI calculation procedure is performed for each of them. The resulting 

matrices when following the code will be 4 (in this case), one for each time scale that the index 

has been calculated. Following the code will generate in a relatively short time (variable to the 

number of coordinates) matrices that should be of the same dimension as the original CHIRPS 

precipitation matrix. The matrices are saved as .RDS files in destination folders. 
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7) By means of a loop that varies for all the columns of the matrix of dry and wet months deficits, 

(D), the same SPEI calculation procedure is performed for each of them. The resulting matrices 

when following the code will be 4 (in this case), one for each time scale that the index has been 

calculated. Following the code will generate in a relatively short time (variable to the number 

of coordinates) matrices that should be of equal dimension to the deficit matrix. The matrices 

are saved as .RDS files in destination folders. 
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8) In this step the percentage area affected by drought is calculated. This is to quantify for each 

time step (each month) the number of pixels that are in drought and calculate their percentage 

against the total. A threshold is required according to the intensity of drought to be studied. In 

the example, moderate drought (values less than -1), severe drought (values less than -1.5) and 

severe drought (values less than -2) are used as threshold values. The final composition of the 

matrix that is saved is shown here. The SPI at a time scale of 6 months over Mozambique is 

used as an example. 
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9) The percentages are plotted as a time series following the code in ANNEX III. In this case the 

function "ggplot" is used. It is necessary to read the percentages of area affected by droughts, 

which are defined here as PAA. In case it is desired to display the time series without shading, 

step 4 can be applied.. 

 

The resulting graphic will look something like this: 
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10) In this step, the drought or non-drought status over Mozambique is calculated. This is to 

transform all values below a drought threshold as 1 and those above the threshold as 0. The SPI 

is used as an example for a time scale of 6 months over Mozambique and for a moderate drought 

intensity, i.e. a threshold SPI value of less than -1. 

 

11) Previously used graphing steps (the example of step 16 in section 10) are followed and adapted 

to plot drought or non-drought states. The objective is to show for a series of months the areas 

where droughts occur. As an example, the period from October 1992 to September 1993 is 

taken, when there was a major drought in Mozambique. The "ggplot" function is used to create 

graphs following the code, where titles, colours and other characteristics can be modified. 

Unlike the functions that have been used for other graphs (such as the use of the "levelplot" 

function), here it is necessary to transform the geographical information (mz shapefile) into a 

data matrix compatible with the "ggplot" method; this is done using the "fortify" function. 
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A graph is created for each month and saved as a PDF (or other file type). The result will look something 

like this: 
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16. Drought characterisation using SPI 

This section establishes a procedure for calculating the average characteristics of droughts. These 

characteristics are duration, maximum intensity and severity; the number of events occurring and the 

probability of having a drought month are also calculated. Drought events are defined when at least two 

consecutive months were below the defined intensity threshold. The procedure is performed for an SPI 

time series (SPI-6 in Mozambique as an example) from which the averages of each characteristic within 

the time series are extracted. The thresholds can be changed, and the code presented is suitable for any 

other drought index that is standardised (mean 0 and standard deviation 1). 

1) The necessary packages are installed and loaded.  



 Chapter 6 

175 
 

2) The matrix containing the time series of the indicator to be characterised is read. In this case the 

Mozambique SPI-6 computed with CHIRPS precipitation. 

 

3) The coordinates of the CHIRPS data located within Mozambique are read. 

 

4) The loop that calculates the characteristics of all the SPIs in the target matrix has very few 

variables to modify if required. The threshold is defined prior to executing the loop, it should 

be noted that the loop only identifies dry not wet season characteristics, so the values must be 

negative. The start of the loop follows the order from left to right, where the first column is the 

number from which the auxiliary variable "l" varies, this value must be modified if the target 

matrix starts in another column. Also the starting number must be changed at the end of the 

code following the instructions shown in the code. If it is necessary to extract the characteristics 

of a single time series or a limited number, the "ncol(spi6)" indicating the number of columns 

of the matrix called "spi6" must also be changed to the position of the last column from which 

the characteristics are to be obtained. 

 

… (refer to the entire loop in the code provided in the annexes) 
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The matrix "dat" is the result of the loop and contains the average characteristics of all drought events 

of each SPI time series. Its dimension has a number of rows equal to the number of CHIRPS coordinates 

and 5 columns corresponding to each characteristic: 

 

The corresponding coordinates are added to this matrix and stored in a known destination folder. 

 

5) The procedure for plotting these average characteristics is similar to the one used for plotting 

drought and non-drought states in section 1. The geographical information for Mozambique and 

the matrix containing the drought characteristics according to SPI6 (in this case) and their 

coordinates are read. Only the durations and probabilities are plotted as an example. 

 

6) The vector of the feature to be plotted is extracted, where the number inside the square brackets 

is the position of the column containing the information to plot. 

 

7) This vector is transformed into sections that are within its maximum and minimum limits. The 

number assigned to it must be within the existing limits. 
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8) The results are plotted using the "ggplot" function. The colours, the name of the section 

(previously defined), among others, can be modified. It is important to define the values of "x" 

and "y" as the longitude and latitude coordinates contained in the coordinate matrix. The graph 

is saved with a name for later export. 

 

9) The above process is repeated with the probability matrix. 

 

10) Graphics are exported as PDF. 

 

The result will look like this: 
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Conclusions 

This document is an introductory manual for obtaining hydrometeorological variables in any region and 

applying them to drought management. Droughts are an extreme hydrological phenomenon, naturally 

occurring in any climatic regime. Their impacts on the environment cause immense economic and 

ecological losses every year, so their characterisation and monitoring has become increasingly 

important. However, the characterisation of droughts is a complex process, because in addition to 

affecting different parts of the water cycle, there is no clear indication of the onset or end of droughts. 

