ﬁ Sensors

Article

Performance Evaluation Analysis of Spark Streaming
Backpressure for Data-Intensive Pipelines

Kassiano J. Matteussi 2(9, Julio C. S. dos Anjos 3{7, Valderi R. Q. Leithardt 5*

check for
updates

Citation: Matteussi, K.J.; dos Anjos,
J.C.S.; Leithardt, VR.Q.; Geyer, C.ER.
Performance Evaluation Analysis of
Spark Streaming Backpressure for
Data-Intensive Pipelines. Sensors
2022, 22,4756. https://doi.org/
10.3390/522134756

Academic Editors: Aris Leivadeas,
Vasileios Karyotis and Dimitrios

Dechouniotis

Received: 20 May 2022
Accepted: 20 June 2022
Published: 23 June 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Claudio F. R. Geyer !

1 Institute of Informatics, Federal University of Rio Grande do Sul, UFRGS/PPGC,
Porto Alegre 91501-970, RS, Brazil; kjmatteussi@inf.ufrgs.br (K.J.M.); geyer@inf.ufrgs.br (C.ER.G.)
2 LIG-ERODS, Université Grenoble Alpes, 38058 Grenoble, France
Graduate Program in Teleinformatics Engineering Federal, University of Ceara, PPGETI/UFC,
Center of Technology, Campus of Pici, Fortaleza 60455-970, CE, Brazil; jcsanjos@ufc.br
4 COPELABS, Universidade Lus6fona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal
VALORIZA, Research Center for Endogenous Resource Valorization, Polytechnic Institute of Portalegre,
7300-555 Portalegre, Portugal
Correspondence: valderi@ipportalegre.pt

Abstract: A significant rise in the adoption of streaming applications has changed the decision-
making processes in the last decade. This movement has led to the emergence of several Big
Data technologies for in-memory processing, such as the systems Apache Storm, Spark, Heron,
Samza, Flink, and others. Spark Streaming, a widespread open-source implementation, processes
data-intensive applications that often require large amounts of memory. However, Spark Unified
Memory Manager cannot properly manage sudden or intensive data surges and their related in-
memory caching needs, resulting in performance and throughput degradation, high latency, a
large number of garbage collection operations, out-of-memory issues, and data loss. This work
presents a comprehensive performance evaluation of Spark Streaming backpressure to investigate
the hypothesis that it could support data-intensive pipelines under specific pressure requirements.
The results reveal that backpressure is suitable only for small and medium pipelines for stateless
and stateful applications. Furthermore, it points out the Spark Streaming limitations that lead to
in-memory-based issues for data-intensive pipelines and stateful applications. In addition, the work
indicates potential solutions.

Keywords: backpressure; big data; spark streaming; stream processing

1. Introduction

Stream Processing (SP) is a trending topic that represents a remarkable milestone for
data-intensive processing and analysis in both industry and research fields [1,2]. Moreover,
SP systems have provided near or real-time data analysis for numerous network-based
applications and services in the most varied areas and domains, such as financial services,
healthcare, education, manufacturing, retail, social media, and sensor networks [3,4].

Nonetheless, the considerable growth of distributed frameworks for the most varied
purposes of Big Data analytics, such as Apache Storm [5], Samza [6], Apache Spark [7],
Flink [8], Amazon Kinesis Streams [9], and others, is noticeable. These frameworks were
designed to enable flexible solutions to persist and process data-intensive workloads in
memory [10]. In addition, the memory processing minimizes disk I/O movements, re-
duces the data processing time significantly, and outperforms the well-established Hadoop
MapReduce implementation [7].

Spark Streaming (SS), for instance, provides iterative in-memory data processing
with low latency by using the Resilient Distributed Datasets (RDD) abstraction. RDD
represents the distributed data blocks organized into small partitions to maximize parallel
processing. The RDD processing and cache rely on Spark Unified Memory Management

Sensors 2022, 22, 4756. https:/ /doi.org/10.3390/522134756

https:/ /www.mdpi.com/journal /sensors

https://doi.org/10.3390/s22134756
https://doi.org/10.3390/s22134756
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9131-6849
https://orcid.org/0000-0003-3623-2762
https://orcid.org/0000-0003-0446-9271
https://orcid.org/0000-0002-8602-2336
https://doi.org/10.3390/s22134756
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22134756?type=check_update&version=2

Sensors 2022, 22, 4756

2 of 28

(UMM), which dynamically manages data execution and storage regions in the executor
Java Virtual Machine (JVM) heap. The execution region from Spark supports runtime
processing operations such as shuffle, join, sort, and aggregation. On the other hand,
the storage region caches RDD data blocks for both current processing and re-processing
tasks, as well as storing the incoming data to be further processed [11].

However, Spark could present performance degradation due to a lack of memory
management for very intensive and dynamic memory-borrowing operations between
execution and storage regions at the UMM level [10,11]. It occurs because processing data
overflow is costly for the UMM execution region space, requiring heap space from the
storage region under pressure conditions. However, the UMM storage region will keep
caching incoming data during the whole processing life cycle, resulting in very dynamic
borrowing operations between the regions.

This scenario could be even worse since UMM gives a higher priority to the ex-
ecution memory than to storage memory [12]. Therefore, execution and storage area
overloading will lead to several implications, such as significant recomputing overhead,
unnecessary data block eviction, long and numerous Garbage Collection (GC), Out Of
Memory (OOM) exceptions, throughput degradation, high processing latency, data loss,
and memory contention.

Previous studies reveal that resource management for Big Data analysis concerns
both batch and stream processing systems [13—19]. Therefore, extending this problem to
other SP systems, such as Flink and Storm, can help the JVM data processing and storage
operation support by using varied data-persisting approaches such as on-heap, disk only,
and off-heap. The common point of these approaches with Spark is the limited support for
data-intensive caching operations due to the restricted size of JVM heap space, disk, or other
combinations. In addition, the complexity behind the configuration of each approach is
hard to manage.

