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ABSTRACT The deployment of offshore platforms for the extraction of oil and gas from subsea reservoirs
presents unique challenges, particularly when multiple platforms are connected by a subsea gas network. In
the Santos basin, the aim is to maximize oil production while maintaining safe and sustainable levels of CO2
content and pressure in the gas stream. To address these challenges, a novel methodology has been proposed
that uses boundary conditions to coordinate the use of shared resources among the platforms. This approach
decouples the optimization of oil production in platforms from the coordination of shared resources,
allowing for more efficient and effective operation of the offshore oilfield. In addition to this methodology,
a fast and accurate proxy model has been developed for gas pipeline networks. This model allows for
efficient optimization of the gas flow through the network, taking into account the physical and operational
constraints of the system. In experiments, the use of the proposed proxy model in tandem with derivative-
free optimization algorithms resulted in an average error of less than 5% in pressure calculations, and a
processing time that was over up to 1000 times faster than the phenomenological simulator. These results
demonstrate the effectiveness and efficiency of the proposed methodology in optimizing oil production in
offshore platforms connected by a subsea gas network, while maintaining safe and sustainable levels of CO2
content and pressure in the gas stream.

INDEX TERMS Oil production systems; subsea gas networks; proxy modeling; derivative-free optimiza-
tion.

I. INTRODUCTION

One of the main problems faced by vertically integrated oil
companies (i.e., companies that control production, trans-
port, storage and refining) is the supply of crude oil from
offshore oilfields to refineries, that is, the management of
the crude oil supply [1]. For offshore oil production, as in
the Brazilian Pre-Salt layer [2], oil companies operate with
floating production, storage and offloading vessels (FPSOs),
or simply platforms, to produce and store crude oil. After
production, crude oil is then transferred to onshore terminals
via submarine pipelines or special vessels equipped with
dynamic positioning systems. As pipelines are not a viable
alternative for oil transportation in deepwater oilfields, a fleet

of vessels is deployed to transfer crude oil to terminals [3].

In addition to oil transportation logistics, such offshore
production systems share an underwater gas flow network for
transporting the produced gas to onshore terminals [4]. An
example is the Santos Basin where several deep water FPSOs
and fixed platforms are in operation. Due to the high con-
tent of contaminants in the produced gas, the platforms are
equipped with dedicated units for sequestration of the CO2,
which is reinjected into the reservoirs, but a part remains in
the exported gas. To meet the restrictions on the maximum
concentration of CO2 at the onshore terminal, gas exports
from the Pre-Salt platforms must be coordinated and mixed
with gas devoid of contaminants, produced by a limited
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number of platforms operating in Post-Salt reservoirs. Such
restrictions lead to the complex problem of coordinating the
production of the platforms, seeking to maximize the total oil
production from the multi-reservoir asset while ensuring the
CO2 limits in the produced gas, among others.

A. OVERVIEW AND RELATED WORKS
The production optimization of multiple platforms sharing
a gathering network and processing facilities is not a new
topic in the literature. According with the multilevel control
hierarchy [5], the related works fall in one of two layers
depending on the time span of predictions and the nature of
the models.

The first layer is the long-term optimization which con-
cerns decisions extending over years of operation and which
makes use of reservoir models. Regarding the long-term,
[6] addressed the optimization of the production rates that
maximize the recoverable oil volumes in the context of
multiple reservoirs. In [7], the value chain of such oilfields
was optimized in the long-run, while managing CO2 injection
sites and considering other shared facilities. In [8], strategies
were presented to optimize gas transportation in order to
honor contractual agreements. In [9], models were developed
to optimize the transportation network of natural gas on
the Norwegian Continental Shelf. Oilfield management in
long-term operations has also been the focus of derivative-
free optimization (DFO) [10], [11], [12], [13]. In [14], for
instance, different DFO methods were discussed, including,
but not limited to, Hooke-Jeeves direct search, genetic algo-
rithms and particle swarm optimization. In [15], DFO was
applied to gas-lift optimization in an integrated environment,
including reservoirs, wells and facilities, by means of the
Mesh Adaptive Direct Search (MADS) algorithm. In [16], a
DFO algorithm based on the trust-region method was applied
for robust well control optimization of oil reservoirs under
geological uncertainty.

The second layer is the short-term optimization which
regards the daily and weekly operations and which considers
the production infrastructure, such as the submarine flow
network and topside processes. Our work belongs to this
layer, with a focus on production optimization of multiple
offshore platforms that share a subsea gas pipeline network
while considering composition constraints, such as limits
on the CO2 content in the gas delivered to onshore ter-
minals. Besides being of academic interest, this problem
has practical applications in offshore operations, such as
the multi-reservoir oilfields in the Santos Basin. In [4], a
methodology was proposed to coordinate the production
from multiple offshore platforms, which share a subsea gas
pipeline network and are jointly limited by processing con-
straints at the onshore facilities. This methodology relies on
surrogates models for production platforms and piecewise-
linear approximation of fluid flow, yielding a mixed-integer
linear programming (MILP) formulation to which standard
algorithms can be applied. An application of this MILP-based
methodology to the operations in the Santos Basin proved to

be effective, but computationally costly. Aiming for locally
optimal solutions with the direct use of multiphase flow
simulators, an application of DFO algorithms was proposed
in [17] for that problem. The DFO approach brings about
flexibility and reduces the effort of model synthesis and
maintenance. The application of a DFO algorithm to the San-
tos Basin obtained solutions of nearly-optimal quality, but the
computational cost was exceedingly high due to the direct use
of a complex phenomenological simulator. In [18], a method-
ology for hyper-tuning of oil well simulators was presented
using DFO. Besides meeting demands from the regulatory
agency, accurately adjusted well models empower engineers
to plan production and derive piecewise-linear surrogates that
can be used in MILP production optimization. In [19], a
DFO exact penalty algorithm was proposed and applied to
production optimization of an offshore platform that receives
the production stream of gas-lifted oil wells. Being an exact
penalty method, it can accept infeasible iterates and handle
constraints not be given explicitly, allowing constraints to be
modeled through the optimization procedure.

This work aims to develop proxy models [20], [21] for gas
pipeline networks that enable fast computation of pressures
as a function of flows and concentrations of components of
interest. The proposed proxy models capture the structure
of the governing equations of such networks, while at same
time using system identification to yield polynomial models
from simulated data and field measurements. As such, the
proxy models can relieve algorithms from the need of using
simulation software, promoting fast and reliable optimization
using DFO algorithms.

B. PROBLEM STATEMENT

The problem being addressed in this paper is the optimization
of production in offshore oil platforms that share a subsea gas
network. This production system is modeled using a directed
graph, with the nodes representing production platforms,
terminals, and junctions where material and pressure balance
are enforced. The edges in the graph represent pipelines,
wells, valves, and equipment such as separators and electric
submersible pumps. The set of vertices in the graph is divided
into three subsets: source nodes representing production
platforms, sink nodes representing terminals, and internal
nodes that do not accumulate material. The set of edges is
also divided into two subsets: equipment such as chokes and
pumps, and pipelines. The goal of the optimization problem
is to maximize oil production, or an economic function, of an
entire network of reservoirs and production platforms, while
honoring various constraints such as capacity limits and pres-
sure requirements. The oil is offloaded from the production
platforms to the onshore terminal by shuttle tankers, whereas
the produced gas is transferred by a subsea pipeline network.

In other words, the problem of interest consists in deter-
mining the optimal operation of an oilfield in order to maxi-
mize overall oil production or profits. This can be formulated
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as an optimization problem of the form:

max
x

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , n

where x is the vector of decision variables, f(x) is the objec-
tive function representing the profit to be maximized, gi(x)
are the inequality constraints, and hj(x) are the equality
constraints that express physics relations, operational con-
straints, and limits that characterize the system behavior.

One challenge of the optimization problem being ad-
dressed is that the constraints may not be available in analytic
form. This can make it difficult to solve the problem using
traditional optimization methods, which typically rely on
the ability to compute the gradient of the objective function
and the constraints. In cases where the constraints are not
available in analytic form, it may be necessary to employ
alternative optimization approaches such as heuristics or
metaheuristics, which do not rely on the availability of gradi-
ents. In this specific paper, we rely on DFO formulations for
that matter.

C. CONTRIBUTIONS
The key contributions of this work to the state of the art are:

• A methodology based on systems identification for
proxy modeling of gas flow networks, which takes into
account the structure of the governing equations of gas
flow in pipelines.

