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Abstract: One of the major paradigm shifts that will be predictably observed in the energy mix
is related to distribution networks. Until now, this type of electrical grid was characterized by
an AC transmission. However, a new concept is emerging, as the electrical distribution networks
characterized by DC transmission are beginning to be considered as a promising solution due to
technological advances. In fact, we are now witnessing a proliferation of DC equipment associated
with renewable energy sources, storage systems and loads. Thus, such equipment is beginning to
be considered in different contexts. In this way, taking into consideration the requirement for the
fast integration of this equipment into the existing electrical network, DC networks have started to
become important. On the other hand, the importance of the development of these DC networks is
not only due to the fact that the amount of DC equipment is becoming huge. When compared with
the classical AC transmission systems, the DC networks are considered more efficient and reliable, not
having any issues regarding the reactive power and frequency control and synchronization. Although
much research work has been conducted, several technical aspects have not yet been defined as
standard. This uncertainty is still an obstacle to a faster transition to this type of network. There are
also other aspects that still need to be a focus of study and research in order to allow this technology
to become a day-to-day solution. Finally, there are also many applications in which this kind of DC
microgrid can be used, but they have still not been addressed. Thus, all these aspects are considered
important challenges that need to be tackled. In this context, this paper presents an overview of the
existing and possible solutions for this type of microgrid, as well as the challenges that need to be
faced now.

Keywords: DC microgrids; architectures; hybrid grids; smart grid; unipolar; bipolar

1. Introduction

In the last few years, a new paradigm emerged regarding electrical distribution net-
works. Instead of the classical AC networks, which are especially associated with micro-
and mini grids, the use of DC networks appeared as a better solution taking into considera-
tion several aspects. One of the aspects is related to the distributed generation (DG) that is
associated with renewable energies. Other aspects are the use of energy storage systems,
the reliability of electric networks and loads with high-energy efficiency [1,2]. Due to those
aspects, DC networks are now considered very attractive, especially in the context of the
modern smart power distribution systems.

Due to the several advantages that can be achieved with these microgrids, as well
as the referred change in loads and use of storage systems, they can be used in several
applications. Examples of these applications are small houses, buildings, data centers and
agricultural farms. New realities started to emerge in the last few years, such as charging
infrastructures for electric vehicles, which is a good example of a possible application of
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this kind of microgrid. In fact, electric vehicle fast chargers require a DC power supply, by
which proposals for DC microgrids have already started to appear. Prosumers started to
play a fundamental role in an electrical distribution Low Voltage (LV) context [3–7]. Their
integration is seen as natural in LVDC systems once it will be possible to achieve meaningful
savings [8–10]. Another aspect is the impact on social welfare that DC microgrids will
bring [11]. This kind of microgrid, especially in the context of off-grid systems, could be an
important opportunity to increase the quality of life of many people, particularly those in
isolated towns and villages.

Taking into consideration the development of the present technology and the future
reality of electrical generators and loads, DC microgrids started to arise as an important
alternative to AC infrastructures. It is expected that in the very near future, AC and DC
infrastructures will present themselves as complementary solutions [12–16]. In this context,
the perspectives for the near future of DC microgrids are presented in this paper.

There are several challenges associated with DC infrastructures that must be overtaken.
One important aspect is the definition and standardization of these networks. On the other
hand, there are many aspects that must be developed, as is the case, for example, with the
appearance of new standards and/or legislation.

Under the several aspects that were referred previously, this paper will present the
technology behind the DC microgrids that can be used in several applications in the future.
Not many of these applications have already been implemented. In this context, this paper
will also present new applications in which this kind of microgrid can successfully be used.
Some applications and corresponding solutions are visions of the authors. Finally, we will
also focus on the challenges that need to be faced to implement this technology. With all of
this in mind, we intend to provide a perspective on the future of these DC microgrids.