Furthermore, it is noticeable that data pipelines for SP could produce data faster than
the downstream operators can consume, requiring large amounts of memory [20]. In such a
case, backpressure [21] mechanisms have been widely adopted in the most varied domains
of SP systems. This mechanism helps applications to keep data processing under control
by managing data ingestion and processing rates. Nevertheless, the backpressure reacts to
the processing needs for a graceful response to sudden and intensive loads of data rather
than facing a system crash [21].

This work proposes a performance evaluation of Spark Streaming backpressure to
investigate the hypothesis that it could support data-intensive pipelines under pressure
conditions. The investigation is guided by real-world evaluation scenarios comprising state-
ful and stateless applications on top of modern-hardware architectures. The contributions
are three-fold:

(i) It provides a deep dive into SS backpressure, its underlying components, and in-
memory management needs for data-intensive pipelines;

(ii) This paper proposes a performance evaluation with a data-streaming-intensive ap-
proach similar to real production scenarios. Still, the assessment and remarks of this
study point out varied performance insights that may contribute to SP communities
to create more accurate and robust in-memory solutions for SP systems;

(iii) This work reveals a current limitation for both SS and its backpressure system for
supporting data caching operations in data-intensive SP pipelines. In addition, it
demonstrates that the constraints may affect SS and other SP systems in providing
in-memory data processing and analysis.

The remainder of this paper is organized as follows. Section 2 presents the literature
review and shows related work discussions. Section 3 presents SS backpressure, its model,
architecture, and in-memory management needs for SP systems. The materials and methods
description is shown in Section 4. Section 5 presents the SS evaluation, results, and insights.
Finally, Section 6 presents the conclusions.

Sensors 2022, 22, 4756

30f28

2. Literature Review

An essential requirement of SP systems is robustness against variations in streaming
workloads. For example, the SP should adapt quickly to sudden spikes in workload
demands. This section investigates how SP systems handle incoming data from varied
streaming sources without degrading applications’ throughput. Still, this section aims to
understand the existing solutions and their current limitations to point out opportunities
regarding memory management for data-intensive SP pipelines.

Das, T. et al. [22] presents an adaptive batch sizing strategy for SP systems. It is
based on a fixed-point iteration solution, a well-known numerical optimization technique
that allows the system to adapt the window size when incoming data vary too much
dynamically. Thus, it is possible to minimize end-to-end latency while keeping the system
stable based on the statistics of the last two completed batches. This strategy allows for the
better use of resources since it avoids high processing delays and load spikes, which lead
the SP system to build up batches in memory, and results in a low throughput performance
and system crashes.

However, the solution does not present related-memory management strategies that
directly impact the memory governance task. It prototypes an end-to-end controller that
introduces data orchestration and load balancing using a batching strategy. Still, it can
be considered a promising solution that introduces the queue concept widely adopted
by Message Queue (MQ) systems. Thus, a MQ coordinator could help to orchestrate the
incoming data between up and downstream operators, avoiding OOM issues in data-
intensive SP pipelines.

Birke, R. et al. [23] proposed a data-driven latency controller that estimates how many
data can be processed in a single time window. The solution is based on performance
metrics obtained from Spark execution, such as Scheduling Delay (SD) and Processing Time
(PT). Then, for each time step, the solution will measure the current SD and PT to define the
new processing rate. Still, if the incoming data overflow the SP system capacity, a shedding
threshold will be set to drop data out. Then, new data blocks will only be accepted if they
fit into the current time window. Otherwise, they will be dropped out by the shedding
strategy to avoid high load spikes.

This work is quite similar to the current backpressure mechanism allowed by Spark.
However, the major drawback of this work relies on the data-shedding strategy. Thus, even
decreasing processing delays, the solution does not avoid data loss and may obtain the worst
results in data-intensive SP pipelines. Still, this solution ignores the memory utilization from
Spark or related-memory strategies that directly impact the processing performance.

Chen, Xin. et al. [24] presented a checkpointing feedback controller as a complementary
mechanism to act alongside Spark backpressure to manage the checkpointing time. It was
made to achieve a solid execution and a high throughput, similar to Proportional-Integral-
Derivative (PID) schema in the Spark framework. The solution collects historical data such
as SD and PT from past batch jobs between a set of checkpoints. In this case, the author
defines one region as a collection of ten seconds (ten jobs), where nine are set for processing,
and one for the checkpoint. Then, based on the retrieved information from processing, it is
possible to measure the number of tuples for processing and minimize the data ingestion
of the next jobs to decrease the delay cost associated with the checkpoints task gradually. It
represents a similar behavior to the one applied by PID to Spark receivers.

Spark allows for the use of the .timeout() (State timeout: https://spark.apache.org/d
ocs/2.0.0/api/java/org/apache/spark/streaming/State.html, accessed on 19 May 2022)
function to control state checkpointing persistence. In such a case, it is highly recommended
to specify this feature for data-intensive SP applications. Otherwise, the state checkpoint
becomes bigger, and the system could run out of memory. Although the author imple-
mented a module to collect information, Spark also allows for the use of a well-defined
listener interface such as onBatchCompleted() (Spark listeners: https:/ /spark.apache.org/d
ocs/2.1.0/api/java/org/apache/spark/streaming/scheduler/StreamingListener.html, ac-
cessed on 19 May 2022) for receiving information about an ongoing streaming computation.

https://spark.apache.org/docs/2.0.0/api/java/org/apache/spark/streaming/State.html
https://spark.apache.org/docs/2.0.0/api/java/org/apache/spark/streaming/State.html
https://spark.apache.org/docs/2.1.0/api/java/org/apache/spark/streaming/scheduler/StreamingListener.html
https://spark.apache.org/docs/2.1.0/api/java/org/apache/spark/streaming/scheduler/StreamingListener.html

Sensors 2022, 22, 4756

4 of 28

Finally, although it lets the processing become under control, this solution ignores the
incoming data and related use from memory at the Spark level, directly impacting the
processing performance.

