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Abstract: Human skin detection is the main task for various human–computer interaction appli-
cations. For this, several computer vision-based approaches have been developed in recent years.
However, different events and features can interfere in the segmentation process, such as luminosity
conditions, skin tones, complex backgrounds, and image capture equipment. In digital imaging,
skin segmentation methods can overcome these challenges or at least part of them. However, the
images analyzed follow an application-specific pattern. In this paper, we present an approach that
uses a set of methods to segment skin and non-skin pixels in images from uncontrolled or unknown
environments. Our main result is the ability to segment skin and non-skin pixels in digital images
from a non-restrained capture environment. Thus, it overcomes several challenges, such as light-
ing conditions, compression, and scene complexity. By applying a segmented image examination
approach, we determine the proportion of skin pixels present in the image by considering only the
objects of interest (i.e., the people). In addition, this segmented analysis can generate independent
information regarding each part of the human body. The proposed solution produces a dataset
composed of a combination of other datasets present in the literature, which enables the construction
of a heterogeneous set of images.

Keywords: skin segmentation; skin detection; computer vision; digital image processing

1. Introduction

Due to the natural process of technological evolution, demands that require digital
recognition from digital image processing and computer vision are increasingly appearing,
such as people and movement identification and human skin recognition, among others.
Of these, skin segmentation is an important step in enabling several computer vision-
based applications, such as facial expression recognition [1], detection of nudity [2,3] or
child pornography [4], body motion tracking, gesture recognition [1], and skin disease
diagnostics, among other human–computer interaction (HCI) applications [5].

Methods commonly used in the skin segmentation problem are, in general, situation-
or application-specific [6,7]. In the case of face recognition, the methods segment skin and
non-skin pixels based on face detection [8], while in applications of medicinal interest (e.g.
the abdominal region), they tend to solve the problem by actually considering the existence
of elements corresponding to the abdomen in the examined image [9].

In these situations, the entire examination is applied in a controlled environment—the
input image has previously known aspects, considering the lighting conditions, capture
equipment, and objects present. There are approaches suggested by several authors which
seek to segment the skin pixels according to each particular one in an optimal way [10,11].
For example, in an application related to biometrics, the response time for the user is funda-
mental, together with an acceptable accuracy for the expected result of this application [12].
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Otherwise, in an application with medical purposes, the processing speed tends to not
represent so much relevance; otherwise, the accuracy becomes fundamental due to the
characteristics of the analysis, which primarily aims to increase the accuracy of the result
and not the prediction time. Therefore, considering the application and its requirements,
one approach may be more suitable than another in segmenting skin and non-skin pixels.

There are several problems—depending on the approach—when the input images
have no given pattern, either because of difficulty in segmenting the elements belonging to
the background of the objects of interest or the quality. The quality is affected by several
factors, such as the image capture equipment, image illumination conditions during the
capture process, and sampling process during digitization [6]. Therefore, this work aims to
contribute to improving the image examination process in the forensic field, in which the
input images may contain any of the above-mentioned aspects.

Furthermore—considering the possibility of sharing forensic examination target mate-
rial through internet usage applications—these images suffer from data compression, which
causes the loss of relevant image information, reducing its quality [13]. During compression
processing, quantization and sampling methods eliminate similar information from image
pixels, severely affecting skin regions. Skin regions have very discrete pixel variations,
and these form the texture of the skin. However, this texture ends up being compromised
by the compression processing, removing from it the texture information [13]. Therefore,
applications with a controlled environment, considering images with previously known
quality standards, allow approaches and techniques based on skin texture recognition
to present the expected results [7,14]. However, these methods do not deliver the same
results when examining images that have the skin texture information corrupted by the
sampling and quantization process or the hard compression processing performed by
sharing applications.

Figure 1 presents the change of an image after sharing the image through the message
exchange application. In this example, we can note there was a loss of a piece of the pixel
information. Therefore, the input image was modified after the compression process. This
process induces a loss in the resulting qualities, mainly in applications based on images
with discrete textures or small skin regions. However, image compression methods—such
as the discrete cosine transform (DCT)—can eliminate the coefficients with relatively small
amplitudes, which are a minimum deformation in the image. These processes still incur a
loss of image information, mainly related to texture [15]. Therefore, texture analysis is a
non-viable method for forensic applications [16].

Figure 1. Example of the results of an image submitted to the compression process during transfer
by a message transfer application: (a) original transferred image and (b) received image result with
compression.

Therefore, this work brings a new approach to human skin segmentation in digital
images. The contributions of this work are as follows:
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(1) A segmentation model with the ability to classify and quantize the pixels of human
skin present in an image according to the regions of the human body;

(2) The proposed model presents the possibility of segmenting and quantizing the pixels
of human skin according to the instantiation of the object of interest in the image (i.e.,
of people);

(3) The generation of a new dataset compiled through the collection of datasets present in
the literature, thus generating a heterogeneous dataset;

(4) The proposed model allows image analysis, especially in forensic applications, to focus
on regions of interest to the human body, reducing the possibility of false positives in
its examination.