• An analysis showing that the proposed proxy models are
extremely fast to compute and achieve good accuracy,
in terms of flows and pressures, with respect to data
obtained from a high-fidelity multiphase flow simulator.

• A computational analysis demonstrating that DFO com-
bined with the proxy models is an effective optimization
tool for multi-reservoir oilfields sharing a subsea gas
network, which can maximize a joint objective and
handle simulated constraints.

D. ORGANIZATION
Section II presents a conceptual formulation for produc-
tion optimization of multiple platforms sharing a subsea
gas pipeline network. Section III provides background on
the physics of gas flow in pipelines and methodologies for
system identification, which are key for the design of proxy
models. Section IV discusses how to convert the conceptual
formulation into a concrete formulation using simulation
and proxy-models, which can be optimized with standard
algorithms. Section V introduces a production system in the
Santos Basin as the case study, and further develops and
analyzes proxy-models to approximate the simulation models
of gas pipeline networks.

Section V-C reports results from the solution of concrete
formulations for the case study with DFO algorithms. Finally,
Section VI draws some final remarks.

II. PROBLEM FORMULATION
Based on [4], this section presents a formulation for pro-
duction optimization of offshore oil platforms that share a
subsea gas network. The formulation arises from a directed
graph G = (V, E) that models the production system. The
nodes represent production platforms, terminals, and junc-
tions where material balance is physically enforced. Con-
necting two nodes, arcs model pipelines that transfer fluids
from source to sink and can also represent wells, valves, and
equipment such as separators and electric submersible pumps
(ESP) [22]. Because of the graph structure, the formulation
becomes flexible and general to model heterogeneous pro-
duction systems consisting of platforms, wells, subsea and
topside facilities.

We follow the standard notation of network-flow models
[23] which concerns material balance and specialized works
[24], [25] that consider pressure, temperature and energy
balance in oil fluid flow. The set of vertices V is split into
three subsets: Vsrc are source nodes representing production
platforms; Vsnk are the sink nodes representing terminals;
and V int are the internal nodes that do not accumulate ma-
terial, such as manifolds. The edge set E is divided in two
subsets: Eeqp denotes equipment such as chokes and pumps;
and Epipes represents pipelines. Table 1 presents the notation
for vertex and edge sets of the graph-based model for hetero-
geneous production networks. Sets are defined in calligraphic
typeface, vectors in boldface, and scalar in normal typeface.

TABLE 1. Sets

Set Description
V Set of vertices in the production network.
Vsrc Set of source nodes (i.e., platforms). Vsrc ⊂ V .
Vsnk Set of sink nodes (i.e., terminals). Vsnk ⊂ V .

V int Set of internal nodes (i.e., manifolds).
V int = V \ (Vsrc ∪ Vsnk).

E Set of edges in the production network.
Epipes Set of edges denoting pipelines.
Eeqp Set of edges denoting equipment. Eeqp = E \ Epipes.
P Set of phases, typically oil, gas, and water.
Cp Set of components of interest in phase p, e.g. CO2.

A pressure variable pv and flow vector qv are associated
to each node v ∈ V . Flow rates are characterized by a set
P of phases, typically oil, gas, and water, and a set Cp of
components of interest within phase p, such as CO2 and C3

contaminants. The vector qv = (qv,p, q
c
v,p : p ∈ P, c ∈ Cp)

tracks the phases and components, but the meaning depends
on the node: qv is the fluid flow traversing an intermediate
node (manifold); the total production flow from a source
(platform); or the flow entering a sink (terminal).

The pressure drop ∆pe = pu − pv in a pipeline e =
(u, v) ∈ Epipes is a function of the flow qe and physical
properties of the pipeline, such as diameter, geometry, and
roughness. The pressure drop is a function of the control
variable when the arc e ∈ Eeqp models an equipment, such
as a choke valve.

Table 2 lists the decision variables which play a part in the
definition of physical and operating constraints.
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• Flow balance must hold at internal nodes v ∈ V int:∑
(u,v)∈E

q(u,v) =
∑

(v,u)∈E

q(v,u). (1)

• The flows in the arcs (v, u) leaving a platform v ∈ Vsrc

must add up to the platform’s outlet production:∑
(v,u)∈E

q(v,u) = qv. (2)

• The flows in the arcs (u, v) entering a terminal v ∈ Vsnk

must add up to the terminal’s total inlet qv:∑
(u,v)∈E

q(u,v) = qv. (3)

• Flows and pressures in arcs (u, v) ∈ E must be con-
sistent with the pressure at upstream and downstream
nodes:

∆p(u,v) = pu − pv. (4)

• The pressure drop in a pipeline (u, v) ∈ Epipe is a
function of flow and downstream pressure,

∆p(u,v) = ∆̂p(u,v)(q(u,v), pv), (5)

and a function of a control variable if (u, v) is an
equipment.

The fraction of a component c ∈ Cp is defined as:

zce,p =
qce,p
qe,p

, (6a)

zcv,p =
qcv,p
qv,p

. (6b)

for arc and node flows respectively. For an arc e, qe,p is the
flow of phase p, qce,p is the flow of component c in phase
p, and zce,p ∈ [0, 1] is the fraction. Variables for nodes are
defined likewise.

Certain process limits at production platforms and termi-
nals can be expressed in the form of constraints on com-
ponent fractions. Additionally, compositional balance con-
straints must also hold for phase p ∈ P and component
c ∈ Cp at network nodes:

• For a production platform v ∈ Vsrc, material balance
must hold for component c of phase p,

qcv,p =
∑

(v,u)∈E

qc(v,u),p. (7)

• In an internal node v ∈ V int, material balance must hold
for the flow of component c in phase p,∑

(u,v)∈E

qc(u,v),p =
∑

(v,u)∈E

qc(v,u),p. (8)

• Likewise, for a terminal node v ∈ Vsnk,

qcv,p =
∑

(u,v)∈E

qc(u,v),p. (9)

• Compositions of flows leaving a source or internal v ∈
Vsrc ∪ V int must be consistent,

zcv,p = zc(v,u),p, ∀(v, u) ∈ E , v ∈ Vsrc, (10a)

zc(v,u),p = zc(v,w),p, ∀(v, u), (v, w) ∈ E , v ∈ V int.

(10b)

From the first equation, the component fraction in
streams emanating from a platform must be all the same,
a common hypothesis in flow splitting [26]. For an
internal node, the second equation ensures that streams
of distinct compositions can reach the node, such as a
manifold, where they get mixed into a homogeneous
outlet.

TABLE 2. Variables in the conceptual formulation

Variable Description
pv Pressure at node v ∈ V .
qv,p Flow rate of phase p from, through, or to a node v.

qcv,p
Component c of flow rate in phase p from, through,
or into a node v.

qv
Flow rate vector associated to node v,
qv = (qv,p, qcv,p : p ∈ P, c ∈ Cp).

zcv,p
Fraction of component c in phase p
associated with node v, i.e. zcv,p = qcv,p/qv,p.

zv
Vector of component fractions in flow related to
node v, zv = (zcv,p : p ∈ P, c ∈ Cp).

xv Boundary condition for platform v, xv = (qv , pv , zc).
∆pe Pressure drop in edge e = (u, v), ∆pe = pu − pv .
qe,p Flow rate of phase p ∈ P in arc e ∈ E .
qce,p Flow rate of component c in phase p of arc e.
qe Flow rate vector, qe = (qe,p, qce,p : p ∈ P, c ∈ Cp).
zce,p Component c concentration in phase p of arc e.

ze
Vector of component fractions associated with flow
in arc e, ze = (zce,p : p ∈ P, c ∈ Cp).

q System flow vector, q = (qv : v ∈ V) ∪ (qe : e ∈ E).
p System pressure vector, p = (pv : v ∈ V).
z

System flow composition vector,
z = (zv : v ∈ V) ∪ (ze : e ∈ E).

A. CONSTRAINTS ON ARCS AND NODES
Bound constraints are imposed on each node v ∈ V,

pmin
v ≤ pv ≤ pmax

v , (11a)

qmin
v ≤ qv ≤ qmax

v , (11b)

and each arc (u, v) ∈ E ,

pmin
(u,v) ≤ p(u,v) ≤ pmax

(u,v), (12a)

∆pmin
(u,v) ≤ ∆p(u,v) ≤ ∆pmax

(u,v), (12b)

qmin
(u,v) ≤ q(u,v) ≤ qmax

(u,v). (12c)

Constraints are imposed on the composition of flows leav-
ing production platforms and entering terminals v ∈ Vsnk ∪
Vsrc,

zmin
v ≤ zv ≤ zmax

v . (13)

where zv = (zcv,p : p ∈ P, c ∈ Cp} is a vector with the
compositions for all phases at node v.
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B. BOUNDARY CONDITIONS AT PRODUCTION
PLATFORMS
First proposed in [4], boundary conditions can model the
interface of a production platform v ∈ Vsrc with the subsea
gas network in terms of its outlet flow qv , pressure pv , and
vector zv of compositions. Boundary conditions are a power
tool to decouple a system into a set of subsystems, bringing
about flexibility to connect heterogeneous subsystems and
computational advantages to be explained later.