Hanif, Muhammad et al. [21] present a backpressure mitigation mechanism for in-
memory data SP frameworks. This study reveals how Flink’s backpressure is propagated
in the opposite direction of downstream operators. It means that backpressure is not fully
aware of the operator performance, and it may affect the performance due to memory
management problems at the JVM level. 5till, the upstreams may produce data faster than
the downstream operators can consume, overloading JVM memory.

In such a context, the proposed strategy focuses on stateful applications and aims
to improve its performance by adjusting the level of parallelism of each operator on the
fly. Thus, a feedback loop was made to identify whether the data ingestion is faster than
the downstream operators can consume. This strategy uses a ratio-based algorithm that
measures Central Processing Unit (CPU) utilization to set up a ratio value to establish the
current sensibility of processing. The ratio varies from 0 to 1 and indicates the current
system’s condition. For instance, a value near zero does not represent a backpressure
scenario, but a valuer near 1 indicates a backpressure one. Based on the ratio value, it is
possible to increase or decrease the level of parallelism from operators on the fly in order to
alleviate the buffer overflow.

Although Flink has been taking advantage of several Application Programming In-
terface (API)s, such as backpressure, to help in task performance management, this work
does not measure memory utilization from the operators, and it may lead to incorrect deci-
sions. Still, as the authors described, the OOM should occur in extreme conditions without
controlling incoming data, thus leading to a memory starvation problem. Unfortunately,
the author provided a narrow evaluation that does not comprise a real-world case scenario
and leads the system to a bad state. Finally, this work reinforces the need for a global
controller to keep incoming data under control. At the very least, Flink and Spark rely
upon JVM for execution overflow and manage OOM issues by spilling data to the disk,
degrading the performance.

De Souza. Paulo et al. [15] introduce BurstFlow, a tool for enhancing communication
across data sources located at the edges of the Internet and Big Data SP applications located
in cloud infrastructures. BurstFlow introduces a strategy for adjusting the micro-batch
sizes dynamically according to the time required for communication and computation. In
addition, it presents an adaptive data partition policy for distributing incoming data across
available machines by considering memory and CPU capacities. This approach leads to
overcoming resource contention scenarios while maintaining network stability. Real-world
experiments show an improvement of over 9% in the execution time, which is over 49%
better CPU and memory utilization compared to methods applied to data partitioning in
Apache Flink and the state of the art.

The up-streams components can produce data faster than the downstream operators
can consume, thus overloading JVM memory. The author proposes a dynamic strategy to
batch data that maximizes the throughput and minimizes network latency over heteroge-
neous environments. However, there is a scheduling and data imbalance problem, leaving
JVM free to keep receiving data, even in intensive conditions.

The authors in [20] mention that a Big Data system such as Spark is highly memory-
intensive. This work reinforces that a lack of memory can lead to several functional and
performance issues, including OOM crashes, a significantly degraded efficiency, or even
a loss of data upon node failures. The author investigates the performance of dynamic
random access memory and non-volatile memory and argues that this kind of memory is
not yet fully explored. In such a context, GC represents a challenge since it must lead with
applications written in Java and Scala that are executed on top of the JVM.

However, JVM is not aware of hybrid memories and computing needs. Thus, dur-
ing RDD processing, GC copies objects for varied physical memory pages, which breaks the
bonding between data and physical memory address, leading to interference in memory

Sensors 2022, 22, 4756

50f 28

management. The authors propose Panthera to manage data processing in accordance
with the semantics of applications and infers the coarse-grained data usage behavior by
light-weight static program analysis and dynamic data usage monitoring. Panthera lever-
ages garbage collection to migrate data between dynamic random access memory and
non-volatile memory, incurring a low overhead.

It is well known that the available memory of computing systems is constantly increas-
ing in order to allow for in-memory data processing at a high scale. Moreover, in-memory
data-intensive SP frameworks have been widely used to handle challenging problems in
various domains, such as machine learning, graph computing, and SP. Thus, the appli-
cations have been benefiting from in-memory operations, since using them is faster than
accessing the disk or receiving data from the network. Table 1 summarizes the literature
review and points out the main problems, memory characteristics, related issues, and
strategies applied in data-intensive SP scenarios.

As far as we can see, the goal of finding an efficient memory management solution
has become key for allowing high-performance processing in the most varied areas and
domains. It has become a concern for streaming stateful and stateless applications, since
the solutions’ design is not agnostic of the environment or applications, and depends on
core modification in SP systems. Unfortunately, SP systems hide the memory management
scheme (data persistence, e.g., memory, disk, and other combinations) from users who
do not have the opportunity to monitor and configure the memory resources properly.
For instance, the control of the JVM or internal mechanism from frameworks such as Spark
UMM; the current cache replacement policies based on the Direct Acyclic Graph (DAG),
such as Spark Least Recently Used (LRU), which do not consider the dynamic change in
cache capacity needed by data-intensive SP applications; and so on. Both cases may lead to
data blocks being evicted, producing significant recomputing overhead or data loss.