The new dataset is due to existing challenges in the skin pixel segmentation technique
of considering lighting conditions, ethnic differences, image quality, capture equipment,
and relevant exposure of regions with the presence of skin.

In this work, we propose a solution for skin and non-skin pixel detection in digital
images, even with compromised images by events related to capturing and storage. In
the following sections, we review the background of the computational vision algorithm
(Section 2). In Section 3, we describe the skin detection process. We present and discuss our
results in Section 4. Lastly, we conclude this work (Section 5).

2. Background
2.1. Detection of the Regions of Interest

Considering that the objective of the use of this approach is to segment which pixels
of the image are skin or are not skin as well as quantify the proportion of skin displayed,
it was determined as an object of interest in analysis of the people present in the image,
naming these objects regions of interest (RI). The material examined can contain images
with complex backgrounds or even one or more RIs, and the first step is to segment these
RIs.

In the first step, the model yields the essential characteristic of object detection. The
proposed approach uses an implementation of the Mask R-CNN neural network archi-
tecture for this task. This convolutional neural network is considered the state of the art
regarding image segmentation processing and object detection, including instance-based
segmentation [17]. The Mask R-CNN was developed based on the Faster R-CNN, a con-
volutional neural network based on regions of interest which favors the goal of this task.
During this task, by submitting the examined input image to find the prediction from the
network, the coordinates of the RIs present in the image in the form of bounding boxes
are obtained. The RI detection algorithm has been used by Liu [18] to recognize regions
in video frames containing regions with human actions, such as swimming, driving, and
others. From the knowledge of the RIs, Liu applied two more steps for his prospect of
aiming to detect possible human needs.

In Figure 2, we present a conceptual diagram of the operation of this architecture.
Note that in the first phase, the input image is submitted to a layer for extracting its features
and characteristics. Then, the feature descriptors are evaluated by a layer for defining
the proposed regions of interest (i.e., possible objects). These objects are then classified,
delimited by coordinates, and also represented by employing masks.

For the development of the experiments, we used the implementation in [19] of the
Mask R-CNN architecture as well as its pretrained model, considering for the purpose of
this work only objects of the class person, which was the RI objective explored in this task.
After the execution of the evaluation of the input image by implementation of the neural
network, the resulting delimiting coordinates of the objects of interest were obtained. In
Figure 3, this result is presented from an examined example image, which had a few people
present within a complex scene.
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Figure 2. Architecture diagram of Mask R-CNN.

2.2. Segmentation of Body Parts

This work, in addition to presenting the segmentation of skin and non-skin pixels,
evaluates each segmented RI from the previous step to determine the proportion of skin on
display. In approaches proposed by other authors, especially when dealing with specific
applications such as biometric applications, the determination of the proportion of skin
present in the image [1,4,20,21] was not included in their studies.

Considering the forensic application, for example, the proposed approach needs to
estimate the proportion of visible skin in the examined image. Digital images can contain
large regions of visible skin due to the size of the image without generating forensic interest,
or they can contain small regions of skin—due to the total size of the image—and present
objects of forensic interest. Thus, this algorithm needs to present the complete region of the
human body present in the image as well as having this region segmented by body part.
For this task, a layer was implemented in the processing using the BodyPix neural network
model [22].



Appl. Sci. 2022, 12, 12140 5 of 22

Figure 3. Example of a processed image after submission of the region of interest recognition process.

BodyPix is a body segmentation model built under the TensorFlow framework. Taking
as input an image containing a human body, it uses a pretrained neural network to separate
the parts of a body into segments as specified in Table 1. Among the variety of uses of this
model is the use intended to remove human objects from an evaluated image. Therefore,
in this work—especially in the task of determining the proportion of visible skin—it was
necessary to extract the visible parts of the human body from the RIs and thus calculate the
proportion of skin as a ratio for the area of each visible part.

In this work, the BodyPix model is used to segment the major parts of the human body
and thus determine the total pixels in the image corresponding to each human body part.
However, because the original segmentation was very detailed (i.e., containing regions for
each limb), the body parts were grouped into larger segments than were available from the
original model. Parts such as legs (right and left) and feet were grouped under the class
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“legs” to consider as a single class all visible pixels in the image examined belonging to the
legs. Similarly, the other body regions were grouped as described in Table 2.

Table 1. Index table with the identifier of each body part detected by the Bodypix model.