Let Xv = {xv : xv is feasible} be the set of feasible
boundary conditions, such that xv = (qv, pv, zv) holds
all the relevant information to characterize the interface. If
xv ∈ Xv , there exist local control settings for wells, subsea
and topside equipment that enable the platform to operate at
the boundary condition xv . The feasible set Xv is assumed
closed and bounded, a plausible assumption given that a
platform v is restricted by physical limits.

Notice that multiple control settings might exist for a
boundary condition xv , each potentially inducing a distinct
objective value for the production unit. Whichever the ob-
jective function selected for a platform v, we assume that
the optimal objective fv(xv) is known for the boundary
condition xv , namely the maximum gain yielded by platform
v when it operates at xv . This objective can be expressed
in terms of production (cubic meters of oil per day) or any
function modeling an economic gain.

The computation of control settings that maximize the
objective for a given xv , i.e. calculating the optimal fv(xv),
is a challenging task. It entails solving a potentially hard
optimization problem of varying complexity that depends on
the platform v. For instance, in offshore platforms operating
with satellite wells, the optimization is relatively simple
because surface operating conditions are determined by a
fixed pressure at the separation unit [27]. In more complex
environments, wells have subsea completion that demands
the modeling of pressure, subsea and topside processing
equipment, flow splitting, and routing to manifolds and head-
ers, among other features [24], [25], [26].

C. CONCEPTUAL FORMULATION
This work focuses on the production optimization of large
offshore oilfields, consisting of several platforms producing
from multiple reservoirs that share a subsea gas pipeline and
compete for limited resources. This production optimization
problem is conceptually formulated as:

P : max
θ

f(θ) =
∑

v∈Vsrc

fv(xv) (14a)

s.t. : xv ∈ Xv, v ∈ Vsrc, (14b)
H(q,p, z) = 0, (14c)
G(q,p, z) ≤ 0. (14d)

where: (i) q, p, and z are vectors with the flows, pressures,
and compositions for all network nodes and arcs; (ii) x =
(xv : v ∈ Vsrc) is the vector with all boundary conditions;
and (iii) θ = (x,q,p, z) collects all of the decision variables.

The vector functions H and G model the network constraints
(1)-(13), such as flow conservation, pressure balance, and
composition restrictions. Further, the boundary conditions at
sink nodes are embedded in the network constraints, such
as their fixed operating pressure. The objective expresses the
overall economic or production goal of the oilfield.

D. DISCUSSION
The production optimization problem P is regarded as con-
ceptual, or abstract, because the the sets Xv of boundary
conditions, their respective objectives fv , and pressure-drop
relations are not explicitly known. Such relations are typi-
cally implemented in black-box simulators, or else need to
be inferred from field measurements.

By generating proxy models, the conceptual problem is
cast as a concrete optimization problem to which algorithms
can be applied. The kinds of algorithms depend greatly on
the nature of the proxy models, which are thus pivotal for the
efficiency of a solution methodology.

We follow the modeling of platforms as sets Xv of
boundary conditions as proposed in [4], using proxy models
based on piecewise-linear approximation of the objective
fv(·) which enables the optimization of heterogeneous units.
Explicitly accounting for the detailed model of production
platforms would render an intractable problem P , given
the complexity and sheer size of the MINLP problems for
local optimization of platforms. This work contributes by
proposing a methodology based on systems identification,
and the properties of fluid flow in pipelines, that leads to the
synthesis of proxy models for pipelines that are sufficiently
accurate and extremely fast to compute. For one, the pipeline
proxy models can be derived from field measurements or
from data produced by high-fidelity fluid flow simulators. For
another, the resulting proxy models can serve as extremely
fast simulation tools in what-if analyses or embedded in P to
obtain a concrete optimization problem.

In what follows, we propose a methodology for the syn-
thesis of proxy models and the use of DFO for solving the
resulting production optimization problem. The optimization
algorithm will choose boundary conditions that ensure a
feasible operation for the platforms and subsea network,
while yielding an optimal system-wide operation.

III. BACKGROUND
This section presents basic concepts on the hydraulics of gas
pipelines and networks, along with fundamentals on system
identification that are key for developing proxy models.

A. GAS PIPELINES
The hydraulics of gas flow in pipelines is relevant for choos-
ing a suitable structure for pipeline models, which will be
identified from simulated data and real measurements. The
focus is on equations and methods related to pressure cal-
culation, given flows rates and CO2 content. We start from
equations of hydraulics for single-segment pipelines and then
address multiple-segment networks.
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1) Hydraulics

The theory of natural gas flowing in pipelines is in a very
mature state. The Fritzsche equation that computes the flow
rate for a given differential pressure dates back to 1908, for
example. Several phenomena have been studied in detail in
the past decades, leading to equations and models for a vast
number of different flow scenarios.

For the sake of objectivity a scenario with modest com-
plexity is chosen. It is not too complex where the physics
intuition about the equations may be lost, yet not overly sim-
ple such that important information, which could potentially
be used as prior knowledge in proxy modeling, is lost. The
proposed scenario makes the following assumptions:

1) Single-segment Pipeline: Long offshore gas pipelines
are often built of many connected different pieces of
pipes with different physical properties; those smaller
pieces are called segments. In order to compute flows
given pressures, for example, the available methods use
converging algorithms. Here, however, a single seg-
ment is considered to represent a pipeline and therefore
equations can be used instead of algorithms.

2) Single-phase Gas Flow: Platforms can produce natural
gas in purely gas phase, liquid phase or a mixture of
them. Besides in the reservoir, natural gas can change
its phase inside a pipeline depending on local pressure
and temperature. With a mixture of phases, the so-
called multi-phase flow, the equations become far more
complex than the ones of single-phase. The hypothesis
here is that single-phase equations can describe most
behaviors satisfactorily, assuming there is a dominant
flow regime in a particular segment.

3) Real Conditions: Under high pressure and at low tem-
perature, which is the case in subsea pipelines, the ideal
gas law is not applicable. A nonlinear term known as
compressibility factor is defined as the ratio of the gas
volume at a given temperature and pressure to the vol-
ume the gas would occupy if it were ideal at the same
conditions. Given the relative magnitude of pressures
and temperature variations in subsea pipelines this term
can’t be beforehand neglected.

4) Pipeline Not Elevated: Elevation is the difference of
height between two points of a pipeline segment. The
undersea elevation variation is normally small in com-
parison to the length of the pipeline itself, therefore is
neglected.

5) Isothermal Flow: Under isothermal flow, the pressure
drop can be calculated using constant gas properties
such as the compressibility factor, instead of integrat-
ing the state equation for each infinitesimal piece of
the pipeline. Because the whole purpose of the proxy
is to avoid the use of algorithms, the assumption is
that the flow is isothermal, in other words, that the gas
temperature is constant along the pipeline.

6) Turbulent Flow Regime in Smooth Pipes: Among the
categories of turbulent flow in pipes, this work chooses

the turbulent flow in smooth pipes for better represent-
ing the scenario of interest. But other categories could
be selected, such as turbulent flow in fully rough pipes,
and transition flow between smooth and rough pipes.

Figure 1 illustrates a pipeline segment with dimensions.
Before presenting the equations for gas flow in pipelines, let
us introduce the nomenclature in Table 3.