Sensors 2022, 22, 4756 6 of 28
Table 1. Related Work: detailed overview.
Related Issues Processing Agnostic Memory Data . . Upstream

Ref. Problem and Concerns Style Solution Coordination Persistence Solution Intrusiveness Management
Low throughput Adaptive batch

[22] End-to-end-latency Data loss &hp Not specified No UMM Not specified sizing solution with queue Spark-core No

batching controller

High scheduling delay Data-driven latency

[23] Memory shortage Insufficient in-memory Stateful No UMM Memory only controller with data Spark-core No
Spark’s low responsiveness shedding strategy
Low throughput

State checkpointing ~ Checkpoint latency . Backpressure from Spark)

[24] Latency Data loss Stateful No UMM Memory and Disk with Feedback Controller Spark-core No

Resource exhaustion
. . Adaptive batching with

[15] Network latency Load imbalance . Stateful No Flink over Memory and Disk memory-based Flink-core Yes

Resource exhaustion JVM .
data scheduling

Low throughput
Checkpoint latency Flink over . Backpressure mechanism .

[21] Memory shortage Data loss Stateful No VM Memory and Disk with adaptive parallelism Flink-core No
Resource exhaustion

Inefficient memor OOM crashes ég}?éfsa;ilolr;z(ximrl:;na er
[20] Y Data loss Stateless No UMM Memory and Disk y & Spark-core No

management

Resource exhaustion

and orchestrator
for big data applications

Sensors 2022, 22, 4756

7 of 28

3. Spark Backpressure: Model and Architecture

Spark backpressure provides a dynamic management of executor processing rates ac-

cording to the PT and SD application performance metrics. It uses the PID controller as core
implementation, also known as the three-term controller created by Ziegler—Nichols and
Nathaniel B. [25]. PID implements a feedback loop mechanism widely used in the industry
to decrease the complexity behind the configuration of dynamic control systems such as
the behavior found in data-intensive SP systems. The backpressure model implementation
includes the Spark performance counters, as seen in Table 2 in the PID model.

Table 2. Spark Performance Counters.

Performance Counters Definition

Time The timestamp of the current batch interval that just finished;
Events The number of records that were processed in the current batch;
Processing Time (PT) Time in ms it took for the job to complete;

Scheduling Delay (SD) The time in ms that the job spent in the scheduling queue;

Figure 1 presents the PID controller implemented by Spark. The goal of the PID model is

to automatically calculate processing rates to be applied in the Spark executors continuously.

» P: K (1)
+
[nput+ e(r) i + Output
P CHLE K_,J‘c{r)dr Process >
- 0 +
~ D . K,: d(.‘(!)
df

Figure 1. PID Controller Model Implementation.

The main components of PID controller implementation (PID implementation: https:/ /

github.com/apache/spark/blob/master/streaming/src/main/scala/org/apache/spark/
streaming/scheduler/rate/PIDRateEstimator.scala, accessed on 19 May 2022) are:

Error e(t): It represents the number of records that overloaded the defined time
window from a given batch (Process). It is used as the basis for PID measurements;
Proportional (P): Term P is proportional to the current obtained error e(t), and this
value can be positive or zero, being proportionately adjusted, taking into account that a
gain factor value d-default value is 1. If there is no error, there is no corrective response.
At the Spark-level, K, is defined by spark.streaming.backpressure.pid.proportional (default
weight: 1 non-negative) and represents the current error over the PT rate e(t);
Integral (I): The I value is measured based on the past values and is integrated on-the-
fly to produce the output. For instance, if there is a residual error e(t) from proportional
control, the integral tries to eliminate this residual error by applying a weight-based
factor. If the error is minimized, the I term will be proportional to the error decreases.
At the Spark-level, K; is defined by spark.streaming.backpressure.pid.integral (default
weight: 0.2, non-negative) and it is well known as a historical error that uses the
current SD as an indicator for the overflow elements that could not be processed in
previous batches;

Derivative (D): The D term represents an estimation related to the current rate of
change. It is also called “anticipatory control” because it reduces the effect of error
e(t) by rating the error change rate. If the state changes quickly, this value reacts at
the same rate, controlling or damping the effect. The value is kept equal to zero in the
Spark since the controller does not expect abrupt oscillation in the processing rates.

https://github.com/apache/spark/blob/master/streaming/src/main/scala/org/apache/spark/streaming/scheduler/rate/PIDRateEstimator.scala
https://github.com/apache/spark/blob/master/streaming/src/main/scala/org/apache/spark/streaming/scheduler/rate/PIDRateEstimator.scala
https://github.com/apache/spark/blob/master/streaming/src/main/scala/org/apache/spark/streaming/scheduler/rate/PIDRateEstimator.scala

Sensors 2022, 22, 4756

8 of 28

In summary, the new processing rate represents the error value e(t) obtained by the
difference between a desired rate calculated for the previous output batch (y(f)) and a
measured rate obtained for the current input batch (r(t)), where r(t) represents the number
of processed events divided by the time window, resulting in e(t) = r(t) — y(t). As
indicated in Figure 1, Spark covers K}, for reacting to the error proportionally; for instance,
how much the correction should depend on the current error. If the value chosen for this
term is considerable, the controller could overshoot the established point, and a small one
makes the controller too insensitive. At the same time, K; measures how much the correction
should depend on the accumulation of past errors. Thus, K; accelerates a movement
towards the desired value. However, an enormous value may lead to overshooting. The K;
term provides some speculation to seek how much the correction should depend on
predicting future errors based on the current rate of change. Usually, K; is not used very
frequently since it can impact the SP system stability. Finally, the PID controller presents
an exciting property that lacks a guarantee of a stable fixed point [26]. Due to its nature,
the algorithm will oscillate around a (near-optimal) constant throughput until steady.

Behind the hype, Spark implements some architectural components to support the PID
model, such as Rate Controller (RC), Rate Estimator (RE), and Rate Limiter (RL). Figure 2
presents the Spark backpressure PID architecture. Indeed, RC and RE components execute
side by side to deliver the maximum processing speed on the Driver side. At the same time,
the RL updates the maximum processing rate into the executors right after the Driver’s
notification update.