# Body Part Description of Body Part

0 left_face
1 right_face
2 left_upper_arm_front
3 left_upper_arm_back
4 right_upper_arm_front
5 right_upper_arm_back
6 left_lower_arm_front
7 left_lower_arm_back
8 right_lower_arm_front
9 right_lower_arm_back
10 left_hand
11 right_hand
12 torso_front
13 torso_back
14 left_upper_leg_front
15 left_upper_leg_back
16 right_upper_leg_front
17 right_upper_leg_back
18 left_lower_leg_front
19 left_lower_leg_back
20 right_lower_leg_front
21 right_lower_leg_back
22 left_feet
23 right_feet

Table 2. Grouping rules for BodyPix model key parts.

Body Part Grouped According to Table 1

face 0, 1
arm 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
torso 12, 13
leg 14, 15, 16, 17, 18, 19, 20, 21, 22, 23

After associating the images to each part of the body, it was possible to measure more
precisely the number of pixels pertaining only to the human body. Thus, it was possible
to calculate the proportion of visible skin concerning the total pixels that belonged to
the person being evaluated and not under the total pixels of the image, which generates
distorted values and is not useful for the application of forensic objectives. Figure 4 shows
an example of the proposed segmentation. The human body in the input image (Figure 4a)
was subdivided into four parts to be assessed individually.

For forensic applications, this individual analysis is important because by allowing
one to know the content of each human body part in each person present in the examined
image, it is possible to efficiently and accurately identify the objects of interest and discard
the insignificant ones. For example, an image in which only one hand is displayed in
proportion to the total size of the image will correspond to a large portion of the total size
of the image. In this case, it makes the analysis unfeasible, because an image with only this
fragment is irrelevant to the evaluation.
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Figure 4. Example of segmentation of human body parts: (a) input image, (b) face, (c) arm, (d) torso,
and (e) leg.

3. Skin Detection
3.1. Segmentation

Most approaches on the subject of skin segmentation are based on a particular color
space [2,4,21,23] or on fusion components from different color spaces [3,7,24], but they
are evidently limited to color images only. In general, skin color occupies a limited range
of values in different color spaces [25], and detection consists of determining an optimal
model for the thresholds belonging to the skin and non-skin groups [7]. In addition, some
studies, such as [24–26], still tried to analyze other features, such as by segmenting regions
by texture type. However, this approach needs images with previously known features,
because it is necessary to locate the descriptors corresponding to the textures, which need
to be preserved.

A skin detection process mainly needs two decisions, as presented in Figure 5. The first
choice is to determine the appropriate color space in which it is easiest to discriminate skin
pixels, which is a key factor in the design of a skin detector, considering the computational
cost of transforming between color spaces [27]. The second decision is to determine the skin
segmentation model that will be used to classify a given pixel, being either skin or non-skin.
Thus, the system must be intelligent and flexible enough to handle various aspects, such as
different skin tones or lighting conditions, reducing false negative rates by not identifying
a skin pixel as a non-skin pixel [8]. In addition, it should be sensitive enough to differences
between classes—background objects with skin color—to reduce false positive rates (i.e.,
identifying a non-skin pixel as a skin pixel) [25].
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Figure 5. Conceptual diagram of the skin segmentation process.

These choices aim to overcome the main challenges of skin recognition: the definition
of an optimal model of skin and non-skin pixels for different skin types [26] and diverse
lighting conditions [6,8,10]. Furthermore, the accuracy of skin recognition is affected by
pixels of skin-like colors in the image background or clothing. These pixels generate false
positives and hinder accurate skin recognition. This problem can be emphasized when we
apply the recognition process in small regions containing skin, such as a person’s hands,
since the treatment enforced to suppress false negatives can also suppress small true regions
of skin [25].

An example is shown in Figure 6, where there are areas of clothing pixels that are
confused with the values of regions belonging to skin tones in the color space. The main
question in the recognition of skin and non-skin pixels is to determine an optimal model
for this classification, neither being rigid in the threshold values for skin tones nor being
flexible, which would increase the various false positives [10,20].

Figure 6. Example image with skin-like pixels in clothing and background regions: (a) original image
and (b) image without non-skin pixels.

In general, the proposed approaches seek to balance recognition accuracy and the
required computational power, since human–computer interaction applications need low
computational costs coupled with high accuracy [3,4]. The most common strategies for
defining skin models can be separated into three approaches: (1) explicitly defined re-
gions [2,3], where the boundaries are fixed by a set of rules, (2) parametric methods [8,28]
and non-parametric methods [10,24], which are based on histograms applied (or not) to
Gaussian models and elliptical boundaries, and (3) machine learning-based approaches
which, through the training of a suitable neural network model, enable the identification of
skin and non-skin pixels [29].