Regarding the structure of this paper, it consists of six sections, with the first one
being this introduction. In the second section, the typical architectures and configurations
that have already been proposed for DC microgrids are presented. In the third section,
the benefits that can be obtained through the use of a DC microgrid when compared
with traditional AC grids are presented. The possible applications of DC microgrids are
described in section four. Some of the possible applications and solutions are visions of the
authors. Section five focuses on the challenges ahead that are fundamental for the success
of DC microgrids. Finally, in section six, the conclusions of this paper are presented.

2. Architectures and Configurations

One aspect that is not yet standardized is the type of architecture that should be
adopted or is the most indicated to a specific application. In reality, there are several
possible architectures that can be used to establish a DC microgrid [2,17–23]. These different
structures are as follows:

• Single bus topology. This topology is the simplest topology since it is constituted by a
single DC bus. Due to that, all generators, storage systems and loads will be connected
to the same point (bus). Figure 1 shows two typical examples of this topology, with
one being a connection to the electrical grid and the other one being an operation
in islanded mode. Besides its simplicity, this topology is also characterized by low
maintenance requirements, as well as low costs.

• Radial topology. This topology can be considered as an extension of the single bus.
As shown in Figure 2, this topology provides more than one DC bus where each
of them are used to connect generators, storage systems and loads. Typically, there
are two possible configurations: series and parallel. In the first configuration, two
or more DC microgrids can be interconnected in series (Figure 2a), while the other
one is interconnected in parallel (Figure 2b). This topology still maintains some
simplicity and allows for different voltage levels. Additionally, this topology increases
reliability. However, one problem that can appear is some instability during the
islanding mode [24–27].
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• Ring or loop topology. In this topology, all generators, storage systems and loads will
be connected to the same DC bus in a loop way to allow the supply through two sides
(Figure 3). Due to this, this kind of topology becomes more reliable when compared
with the previous configurations, since in the case of a fault in the DC bus, it is possible
to operate in a single bus configuration, and the main problem of this topology is its
increased complexity.

• Mesh topology. This topology is characterized by the possibility of including integrate
ring (or rings) with radial topologies with a mesh configuration originating in this way
(Figure 4). It is characterized by a complex structure that allows for better reliability
and flexibility when compared with the previous ones.

• Interconnected topology. The previous topologies were characterized by a single
connection to the AC main grid. Thus, in order to improve the reliability of the system,
there is also the possibility to connect it to alternative AC grids (two or more), meaning
this topology is designated by interconnections. In Figure 5, an example of this kind
of topology, in which the DC microgrid is interconnected to two AC grid supplies, is
presented.
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Figure 1. A schematic of typical example of the single bus topology: (a) connected to the grid and
(b) operating in island mode.
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A summary of the DC microgrid topologies and corresponding relevant references
associated with each of the structures is presented in Table 1.
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Table 1. Summary of the DC microgrid topologies and corresponding references.

DC Structures References

Single bus topology [2,17–26,28–30]

Radial topology [2,17–23,31–35]

Ring or loop [2,17–23,36–39]

Mesh topology [2,17–23,31–33,40–42]

Interconnected topology [2,17–23,43,44]

On the other hand, regarding the configurations, the main ones that have been used,
tested and studied are the following ones [45–47]:

• Unipolar configuration. This configuration is the simplest one since it is constituted
by only two wires. In this configuration, all the generators, loads and storage systems
will be connected to the same poles. In Figure 6, two typical examples of this topology
are shown, whereby one has a connection to the grid and the other one operates in
island mode.

• Bipolar configuration. This configuration is more complex since it is constituted by
three wires (a positive pole, neutral pole and negative pole). In this configuration,
there are different possibilities to connect the generators, loads and storage system.
In fact, they can be connected to different poles (positive and neutral, neutral and
positive or to the three poles). It also allows this equipment to be connected to different
voltages, namely between the positive and negative pole or one of the poles and the
neutral pole. Examples of this type of configuration can be seen in Figure 7, where one
has a connection to the grid and the other one is operating in island mode.
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A summary of the DC microgrid configurations and the corresponding relevant
references associated with each of the structures is presented in Table 2.