Block
IDs

....": o Receiver - InputDStream

oun
Received |y Update Controller
by Rate

y

Stream
of data

18uaIs

Block Generator

J’ Rate Update Spark Context
Rate Limiter
Driver
Executor

Figure 2. Spark Backpressure PID Architecture.

The RC (Rate Controller Implementation: https://github.com/apache/spark/blob/m
aster/streaming/src/main/scala/org/apache/spark/streaming/scheduler/RateControll
er.scala, accessed on 19 May 2022) represents a contract for a single Dstream that grabs in-
formation from Spark listener for every batch completed to measure the current processing
rate and then estimates a new one [27]. The DStream abstraction allows for the processing
of the continuous data stream that comprises a RDDs’ sequence.

The listener onBatchCompleted receives periodic information from all batch jobs, such as
the current number of processed events, PT, and SD. Then, this information will be taken by
PID implementation in RE (Rate Estimator Implementation: https://github.com/apache/sp
ark/blob/master/streaming/src/main/scala/org/apache/spark/streaming/scheduler/ra
te/RateEstimator.scala, accessed on 19 May 2022) to estimate a reasonable data process-
ing rate. The RE could have multiple-way implementations, but this work adopts the
PID-based version as standard.

Moreover, the PID controller only computes a new rate if there are events to process.
Otherwise, it skips the rate estimation and does not return any rate limit. Then, RE stores
the new rate and forwards it to RL. RL sets the maximum rate of events to not exceed the
current load, usually by assigning a value lower than the last established rate. The new

https://github.com/apache/spark/blob/master/streaming/src/main/scala/org/apache/spark/streaming/scheduler/RateController.scala
https://github.com/apache/spark/blob/master/streaming/src/main/scala/org/apache/spark/streaming/scheduler/RateController.scala
https://github.com/apache/spark/blob/master/streaming/src/main/scala/org/apache/spark/streaming/scheduler/RateController.scala
https://github.com/apache/spark/blob/master/streaming/src/main/scala/org/apache/spark/streaming/scheduler/rate/RateEstimator.scala
https://github.com/apache/spark/blob/master/streaming/src/main/scala/org/apache/spark/streaming/scheduler/rate/RateEstimator.scala
https://github.com/apache/spark/blob/master/streaming/src/main/scala/org/apache/spark/streaming/scheduler/rate/RateEstimator.scala

Sensors 2022, 22, 4756

9 of 28

bound is related to the number of events that the receivers will allow for processing per
second at the executor level.

3.1. Spark Streaming Memory Management

Spark allows for the use of the UMM to provide dynamic allocation for both execution
and storage areas. Thus, if the storage or execution environments receive insufficient spaces,
the memory region will be handled according to a dynamic occupancy mechanism [11].
Finally, Spark releases JVM for execution and storage. Thus, it uses GC and LRU [28]
mechanisms to clean old objects and blocks from memory.

The UMM was introduced in Spark 1.6 to replace the SMM model. The UMM allocates
execution and storage as a unified memory region that provides dynamic memory manage-
ment. Thus, when execution memory is not used, the storage memory could acquire all of
the available memory, and vice versa [11]. Figure 3 shows the UMM diagram.

Execution Memory

spark.memory.storageFraction
0.5 or 50%

Storage Memory

spark.memory.fraction
0.6 or 60%

spark.memory.storageFraction
0.5 or 50%

JVM Heap

User Memory
1.0 - spark.memory.fraction
1-0.6 =0.4 or 40%

Reserved Memory
RESERVED_SYSTEM_MEMORY_BYTES 200MB

Figure 3. Unified Memory Manager.

By default, the Reserved Memory is hard-coded, and its size should be at least 1.5 times
of reserved memory size and cannot be changed in any way without Spark recompilation
or by changing the configuration of spark.testing.reservedMemory setting. The User Memory
represents 40% of JVM heap memory and stores user-defined data structures and functions,
Spark internal metadata, data needed for RDD operations, and all of the information
regarding RDD dependency and others. It is also commonly used as a “backup” to prevent
OOM issues.

The Spark Memory Fraction represents 60% of JVM heap memory and unifies the
regions responsible for the management of all cached, persisted, or other intermediate data.
This region is allowed by the configuration of the configuration of spark.memory.storageFraction
parameter and enables the management of storage and execution sub-regions.

The storage region represents 50% of the Spark Memory Fraction region and aims to
store all cached data, broadcast variables, unroll process (deserializing data contained in
RDD partitions), and so on. On the other hand, the execution region allows for shuffle
buffering and stores all of the objects required during the execution of Spark tasks and
related operations, such as shulffle, join, sort, and aggregations. Still, the execution region
can represent 50% of the Spark Memory Fraction region and could be defined as more
“short-lived” than the storage one because the data blocks could be evicted from JVM heap

Sensors 2022, 22, 4756

10 of 28

memory immediately after each operation, making space for new computation. However,
even in intensive conditions, these data blocks cannot be forcefully evicted by other running
threads (tasks).

3.2. Spark Cache Management Problems

Efficient memory allocation is a critical task for performance in SP systems. In-memory
processing frameworks such as SS should allow for data-intensive processing for various
applications. However, Spark could present performance issues due to a lack of memory
management for very dynamic and intensive operations at the UMM level. In such a
case, the RDD data blocks could be evicted from the UMM storage memory region or
even neglected before processing. Consequently, the execution can suffer from several
OOM exceptions, job and system crashes, data loss, throughput degradation, and high
latency. Figure 4 presents the memory management behavior of the UMM’ storage and
execution regions.