Added to this is the problem that the tools required to model the phenomenon, such as hydrological and 

climatic data (precipitation, temperature, etc.), do not always meet the required quality. 

This work collects a series of drought management concepts widely accepted among the scientific and 

technical community and applies them through several scripts (programming codes) programmed in R 

software. These scripts divided into 3 sections show the step-by-step for i) downloading, extracting, 

manipulating and saving hydrometeorological variables from global databases; ii) using and applying 

these variables for drought management; and iii) presenting results through graphs in different formats. 

By following the step-by-step tools provided in this manual, much useful information can be generated 

for any region of the world. The results that can be obtained may be of interest to managers and 

technicians who do not always have easy access to this type of information. A great advantage of this 

manual is the flexibility of its tools, which can be used in different places and allow to create new scripts 

and generate new ways of using the information downloaded by the users. The methodologies discussed 

in this document can be extended in future work, such as obtaining data from climate change projection 

models, trend analysis, representation of results for regions within a country (cities or provinces) or river 

basins (sub-basins), among others. 
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ANNEXES: Scripts in R and RStudio for drought management 

ANNEX I: Downloading and extracting variables from global databases 

ANNEX II: Calculation of drought indices and water balances 

ANNEX III: Graphs 

Please refer to for download the original scripts: 

https://ruc.udc.es/dspace/handle/2183/29799 
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Resumen extendido de la tesis 

Las sequías son uno de los fenómenos naturales más comunes en todo el mundo, y pueden ocurrir en 

cualquier lugar bajo cualquier régimen (Bryant et al., 2005; Sheffield and Wood, 2012). Sin embargo, 

es uno de los peligros menos comprendidos debido a su complejidad y difícil cuantificación 

(Hagenlocher et al., 2019a). Las sequías pueden ser percibidas por los impactos en las cadenas de 

producción de energía, alimentos, suministro de agua, etc., siendo generalmente detectadas cuando las 

consecuencias del fenómeno son difíciles de mitigar, por lo que es el desastre que más pérdidas 

socioeconómicas provoca a nivel mundial (WMO, 2006). Los impactos en la agricultura están 

directamente relacionados con la seguridad alimentaria y la calidad de vida de gran parte de la población 

mundial. Según Cumani and Rojas, (2016), un tercio de la población se dedica directamente a la 

agricultura. Por lo tanto, se necesitan estudios específicos sobre la sequía y sus impactos a nivel regional 

o local para apoyar a los responsables de la gestión de la sequía y a todas las partes interesadas.  

Las sequías suelen evaluarse por eventos, que pueden cuantificarse y compararse. Las características y 

extensión territorial de un evento de sequía pueden definirse según la "run theory" (Yevjevich, 1969). 

Estas características pueden entonces relacionarse con los impactos correspondientes, por ejemplo en la 

agricultura (Yihdego et al., 2019). Tal y como afirma el IPCC, (2014) existen tendencias de aumento de 

la intensidad y la frecuencia de las sequías en todo el mundo, siendo posiblemente las zonas áridas y 

semiáridas las más afectadas. Países como Mozambique y Argentina son propensos a posibles impactos 

del cambio climático que pueden traer consigo fenómenos meteorológicos extremos más graves que 

afecten a los sectores naturales y socioeconómicos. Por lo tanto, en las regiones particularmente 

expuestas y vulnerables a la sequía, se necesitan estudios específicos sobre la sequía para ayudar a 

mitigar sus impactos. Esta tesis es una contribución a la gestión de las sequías y sus impactos, 

específicamente en la agricultura. 

El estudio de la sequía consta de diferentes componentes, empezando por la caracterización de la sequía 

en una zona determinada, es posible considerar el seguimiento, el análisis, la predicción, la visualización 

y la evaluación de los impactos de uno o varios eventos de sequía. Según Wilhite et al., (2000), el 

proceso de estudio de las sequías en una zona determinada (país o cuenca hidrográfica) debe empezar 

por tener una división espacial en regiones según las características de la sequía, luego debe desarrollarse 

un sistema de vigilancia de la sequía para crear alertas tempranas de las condiciones de sequía 

emergentes y, por último, la predicción de la sequía. En este último paso, es necesario comprender los 

factores climáticos que desencadenan los fenómenos de sequía en la región y utilizar esta información 

como herramienta de previsión. 

Para analizar los diferentes componentes de un estudio de sequía, se han desarrollado varios índices de 

sequía (World Meteorological Organization and Global Water Partnership, 2016). Los índices se 

calculan utilizando como insumos variables climáticas e hidrológicas. Por ejemplo, la precipitación 

(McKee et al., 1993), la humedad del suelo (Hao and AghaKouchak, 2013), el estado de la vegetación 

(Kogan, 1995) y la escorrentía (Mo, 2008). También se han creado algunos índices multivariantes que 

han dado buenos resultados. Por ejemplo, utilizando la precipitación y la evapotranspiración (Vicente-

Serrano et al., 2010a), el estado de la vegetación y la temperatura del suelo (Kogan, 1995), y el 

almacenamiento en los embalses y la demanda de agua (Mehran et al., 2015). Los índices de sequía son 

herramientas muy poderosas que identifican los déficits de agua a lo largo del tiempo y controlan las 

características de los eventos pasados y presentes. Observar la variabilidad climática, de la vegetación 

y de los cultivos es otro hecho que los índices detectan con una precisión sobresaliente, aun cuando la 

sequía es un fenómeno muy complejo. 