 

P1 

P2 

H 

D 

x 
 

 
L 

u 

FIGURE 1. Pipeline segment with dimensions

TABLE 3. Variables and parameters

Parameter/
Variable Description

u fluid average velocity
P absolute pressure
ρg gas density
ρair air density
g gravitational acceleration
H difference of height of points 1 and 2
f Darcy friction factor
D pipe inner diameter
m mass
A area
ki constants
q gas flow rate
P1 upstream pressure
P2 downstream pressure
G gas gravity
Tf average gas flowing temperature
L pipe segment length
ζ gas compressibility factor at the flowing temperature

Mg gas molecular weight
Mair air molecular weight
Mi molecular weight of a component i
yi molar fraction of component i

Pavg average flowing pressure
Re Reynolds number
µ dynamic viscosity

The momentum equation applied to a portion of a pipe
of length dx, inside which flows a compressible fluid, for
example natural gas, in steady state conditions is:

u du︸︷︷︸
kinetic
energy

+
dP

ρg︸︷︷︸
pressure

force
work

+ g dH︸ ︷︷ ︸
potential
energy

+ f
dx

D

u2

2︸ ︷︷ ︸
viscous
friction

= 0 (15)

The third term, potential energy, which depends on height
is neglected according with the scenario characterization
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presented above. The last term, viscous dissipation, is con-
veniently simplified in order to ease integration as follows:

ρ u =
ṁ

A
= k0 (16)

which is a constant and leads to the equation:

ρ2u du︸ ︷︷ ︸
kinetic
energy

+ ρ dP︸︷︷︸
pressure

force
work

+ f
dx

D

C2

2︸ ︷︷ ︸
viscous
friction

= 0 (17)

Integrating Eq. (17) results in the known general gas flow
equation,

q = k1

√(
P 2
1 − P 2

2

G·Tf ·L·ζ·f

)
D2.5 (18)

in which the meaning of the constants ki are not relevant for
the purpose of system identification. From Eq. (18) the influ-
ence of flow rate on pressures is quite obvious. The influence
of CO2 however is hidden in G and ζ. The compressibility
factor ζ can be further detailed as [28]:

ζ =
1

1 +
(

Pavgk210G·k3

Tf
k4

) (19)

It can be noticed that both Eqs. (18) and (19) depend on
the natural gas specific gravity G, which is define as:

G =
Mg

Mair
(20)

where M air is the air molecular weight, which is a constant
equal to 28.9625 g/mol, and M air is given by the mixture of
gases:

Mg =

I∑
i=1

Mi · yi (21)

where Mi is the molecular weight, yi is the molar fraction of
the ith component and I is the number of components. Table
4 shows the molecular weight value for the most important
components of natural gases.

TABLE 4. Molecular weight of natural gas components

Molecular
Component Weight (g/mol)

Methane 16.043
Ethane 30.070
Propane 44.097

Carbon Dioxide 44.010

The first key to figure out the influence of CO2 on pressures
regards the natural gas specific gravity G. From Eq. (21), the
molecular weights reported in Table 4, and assuming that the
molar fraction of Methane is much greater than the other
components, it is possible to conclude that the higher the
CO2 content the higher will be the specific gravity G. Thus,
increasing CO2 content increases G, which in turn decreases
the flow rate q for the given pressure as seen in Eq. (18).
Conversely, in Eq. (19) the compressibility factor ζ shrinks

exponentially with the increase of the CO2 content, which
thereby increases the flow rate.

So far the clues do not lead to a conclusion simple enough
to drive the design of the proxy model structure. Another try
is the Darcy friction factor f present in the denominator of
Eq. (18). For turbulent flow in smooth pipes the friction factor
is given by the Collebrook-White equation:

1√
f
= −2 log

(
e

3.7D
+

2.51

Re
√
f

)
(22)

This equation could have been the second key to try to
figure out the influence of CO2 on pressures, but it is far too
complicated and associated to the influence of the first key the
final conclusion is that, for this part of the pressure model, an
approach based on data should be favored. Such an approach
is called gray-box system identification.

2) Pipeline Network
So far the basic scenario has considered a single pipeline
segment. A bit more complex scenario in which there are
two different pipeline segments connected is shown in Figure
2. If the pressure P1,1 and the flow rate q1 are known, then
it is possible to calculate P1,2 = P2,1 with Eq. (18) and
after that calculate P2,2. As such, P2,2 no longer comes
from an equation, but from a cascade algorithm that uses
this equation. Still this is a one-pass algorithm which, from a
proxy system identification perspective, could be tackled as a
hierarchically structured model.

 

 

D1 

D2 

P1,1 
1 

P1,2 2 

P2,1 

P2,2 

FIGURE 2. Two segments pipeline

Considering gas pipeline networks found in scenarios of
interest, such as oilfields in the Santos Basin, streams from
multiple pipelines flow into a single pipeline as illustrated
in the simple network shown in Figure 3. In this context,
assuming that the pressure P3,2 and flows q1 and q2 are
known, the objective is to calculate pressures P1,1 and P2,1.
If all simplifications are kept, the solution can also come from
a one-pass algorithm. It computes first pressures P1,2 = P2,2

that depend on P3,2 and the sum of q1 and q2. With these
pressure values, then P1,1 and P2,1 can be calculated.

If the assumptions from Section III-A1 no longer hold,
then several other variables start to play a role in the com-
putation process. For instance, the gas and liquid-phase rates
change along the segment according to the pressure gradient,
possibly involving complex behavior such as flashing. The
change of phase in itself also influences the pressure gradient
and the integrated equation such as (18) cannot be applied.

Simulators [29] handle such complex settings by iterative
algorithms that integrate fluid property values along the pipe
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P2,1 
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P1,2 

P2,2 

P3,2 3 

q1 

q2 

FIGURE 3. Small pipeline network

segment length. They also use another iterative method called
nodal analysis that guesses flow rates and converges in an
iterative fashion to a set of consistent pressures. This iter-
ative nature is the reason for a high computational burden.
Hundreds or even thousands of iterations are often needed
to converge. Not only the number of iterations, but also the
complexity of the equations involved in the calculations play
a major role in the total computational load.

To be fast the chosen proxy model structure would need
to avoid this iterative nature and simplify as much as possi-
ble the involved equations. The next sections detail how to
achieve these objectives.

B. SYSTEMS IDENTIFICATION
System identification is a methodology for building mathe-
matical models of dynamic systems using measurements of
the system’s input and output signals [30].

The field of system identification can be broadly divided
in two main categories: linear and nonlinear. The field of
system identification can be broadly divided into two main
categories: linear and nonlinear. Linear models should be
considered first; only when they do not yield a satisfactory
performance should nonlinear models be used, which are
significantly more complex. As will be seen later, the relation
between pressures and flow rates of natural gas flowing in
pipeline networks is nonlinear. Following, there is a brief
description of the sequence of tasks performed in nonlinear
system identification for static models.

1) Model Inputs and Outputs
The inputs and outputs are straightforward for the problem
of concern. The inputs consist of (i) the natural gas flow rate
qv from the offshore platforms v ∈ Vsrc, assuming a single
phase regime (P = {gas}), (ii) fraction zcv of the component
c ∈ C in the gas stream qv , assuming CO2 as the component
of interest. The output is (i) the exporting pressure pv of the
production platforms.

2) Model Architecture
The selection of the architecture is a subjective decision that
should be made based on three aspects.

The first aspect regards how the system’s output changes
along time once the input is set, to put in other words, if the
model is static or dynamic. (i) Static is a kind of modeling to
which the time between an excitation signal and its respective

output response is not important. The outputs change instan-
taneously with input variation or reach a steady-state after
lag time known as settle-time, which is a property of stable
system. (ii) Dynamic modeling is when the temporal behavior
of the system is taken into account. Such models tend to be
more complex, given that the trajectory of the states of the
system is also modeled during the settle-time [31].

The second aspect relates to the overall modeling ap-
proach. (i) White-Box is fully derived by first principles,
such as physical and chemical laws, leading to a theoretical
modeling of all equations and parameters [31]. (ii) Black-Box
is based solely on measurement data. Both model structure
and parameters are determined from experimental modeling.
It is appropriate when no prior knowledge about the system is
available, or the equations based on first principles are highly
complex [31], [32]. (iii) Grey-Box represents a compromise
between white- and black-box models by integrating various
kinds of available information. Typically, the model’s struc-
ture is determined from prior knowledge, whereas measure-
ment data are used for parameter identification [32].

Finally, the third aspect consider the mathematical func-
tions that define the model. (i) Linear models are the sim-
plest and must be used whenever possible. (ii) Polynomials
extend linear models, becoming more flexible as the degree
increases [31]. (iii) Look-up Tables are essentially a large
collection of samples combined with some interpolation
and optimization technique. (iv) Neural Networks (NNs) are
mathematical arrangements inspired in biological neurons
with distinct structures that can be particularly interesting for
static (multilayer perceptron) or dynamic models (recurrent
neural networks). NNs with a large number of layers, known
as deep learning, have achieved great success in complex
problems. They are difficult and slow to train, and the in-
corporation of prior knowledge is limited. Recently, [33]
proposed a regularization to bring prior knowledge of the
physics involved into the training of NNs.