Stepn Step n+1

Storage Storage
New Streams will be
a) B i evicted
Execution Execution
Storage Storage
b) — — Blocks from storage
t_.. region and new
streams are evicted

Execution Execution

Storage Storage

__ New Streams will be
o evicted

Xecution Execution
Figure 4. Memory Management Behaviour.

In such a case, it is possible to find the following behaviors:

1. The storage region can borrow space from the execution one only if blocks are not
used in the execution region;

2. The execution region can also borrow space from the storage one if blocks are not
used in storage memory;

3. If space in both execution and storage regions is insufficient, then the new stream of
data will be spilled off—see Figure 4a;

4. If the storage region borrows space from the execution region and the execution region
claims it back, the data blocks from the storage region in the borrowed space from
execution will be evicted gradually until the established limit for the storage region
gets reached, and then the new streams of data will be spilled off until this procedure
ends—see Figure 4b;

Sensors 2022, 22, 4756

11 of 28

5. If the execution region borrows space from the storage region, but the storage region
claims it back, then the new streams of data will be spilled off while the execution
region releases the memory space from storage. See Figure 4c.

Usually, JVM enables user memory to prevent the OOM issues, as described earlier in
this section. However, the eviction process may also occur between memory-borrowing
operations since the memory is under pressure due to excessive use from UMM regions. In
practice, the UMM design avoids any modification of runtime operations in the execution
memory because they are costly for performance [29].

Still at the UMM level, Spark provides the LRU strategy to help with the task of DAG-
dependency eviction by removing old cached objects. In such a context, recent studies
proposed LRU-based solutions, with noticeable improvements in comparison to the Spark
LRU strategy [10,11]. However, the main observations highlight that a lack of flexibility
and related priority is given to the execution over the storage region from UMM.

In summary, the JVM heap may represent a point of failure during application pro-
cessing due to a high memory consumption at the UMM level, leading Spark to an under-
pressure scenario. Consequently, executors could spend a long processing time due to
the numerous GC operations, causing long processing delays and system crashes. There-
fore, the less memory space that the RDD takes up in the executors’ JVM heap memory,
the more heap space that will be available for application processing, thus increasing the
GC efficiency. Otherwise, excessive memory consumption by RDD leads to a significant
performance loss (shortened by 10% or 20%) due to a large number of buffered objects at
the heap level [30].

4. Materials and Methods

This section describes the materials and methods applied to experiments investigating
how Spark’s Streaming backpressure performs in data-intensive pipelines. The experimen-
tal setup used at this work relied on an open-source French Grid5000 (Grid5000 hardware
specification is available at: https://www.grid5000.fr/w/Hardware, accessed on 19 May
2022) consortium that provides a modern hardware environment for experimental pur-
poses. The environments chosen for the experiments were Parasilo cluster in Rennes and
Dahu cluster in Grenoble. In both cases, the processing scenarios comprised at least a
minimum set of 18 nodes and a maximum set of 25 nodes per cluster in total, varying only
in the number of MQs set for each experiment. The hardware of the clusters is presented
as follows.

¢ Dahu cluster uses Dell PowerEdge C6420 nodes comprising Intel Xeon Gold 6130
(Skylake, 2.10 GHz, 2 CPUs/node, sixteen cores/CPU)—64 cores in total (hyper-
threading), 192 GB of memory, two interfaces (i) 10 Gbps, model: Intel Ethernet
Controller X710 for 10GbE SFP+, and (ii) Omni-Path, 100 Gbps, model: Intel Omni-
Path HFI Silicon 100 Series;

e Parasilo cluster uses Dell PowerEdge R630 nodes comprising Intel Xeon E5-2630
v3 (Haswell, 2.40 GHz, 2 CPUs/node, eight cores/CPU)—32 cores in total (hyper-
threading), 128 GB of memory, two 10 Gbps network cards interconnected with a 10 G
Nexus 56128P network switch.

Each setup allows for the use of the software stack presented in Table 3.

Table 3. Software Stack.

Operating System Debian 9, Kernel 4.9.0-11 amd64
Hadoop 3.1.2

Spark Streaming 2.4.3

Java 1.8.081

Scala 2.13

OpenMpi 4.0.1

ZeroMQ 3.1.1

https://www.grid5000.fr/w/Hardware

Sensors 2022, 22, 4756

12 of 28

In addition, both SS and HDFS used a RAMFS mounted folder to write shuffle data
and checkpoints. The RAMFS also supports all installation folders, such as data and name
nodes of Hadoop, Spark, or even logs of applications such as GC, or monitoring tools such
as dstat monitor such as Dstat-based monitor tool available at (https://github.com/mvnev
es/dstat-monitor, accessed on 19 May 2022). In addition, at the Spark side, the monitoring
and user interface were deactivated to avoid extra communication costs or any level of
interference in the experiments. At the configuration level, the proposed evaluation will
consider real-world guidelines, presented as follows.

* Spark could run by using a minimum of 8 GB to hundreds of gigabytes of memory
per machine. In general, the recommended memory for Spark Workers represents
an allocation of at least 75% to Spark, leaving the rest for the OS [31]. The proposed
testbed pushes this limit to use up to 90% of available memory to observe the behavior
in OS as well;

* JVM does not always behave well with more than 200 GB of RAM. In this case, it is
recommended to launch multiple executors per worker node and balance all available
resources, such as memory and cores [31]. At this work, this limit was not reached,
and each worker in the Spark cluster will host only one Executor that will receive all
of the available resources from the given node. Still, the Executor will host only a
single receiver;

* The communication must rely on high-speed and low-latency networks, such as 10 gigabit
switches or higher, to allow for data processing at scale [31]. The cluster used in this
work provided 10 gigabit switches;

e Although SS allows for the use of varied data persisting approaches, this work will
make use of on-heap JVM approach to handle both data processing and storage at
memory level only;

* G1GCis the low-pause, server-style generational garbage collector for Java HotSpot
VM. It is indicated by Spark to improve performance in bottleneck scenarios [32]. This
work keeps this standard as a default configuration.