According to Gonzalez and Woods [30], the fundamental problem of segmentation is
the division of an image into regions that satisfy certain conditions set to achieve the end
goal. In skin segmentation, the problem becomes more complex because the goal is not
exactly the detection of an object. It involves examination of image features, such as color
regions of a given color space in color images and the intensity levels in non-color images.
In general, the process of segmenting skin and non-skin pixels can be represented by

G(x,y) =

{
0 se f(x,y) ≤ T
1 se f(x,y) > T

(1)
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where the conclusion G is a comparison of the boundary T ∈ R and the result of the
function f , and this represents the function applied by the approach taken in solving the
problem.

3.2. Challenges

Considering the classification of pixels in an image as skin or non-skin as a typical
image segmentation problem, the adopted approach must have the ability to overcome
some difficulties (low illumination, camera characteristics, complex background, subject
movement, etc.) [5]. Depending on the expected result for the final application of the skin
identification process, some challenges may substantially affect this result. The following
are the main ones:

(1) Lighting conditions: The illumination applied at the moment of image capture directly
impacts the result, especially in approaches that use color space analysis to determine
if the pixel belongs (or not) to a certain region classified as skin. The lighting variation
in the environment where the image was captured creates one of the most difficult
issues for this operation. Computer vision must have the ability to adjust to this
variation, recognizing the same object in different lighting conditions in the same way
that human vision can.

(2) Ethnicity: Ethnic skin tone features represent a difficulty during the classification
process because the enlargement of the skin region causes an increase in the occurrence
of false positives. Some approaches adopt as a measure to overcome this difficulty the
elaboration of a skin pixel model based on the previous detection of the face of the
image object, and from the resulting map, they classify the image pixels as skin or non-
skin. Although this method can work around some cases of skin tone variation, it has
no efficient application when there is no face in the image and when there are several
people in the same image. Another factor that may make this technique unfeasible is
the increased computational consumption as well as the increased processing time.

(3) Background: The accuracy of skin detection, in the process of segmentation, is severely
affected when the background is complex and contains textures and colors similar to
the skin region in the color space. The increase in false positives makes skin detection
in certain images impractical. Some authors consider this situation a probabilistic
problem and propose the definition of a skin probability map for each pixel of an
image. Although the result can significantly reduce the occurrence of false positives,
there is an increase in the need for computational power, which can make the approach
unfeasible for certain applications.

(4) Characteristics of the scanned image: Applications in which the scanned images have
variable characteristics impact the result obtained. Images that have multiple objects,
small objects, and objects from different perspectives represent increased difficulty in
the segmentation process. The process needs to have the ability to detect skin without
being able to use features such as skin texture. In computer vision, the ability to detect
an object is usually related to a set of preknown characteristics of the object, such
as size, position, and quantity, thus generating a certain restriction for the result. It
happens that in some final application demands, the condition of the objects in the
image is not known, and the computer vision system needs to have the same capacity
as human vision to obtain the result, waiting independently of the characteristics of
the objects in the examined image.

3.3. Color Space

Skin detection can be considered a binary pixel classifier with two classes: skin and
non-skin [31]. The classification achievement depends on an appropriate feature set for
capturing the essential elements of these pixels [8]. Each application needs the appropriate
color model (RGB, HSV, or YCbCr, among others) [10] for when we consider the accuracy,
the computational cost required for transformation, and the separability of the pixels with
skin colors as the principal decision point [8]. Colorimetry, computer graphics, and video
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signal transmission standards have given rise to many color spaces with different properties.
We have observed that skin colors differ more in luminance intensity than in chrominance
due to lighting variation. Therefore, it is common to apply a linear or nonlinear transform
in the RGB color space. This process changes the input’s original space into another color
space with independent components, eliminates in the classification process the luminance
component analysis, and preserves the chrominance components [6]. A color space is made
up of two components—chrominance and luminance [6]—and can be subdivided into four
groups [31,32]:

(1) Basic—RGB, CIE-XYZ: The RGB color model consists of three color channels, where
R is red, G is green, and B is blue. Each channel has a value ranging from 0 to
255. This color space was originally developed for old cathode-ray tube (CRT) [32]
monitors. Due to the model mixing the luminance and chromatic components, it is not
always the most suitable color model for classifying pixels as skin and non-skin, as the
variation in illumination greatly affects the accuracy of the result obtained from the
classifier. The Commission Internationale de l’Eclairage (CIE) system describes color
as a luminance component Y and two additional components X and Z. According
to Kakumanu et al. [6] the CIE-XYZ values were constructed from psychophysical
experiments and correspond to the color matching characteristics of the human visual
system.

(2) Orthogonal—YCbCr, YDbDr, YPbPr, YUV, YIQ: The common goal among these color
models is to represent the components as independently as possible, reducing re-
dundancy between their channels, unlike in basic models [4,32]. The luminance and
chrominance components are explicitly separated, favoring their use in skin detection
applications and, in this case, discarding the luminance component [6].