3) Model Structure

The basic principle here is to compose a complex model
of many simpler low-dimension models. Some ways to or-
ganize the smaller models include the multiplicative cor-
rection model, refinement submodel, parameter scheduling,
projection based structures, and additive and hierarchical
structures. Hierarchical structures are particularly helpful to
model physical phenomena, mainly because they break the
model down into physically meaningful pieces.

4) Parameter Estimation

This step is not as subjective as the previous ones. It is the
application of well know techniques over the model skeleton
built so far, with defined inputs, architecture and structure.

A key concept is the loss function, which serves to assess
the quality of the model parameters and guide optimization
algorithms. The loss function gives the error value as a
function of the parameters of the model. In a broad sense,
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error is the difference between the output of the model and
the output of the process for a given input:

ej = yj − ŷj (23)

Arguably, the most common form of the loss function is the
sum of squared errors:

I(θ) =

N∑
i=1

e2j (24)

where θ is the vector with model parameters and N is the
number of training data samples.

When the error between process and model output is linear
on the parameters, and the sum of squares is applied as a loss
function, the optimal parameters can be computed by means
of least squares. For the sake of simplicity, we consider the
case where the system input u and output y are scalars. Given
an input uj , the predicted model output ŷj is given by

ŷj =

n∑
i=1

θixi,j (25)

where xi,j are called regressors given by

xi,j = gi(uj) (26)

with gi(·) being problem dependent functions. For instance,
if gi(u) = ui−1 is a monomial of ith degree, the the
prediction becomes a polynomial function of the inputs. The
regressors can be arranged in matrix forms as

X = [x1 x2 · · · xn] (27)

where xi = (xi,1, xi,2, . . . , xi,m) is a column vector with the
ith regressors for all inputs. Let θ = (θ1, θ2, . . . , θn) be the
vector of model parameters. Rewriting Eq. (25) as

ŷ = Xθ (28)

and inserting it into Eq. (23), leads to the error vector,

e = y −Xθ. (29)

The least-squares problem for the loss function (24) becomes

min
θ

I(θ) =
1

2
∥y −Xθ∥2 (30)

which can be solved efficiently by means of Cholesky factor-
ization and iterative methods.

5) Model Validation
The aim here is to check whether or not all previous steps
were carried out successfully. This is achieved in two steps.
(i) The first step uses a criterion to measure the quality of the
model on training data. The criteria can be a visual inspection
of data plots, sum of squares due to error (SSE), coefficient
of determination (R2), degrees of freedom in the error (DFE),
degree-of-freedom adjusted coefficient of determination, root
mean squared error (RMSE), and finally expected error (EE).
(i) If the chosen criterion calculated on training data achieves

good enough results, the second task is to reevaluate the
model on fresh data, also called test data.

The coefficient of determination is a measure of the system
response variation that is explained by the model. An intuitive
relation is given by:

R2 =
Explained variation

Total variation
(31)

For instance, R2 = 0.9 means that 90% of system variation
is explained by the model. In mathematical notation,

R2 = 1− SSres

SStot
= 1−

∑m
j=1(yj − ŷj)

2∑m
j=1(yj − y)2

(32)

where y is the mean of training data output {yj}mj=1.
The expected error is a measure of the model output error

expectation. Because the value is expressed in the same units
of the system’s output, it is intuitively interpretable:

EE =

∑m
j=1(yj − y)

m
(33)

IV. SOLUTION FRAMEWORK
This section addresses the synthesis of a concrete formulation
for the conceptual problem (14), which can be solved with
standard algorithms for production optimization. The nature
of the approximation of the objective and constraints is piv-
otal with respect to the class of algorithms that are applicable.

The equations (14c) that relate flows, pressures, and com-
positions of the gas pipeline network can be modeled directly
with a phenomenological simulator, or with the proxy models
developed in the previous section. Conversely, the objective
function fv is hard to compute since it entails solving a com-
plex MINLP problem [25] for a given boundary condition xv ,
which depends on the particular structure of the platform v.

A. MODELING THE OBJECTIVE FUNCTION
Since it would impractical to solve fv for several xv iter-
atively, an alternative is to compute this objective offline
for a finite, sample set X̃v ⊂ Xv of feasible boundary
conditions. Then, fv can be approximated by a multidi-
mensional piecewise-linear function f̃v using the point set
Sv = {(xv, fv(xv)) : xv ∈ X̃v}. Notice that the resulting
piecewise-linear function is a proxy model for the objective.
The modeling of a piecewise-linear function in mathematical
programming is a topic of considerable complexity though.
The first issue regards the partitioning of the domain X̃v into
a polyhedron set, which can be an arbitrary set of polyhedra,
a triangulation, and a regular lattice, among others. The
second issue is about the formulation of f̃v in mathematical
programming with the use of continuous and binary variables
[34], [35]. A number of formulations are found in the lit-
erature that depend on the domain partition, including the
convex combination, the disaggregated convex combination,
the logarithmic convex combination, and the special order set
of type 2 (SOS2) [34]. Instead, if the problem is solved with
a DFO algorithm, then f̃v(xv) can be obtained by convex
combination of the closest points to xv in Sv that form a
simplex.
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B. MODELING THE PIPELINE NETWORK
This work considers the use of the multiphase flow simulator
Pipesim to solve the pipeline network equations (14c), and
thereby compute the node pressures and pressure drops for
a given vector x = (xv : v ∈ Vsrc) of boundary condi-
tions. Together with a piecewise-linear approximation of the
objective function fv , this black-box model leads to a con-
crete problem that can be solved with DFO algorithms. This
approach, which relies on the use of a black-box simulator in
the optimization loop, was proposed in [17], which serves as
a reference model and a means of comparison.

Conversely, our work proposes the use of the proxy model
developed in the previous section in place of the black-box
simulator. The concrete problem that results is explicit in the
sense that network relations are given by algebraic equations,
without simulation models that are computationally costly to
run. Given the good accuracy of the proxy models identified
for the pipelines in the Santos Basin, this alternative brings
about efficiency gains. Actually, two solution methods may
result from the pipeline proxy model. The first is obtained by
combining the proxy models for the pipeline pressure drops
(Eq. (5)), with a mixed-integer formulation of the objective
functions fv . Instead of a MILP formulation for fv , the
second uses the set Sv as a look-up table to compute f̃v(xv)
by convex approximation of the closest points to a given
boundary condition xv , as in the case of direct use of a black-
box simulator.

C. CONCRETE FORMULATIONS
Considering the models presented above for the objective
function and pipeline network, three concrete formulations
for the production optimization problem (14) are readily
derived:

• Simulation-Based (SB): It consists of the use of Pipesim
simulator to solve the pipeline network equations and
algorithmic piecewise-linear modeling of the objective
function in tandem with a DFO algorithm.

• Proxy-Based (PB): Akin to the simulation-based strat-
egy, but instead the pipeline network equations are
solved approximately and algebraically using the proxy-
models identified from simulation and field data. The
resulting concrete formulation can be optimized with
DFOs.

• Mixed Approach (MA): The mixed approach combines
both simulation and proxy-based strategies. Alternate
searches can be performed between the two methods,
or a sequential approach can be followed (i.e., first
optimizing the proxy model and using the results as a
starting point for the simulation-based procedure).

V. CASE STUDY
A. SANTOS BASIN
The Santos Basin is a sedimentary basin on the Brazilian
continental shelf, extending for hundreds of kilometers along
the coast. Large oil and gas reserves were discovered in deep

waters about 300 km off the coast, below the salt layer, the
so-called Pre-salt. The Pre-salt carbonate reserves is probably
the most important oil discovery in Brazil [36]. From the
production point of view, this new frontier has technological
challenges that are still being addressed [2]. Figure 4 gives
the schematic representation of a gas pipeline network in the
Santos Basin.

SYMBOLS
q – flow rate
z – CO2 content
P – pressure

FPSO 2
in: q2, z2
out: P2

FPSO 4
in: q4
out: P4

FPSO 1
in: q1, z1
out: P1

FPSO 3
in: q3, z3
out: P3

FPSO FIX
in: q0
out: P0

Onshore Terminal
   in: Pt

FIGURE 4. Schematic representation of a gas pipeline network in the Santos
Basin. Model variables are indicated in the network.