Table 4 summarizes the configuration set for Spark in both clusters. The batch interval
represents the window time (2000 ms) in which Spark will receive and process data.
The RDD block generation happens every 400 ms. The values chosen reflect a near-real
time processing in which the applications could process data at high-scale. All of the
experiments were performed using only one DAG in order to observe how master process
behaves in the driver node. This work kept default parallelism of Spark since it follows
the number of partitions in RDDs, and, in this case, we optimized the partitioning to fit
with the number of the available cores in the cluster only for the application Statefull
SumServer. Thus, it is possible to extract the maximum performance, pushing up memory
utilization, as happens in real-world use cases. Finally, the JVM heap set follows 90% of the
available memory per node, and the table also shows the conceptual values from the Spark
UMM regions.

Table 5 presents the pipeline configurations used in the evaluations. Two configu-
rations were defined to push data processing until the limit. The idea was to obtain a
better understanding of the current limitations from SS surrounding data SP in scenarios
with and without a backpressure mechanism. Pipeline 1 represents a soft-sized pipeline
that uses a single MQ for data forwarding. Pipeline 2 represents a high-sized pipeline
that increases the number of of MQs up to eight in data forwarding layer, introducing a
data-intensive approach.

https://github.com/mvneves/dstat-monitor
https://github.com/mvneves/dstat-monitor

Sensors 2022, 22, 4756

13 of 28

Table 4. Spark Configuration.

Parameters Rennes Grenoble
Parasilo Cluster Dahu Cluster
Window (Batch Interval) 2000 ms 2000 ms
Block Interval 400 ms 400 ms
Concurrent DAGs 1 1
Spark Parallelism default default
#Driver Instances 1 1
#Executors instances 8 8
#Receivers per Executor 1 1
Main Memory per Node 128 GB 192 GB
Driver JVM Heap Memory 117 GB 174 GB
Executor JVM Heap Memory 117 GB 174 GB
Executor UMM Storage Region 33 GB 49 GB
Executors Global Storage Region Memory 264 GB 392 GB
Executors Global JVM Heap Memory 936 GB 1392 GB
Cores per Executors (HT) 32 64
#Total Cores in the Spark Cluster 256 512
JVM Memory Schema On-heap On-heap
GC Type G1GC G1GC
Table 5. Pipeline Configurations.
Cod Size Data MQs Driver Executors
) Sources Nodes Nodes (One per Worker Node)

Pipeline 1 Soft 8 1 1 8
Pipeline 2 High 8 8 1 8

It is necessary to point out some observations regarding the pipeline configurations
and its usage. This work aimed to investigate and understand how backpressure works
in intensive conditions. For this reason, some rules were adopted: (i) the cluster will
be not shared; (ii) the experiments will be made in low-latency and high-speed network
connections; (iii) Spark processing should be performed in a non-intrusive environment.
In this case, each worker node hosts only one executor, each executor will comprise a single
receiver, and each executor will receive all available resources from such worker node.

For all experiments, a data-intensive scientific simulation called Stencyl was used
to generate numeric data at scale by using Message Passing Interface (MPI). The Stencyl
represents a synthetic implementation that generates data based on a heat distribution
simulation in a 2D domain reliant on the Jacobi iterative method. The progression of the
simulation was recorded as synchronous time steps. At the end of a time step, the simula-
tion data were forwarded to the MQ. The messages were configured, comprising 10,000
floating points elements (approximately size of 10 KB per message) per MPI rank for each
application time step. The MPI ranks were set to 256 in the Parasilo cluster and 512 (repre-
senting the number total of processing cores per cluster) for the Dahu cluster, representing
simultaneous queues connected to the MQ to maximize the usage of resources during the
execution of an application.

The flow of messages is intensive and continuous to keep data communication and
processing at high rates. However, if any sending operation fails, the messages are added
to a buffer in the respective queue. Still, if the queue buffer is full, the application starts
the re-transmission phase, avoiding any data loss. In addition, ZMQ provides I/O threads
that take care of the message transmission, thus immediately unlocking the MPI process
for computations.

Sensors 2022, 22, 4756

14 of 28

In the current implementation of ZMQ), the ZMQ buffer was set equal to 1000 (default
value), and the number of I/O threads was the same number of CPU cores for each MQ
node. It is essential to mention that one I/O thread can support at least one gigabyte of
data in or out per second [33]. Still, the MQ layer uses intermediary nodes in which its
amount depends on the system’s configuration, as presented at Table 5. Those intermediary
nodes received messages from N simulation processes and retained them in-memory into
an input queue buffer before forwarding them to M Spark receivers in the executors.

At the consumer level, a Stateless and Stateful SUMServer application was provided
to measure a mean computation of scientific simulation data, ensuring all MPI ranks from
a given time step into a window will be considered in the current analysis. This application
uses a Dstream concept where the RDD is independent and no data are kept between two
time windows.

In such a case, the main difference between the applications is the use of states. Thus,
to keep information from one RDD to another, a state operator must be used in Statefull
application. The state operator is a memory-based element that synchronizes a state over a
distributed file system between two time windows. The state operator associates states’
information to a key-value pair. The behavior of the state operator must be manually
written. Hence, the first time a key-value pair is met, the state is created. When meeting the
key again, the user can update the state value.

In this context, data must be removed manually from the state operator to avoid
memory overflow. Thus, the implementation focused on mapWithState() function because
it provides better performance, being able to provide 8x lower latency (i.e., processing
time) and having the capacity to maintain 10x more keys than updateStateByKey() [34].
Furthermore, this function allows native support for state timeouts by the isTimingOut()
function. Then, it is possible to define the period to hold the states in memory before
checkpointing. In this work, each state remained in memory for timeout (new Duration
(20,000)) ms.