Table 2. Summary of the DC microgrid configurations and corresponding references.

DC Structures References

Unipolar configuration [45–51]

Bipolar configuration [45–47,52–59]

Through the comparison of both configurations, the bipolar DC microgrid presented
several advantages, such as a higher number of voltage levels (two instead of one), increased
efficiency and a power supply with increased quality [17]. Another important feature is
related to reliability, which is higher in the bipolar architecture since, in the case of having
a fault in one of the wires, the load can be supplied by the other two healthy lines [17–19].
Another positive aspect is that it is possible to reduce the maximum voltage to the ground
since it is possible to use the connection between the positive and negative pole to obtain
extended voltages. However, there are still some disadvantages associated with the bipolar
architecture. The main disadvantage is the requirement of additional wires and the possible
appearance of voltage unbalance between the bipolar terminals [46]. This lack of balance
can be caused by the use of different loads connected to each of the terminals. Another
cause of that unbalance may be the generation. Usually, generators such as PV use a
DC/DC converter that will only connect to a single pole, which will contribute in this way
to voltage unbalance. However, there are several strategies that can be used to attenuate or
eliminate that unbalance [47].

3. Benefits

Classical electrical infrastructures use AC distribution systems. However, in the
context of distributed renewable DC generation and storage systems, this type of network
is not the most efficient and flexible. Besides that, DC networks have the capability to
directly supply most of the electronic loads. Usually, electronic loads require a DC voltage
source, by which they typically use a rectifier to allow for their connection to the AC
network. However, the addition of these rectifiers reduces the efficiency of the load and
increases their cost. In this way, DC infrastructure networks have already been successfully
implemented in several specific applications. In accordance with some studies, with the use
of these infrastructures, there are efficiency improvements ranging from 12% to 18% [47].
Another aspect in which DC microgrids could be advantageous compared to AC networks
is reliability. In fact, as stated before, when adopting the bipolar structure, even in the case
of a fault in one of the poles, it is still possible to operate the grid, at least partially. The
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several advantages associated with this kind of network, compared to AC networks, can be
summarized as follows [60–63]:

• The fact that the decentralized generators essentially produce DC power. Thus, the
direct connection of these generators to the grid without the need to introduce a new
converter (DC/AC) allows for the improvement of the efficiency of the system;

• The importance of storage systems in the context of the decentralized and renewable
energy sources. As in the case of the generators, these storage systems (such as batter-
ies) typically also produce and receive DC power, by which their direct integration in
the distribution system also allows for the improvement of the efficiency of the global
system;

• The fact that the electronic loads are usually supplied by a DC voltage source, by
which they can be directly connected to the distribution grid. Most loads require a
rectifier in order to provide the required DC voltage source;

• The predicted proliferation of electric vehicles requires a connection to the electrical
grids to charge their batteries. Thus, the possibility of directly connecting the electric
vehicle to the grid to avoid the rectifier can also improve the efficiency of the global
system;

• The reduction in power quality problems that typically affect AC grids. In fact,
problems such as voltage sags and swells, flickering, harmonics and imbalances that
usually affect AC grids can be avoided in these DC microgrids;

• The lack of requirements about synchronization with the utility grid, as well as reactive
power;

• The inexistence of skin effect, by which there will be an entire distribution of the
current through the distribution cable. Due to this, there will be a reduction in the
losses or the use of smaller section cables;

• The possibility to improve the reliability due to a high capacity to operate in island
mode.