FIX is a fixed platform producing gas and condensate from
wells with subsea completion. This platform is connected to
the onshore terminal by a subsea pipeline of 167 km. FIX
was designed to receive gas from the Floating Production
Offloading and Storage (FPSO) platforms. The gas with high
CO2 content produced from Pre-salt reservoirs by FPSOs 1, 2
and 3 which is gathered in a manifold MPS. The gas from the
Pre-salt is then mixed with gas from the Pos-salt produced
by FPSO 4 and FIX, which have low CO2 content, and then
transferred to the onshore terminal. The oil produced by the
FPSOs is transported to refineries by special vessels.

The challenge for integrated operations rests on max-
imizing overall production from the oil reservoirs, while
accounting for physical and operational constraints in the
production platforms, pipelines, and terminals. Of concern
is the concentration of contaminants in the gas delivered to
the terminal, which must be within the operational range of
the onshore facilities.

The set of network sources Vsrc = {FIX,FPSO-1,FPSO-2,
FPSO-3,FPSO-4} consists of the platforms, the set of net-
work sinks of intermediate nodes Vsnk = {OS} models
the onshore terminal (OS), and the set V int = {MPS}
contains the Pre-salt manifold. The set of pipelines is
Epipes = {(FPSO-1,MPS), (FPSO-2,MPS), (FPSO-3,MPS),
(MPS,FIX), (FPSO-4,FIX), (FIX,OS)} and Eeqp = ∅. The
network extends over a large area, with pipelines reaching
almost 200 km in length and depth varying from about 50 m
to more than 2000 m.

The network transports gas from the platforms to the on-
shore terminal which imposes limits mainly on CO2 content,
but potentially others in the future as the reservoirs mature,
such as as C3. Thus the phase set is P = {gas} and the
content of interest is Cgas = {CO2}. The boundary condition
xv of a platform v consists of the gas outlet flow qv,gas, the
outlet pressure pv , and the CO2 content zCO2

v,gas in the gas
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phase. The onshore terminal t = OS operates at a fixed
pressure pt = 45 bar.

The case study and its associated characteristics including
wells and pipelines are based on actual production systems
operated by Petrobras. For this reason, further details of the
processes are confidential and cannot be disclosed.

B. PROXY MODEL SYNTHESIS
Here, the methodology for systems identification is applied
following the steps previously presented in Subsection III-B,
with support from the theory on gas pipeline hydraulics. The
aim is to design a proxy model for pressure calculation in the
subsea gas pipeline of the Santos Basin.

1) Model Inputs
As illustrated in Figure 4, the boundary conditions with the
network inputs are:

1) xv = (pv): the operating pressure at the terminal v =
OS.

2) xv = (qv, z
CO2
v,gas): the exporting gas rate and CO2 con-

tent from the platforms v ∈ {FPSO-1,FPSO-2,FPSO-3}
that operate in the Pre-salt reservoirs.

3) xv = (qv): the exporting rate of the platforms v ∈
{FIX,FPSO-4} that produce gas without contami-
nants.

2) Model Outputs
The output consists of total gas delivered to the terminal, its
CO2 content, and pressures at the source and intermediate
nodes of the network. Mathematically, the output vector is
y = (qt, z

CO2
t,gas) ∪ (pv : v ∈ Vsrc ∪ V int).

For the proxy model formulation, we assume that there
is no loss in the gas flows (i.e., the total flow is the sum of
the individual platform flows) and no phase transition. These
assumptions allow the approximation of the gas delivered to
the terminal and its CO2 content with the following algebraic
equations:

qt =
∑

v∈Vsrc

qv (34a)

zCO2
t,gas =

∑
v∈Vsrc qv · zCO2

v,gas∑
v∈Vsrc qv

(34b)

As for pressure outputs, a proxy model is presented below
based on the system identification methodology presented
above. Notice that when the experiments employ the phe-
nomenological simulator for benchmark purposes, no such
assumptions are made and the pressures are taken from the
resulting simulations.

3) Model Architecture
Regarding the model architecture, three decisions are made:

1) Temporality: because the settling-time is much shorter
than setpoint changes in daily production operations, a
static model is chosen rather than a dynamic model.

2) Overall Modeling Approach: white-box modeling is
overly complex and slow for optimization purposes,
which motivates the design of a proxy model. The
gray-box is favored in regards to black-box modeling
because of the prior knowledge seen thus far in terms
of physical principles, which can determine the model
structure.

3) Mathematical Base Functions: considering the general
flow equation (18), polynomial functions seem appro-
priate to model the relation between pressures and flow
rates. Conversely, the equations that relate pressures
and CO2 content are far more complicated than the re-
lation between flows and pressures. For these reasons,
polynomial functions of flow rate and CO2 content will
be used as proxy models for pressures.

4) Model Structure
The model structure is based on two decisions:

1) Polynomial Degrees: Equation (18) shows a quadratic
relation between pressures and flow rate in pipelines,
therefore a polynomial of second degree is chosen.
Given the complexity of the relation between pressure
and CO2 content based on prior knowledge, a second
degree polynomial is initially chosen to represent the
nonlinear behavior. The degree may be increased de-
pending on performance.

2) Submodel Structure: With 9 inputs for 5 outputs (pres-
sures at network nodes), the model dimensionality is
relatively low to be handled without submodel compo-
sition. Nevertheless, it is worth looking into the behav-
ior of a single variable to assess how well a polynomial
model would fit the process. Figure 5 shows how the
exporting pressure at FPSO 1 behaves according to its
flow rate and CO2 content variation, keeping constant
the boundary conditions of the remaining platforms.

240
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FIGURE 5. Data collected from a phenomenological simulator showing FPSO
1 pressure as a function of its own gas flow and CO2 content, keeping fixed
the boundary conditions of the other platforms at their nominal operating point.
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From Figure 5 one concludes that the raw data is
not a good fit for a polynomial model. This highly non-
linear behavior arises from the superposition of several
complex equations and algorithms used in white-box
simulators, which jointly generate data that is difficult
to interpret.

This work proposes a simple submodel defined as
a string of segments without junctions that preserves
enough homogeneity such that the integrated equation
(18) is still applicable. In such a composition, the
original network must be dismantled in as few pieces
as possible, as shown in Figure 6, otherwise too many
submodels would have to be identified.

The pipeline segments from a to f , highlighted in
red, are modeled individually. Each submodel has only
one output, being the difference between its upstream
and downstream pressure, called differential pressure
∆P . The inputs are the flow rate q, CO2 content z,
and downstream pressure Pds. The use of downstream
pressure as input variable decouples a submodel from
the adjacent ones.

Figure 7 shows the behavior of one of these pieces
(submodel) with data gathered from the simulator. The
curve is much smoother than in Figure 5 and appar-
ently fits quite well to a polynomial model due to its
curvature.

Considering the developments above, the second-
degree polynomial equation (35) is used as a proxy
model for the pressure drop ∆P in a pipeline segment,
with the number of inputs being equal to three. This
submodel equation is used for all six pipeline seg-
ments, from a to f , as follows:

∆P = θ0 + θ1 · q + θ2 · zCO2 + θ3 · Pds

+ θ4 · q2 + θ5 · z2CO2
+ θ6 · P 2

ds

+ θ7 · q · zCO2 + θ8 · q · Pds + θ9 · Pds · zCO2 (35)

The final composite model able to calculate the pres-
sures of the platforms, instead of pieces, is organized
hierarchically and the set of equations, one for each
platform, is:

PFIX = Pt +∆Pf (36a)
PFPSO1 = Pt +∆Pf +∆Pd +∆Pa (36b)
PFPSO2 = Pt +∆Pf +∆Pd +∆Pb (36c)
PFPSO3 = Pt +∆Pf +∆Pd +∆Pc (36d)
PFPSO4 = Pt +∆Pe (36e)

C. COMPUTATIONAL ANALYSIS
In this section, the outcome of proxy models for estimating
pressure in gas pipeline networks is evaluated in relation to
the optimization of production in a multi-reservoir oilfield
situated in the Santos Basin. Three distinct formulations are
solved using a DFO algorithm, and the accuracy of these
models is subsequently assessed.

1) Proxy Modeling
The values for θ in each ∆Pa...f of Equation (36) is now
estimated. In order to train the proxy model, a set of data
containing inputs ui and outputs yi are supplied by the
phenomenological simulator. For each submodel a to f , 8000
samples were collected from the combination of 20×20×20
inputs (q, z and Pds), except for the gas stream in the segment
e which does not carry CO2. From this database, the values
of all θ are calculated by least squares and the result is shown
in Table 5.