Por tanto, para la correcta aplicación de los índices de sequía, la gestión óptima de la misma requiere 

series temporales de datos hidrometeorológicos para cada componente del ciclo hidrológico. Esta tarea 

implica que los insumos utilizados en el cálculo de los índices de sequía requieren una calidad de alto 

nivel. Según la World Meteorological Organization, (2008) se necesitan al menos 30 años de variables 
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capaces con una distribución espacial de mediciones in situ de al menos una cada 250km2. Estas 

condiciones son especialmente difíciles de cumplir en los países en desarrollo o en determinadas 

regiones del mundo debido a las condiciones socioeconómicas, medioambientales y de otro tipo 

(Easterling, 2013). La razón principal suele ser el elevado coste de la puesta en marcha y el 

mantenimiento de la instrumentación necesaria para medir las variables necesarias para calcular los 

índices de sequía en grandes territorios, por lo que en muchas zonas del mundo la disponibilidad de 

datos es extremadamente limitada. 

Para obtener datos como la precipitación, la humedad del suelo, el caudal de los arroyos, etc., varias 

instituciones han desarrollado bases de datos mundiales en las que ofrecen estas series temporales de 

interés hidrológico y climático de forma abierta y gratuita. Estos productos se basan en datos puntuales 

aforados (medidos) que han sido interpolados mediante técnicas estadísticas; en resultados de modelos 

climáticos e hidrológicos globales; y, en información de teledetección procedente de radares de satélite. 

Estos conjuntos de datos (casi) globales, además de ofrecer productos que cumplen con la calidad 

requerida para los estudios de sequía, han demostrado ser una valiosa fuente de datos oportunos y 

espacialmente continuos con información mejorada sobre el seguimiento climático e hidrológico 

(Araneda-Cabrera et al., 2020; Funk et al., 2014; Harris et al., 2020). 

El objetivo principal de la tesis fue desarrollar metodologías, a nivel técnico y procedimental, para la 

mejora de la gestión de los recursos hídricos y de la sequía que puedan ser replicadas en cualquier región 

del mundo. Las investigaciones se realizaron en Mozambique y Argentina como casos de estudio. En 

un entorno de cooperación y desarrollo a través de proyectos en los que la Universidad da Coruña 

participa (“Proyecto de Implementación de índices de sequías como herramientas de vigilancia y alerta 

temprana para el desarrollo de planes de preparación y gestión de sequías en el Norte de Mozambique 

(Proyecto SECARA)” y el “Fortalecimiento de capacidades técnicas y operativas para la mejora de la 

gestión de los recursos hídricos en Mozambique, Aqua-Moz”: Fase 1 y 2.), algunas acciones se centraron 

en el fortalecimiento de capacidades a través de la implementación y creación de herramientas técnicas 

y de gestión. Además, a lo largo del desarrollo de la tesis, se consideró el uso de fuentes de datos 

hidrometeorológicos alternativos de libre acceso, y que las metodologías puedan ser aplicadas a otros 

países o regiones a cualquier escala espacial. 

Este objetivo principal se desglosa en objetivos más específicos acorde a la necesidad de comprender 

las características espaciotemporales de las sequías y sus desencadenantes, a la validación de las 

herramientas para el seguimiento de las sequías y sus impactos con un enfoque en la agricultura, y que 

los beneficiarios locales se conviertan progresivamente en los protagonistas de la transferencia de 

conocimientos a todos los implicados en la gestión de la sequía. Las investigaciones se trataron entonces 

en la caracterización de las condiciones espaciotemporales y las tendencias de la sequía, en identificar 

la influencia de los factores climáticos a gran escala que desencadenan eventos de sequía, en comparar 

y validar con los registros históricos de sequía, en analizar la variabilidad temporal entre varios índices 

de sequía para identificar aquellos que están fuertemente correlacionados y que potencialmente 

proporcionan información redundante, en desarrollar modelos estadísticos de cultivos basados en series 

temporales para explicar y posteriormente pronosticar los rendimientos nacionales utilizando los índices 

de sequía como predictores, en proponer un nuevo índice para mejorar la evaluación y el seguimiento 

de las sequías agrícolas, en satisfacer la necesidad de obtener rápida y eficazmente los datos necesarios 

para la gestión y seguimiento de la sequía en cualquier región, y en crear una herramienta probada para 

la gestión de la sequía. 

Mozambique (Fig. A.1) es uno de los países más pobres del mundo. Su localización es el sur de África 

en una de las zonas más propensas a la sequía del mundo (Eriksen and Silva, 2009; 2014: Climate 

Change IPCC, 2014; Osbahr et al., 2008; Patt and Schröter, 2008). Según la Base de Datos Internacional 

de Desastres (EM-DAT, 2021), Mozambique ha sufrido varios eventos de sequía que han afectado a 

más de 20 millones de personas. Los eventos más importantes se registraron en 1982-1983, 1991-1993 

y 2016. La población total del país era de más de 30 millones de habitantes en diciembre de 2019 según 
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el Instituto Nacional de Estadística ("Instituto Nacional de Estatística", www.ine.gov.mz), de los cuales 

más del 60% viven en zonas rurales y tienen su principal actividad económica relacionada con la 

agricultura (Ministério da Agricultura e Segurança Alimentar, 2015). De hecho, históricamente los 

agricultores mozambiqueños han experimentado pérdidas recurrentes debido a la escasez de agua y a la 

variabilidad climática, y las personas más vulnerables de las zonas rurales están especialmente expuestas 

a este fenómeno climático (Eriksen and Silva, 2009). 