(3) Perceptive—HSI, HSV, HSL, TSL: The RGB color space does not directly describe the
perceptual features of color, such as hue (H), saturation (S), and intensity (I), and
many nonlinear transformations are proposed to map RGB to perceptual features. The
HSV space defines the property of a color that varies in the passage from red to green
as the hue, the property of a color that varies in the passage from red to pink as the
saturation, and the property that varies in the passage from black to white as intensity,
brightness, luminance, or value [6]. HSV can be a very good choice for skin detection
methods because the transformation from RGB to HSV is invariant to high intensities
in white lights, ambient light, and surface orientations relative to the light source.

(4) Uniforms—CIE-Lab, CIE-Luv: According to [6], perceptual uniformity describes
how two colors differ in appearance to a human observer. However, perceptual
uniformity in these color spaces is obtained at the expense of heavy computational
transformations. In these color spaces, the calculations for the luminance (L) and
chromaticity (ab or uv) are obtained by a nonlinear method of mapping the coordinates
XYZ.

3.4. Methods

Our approach is based in four tasks:

(1) Explicit boundaries: In this method, a small region in a given color space is selected,
where the pixels that belong to that region are considered skin. This approach is one
of the simplest and most widely used, although it has many limitations regarding the
challenges already discussed in this article. Known in the literature as thresholding,
it seeks to determine a threshold for considering pixels belonging to the skin group.
Many approaches improve their results by applying conversion techniques from the
RGB color space to other color spaces where one can work with the chrominance and
luminance values in separate ways. As an example, Basilio [2] converted the RGB
color space to YCbCr and considered a thresholding of 80 ≤ Cb ≤ 120 and 133 ≤ Cr ≤
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173. Benzaoui [15] used in his approach explicit boundaries directly over the RGB
color model:

(R > 95), (G > 40), (B > 20)

(Max(R, G, B)−Min(R, G, B)) > 15

(ABS(R− G) > 15), (R > G), (R > B)

(2)

(2) Histogram based: A skin and non-skin color model is obtained by training with a
training dataset, where skin and non-skin pixels are identified. After obtaining the
global histogram based on this dataset, the color space is divided into two classes of
pixels (skin and non-skin). This approach is widely used [1,21] as it shows better results
for varied condition images and needs low computational power for its execution.
Buza et al. [24] used in their work a histogram-based approach as the basis for their
hybrid implementation, which ultimately classified skin and non-skin pixels using a
k-means clustering algorithm.

(3) Neural networks: The Neural networks play an important role in research related to
skin segmentation, especially the (multilayer perceptron) (MLP) model. Given a dataset
of skin and non-skin samples and the determination of the learning parameters, the net
adjusts the synaptic weights according to the expected training result. After obtaining
the network training, it is possible to classify skin and non-skin pixels in an analyzed
image. For example, to overcome the problems related to ethnic differences and
capture conditions such as the lighting and object organization, the author of [29] used
in his work a neural network architecture composed of convolutional layers followed
by a deep learning layer for classification of skin and non-skin pixels [5].

The final task of the proposed solution is the segmentation of the skin and non-skin
pixels present in the examined image for each part of the body previously segmented.
In this step, the objective is to know the proportion of visible skin concerning the total
number of pixels corresponding to the examined part, thus being able to present an accurate
indicator of the skin content in the image.

Because it was necessary to determine a color space for this process, the shape that best
represented the color hues, especially for a human observer, was chosen by us. Therefore,
the H and S components, related to the hue from the HSV model, were mixed with the a
and b components of the hue coordinates from the CIE-Lab model. In this way, we modified
the skin tone components to reduce the impact of false positives in images with complex
backgrounds containing skin-like elements. At the same time, we removed the components
responsible for the pixel brightness intensity.

We applied the U-Net neural network model to determine the skin pixel map. In this
case, we elaborated on a heterogeneous dataset—based on the mixture of several datasets
collected during the literature review—for network training. It was necessary to assemble
this dataset because each one available in the literature—related to skin segmentation—was
directed to its respective application. For example, an image dataset for a face recognition
application contains only face examples, other applications only contain abdomen examples,
and so on. Then, by collecting these datasets, we compiled for the network training a new,
totally heterogeneous dataset.

3.5. Dataset

The dataset of this project was collected, organized, and normalized, containing the
union of seven datasets collected during the literature review. The images and their respec-
tive ground truths were set to the same image format (JPEG) and were randomly distributed
so that the dataset had diversity of images and so similar images were not clustered together.

The collection was based on the following datasets:

(1) SFA [33];
(2) Abdomen [9];
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(3) FSD [34];
(4) VDM [35];
(5) Pratheepan [10];
(6) TDSD [36];
(7) HGR [37].

After the compilation, a new dataset was created, containing 8209 varied images with
their respective ground truths. In this way, the dataset became diversified, as shown in
Figure 7, containing images of close-ups, body parts with exposed skin areas, and other
images with complex backgrounds considering several lighting conditions.