Although DC microgrids can provide multiple advantages, there are some drawbacks
associated with the change to this kind of infrastructure. One of the main problems is the
need for extra costs, which could inhibit the change to this type of technology. Another
important factor is the change in mentality, since it is usually not easy to convince people
and investors to change. On the other hand, many people can claim that it will be necessary
to change from AC loads to DC loads or to include an extra adapter to be used in DC
microgrids. However, today, the majority of the loads are electronic loads, meaning that
this kind of AC load can be directly used in DC sockets. This will avoid extra costs and
will convince people of this change more since they can use their equipment in AC or
DC sockets. Typically, AC electronic loads are connected to the socket through a rectifier
converter (AC to DC). That converter is usually a single-phase H-bridge diode rectifier
(Figure 8a). Taking this into consideration, it is possible to still use the AC equipment
since the rectifier allows for operation with a DC input voltage. As shown in Figure 8b,
in this case, instead of using the four diodes, only two diodes are used since there is no
negative voltage. This is one important factor in the choice of the DC microgrid voltage
level for residential applications (and even in other places). For example, the AC voltage
requirement for many electronic equipment is 100 to 240 VRMS. Taking this aspect into
consideration, the voltage level of the DC microgrid should be higher than that value.
On the other hand, in the security context, the use of bipolar DC microgrids can be very
interesting since they allow for the reduction in the voltage level of the pole(s), since in this
case, voltage levels of ±50 to ±120 V can be used.
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Another aspect that also must be taken into consideration is the protection of the DC
infrastructure, since it is more difficult than the one used in the AC infrastructure. This is
an aspect that still needs some research.

A summary of the advantages and the disadvantages of the AC and DC microgrids
can be seen in Table 3.

Table 3. Summary of the advantages and disadvantages of AC and DC microgrids.

AC Microgrid DC Microgrid

Direct integration of the RES
(such as PVs) with the need
for a DC/AC converter

No Yes

Direct integration of the ESS
with the need for a DC/AC
converter

No Yes

Direct integration of DC loads No Yes

Power quality and control of
the MGs Complex Easy

Need for synchronization Yes No

Frequency regulation Constant, equal to 50 or 60 Hz No

Skin effect Yes No

System protection Fully developed, not
expensive Underdeveloped, expensive

Standards Sufficient Insufficient

Cost of the system Low High

4. Perspectives

There are many possibilities to apply DC microgrids, and their implementation could
be an important asset over the classical AC grids or microgrids, as stated before. However,
until now, only a few applications of DC microgrids have been implemented. Additionally,
some of the applications that have already been implemented were part of an experiment
or were integrated in a research project. One of the applications of DC microgrids that
have already been implicated is associated with data centers, but there are many other
applications where DC microgrids can be an important asset.

One application area in which it is predictable that DC microgrids will be adopted
is electric vehicles charging systems infrastructures [64–69]. There are some different
perspectives on this. One of the perspectives is that the bipolar DC microgrid will be
used, as shown in Figure 9 [70,71]. It is possible to see in this figure that this is a case in
which a bipolar configuration is very well adapted. Other perspectives, in which the use
of a unipolar DC microgrid is adopted, were also proposed [72,73]. One important aspect
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associated with this microgrid is if the kind of application can easily integrate a storage
system. Storage systems in these infrastructures can be very important as they allow for the
attenuation of load peaks that could appear. It is also possible to easily integrate renewable
energy sources such as PV generators.
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Another possible implementation is the interconnection of a Medium-Voltage DC grid
with a Low-Voltage DC grid. This will be very interesting in areas that are near residential
consumers where there are some renewable energy generation parks with some dimension
to be connected to a Medium-Voltage DC grid. Figure 10 presents a possible scheme of this
kind of infrastructure. As shown by this figure, since residential consumers are connected
to an LV grid, a transformer is required. However, this is a particular case in which using
solid state transformers (SST) is extremely desirable. Another aspect is regarding the LV
grid configuration, which in this case can also be an asset.
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Another application area in which DC microgrids can play an important role in the
future is residential areas and buildings [74–82]. DC microgrids can especially be used
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in residential individual houses, as nowadays, many of them already have photovoltaic
generators. This has been a case of success regarding the use of renewable energies
associated with consumers (typically designated as prosumers). However, one aspect that
has been verified is that at peak hours, many of the prosumers do not harness the produced
energy. Some of the prosumers sell the energy, but typically the price is not the best one. In
this way, for the future, the use of storage systems is expected. This can be explored in the
context of second live batteries, which are predicted to be available in the context of the
massive use of electric vehicles. Thus, a possible structure for individual residential houses
is the one presented in Figure 11. A parallel structure in which there is an AC network
and a DC network could be the possible best solution, since it will at least allow the AC
networks to be supplied without the need to add an extra power electronic converter (DC
to AC).
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DC network and (b) parallel infrastructure of AC and DC networks.