 

Fig. A.1 (a) Ubicación de Mozambique en África y su topografía. Los puntos negros ilustran los puntos de la cuadrícula del CRU 
(0,5◦ × 0,5◦). Distribución espacial de los valores medios anuales de: (b) precipitación (1973-2017), (c) evapotranspiración 
potencial (ETP, 1973-2017), (d) índice de vegetación de diferencia normalizada (NDVI, 1983-2017), (e) temperatura de brillo 
(BT, 1983-2017), (f) humedad del suelo (1973-2017), y (g) almacenamiento de agua terrestre (TWS, 2002-2017), en todo el 
país. 

Mozambique, a nivel científico, es un escenario muy complejo para realizar estudios específicos sobre 

la sequía. El país no cuenta con una red de medición operativa que cumpla con los criterios óptimos 

establecidos por Easterling, (2013). Además, a pesar de ser un país altamente dependiente de la mano 

de obra agrícola de secano, los datos sobre los rendimientos agrícolas son limitados. En general, las 

investigaciones previas sobre los impactos de la sequía son escasas, por lo que las metodologías 

propuestas durante el desarrollo de esta tesis debían ser probadas y validadas en otros escenarios donde 

se dispone de datos de mejor calidad, pero donde se requieren estudios específicos de sequías similares 

para contribuir a la gestión del agua. Se eligió Argentina como caso de estudio complementario 

adecuado para esta tesis.  

Argentina tiene una superficie de 2791810 km2 y está dividida en cinco regiones administrativas 

principales según el Instituto Nacional de Estadística y Censos de la República Argentina (INDEC: 

www.indec.gob.ar), 24 provincias (incluyendo la Ciudad Autónoma de Buenos Aires como provincia) 

y 525 departamentos (Fig. A.2). Argentina tiene la mayor producción de cultivos per cápita del mundo 

(FAO, 2019) y al mismo tiempo presenta una importante variabilidad climática anual e interanual 

(Barros and Silvestri, 2002). Estos hechos hacen que la probabilidad de que los rendimientos de los 
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cultivos en Argentina se reduzcan debido a la sequía oscile hasta el 80% en algunos casos (Leng and 

Hall, 2019). Argentina es uno de los principales productores mundiales de cereales (FAO, 2017), que se 

cultivan en gran medida en la Pampa argentina y más de la mitad de ellos son de secano (Cherlet et al., 

2018). El valor de la producción de cereales de Argentina fue de 10 200 millones de USD en 2013, lo 

que representa el 8,3 % de su PIB (FAO, 2017). El país es vulnerable a varios fenómenos naturales 

(terremotos, inundaciones, etc.); sin embargo, las sequías representan el mayor riesgo de pérdidas 

agrícolas (Cherlet et al., 2018). Además, los factores desencadenantes de los eventos de sequía en 

Argentina sólo se han estudiado en áreas específicas (provincias o cuencas hidrográficas), pero no a 

nivel nacional o regional de la producción agrícola. 

 

Fig. A.2 Ubicación de a) Argentina; b) divisiones por regiones, provincias y departamentos; y c) departamentos con producción 
de soja. 

A diferencia de Mozambique, Argentina dispone de una base de datos agrícolas mejor y más fiable. El 

Ministerio de Agricultura, Ganadería y Pesca de Argentina documenta los rendimientos anuales de los 

cultivos a nivel departamental (subdivisión administrativa de segundo orden de las provincias). Esta 

base de datos incluye la superficie sembrada, la superficie cosechada y la producción total de 30 cultivos 

diferentes desde 1961 hasta la fecha. Sin embargo, Argentina, al igual que Mozambique, tampoco 

cumple los requisitos óptimos de las bases de datos climáticos e hidrológicos establecidos. Por estas 

razones, se ha elegido este país como segundo caso de estudio para el desarrollo de esta tesis, con el fin 

de comparar y validar las metodologías aplicadas en Mozambique, a la vez que aportar y crear 

conocimiento adicional para los gestores del agua y la sequía en Argentina. 

La disertación de esta tesis se presenta en la modalidad de compendio de trabajos científicos. Esta 

subsección resume los principales resultados de la tesis. Los resultados de este trabajo han sido 

publicados en cuatro revistas internacionales, tres de las cuales están indexadas por el Journal Citation 

Report (Journal of Hydrology: Regional Studies, Agriculture Water Management y Science of the Total 

Environment) y la cuarta por el Sistema Regional de Información en Línea para Revistas Científicas de 

América Latina, el Caribe, España y Portugal, Latindex (Revista Hidrolatinoamericana). Al mismo 
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tiempo, parte de los resultados aquí presentados forman parte de un manuscrito para una comunicación 

en un congreso internacional y de un manual de acceso abierto (libro). Cada capítulo de la tesis se 

organiza de forma que cada uno de ellos pueda considerarse como un estudio individual, incluyendo su 

propio estado del arte, metodología, resultados y conclusiones. 

El estudio presentado en el Capítulo 2 tenía como objetivo caracterizar las condiciones y tendencias de 

la sequía en Mozambique y evaluar la influencia de los principales factores climáticos como 

desencadenantes de eventos de sequía. Las condiciones de sequía se estudiaron utilizando el Índice de 

Precipitación y Evapotranspiración Estandarizado (SPEI) y la "run theory". Se aplicó la técnica de 

análisis de componentes principales y el método de agrupación de k-means para definir regiones de 

sequía homogéneas. Para definir las características temporales de la sequía se utilizaron la prueba de 

tendencia de Mann-Kendall y el análisis estadístico Rescaled Range. El método de correlación cruzada, 

un análisis espectral basado en la transformada rápida de Fourier y un análisis Cross-Wavelet se 

utilizaron para identificar posibles indicadores climáticos como desencadenantes de la sequía. Se 

utilizaron varios índices climáticos para analizar su relación con las sequías. 