Figure 7. Examples of the images included in the proposed new dataset.

3.6. Convolutional Neural Network

U-Net is a neural network model proposed for semantic segmentation and consists of
a contraction process followed by an expansion process [38], as demonstrated in Figure 8.
It is a widely used architecture for image segmentation problems, especially in biomedical
applications. In this proposal, it was trained based on the aforementioned dataset, with
the objective of segmenting skin and non-skin pixels. This convolutional neural network
model is widely used and recommended in the literature, as many authors rely on this
model to implement their approaches. For example Liu et al. [39], in the task of segmenting
overlapping chromosomes from non-overlapping ones, used the UNet model in their paper,
which gave excellent results.

It was presented in 2015 and won the cell tracking challenge of the International
Symposium on Biomedical Imaging (ISBI) in the same year in several categories. It was
considered, on that occasion, a revolution in deep learning. It uses the concept of fully
convolutional networks for this approach. The intention of U-Net is to capture both the
context and location characteristics, and this process is successfully completed by the type
of architecture built. The main idea of the implementation is to use successive contracting
layers, which are immediately followed by the sampling survey operators to achieve higher-
resolution results for the input images. The goal of the U-Net architecture is to recognize
the features and localization of the examined context, and for this, the main idea is to use
successive contraction layers, followed by a decoder composed of expansion layers.
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Figure 8. Diagram demonstrating the construction of the U-Net neural network architecture.

For training the network, we considered 30 epochs with steps for all samples in each
epoch. We defined the parameters by evaluating the tests and noticed that after 30 epochs,
the result remained stable. To evaluate the net training process, the k-fold cross-validation
technique was applied, which estimates the net training considering k distinct segments
of the dataset. As exemplified in Figure 9, this technique seeks to evaluate the neural net
model on distinct datasets and finally assign the average of the evaluations as the final
official performance of the net.

Hence, using this technique, we divided the dataset into 10 folds (or segments),
where each fold contained a random set of samples for training and another for testing
without repetition of the sets. In addition, for the training process, we defined that the net
parameters should be adjusted according to the validation step for each epoch, considering
15% of the samples in the training set. Thus, when the 30 epochs were completed, the
samples reserved in the set for testing—totally unknown for net training—were submitted
for evaluation of the trained model to obtain the final result for each fold. Figure 10 shows
the training process, where the stability of the training appears in the 10 different dataset
arrangements submitted to the training process.

Table 3 presents the results of accuracy for the training phase, where the train column
corresponds to the training result’s framed values and is the result of the validation step
for adjusting the parameters of each completed epoch. The test column presents the re-
sults obtained from the set of images from the dataset reserved for applying the model
evaluation after the training process. Considering the 10 arrangements produced by the
k-fold technique, the model results were stable and obtained an average accuracy of a little
over 85%, representing a good result for the forensic classification aspect of this research.
This paper avoided comparing the results with other works in the literature because a fair
comparison between deep learning-based works for skin detection is difficult due to the
unavailability of a common benchmark [5].
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Figure 9. Example demonstrating the distribution of dataset on k f olds.

Figure 10. Training the model for the k folds.

Table 3. Results of the neural network model training process.

ACC
Fold Train Val Test

f old1 0.9314 0.8628 0.8665
f old2 0.9256 0.8900 0.8937
f old3 0.9379 0.8364 0.8417
f old4 0.9360 0.8859 0.8967
f old5 0.9367 0.7885 0.7939
f old6 0.9405 0.8945 0.8952
f old7 0.9371 0.7613 0.7645
f old8 0.9379 0.8822 0.8809
f old9 0.9362 0.8898 0.8947
f old10 0.9385 0.8550 0.8515

avg 0.93578 0.85464 0.85793
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4. Results

The set of tasks, explained in the previous sections of the proposed solution, form a
system. The image submitted to the system is initially processed by the task of recognition
and delimitation of the regions of interest (i.e., the people present in the image) and finally,
if they exist, segments them from the image. Then, each segmented region of interest is
submitted to the recognition and segmentation of the visible body parts. Each recognized
body part is then processed by the next task, which produces the segmentation of the
skin and non-skin pixels present in the analyzed body region. Finally, the image is then
reconstructed, identifying the mask of the pixels recognized as skin in the image, the
number of instances of objects classified as persons, and the ratio of skin pixels to non-
skin pixels—the proportion of visible skin—for each person recognized in the image. In
Figure 11, the macro diagram of the operation of the proposed solution is presented.

Figure 11. Diagram showing the flow of processing tasks of the proposed solution.
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To evaluate the results, some images and their respective ground truths were submitted
to processing as described. In Figure 12, the result obtained after processing is presented.
In the “Predicted Mask” column, the neural network prediction of each human body part
is displayed, which is presented as being reassembled according to the input image. In
Table 4, the data extracted from each processing step are presented to then allow calculating
more precisely the estimate of skin presence in the examined image. Analytically, in Table 5,
the individualized result per part of each image in the experiment is presented. It is possible
to verify the results obtained for each examined part, knowing the ability of skin recognition
in specific applications according to the part of the body as the objective.