Another aspect that is similar to the one presented for the individual residential houses
is buildings (residential or offices). In this case, the same parallel infrastructure can be
considered as one of the most desirable. One perspective for one simplified scheme only
considers DC infrastructure connecting to the renewable energy generators, storage systems
and eventually the electric vehicles charging system, as shown in Figure 12a. In this scheme,
there is only one interconnection between the DC infrastructure and the AC infrastructure.
However, the reliability and efficiency of the electrical distribution system can be improved
if several interconnection points are used instead of only one interconnection. Furthermore,
the reliability of the system also allows for the optimization of the power flow and increases
the capacity to provide ancillary services to the AC network. A possible scheme of this
system can be seen in Figure 12b. Another perspective considers a DC infrastructure inside
the residences (only DC or parallel DC and AC). Again, the infrastructure can be constituted
by one or several interconnections in the main DC infrastructure that will supply each
residence, as shown in Figure 13. At least for the main DC infrastructure that will supply
each residence, the bipolar configuration is the most indicated.
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Another area in which a parallel infrastructure can be very important in the near future
is LV electrical networks. Since it is predicted that practically all homes and buildings will
include renewable energy sources and eventually energy storage systems, this parallel
structure makes sense. This can be very important in the context of renewable energy
communities [9,83,84]. One perspective for this parallel infrastructure can be seen in
Figure 14. This infrastructure will allow for improvement in the efficiency and reliability of
the system.

It is also expected that DC microgrids will play an important role in rural areas [32,85–88].
This is highly recommended especially in the context of an isolated DC infrastructure due
to the fact that there are not any AC infrastructures nearby. In this case, the DC microgrid
can be constituted by renewable energy sources (for example, photovoltaic generators),
fuel cells, storage systems, pumping systems, warehouses and support houses. In Figure 15
a typical installation that can be used in this kind of rural application is presented.
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There are also other interesting applications in which DC microgrids can play an
important role. The applications have already been implemented or referred to by other
authors [88–91]. Applications related to the transportation sector is one of those areas. One
of the areas in which an important boost is expected is related to ships [92–94]. The use of
these DC microgrids associated with the supply of the trains is another perspective [95–98].
Data centers are installations in which DC microgrids have already been used with suc-
cess [99,100]. Due to this success, it is expected that in the future, more and more data
centers will be supplied by DC microgrids.
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A summary of the possible applications of DC microgrids and the corresponding
relevant references associated with each of the applications is presented in Table 4.

Table 4. Summary of the possible applications of DC microgrids and corresponding references.

Possible Applications References

Electric vehicles charging systems
infrastructures [64–73]

DC infrastructure in which an interconnection
between a Medium-Voltage DC grid and a
Low-Voltage DC grid is used

Vision of the authors

Electrical infrastructure for individual
residential level [74–79]

Electrical infrastructure for buildings [80–82], Vision of the authors

Parallel AC and DC infrastructure at level of
LV electrical networks Vision of the authors

Isolated DC infrastructure in a rural context [32,85–88]

Ships [89–94]

Trains [95–98]

Data Centers [99,100]

Some insights about what the future of DC electrical distribution infrastructures can be
is presented in this paper. The accomplishment of these approaches can change the actual
electrical distribution system in a huge way. For practically all of these ideas, the extinction
of the AC electrical distribution system was not considered; rather, their coexistence was
considered.