TABLE 5. Values of proxy model parameters

a b c d e f
θ0 9.0457 12.1601 16.6467 84.0775 20.3603 -17.0242
θ1 0.1925 0.1691 -0.0113 0.5305 1.2749 0.3399
θ2 0.3493 0.3590 0.3395 -0.0844 0.0000 -0.0042
θ3 0.2866 0.2501 0.1234 -0.3413 -0.4231 0.0000
θ4 0.0074 0.0039 0.0050 0.0077 0.0099 -0.0003
θ5 0.0035 0.0009 -0.0004 -0.0105 0.0000 0.0132
θ6 -0.0003 -0.0002 -0.0002 -0.0003 0.0047 0.0000
θ7 0.0011 0.0017 0.0011 0.0125 0.0000 0.0010
θ8 -0.0009 -0.0006 -0.0006 -0.0028 -0.0094 0.0000
θ9 0.0020 0.0020 0.0001 0.0020 0.0000 0.0000

Based only on data from simulator, the criteria R2 and EE
as defined by Equations (32) and (33) are applied to each
submodel a to f . The results are shown in Table 6.

TABLE 6. Model quality indexes

a b c d e f
R2 [-] 0.9993 0.9999 0.9996 0.9885 0.9859 0.9807

EE [bar] 0.0753 0.0211 0.0179 2.1456 1.5416 1.3314

As far as R2 is concerned, the worst fitting result is in
submodel f . The interpretation is that the model explains
98% of ∆P response. Regarding EE, submodel d was
outperformed by the others. The value 2.1456 is the expected
error in pressure units for this pipeline segment.

2) Test Cases
The nominal case is denoted by BASE. PREgas is a variation
of the nominal case in which the total gas coming from
the Pre-Salt is increased by 15%, while the same ratio re-
duces the Post-Salt gas. The initial guess POSgas represents a
boundary condition in which the gas coming from the Pos-
Salt is increased by 15%, and the gas with high content
of contaminants is decreased in the same proportion. The
same analogy holds for PRECO2 and POSCO2, i.e., these
guesses represent boundary conditions in which the CO2

concentration is increased and decreased by 15% with respect
to the nominal case, respectively.

However, since the CO2 concentration is constant for the
Pos-Salt platforms, only a variation in CO2 content of the
Pre-Salt platforms is considered. It should be mentioned that
the values of physical quantities are given in the International
System of Units (SI). Gas flow is measured in million stan-
dard cubic meters per day (MSm3/d), CO2 concentration
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FIGURE 6. Santos Basin gas pipeline network representation. On the left-hand side the original network, on the right-hand side the dismantled network.
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FIGURE 7. FPSO 1 differential pressure as a function of its gas flow rate and
CO2 content in an isolated segment with fixed downstream pressure.

in percent (%), and time in seconds. Three test cases are
considered in the experiments:

• C1: the first case does not impose constraints on the
flow rate (qmax

t,gas) and CO2 concentration (zmax
t,CO2

) at the
terminal, only pressure constraints are in place.

• C2: the second one limits the total gas reaching the
onshore terminal with respect to the first case.

• C3: the third case constrains the maximum CO2 content
allowed in the gas stream reaching the terminal, while
relaxing the upper bound on the total gas delivered.

All three cases impose a maximum pressure of 250 bar
at the production platforms. Overall, the problem to be opti-

mized consist of:

max
θ

f(θ) =
∑

v∈Vsrc

fv(xv) (37a)

s.t. :
{

xv ∈ Xv,
pv(q,p, z) ≤ 250,

v ∈ Vsrc, (37b)

H(q,p, z) = 0, (37c)
G(q,p, z) ≤ 0, (37d)
qt(q,p, z) ≤ qmax

gas,t , (37e)

zCO2
t,gas(q,p, z) ≤ zmax

t,CO2
, (37f)

pt = pfixt . (37g)

where fv(xv) represents the total oil production from plat-
form v (Sm3/d), when it operates according to boundary
condition xv; and pfixt = 45 bar. However, other objectives
can be readily accommodated such as the maximization of
an economic gain considering the revenue from hydrocarbon
sales, discounted costs regarding gas compression and water
treatment before discharge.

3) Optimization Results
For all test cases and concrete formulations, the resulting
production optimization problem (37) was solved with the
OrthoMADs algorithm [37], which is part of a class of
algorithm known as MADS (Mesh Adaptive Direct Search)
[38]. MADS employs a strategy that seeks to find an optimal
point of a function by evaluating and comparing its value at
different points. In Mesh Adaptive methods, all points are on
top of a mesh which is refined iteratively. Overall, the goal
of each iteration k is to find a point x that improves the best
point xk known thus far (i.e., f(x) < f(xk)).

OrthoMADS provides an improvement in the Poll stage
of the MADS algorithm, considering polling directions that
are deterministic and orthogonal to each other [39]. The
algorithm uses Halton’s pseudo-random sequence, which
covers the space more evenly than a real random sequence,
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to generate tentative solution vectors. Our work used the
NOMAD package [40], which implements the OrthoMADS
algorithm in C++. The experiments were implemented in
Python 3.6 using OrthoMADS and performed in a Windows
virtualized environment, with 2 cores and 8 GB of RAM.

Simulation-Based Method
Table 7 presents the results obtained by optimizing problem
(37) with direct use of Pipesim as the black-box simulator
(Simulation Based). These results define the benchmark,
against which the results to be obtained with the support of
proxy models will be compared.

Proxy-Based Method
For the proxy model optimization (Proxy-Based), a safety
threshold variable (γ) is defined on the pressure constraints
to counter for the cumulative error in the network pressures,
which are calculated according with ∆P regressions given
in Eq. (36). After optimizing problem (37) with the proxy
model, the obtained solution is tested with the simulator for
more accurate pressure measurements, i.e., checking solution
feasibility. Figure 8 presents the workflow of the proposed
proxy-based strategy. With the addition of γ, the pressure
constraints become:

P ≤ (1− γ)250, (38)

with γ ∈ (0, 1). Next, we will illustrate the impact of the
parameter γ on solution feasibility.

Init Procedure

Initial parameters
γ

Run Optimization
Execute NOMAD with safety threshold γ

Test results
Test results on simulator

Feasible?

Update parameters
Increment γ

End

no

yes

FIGURE 8. Workflow of the proxy model optimization.

Table 8 shows the results for the proxy-based optimization
following the workflow from Figure 8, with γ ranging from
0% to 5%. It is possible to notice that, given some initial
scenarios and conditions, the feasibility of the solution with
respect to the simulator is achieved by increasing the value of
γ.

An interesting aspect is that the optimization with the
proxy model produced better results than the benchmark,
arguably because of the smoothing characteristic resulting
from the regression. When using the simulator itself, some-
times the optimizer can get stuck at certain points on the
grid, being prevented from leaving the region due to the non-
smoothness of the simulations. The non-smoothness of the
simulation output can be observed in Figure 5.

Hybrid Methods
Considering the optimization based jointly on simulation
and proxy models, we can highlight two types of model
combination:

• The first is a sequential method. First a good starting
point x0 for the boundary conditions is sought through
the proxy model, which has a relatively shorter compu-
tational time. Then, a simulation-based optimization is
invoked from this starting point.

• The second is a concurrent method, in which the proxy
model is used to assist the simulation-based optimiza-
tion. The surrogates are used by the algorithm to dy-
namically adapt parameters, perform local search, and
identify promising candidate solutions [41], [42].

Table 9 reports the results of the sequential method,
whereby the solution obtained with the proxy model formu-
lation is used as an initial guess for the simulation-based
approach. Despite being initialized with a relatively good
starting point x0, the algorithm performs several iterations
until converging to a local solution. In this approach, optimal
points from the proxy model that violate the base restrictions
are also considered, leaving the task to recover feasibility to
the DFO algorithm coupled with the simulation model.

Table 10 shows the results obtained with the DFO algo-
rithm using jointly proxy and simulation models. It can be
seen that the proxy model can aid the optimizer to achieve
better results than the benchmark, taking advantage of the
smoothness of the proxy model to get out of locally optimal
points on the grid. An advantage of this approach is the
guarantee of feasibility at termination, since the algorithm
optimizes the simulation model. However, the combined
method incurs additional computational time.

Although this approach can improve the benchmark re-
sults, it can have a detrimental effect on the objective in some
cases. Adding this fact to the higher computational time, the
search for a starting point using the pure proxy model may
become more appropriate than the simultaneous mode in this
particular case study.