Se descargaron los datos mensuales de precipitación y evapotranspiración potencial de la Unidad de 

Investigación Climática (CRU) (http://www.cru.uea.ac.uk/data) para calcular el SPEI-12. El CRU 

proporciona series temporales climáticas mensuales con una resolución de 0,5˚ (≈ 55 km en el ecuador) 

en todo el mundo (Harris et al., 2014). Con esta resolución, se calcularon un total de 343 series 

temporales de SPEI en todo Se definieron 3 regiones homogéneas de sequía situadas en el norte, el sur 

y el centro del país (Fig. A.3).  

 

Fig. A.3 Regiones homogéneas de sequía definidas en Mozambique. Los puntos son los centroides de las celdas según la 
cuadrícula del CRU. 

En cada una de las regiones se han identificado y enumerado los eventos de sequía más importantes, 

que han coincidido con los principales a nivel nacional, siendo las regiones Sur y Centro las que han 

tenido los eventos de sequía más intensos y severos en el pasado. En las tres regiones, las tendencias del 

SPEI fueron negativas, aunque en la región Norte fueron estadísticamente no significativas al nivel del 

5% para el índice anual.  En cuanto a la persistencia, el índice de Hurst (H) sugirió que las tendencias 

negativas a largo plazo persistirán en un futuro próximo en todo el país, especialmente en las regiones 

Sur y Central. 

Los índices climáticos se basan en las fluctuaciones de la presión atmosférica a nivel del mar (SLP) de 

diferentes lugares del mundo (índices Darwin SLP, Tahití SLP, SOI y NAO), y la temperatura de la 
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superficie del mar (SST) del Atlántico (índices TNA, TSA, NAT, SAT y TASI), del Pacífico (índices 

ENSO Niño 1 +2, Niño 3, Niño 4, Niño 3 4 y PDO) y el Océano Índico (índices SWIO, WTIO, SETIO 

y DMI). Según las correlaciones cruzadas, las anomalías de las series temporales de los índices 

climáticos fueron negativas con Darwin, Niño 3.4, Niño 3, Niño 4, WTIO y SETIO, y positivas con el 

SOI, mostrando picos alrededor de 2-3 meses antes del pico negativo del SPEI. La región Norte mostró 

correlaciones persistentemente bajas con los índices climáticos analizados, mientras que las 

correlaciones más fuertes se obtuvieron en las regiones Sur y Central. 

De acuerdo con los análisis espectrales (Fig. A.4), los índices climáticos con mejor correlación (Darwin 

SLP y El Niño 4) y la serie SPEI tienen una periodicidad asociada a energías altas entre 40 y 120 meses 

(3,5 y 10 años). En la región norte, se encontraron periodos entre 35 y 60 meses (3 y 5 años). Estos 

periodos son consistentes y similares a los reportados en otros estudios en África (Oguntunde et al., 

2018). Tanto el SLP de Darwin como los eventos de El Niño 4 mostraron fuertes impactos en las series 

mensuales de SPEI, especialmente en las regiones Sur y Central, indicando que juegan un papel 

relevante en las características de la evolución de la sequía en estas regiones (algo que ya se había visto 

con las correlaciones). 

 

Fig. A.4 Transformada cross wavelet entre el SPEI de las regiones a) Norte, b) Sur, c) Centro y el índice climático Darwin PSL; y 
de las regiones d) Norte, e) Sur, f) Centro y el índice climático Niño 4. El eje y equivale a los periodos definidos con la 
Transformada rápida de Fourier (Periodo = 1/Frecuencia); la barra de color denota la densidad de energía (rojo más alta 
densidad de energía); el nivel de confianza del 5% contra el ruido rojo se muestra en un contorno con la línea negra gruesa; y 
la relación de fase relativa se representa con flechas (con la anti-fase señalando a la izquierda, la en-fase señalando a la 
derecha). 
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En el Capítulo 3 se propone una metodología para identificar los índices de sequía y las fuentes de datos 

más adecuados para el seguimiento de las sequías y su impacto en los cultivos. Se utiliza Mozambique 

como caso de estudio, ya que representa un ejemplo desafiante debido a sus características y 

limitaciones. Se calcularon un total de siete indicadores de sequía estandarizados: Índice de 

Precipitación Estandarizado (SPI), Índice de Precipitación y Evapotranspiración Estandarizado (SPEI), 

Índice de Humedad del Suelo Estandarizado (SSI), Índice de Condición de la Vegetación Estandarizado 

(SVCI), Índice de Condición de la Temperatura Estandarizado (STCI), Índice de Salud de la Vegetación 

Estandarizado (SVHI) y Almacenamiento de Agua Terrestre Estandarizado (STWS) a diferentes escalas 

(1, 3, 6 y 12 meses) a partir de bases de datos globales basadas en mediciones in situ y satelitales: el 

CRU, el Centro de Aplicaciones e Investigación por Satélite y los satélites ambientales de la 

Administración Oceánica y Atmosférica de Estados Unidos (NOAA STAR), el conjunto de datos 

TerraClimate (Abatzoglou et al., 2018) y los satélites GRACE (Tapley et al., 2004). 

Estos índices se compararon y evaluaron como herramientas de gestión de la sequía y como potenciales 

predictores de la variabilidad anual de los rendimientos agrícolas a nivel nacional. Se utilizó un modelo 

estadístico de los rendimientos de los cultivos basado en series temporales para medir el poder 

explicativo de cada índice. Utilizando métricas de rendimiento basadas en la probabilidad de detección 

(POD) o tasa de aciertos, y la probabilidad de falsa detección (POFD) o tasa de falsas alarmas (Wilks, 

2006) se compararon los registros históricos de sequía del EMDAT (EM-DAT, 2021) y del IRI 

(Hellmuth et al., 2007) con las series temporales de los valores medios nacionales de los índices de 

sequía y el porcentaje de superficie afectada por las sequías. Ambas series mostraron una capacidad de 

detección similar a la de los registros históricos. En general, los índices meteorológicos (SPEI y SPI) 

fueron los que mejor se ajustaron a los registros históricos, seguidos del índice hidrológico SSI (Fig. 