5. Challenges

One of the most important aspects that is fundamental for the development of DC
microgrids is related to the standards. For example, one particular aspect that is critical
is the definition and standardization of the voltage levels associated with the different
DC microgrids. Some studies have already been conducted regarding the best voltage
levels to be used [19], but they are still not defined by law. The developed DC microgrids
use different voltage levels. Another aspect that is fundamental and still needs some new
standards and legislation is the security of people and installations [37,101,102].

The subject of the isolated DC microgrid is something that has been studied in the
last few years. However, this is still considered a challenge since there are many aspects
that need to be addressed, such as, for example, the inertial control associated with these
networks [103–106]. The voltage of DC microgrids is prone to oscillation. Several factors are
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responsible for this, such as DC converters presenting negative damping performance, the
interaction between the DC microgrid and the DC converters and the DC voltage control
loop with positive feedback [107–111].

Another aspect that needs to be better addressed is the control of isolated DC micro-
grids without the incorporation of storage systems [112]. These kinds of solutions can be
implemented in rural and deprived regions, avoiding storage systems and, consequently,
allowing for low-cost solutions to be obtained. In fact, there are regions where during the
day, the use of PV generators could produce enough energy for remote applications. This
is the case with water pumping and small loads, which can be connected to small houses
or warehouses. This solution can also be used to replace electrical installations that are
supplied by diesel or biofuel generators. This kind of backup power supplies can be a
solution for small-scale microgrids since it presents some advantages, such as reducing
investment costs, easily being moved and even being considered green if using biofuels.
However, if a storage system is not used, some problems may arise due to the fact that these
generators present a low response speed and need some time to reach the required and
stable power. In this way, it is fundamental to perform studies about the stability and inertia
of the grid, considering only renewable generators such as the PV. Another aspect that has
been studied in the last few years is the control and stability of DC microgrids [113,114].
This is an area that still requires much research. Like the classical AC grids, DC microgrids
are also affected by problems of faults and instabilities, which will cause challenges that
are associated with their protection system. These challenges are associated with several
aspects. This kind of microgrid faces several problems caused by different aspects such as
load variations, the existence of maximum power point tracking (MPPT) controls in DERs,
input power fluctuations, the appearance of faults, etc. [17,115–117]. Another important
aspect is that contrary to what happens in AC microgrids, DC microgrids do not have the
natural current zero crossing, by which the extinction of the arc in the protection system
open contacts is much more complex [118,119]. In addition to that, there is a lack of dedi-
cated standards, which makes this topic even more complex. Taking all these aspects into
consideration and the little work that has been conducted in this area, there is still a need
for a lot of research.

6. Conclusions

DC microgrids can be seen as a game changer in the near future regarding electrical
distribution networks. A paradigm in which AC distribution networks will coexist with DC
distribution networks is what is expected in the predicted future. This change will probably
be boosted due to the change from centralized production to a renewable decentralized
generation, and also because of the importance that storage systems will play in this new
context. In addition, the change in classical loads to DC loads is also another aspect that will
contribute to this change. Aspects related to the adaptation of AC loads to DC microgrids
were focused on. It was verified that typical AC loads can be directly used in DC microgrids,
avoiding adapters and changes in the equipment. This also brings important cost savings
for this transition. Under this context, the possible DC microgrid voltage level to allow
the direct use of this equipment was also analyzed. However, to achieve this purpose,
much research, developments, studies and experiences are still needed. One of the aspects
that was focused on in this paper was the technology behind the DC microgrids that can
be used in several applications in the future. Not many applications have already been
implemented. Thus, in this context, this paper also presented some perspectives about
possible solutions and applications for the DC microgrids. Some of them were perspectives
of the authors that could be possible solutions in the near future. However, it was also
mentioned that in addition to the importance of research and developments, there are also
some other important aspects that must be addressed. That is the case with the definition
and development of new standards and new legislation for these networks. All these
aspects were addressed with the goal of providing a perspective on the future of DC
microgrids.
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108. Yang, Y.; Li, C.; Xu, J.; Blaabjerg, F.; Dragičević, T. Virtual Inertia Control Strategy for Improving Damping Performance of DC