VI. CONCLUSION
This work developed proxy models of gas pipeline networks
for fast computation of pressures at inlet nodes, and gas
flow rate and CO2 content at the outlet node. For pressure,
the proxy model was derived from the system identifica-
tion methodology, while taking into account the governing
equations of gas flow into the model’s structure. For CO2
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TABLE 7. Simulation-based approach using the pipesim simulator (benchmark)

qmax
t,gas zmax

t,CO2
x0 qt,gas zCO2

t,gas f(θ) f. eval. time [s]

C1

5.663 2.50 BASE 5.27 1.62 57425 251 2209.72
5.663 2.50 PREgas 5.54 1.66 59728 320 2835.46
5.663 2.50 POSgas 5.56 1.41 57496 128 1178.59
5.663 2.50 PRECO2 5.19 1.45 57425 356 3157.83
5.663 2.50 POSCO2 5.65 1.65 57412 228 2132.25

C2

3.681 2.50 BASE 3.68 2.20 59370 367 4049.32
3.681 2.50 PREgas 3.67 1.96 59378 550 6057.91
3.681 2.50 POSgas 3.67 2.21 59443 414 4713.02
3.681 2.50 PRECO2 3.67 1.94 57178 415 4761.96
3.681 2.50 POSCO2 3.67 2.25 57086 341 3909.63

C3

5.663 1.25 BASE 5.66 1.06 56436 266 2918.41
5.663 1.25 PREgas 5.56 1.06 56136 242 2645.74
5.663 1.25 POSgas 5.65 1.06 56736 217 2414.33
5.663 1.25 PRECO2 5.07 1.05 39876 198 2132.70
5.663 1.25 POSCO2 5.61 1.05 40420 316 3326.17

Gas flow rates are given in MSm3/d.
Oil flow rates (f(θ)) are given in Sm3/d.

TABLE 8. Proxy model approach

qmax
t,gas zmax

t,CO2
x0 qt,gas zCO2

t,gas f(θ) f. eval. time [s] γ [%] feasible

C1 5.663 2.50

BASE
5.51 2.3 59728 315 300.87 0 no
5.65 1.91 59799 233 314.98 1 no
5.48 1.66 59728⋄ 329 356.45 2 yes

PREgas

5.38 1.48 59728 141 203.56 0 no
5.48 2.18 59728 271 318.56 1 no
5.51 1.42 59728 153 227.89 2 no
4.89 1.61 59653 472 425.18 3 no
5.41 2.01 59728⋄ 494 494.09 4 yes

POSgas

5.26 2.21 59728 130 261.86 0 no
5.41 1.67 59799 232 233.32 1 no
5.45 1.76 59728 334 355.99 2 no
5.53 1.77 59728⋄ 480 155.33 3 yes

PRECO2

5.45 1.86 59799 204 257.07 0 no
5.42 2.11 59728 228 264.24 1 no
5.27 1.73 59728 242 257.47 2 no
4.93 1.87 59709 405 386.71 3 no
5.47 1.63 59728⋄ 318 393.44 4 yes

POSCO2

5.4 2.11 59799 247 316.43 0 no
5.59 1.64 59728 444 419.09 1 no
5.38 2.19 59728 226 256.86 2 no
5.32 1.99 59728 227 333.68 3 no
5.45 1.95 59715 354 369.34 4 no
5.11 1.89 59728 230 305.39 5 no

C2 3.681 2.50

BASE 3.62 2.23 59346 427 368.42 0 yes
PREgas 3.68 2.27 59329 447 380.78 0 yes

POSgas
3.66 2.12 59385 377 349.62 0 no
3.67 2.24 59388 439 373.20 1 yes

PRECO2

3.68 2.28 58820 562 472.02 0 no
3.68 2.28 58820 562 483.27 1 no
3.67 2.20 59388⋄ 326 293.86 2 yes

POSCO2 3.67 2.3 59392⋄ 566 477.35 0 yes

C3 5.663 1.25

BASE 5.63 1.05 55196 267 282.34 0 yes
PREgas 5.61 1.06 56733⋄ 443 397.74 0 yes
POSgas 5.61 1.06 56436 100 178.23 0 yes
PRECO2 5.58 1.04 56136⋄ 202 238.72 0 yes
POSCO2 5.33 1.06 56136⋄ 136 231.95 0 yes

⋄ - feasible solution better than benchmark
Gas flow rates are given in MSm3/d.

Oil flow rates (f(θ)) are given in Sm3/d.
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TABLE 9. Sequential model optimization (proxy models are used to obtain an initial guess x0 for simulation-based optimization)

qmax
t,gas zmax

t,CO2
x0 qt,gas zCO2

t,gas f(θ) f. eval. time [s]

C1

5.663 2.50 BASE 5.45 1.65 59728⋄ 124 1202.52
5.663 2.50 PREgas 5.41 2.01 59728⋄ 67 643.19
5.663 2.50 POSgas 5.53 1.77 59728⋄ 104 998.59
5.663 2.50 PRECO2 5.47 1.63 59728⋄ 80 771.73
5.663 2.50 POSCO2 no feasible start point

C2

3.681 2.50 BASE 3.68 2.12 59374⋄ 228 2179.61
3.681 2.50 PREgas 3.68 2.34 59357 272 2566.66
3.681 2.50 POSgas 3.68 2.24 59388 122 1211.24
3.681 2.50 PRECO2 3.67 2.29 59395⋄ 165 1651.57
3.681 2.50 POSCO2 3.67 2.34 59392⋄ 186 1760.86

C3

5.663 1.25 BASE 5.52 1.04 55670 130 1252.98
5.663 1.25 PREgas 5.61 1.06 56733⋄ 109 997.80
5.663 1.25 POSgas 5.65 1.06 56736 175 1558.91
5.663 1.25 PRECO2 5.65 1.06 56736⋄ 146 1298.47
5.663 1.25 POSCO2 5.33 1.06 56136⋄ 196 1738.20

⋄ - better than benchmark
Gas flow rates are given in MSm3/d.

Oil flow rates (f(θ)) are given in Sm3/d.

TABLE 10. Combined proxy and simulation based approach

qmax
t,gas zmax

t,CO2
x0 qt,gas zCO2

t,gas f(θ) f. eval. time [s]

C1

5.663 2.50 BASE 5.47 1.43 59645⋄ 273 3684.74
5.663 2.50 PREgas 4.91 1.76 59727 254 3379.24
5.663 2.50 POSgas 5.46 1.73 57496 204 2701.63
5.663 2.50 PRECO2 5.26 1.38 59342⋄ 458 5905.39
5.663 2.50 POSCO2 5.33 1.86 59728⋄ 252 3384.36

C2

3.681 2.50 BASE 3.67 2.00 59312 395 5451.44
3.681 2.50 PREgas 3.67 2.27 59438⋄ 404 5816.03
3.681 2.50 POSgas 3.68 2.27 58505 269 3718.81
3.681 2.50 PRECO2 3.66 2.24 57161 263 3451.77
3.681 2.50 POSCO2 3.66 2.23 59440⋄ 535 7617.83

C3

5.663 1.25 BASE 5.60 1.02 55670 237 3107.56
5.663 1.25 PREgas 5.50 1.05 54723 316 4252.38
5.663 1.25 POSgas 5.62 1.05 56436 209 2596.08
5.663 1.25 PRECO2 5.60 1.05 56136⋄ 247 3274.78
5.663 1.25 POSCO2 5.64 1.04 55670⋄ 286 4016.61

⋄ - better than benchmark
Gas flow rates are given in MSm3/d.

Oil flow rates (f(θ)) are given in Sm3/d.

and gas flow, simple algebraic equations based on mass
conservation and proportions provided good approximations.
Using the resulting proxy models, the variables of interest can
be calculated far more efficiently when compared to a high-
fidelity simulator, given the required boundary conditions at
the nodes that represent production platforms and terminals.

The use of the proxy models with a DFO algorithm proved
to be effective. Characterized by the gas export rate and CO2
content, the operating conditions for production platforms
were optimized to maximize overall oil production, while
ensuring pressure bounds at platforms, and gas rate and CO2
limits at the terminal. However, a suitable safety margin
on pressure bounds was introduced to compensate for the
prediction error of the proxy model. Besides optimizing
exceedingly faster than with the direct use of the simulator,
the DFO algorithm converged more consistently to solutions
of higher production.

For future works, different methods of DFO could be em-

ployed and compared such as trust-region and augmented La-
grangian algorithms. Additionally, other characteristics could
be considered in the model, such as moisture, contaminants
besides CO2, and multiphase flow.
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