A.5). 

 

Fig. A.5 Evolución temporal mensual de SPI, SPEI, SSI, SVCI, STCI, SVHI y STWS a escala nacional en Mozambique (agregaciones 
de -1, -3, -6 y -12 meses). Los niveles de intensidad pueden interpretarse según McKee et al., (1993). Los años de sequía 
históricos según los registros se destacan en amarillo. 

Posteriormente, se realizó un análisis de correlación entre los índices de sequía, que mostró la coherencia 

con el significado físico de los diferentes índices. Aunque existe un desfase temporal entre el 

forzamiento meteorológico y las respuestas hidrológicas, los índices basados en variables 

meteorológicas con acumulaciones de 6 y 12 meses mostraron fuertes correlaciones con los índices 
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basados en datos de vegetación/hidrológicos. Los resultados sugieren que sólo uno de los índices 

meteorológicos SPI y SPEI con acumulaciones de 6 y 12 meses podría utilizarse solo en cualquier 

análisis posterior. El SCVI puede utilizarse, pero teniendo en cuenta que no tiene una correlación 

significativa con los indicadores hidrológicos y climáticos, debería utilizarse junto con otro índice. Los 

resultados observados en esta sección validaron en primer lugar el uso del SPEI en el Capítulo 1 como 

índice de sequía representativo de las condiciones hidrometeorológicas en Mozambique. 

Con un modelo estadístico de rendimiento de los cultivos nacionales, se supuso que el rendimiento anual 

de 12 cultivos (maíz, mijo, sorgo, trigo, anacardos, yuca, patatas, caña de azúcar, té, tabaco y hortalizas) 

era la respuesta de una función de variables independientes, que en este caso eran los índices de sequía 

y los porcentajes de superficie afectada por la sequía según las diferentes categorías definidas en McKee 

et al., (1993). Los resultados indicaron que los mejores predictores candidatos eran diferentes para cada 

cultivo (Fig. A.6). Esto se debe a que no todos los cultivos son igualmente sensibles a la sequía, ni tienen 

la misma capacidad de recolección o almacenamiento de agua. Para la mayoría de los cultivos, la 

variabilidad fue explicada por dos indicadores genéricos: SPEI-3 para los cereales (maíz, mijo y sorgo) 

y SSI-12 para otros cultivos (anacardos, yuca, patatas, té, tabaco y hortalizas). El SPEI-6 es el que mejor 

explica la variabilidad del trigo y el SVCI-6 la de la caña de azúcar. Los mejores predictores de la 

variabilidad del rendimiento agrícola fueron los que incorporaban información espacial, ya que los 

índices nacionales perdían información espacial en su cálculo. 

Los resultados presentados en los capítulos 2 y 3 motivaron la investigación presentada en el Capítulo 

4. Por un lado, se probaron las correlaciones entre los índices de sequía y los índices climáticos en otros 

escenarios a escalas espaciales más pequeñas y se compararon como posibles predictores de la 

variabilidad de los cultivos. Por otro lado, dado que en general se observó que la introducción de la 

desagregación espacial mejoraba los resultados, se consideró necesario validar el modelo estadístico con 

una desagregación de la evolución de los cultivos por áreas, asumiendo a priori que los resultados serían 

mucho más precisos. El estudio se aplicó en Argentina y se evaluaron ocho índices de sequía, siete ya 

conocidos (SPI, SPEI, SSI, SVCI, SVCI, STCI, SVHI, STWS) y adicionalmente un octavo, el Índice 

Estandarizado de Severidad de Sequía de Palmer (SPDSI) (Ma et al., 2014), todos ellos computados a 

escalas de 3, 6 y 12 meses. Se relacionaron con 19 índices climáticos (similares a los usados en el 

Capítulo 2 en Mozambique) y se comparó su rendimiento para explicar la variabilidad de la producción 

de soja. Se eligió la soja como cultivo de secano representativo de los impactos de la sequía en la 

agricultura. 
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Fig. A.6 Rendimiento de los cultivos medido por la FAO frente al rendimiento de los cultivos calculado con la mejor variable 
explicativa candidata (indicada como Be). También se muestran los parámetros ajustados. La línea discontinua corresponde 
a la línea 1:1. 
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Se analizaron las correlaciones de Pearson (r) entre los índices climáticos y los índices de sequía 

agregados 12 meses a nivel departamental en todo el país. Luego, se realizó un análisis estacional 

(verano, otoño, invierno y primavera) con los índices de sequía agregados de 6 meses y un número 

determinado de índices climáticos seleccionados en el paso anterior. El análisis estacional se realizó 

para todo el país y para todos los departamentos productores de soja, priorizando el análisis de verano 

por ser el periodo de siembra y crecimiento de la soja. Los índices climáticos ubicados en el Océano 

Pacífico ecuatorial como Tahití, SOI, El Niño 3.4 (Fig. A.7) y El Niño 4 mostraron mayores 

correlaciones con los índices de sequía en Argentina. Se ha encontrado que estos índices indican el 

desencadenamiento de sequías en otras partes del mundo (Gupta and Jain, 2021; Vicente-Serrano et al., 

2017), demostrando la importancia global de su variabilidad en los eventos hidrológicos extremos. 