Microgrid With Negative Feedback Effect. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 1241–1257. [CrossRef]
109. Sarojini, R.K.; Palanisamy, K.; De Tuglie, E. A Fuzzy Logic-Based Emulated Inertia Control to a Supercapacitor System to Improve

Inertia in a Low Inertia Grid with Renewables. Energies 2022, 15, 1333. [CrossRef]
110. Zhu, X.; Meng, F.; Xie, Z.; Yue, Y. An Inertia and Damping Control Method of DC–DC Converter in DC Microgrids. IEEE Trans.

Energy Convers. 2020, 35, 799–807. [CrossRef]
111. Aluko, A.; Buraimoh, E.; Oni, O.E.; Davidson, I.E. Advanced Distributed Cooperative Secondary Control of Islanded DC

Microgrids. Energies 2022, 15, 3988. [CrossRef]
112. Pires, V.; Cordeiro, A.; Foito, D.; Silva, J. Control transition mode from voltage control to MPPT for PV generators in isolated DC

microgrids. Int. J. Electr. Power Energy Syst. 2022, 137, 107876. [CrossRef]
113. Meng, L.; Shafiee, Q.; Trecate, G.; Karimi, H.; Fulwani, D.; Lu, X.; Guerrero, J. Review on Control of DC Microgrids and Multiple

Microgrid Clusters. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 928–948. [CrossRef]
114. Al-Tameemi, Z.H.A.; Lie, T.T.; Foo, G.; Blaabjerg, F. Control Strategies of DC Microgrids Cluster: A Comprehensive Review.

Energies 2021, 14, 7569. [CrossRef]
115. Yang, Y.; Huang, C.; Xu, Q. A Fault Location Method Suitable for Low-Voltage DC Line. IEEE Trans. Power Deliv. 2020, 35, 194–204.

[CrossRef]
116. Hategekimana, P.; Ferre, A.J.; Bernuz, J.M.R.; Ntagwirumugara, E. Fault Detecting and Isolating Schemes in a Low-Voltage DC

Microgrid Network from a Remote Village. Energies 2022, 15, 4460. [CrossRef]
117. Seo, H.-C. Development of New Protection Scheme in DC Microgrid Using Wavelet Transform. Energies 2022, 15, 283. [CrossRef]
118. Jithin, K.; Haridev, P.P.; Mayadevi, N.; Kumar, R.H.; Mini, V.P. A Review on Challenges in DC Microgrid Planning and

Implementation. J. Mod. Power Syst. Clean Energy 2022, 1–21. [CrossRef]
119. Kim, Y.-J.; Kim, H. Arc extinguishment for DC circuit breaker by PPTC device. In Proceedings of the IEEE International Conference

on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka, 15–16 December 2017; pp. 1–5. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/en15228360
http://doi.org/10.1109/TIE.2021.3100932
http://doi.org/10.3390/electronics10243100
http://doi.org/10.1109/TEC.2020.3011223
http://doi.org/10.3390/en15186704
http://doi.org/10.1109/JESTPE.2020.2998812
http://doi.org/10.3390/en15041333
http://doi.org/10.1109/TEC.2019.2952717
http://doi.org/10.3390/en15113988
http://doi.org/10.1016/j.ijepes.2021.107876
http://doi.org/10.1109/JESTPE.2017.2690219
http://doi.org/10.3390/en14227569
http://doi.org/10.1109/TPWRD.2019.2930622
http://doi.org/10.3390/en15124460
http://doi.org/10.3390/en15010283
http://doi.org/10.35833/MPCE.2022.000053
http://doi.org/10.1109/ICIINFS.2017.8300408

	Introduction 
	Architectures and Configurations 
	Benefits 
	Perspectives 
	Challenges 
	Conclusions 
	References