Figure 12. Results obtained from processing: (I) input, (II) ground truth, (III) prediction, and (IV)
prediction mask overlaid on input.

Table 4. Results obtained from the experiment.

Face Arm Torso Leg
Image Total Skin % Skin Total Skin % Skin Total Skin % Skin Total Skin % Skin ACC TP TN FP FN

a 116,977 117,803 101% 141 0 0% 56,320 2286 4% 0 0 0% 0.910980 97,570 141,238 22,400 936
b 0 0 0% 0 0 0% 118,713 88,376 74% 53,854 12,243 23% 0.843704 81,796 139,376 18,823 22,149
c 125,831 103,231 82% 10,498 9583 91% 20,886 3808 18% 0 0 0% 0.894405 101,125 133,338 15,192 12,489
d 75,892 46,195 61% 0 0 0% 61,497 4586 7% 0 0 0% 0.915478 31,745 208,242 18,956 3201
e 106,837 76,174 71% 0 0 0% 22,889 3044 13% 0 0 0% 0.886963 51,493 181,019 27,553 2079

where: ACC—Accuracy; FP—False positive; FN—False negative; TF—True negative TP—True positive.
The values shown correspond to the amount of pixels

In Figure 13, another example is presented where more than one person was present
in the input image. As can be seen, there were three people in the figure, and they were
segmented to be examined individually by the process presented in the proposed solution.
The results shown in Figure 14 present the segmented way of examining the process. The
first and second lines show the data for the first segmented person, where the first line
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shows the segmentation of the body part (face, arm, torso, and leg) and the second line
shows the prediction of the neural network corresponding to the segmentation of the skin
and non-skin pixels for each part.

Table 5. Results obtained from the experiment performed, segmented by part.

Prediction Matrix Confusion Metrics
Image Part Total Skin % Skin TP TN FP FN ACC Recall Precision F-Score

a face 16,977 117,803 1.007061 101,645 143,746 16,158 595 0.936092 0.99418 0.862839 0.92
arm 141 0 0 0 262,144 0 0 1 0 0 0
torso 56,320 2286 0.040589 12 258,309 2274 1549 0.985416 0.007687 0.005249 0.01
leg 0 0 0 0 262,144 0 0 1 0 0 0

b face 0 0 0 0 262,144 0 0 1 0 0 0
arm 0 0 0 0 262,144 0 0 1 0 0 0
torso 118,713 88,376 0.7444509 81,702 159,677 6674 14,091 0.92078781 0.8529015 0.9244817 0.8872502
leg 53,854 12,243 0.227336 0 249,901 12,243 0 0.953296 0 0 0

c face 125,831 103,231 0.820394 93,432 150,837 9799 8076 0.931812 0.9204398 0.905076 0.912693
arm 10,498 9583 0.912840 7650 251,356 1933 1205 0.988029 0.863918 0.798288 0.829808
torso 20,886 3808 0.182323 924 251,939 2884 6397 0.964595 0.126212 0.242647 0.166052
leg 0 0 0 0 262,144 0 0 1 0 0 0

d face 75,892 46,195 0.608694 36,665 212,350 9530 3599 0.949917 0.910615 0.793701 0.85
arm 0 0 0 0 262,144 0 0 1 0 0 0
torso 62,497 4586 0.07338 225 255,367 4361 2191 0.975006 0.093129 0.049062 0.06
leg 0 0 0 0 262,144 0 0 1 0 0 0

e face 106,837 76,174 0.712993 66,586 185,566 9588 404 0.961884 0.993969 0.87413 0.93
arm 0 0 0 0 262,144 0 0 1 0 0 0
torso 22,889 3044 0.13299 1092 253,790 1952 5310 0.972298 0.170572 0.358739 0.23
leg 0 0 0 0 262,144 0 0 1 0 0 0

Total face 425,537 343,403 0.806987 298,328 954,643 45,075 12,674 0.955941 0.959248 0.86874 0.91
arm 10,639 9583 0.900743 7650 1,299,932 1933 1205 0.997606 0.863919 0.798289 0.83
torso 281,305 102,100 0.362951 83,955 1,179,082 18,145 29,538 0.963621 0.739737 0.822282 0.78
leg 53,854 12,243 0.227337 0 1,298,477 12,243 0 0.990659 0 0 0

where: ACC—Accuracy; FP—False positive; FN—False negative; TF—True negative TP—True positive.
The values shown correspond to the amount of pixels.