  

Fig. A.7 Patrón espacial de las correlaciones entre los 8 índices de sequía con un periodo de agregación de 12 meses y el índice 
climático El Niño 3.4 basado en los datos de 1982-2019 (STWSI 2003-2019). Los puntos negros indican los casos en que las 
correlaciones no fueron estadísticamente significativas. 

Se observaron correlaciones negativas persistentes (con muy pocas excepciones) durante la primavera 

y el verano y correlaciones positivas durante el otoño y el invierno entre El Niño 3.4 y los índices de 

sequía. Se observaron patrones similares para los otros tres índices seleccionados (Tahití, SOI, El Niño 

3.4 y El Niño 4). Espacialmente, las regiones con correlaciones débiles tuvieron el mayor número de 

departamentos con correlaciones no significativas, y este número aumentó en las estaciones de invierno 

y primavera. Por ejemplo, la Fig. A.8 ilustra los patrones espaciales de las correlaciones entre SPEI-6 y 

El Niño 3.4. Considerando sólo los departamentos productores de soya y la temporada de suma de 

verano, cuando ocurre la siembra y el crecimiento de la soya, SPEI y STWSI tuvieron las correlaciones 

más fuertes. 
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Fig. A.8 Patrón espacial de las correlaciones entre las series temporales estacionales SPEI-6 y El Niño 3.4 basado en datos de 
1982-2019. 

A continuación, se evaluó la eficacia de los índices de sequía y de los índices climáticos para explicar 

la variabilidad anual de los rendimientos de la soja, entendidos como impactos de las sequías agrícolas, 

mediante modelos de regresión estadística. El SVHI, el SVCI, el STCI, el SPEI y el SPI, que se basan 

tanto en variables meteorológicas como de vegetación, fueron los que mejor explicaron la variabilidad 

de los rendimientos de la soja en los tres modelos aplicados (series temporales, modelo de panel y 

modelos de sección transversal). Las distribuciones espaciales de los coeficientes de determinación (R2) 

utilizando el modelo de series temporales con predictores agregados de 6 meses se muestran en la Fig. 

A.9. La variabilidad del rendimiento de la soja (impactos asociados a las sequías agrícolas) respondió 

mejor a los índices de sequía que a los índices meteorológicos. El SVHI y el SPEI agregados para 6 

meses y correspondientes al mes de marzo (temporada de cultivo de la soja) resultaron ser los que mejor 

explican el estado de la producción de soja en las regiones seleccionadas. 

De acuerdo con los resultados obtenidos en los primeros capítulos en las secciones relacionadas con el 

análisis de los índices de sequía como predictores de la variabilidad anual de los cultivos en Mozambique 

y Argentina, y siguiendo los objetivos planteados, en el Capítulo 5 se proponen nuevos índices para 

mejorar la evaluación y seguimiento de las sequías agrícolas a través de la explicación de la variabilidad 

anual de los cultivos. Se trata de dos índices de sequía compuestos multivariantes (bivariantes) que 

tienen en cuenta las condiciones meteorológicas y de sequía agrícola, combinando en un marco 

probabilístico el SPI (a través de la precipitación) con el VCI y el VHI. La metodología para validar y 

comparar los nuevos índices consistió en utilizar los modelos estadísticos de cultivos empleados en los 

capítulos 3 y 4.  

El método desarrollado para caracterizar las sequías agrícolas fue un enfoque multivariante que depende 

de dos variables individuales (Mehran et al., 2015): la precipitación acumulada 3 meses y el VCI o VHI. 

Con la formulación de Gringorten, (1963) se calculan las probabilidades de no superación de ambas 

variables y se combinan utilizando el marco multivariante explicado en (Yue et al., 1999). Las 

probabilidades empíricas se transforman en un índice estandarizado y se obtienen los índices 

multivariantes estandarizados (o bivariantes) de precipitación y estado de la vegetación y salud (MSPVI 

y MSPHI). Estos índices se interpretan de forma similar al SPI original (McKee et al., 1993). 
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Fig. A.9 Patrones espaciales de los resultados de los coeficientes de determinación (R2) de los modelos de series temporales 
entre los índices de sequía agregados de 6 meses (ONDJFM) y el rendimiento de la soja en base a los departamentos 
productores de soja y los datos de 2004-2019. 

La investigación se llevó a cabo en Mozambique y Argentina. En el primer caso, se utilizaron datos 

agrícolas de maíz, soja y trigo de la FAO y de precipitaciones del CRU; en el segundo, se emplearon 

datos de cultivos de soja y maíz del Ministerio de Agricultura, Ganadería y Pesca de Argentina y 

precipitaciones del TerraClimate. Para ambos casos, el VCI y el VHI se obtuvieron de la NOAA STAR.  

Los patrones temporales de los índices propuestos (caso de Mozambique para el MSPVCI se muestra 

en la Fig. A.10) indican que los índices muestran información crítica sobre el inicio y la recuperación 

de los eventos de sequía. Los nuevos índices detectan eventos de sequía importantes según los registros 

históricos de la base de datos internacional de Desastres EM-DAT, donde, por ejemplo, el periodo 1991-

1992 fue uno de los eventos de sequía más dañinos (en Mozambique). Dentro de este periodo, el 

MSPVCI informó de casi el 50% del territorio mozambiqueño bajo sequía extrema [índice < -2,0 según 

McKee et al., (1993)] mientras que el SVCI informó del 22% y el SPI del 11% (la distribución espacial 

del evento de sequía de 1992 en mayo se representa en la Fig. A.11). El MSPVHI mostró patrones 

espaciotemporales muy similares a los del MSPVCI, lo que indica que los índices mostraron una mayor 

sensibilidad a estos eventos y que utilizarlos para vigilar las sequías significaría estar en el lado seguro 

(Monteleone et al., 2020). 
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Fig. A.10 Las series SPI-3, SVCI y MSPVCI en 1982-2017 (arriba) y 1989-1997 (abajo) en Mozambique. 

 

Fig. A.11 Distribución espacial del a) SPI-3, b) SVCI y c) MSPVCI durante el evento de sequía de mayo de 1992. 

En la comparación de los índices propuestos con los convencionales para explicar la variabilidad anual 

de los cultivos en ambos territorios, los resultados fueron similares (Argentina y Mozambique). En el 

caso argentino, los resultados de la aplicación del modelo estadístico se presentan en la Tabla A.1 y se 

representan en la Fig. A.12. En comparación con el SPI clásico y el SVCI/SVHI, los índices 

multivariados reportaron explicar mejor la variabilidad de los rendimientos anuales de maíz y soja (en 

Mozambique sorgo, maíz y trigo). 

Tabla A.1 Coeficientes de determinación (R2) entre los rendimientos de la soja y el maíz y los índices de sequía clásicos 2004-
2019. 

 SPI SVCI SVHI 

Soja 0.476 0.572 0.686 

Maíz 0.306 0.407 0.670 

 

Finalmente, para concluir esta tesis, como material final de la investigación realizada, en el Capítulo 6 

se presenta un manual titulado "Manual para la obtención y aplicación de variables hidrometeorológicas 

de bases de datos globales en la gestión de la sequía". Este trabajo recoge una serie de conceptos y 

técnicas relacionadas con la gestión de la sequía que se han desarrollado a lo largo de la tesis que se 

aplican a través de varios scripts (códigos de programación) codificados en el Software R (RStudio 

Team, 2016). Estos scripts divididos en 3 secciones muestran el paso a paso para i) descargar, extraer, 

manipular y guardar las variables hidrometeorológicas de las bases de datos globales; ii) utilizar y aplicar 

estas variables para la gestión de la sequía; y iii) presentar los resultados a través de gráficos en diferentes 

formatos. Se utilizó Mozambique como ejemplo de estudio de caso. 
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Fig. A.12 Regresión lineal y coeficiente de determinación (R2) entre los rendimientos anuales de soja y maíz con MSPVCI 
(arriba) y MSPVHI (abajo) en Argentina. 

Como resultado adicional de este trabajo, el doctorando impartió un curso para estudiantes de Ingeniería 

Civil, Geografía e Ingeniería Ambiental de la Universidade Eduardo Mondlane - ESUDER en Maputo 

(capital de Mozambique) y a los funcionarios de las Administraciones Regionales del Agua del Sur 

(Administração Regional da Água do Sur) - ARA Sur de Mozambique. Los principales objetivos del 

curso eran enseñar conceptos y herramientas relacionados con la vigilancia de la sequía; obtener y 

manipular datos hidrometeorológicos en Mozambique; y aplicar balances hídricos e índices de sequía 

en Mozambique. El curso se realizó en línea durante 12 horas en noviembre de 2021 (Fig. A.13).  

Como conclusión, en esta tesis se desarrollaron varias metodologías con el objetivo de aumentar el 

conocimiento de los fenómenos de la sequía y aportar soluciones para la gestión de los recursos hídricos 

y de la sequía. Se consideró el uso de fuentes de datos hidrometeorológicos alternativos de libre acceso, 

de manera que las metodologías pueden aplicarse a cualquier país o región del mundo y a (casi) cualquier 

escala espacial. Los casos de estudio fueron Mozambique y Argentina, ya que son territorios muy 

propensos a la sequía, sufren continuamente sus efectos, especialmente en la agricultura, y no disponen 

de las herramientas de gestión necesarias para controlar y gestionar el fenómeno. Las metodologías 

respondieron a la necesidad de entender las características espaciotemporales de las sequías y sus 

desencadenantes; a la validación de herramientas para el monitoreo de las sequías y sus impactos con 

un enfoque especial en la actividad agrícola; y, de acuerdo con la necesidad de que los beneficiarios 

locales se conviertan progresivamente en los protagonistas de la transferencia de conocimiento a todos 

los involucrados en la gestión de la sequía. 
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Fig. A.13 Captura de pantalla de la segunda sesión del curso online "Obtenção e aplicação de variáveis hidrometeorológicas 
de bancos de dados globais para a monitororia de secas" ("Obtención y aplicación de variables hidrometeorológicas de bancos 
de datos globales para la monitorización de sequías") a estudiantes de la Universidade Eduardo Mondlane - ESUDER y 
empleados públicos de la ARA Sur de Mozambique, impartida por el doctorando. 

Los estudios futuros que se proponen a partir de los resultados y conclusiones generados en esta tesis 

están asociados principalmente a la predicción de la sequía y sus impactos. Estos estudios podrían 

complementarse considerando varios aspectos que constituyen un reto actual para los científicos, 

técnicos y decisores en la gestión de la sequía. Por ejemplo, el cambio climático, la gran variedad de 

nuevas bases de datos y las diferentes fuerzas institucionales y gubernamentales. Este amplio abanico 

de posibles investigaciones futuras podría seguir generando cursos y documentos como el manual que 

se presenta en esta tesis, para que el conocimiento y las herramientas sean accesibles, utilizados y 

compartidos por los diferentes actores implicados no sólo a nivel nacional sino también local. 
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Appendix B: 

Poster 6th IAHR Europe Congress, 2020, Warsaw, Poland: “A hybrid 

framework for assessing agricultural drought: a multivariate standardized 

precipitation and vegetation index”. 
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hybrid framework for assessing agricultural drought: a multivariate 
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