Table 6 describes the information based on the composition of the pixels of the image,
dividing this information by person and part of the person. For example, it is possible to
verify that person c in Figure 15 had in all parts of the body exposed a high index of skin
presence, except for the leg region. With the known information, applying the proposed
solution may allow an image examination application to consider it potentially relevant for
further analysis, considering the high index of skin pixels in specific regions of the human
body. Although the focus of this work is not the privacy management of data or user
information transmitted and received, we will use the definitions and criteria developed in
accordance with [40–44].

Table 6. Results obtained from the experiment performed on an image containing more than one
person, as shown in the input image in Figure 13.

Prediction Matrix Confusion Metrics
Image Part Total Skin % Skin TP TN FP FN ACC Recall Precision F-Score

a face 59,227 61,604 1.040134 38,913 200,540 22,691 404 0.912035 0.989725 0.631664 0.77
arm 8263 9612 1.163258 2196 253,337 6416 195 0.974781 0.918444 0.254993 0.4
torso 68,351 65,671 0.960791 44,283 195,871 21,388 602 0.916115 0.986588 0.674316 0.8
leg 0 0 0 0 262,144 0 0 1 0 0 0

b face 45,226 46,101 1.019347 36,495 215,987 9606 56 0.963142 0.998468 0.791631 0.88
arm 6450 1925 0.29845 441 258,989 1484 1230 0.989647 0.263914 0.229091 0.25
torso 47,943 37,951 0.791586 33,437 213,509 4514 10,684 0.942024 0.757848 0.881057 0.81
leg 0 0 0 0 262,144 0 0 1 0 0 0

c face 60,389 63,441 1.050539 53,747 198,664 9694 39 0.962872 0.999275 0.847197 0.92
arm 26,160 28,435 1.086965 18,755 233,684 9680 25 0.962978 0.998669 0.659574 0.79
torso 65,749 67,820 1.031499 49,285 193,983 18,535 341 0.927994 0.993129 0.726703 0.84
leg 0 0 0 0 262,144 0 0 1 0 0 0

Where: ACC—Accuracy; FP—False positive; FN—False negative; TF—True negative TP—True positive.
The values shown correspond to the amount of pixels.
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Figure 13. Input image for the example considering the presence of more than one person in the
scene: (a) input and (b) ground truth.

Figure 14. Processing results containing more than one person and showing each body part segment.
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Figure 15. Results of processing an image containing more than one person and showing the final
result: (I) input, (II) ground truth, (III) prediction, and (IV) prediction mask overlaid on input.

5. Conclusions

Considering use in applications that need accurate information about the proportion of
visible skin in an image, the proposed solution is efficient. We presented in the experiments
in the previous sections the ability of a solution to recognize the proportion of skin according
to the human body part. Our method makes it possible to restrict the recognition of images
with visible skin by considering analyzing the relevant human body part, as occurs in cases
of forensic image examination. In addition, we also presented a new dataset of images for
segmentation, which was generated from the collection of research in the literature review.
In future work, we will consider the performance analysis of experiments and evaluation
of other specific neural network architectures for infrared segmentation and, in the same
way, for the segmentation phase of skin and non-skin pixels. An approach may present
difficulties in a certain image conditions, but this does not mean that this difficulty will
result in harm to the final application. In general, we enable control of the capture process,
allowing the simplest approach to present the best result, considering other factors such as
time, complexity, and processing power. Another relevant factor to be considered is the
level of precision needed, since not all applications need that. For each demand of the final
application, there is a suitable approach.

In our approach, we can present a method capable of processing images that do
not belong to a controlled or known environment but environments where the lighting
conditions, capture quality, and orientation of objects in the image do not interfere with
the result. The main application of our model is for forensic purposes, where images need
to be classified according to the proportion of skin present. Thus, our model was able to
determine the amount of skin present in an image, considering the real proportion of each
identified person and not in relation to the total number of pixels in the image, thus being
able to more efficiently apply a classification of images of forensic interest. Another aspect
is that the proportion of skin can be evaluated for each part of the human body individually,
which may contribute to future applications that target only certain parts of the human
body. Although this work has a focus on overcoming the challenges of skin and non-skin
segmentation in unfamiliar environments, some challenges or limitations persist. Grayscale
images do not give the expected results, since the skin segmentation process is based on a
color model, thus requiring color images as input. Another limitation is images with very
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small portions of objects containing skin, although this does not affect the result. As these
objects are not of forensic interest, it is necessary to highlight this limit. These limitations
can be considered as opportunities for future work, since they address important aspects of
the entire process.
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Abbreviations

The following abbreviations are used in this manuscript:

ACC Accuracy
CNN Convolutional neural networks
DCT Discrete cosine transform
FP False positive
FN False negative
HCI Human–computer interaction
MLP Multilayer perceptron
R-CNN Region-based convolutional neural networks
RI Region of interest
RPN Region proposal network
TC Totally connected
TF True negative
TP True positive
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