Furthermore, this paper proposes four testing scenarios. The first test case evaluates
how stateless applications behave in data-intensive SP pipelines under pressure conditions
with and without SS backpressure. The stateless applications are less intrusive for in-
memory management since the processing with states is not applied. Following this, this
work proposes two evaluations with stateful-based applications. Stateful applications are
highly intensive and dynamic for memory, and it may lead the SP system to fail due to OOM
issues. Thus, the goal is to evaluate how this kind of application behaves in data-intensive
SP pipelines under pressure conditions with and without SS backpressure too. Finally, this
work presents a GC comparison analysis to demonstrate how the heap memory performs
in intensive conditions in both scenarios with and without Spark streaming backpressure.

The execution time for each experiment was defined as a minimum of 1800 s. The eval-
uation will present only a subset of the numerous experiments performed to validate our
assumptions. Finally, the measured metrics in the experiments were PT, SD in milliseconds,
timestamp in seconds, and throughput in megabytes per second (MBps).

5. Results and Analysis

This section evaluates if Spark Streaming (SS) backpressure could support data-
intensive pipelines under pressure conditions. The Spark configurations and the pipelines
used in these experiments are presented in detail in Tables 4 and 5, respectively. The results
will be described in two main evaluation scenarios. Section 5.1 will cover the stateless
analysis and compare a backpressure-based and a non-backpressure analysis for the ap-
plication SUMServer. Section 5.2 extends the previsions stateless evaluation by providing
a Stateful-based analysis that aims to investigate in-memory processing issues using two
varied essays with and without backpressure, respectively.

Sensors 2022, 22, 4756

15 of 28

5.1. Stateless-Based Application Performance Evaluation

This section summarizes the behavior obtained by executing the Stateless SumServer
application with and without SS backpressure over Pipelines 1 and 2. Usually, the Stateless
applications do not load states in memory and, due to this reason, it is less intrusive for
the memory manager. The preliminary study evaluated this application over Pipeline 1
without backpressure. However, as expected, this pipeline was not sufficiently intensive.
As a result, both clusters did not forward data to the memory limits, obtaining a PT average
lower than the established time window without showing crashes; due to this, it is not
represented here.

In contrast, Pipeline 2 revealed that the execution of the Stateless Server application
failed suddenly. This happens because the pipeline is intensive and generates a sudden
surge of data to Spark executors. This behavior overflows the executors cache that starts
to queue up batches in memory for processing. Thus, the SD increased rapidly up to two
minutes and pushed PT up to more than one minute, as demonstrated at the note crash start
point in Figure 5c. As a result, the Spark suddenly fails, and the master gets overwhelmed
with data and stops communicating with the executors, which raises exception messages
that require data blocks already evicted from memory. Finally, executors keep caching
incoming data and processing residual data until their JVM heap gets full of data and
crashes due to OOM issues, as observed in Figure 5a. Even a single executor may lead to a
pipeline collapse in the case that it runs out of memory. To notice this observation, inspect
the memory utilization and the red lines for each executor row.

On the other hand, the backpressure could support the intensive rates generated by
the Pipeline 2, keeping the Stateless SumServer application steady on the defined window
time. Still, the stability provided by the backpressure model is noticeable; see Figure 5d.
This is because the application presents low SD levels that are steady in less than two ms
on average. This results in a stable utilization of the JVM heap memory since the Spark
executor only handles data processing that fits the given time window. It also maintains
Spark UMM regions as stable below the heap limitl see Figure 5b. In summary, it may
be concluded that Spark backpressure is effective when handling non-intrusive memory
applications, such as stateless.

5.2. Stateful-Based Application Performance Evaluation

This section presents two different assays. Section 5.2.1 shows the analysis of the
Stateful SUMServer application without backpressure, and Section 5.2.1 demonstrates the
analysis of the Stateful SUMServer application with backpressure. Finally, Section 5.2.3
presents, in detail, a GC comparison analysis.

5.2.1. Non-Backpressure Assay

This section presents a native-based performance analysis of Spark for data-intensive
processing pipelines without using a backpressure mechanism. This experiment aims to
verify potential memory-based issues and their related performance impacts on the Stateful
SUMServer application.

Figure 6 summarizes the experiments for the SUMServer Stateful application over
Pipeline 1. Figure 6a (Parasilo) and Figure 6b (Dahu) presents a global JVM heap memory
utilization in GB. These figures are stacked and aim to present the total memory used
per executor and driver components over time in seconds. Still, Figure 6¢ (Parasilo) and
Figure 6d (Dahu) present the total delay related to PT, SD metrics, and their respective
averages in ms over time in seconds. Finally, Figure 6e (Parasilo) and Figure 6f (Dahu)
present the aggregated throughput average for data sent by the MQ and processed by Spark.

Sensors 2022, 22, 4756 16 of 28

o
& 150 g
§ e e e s e ety e B Sese oL USETREAION, _ i mmmem e H
50 Storage and Execution Regions >
g : |
150 m
[}
8
g 150 | %
B |
p : |
150
o o 100 g
@ Q© 504" o
m| £ I
x ® 150
o N
F 100 %‘
= 5 50172 S
208
Y £ 150 l a
® o}
100
a = 5047 74 3
= 8
% 150 l a
100 @
il 504" 2 &
T 208 |
150
Z 100 g
5047~ &
Q ZOB |
150
: 100 g
50477 ®
© ® N © 92 D > o 0
° ® w M \’by . > “ ¥ ® & i © & S & & s s & & & &
TlmeStamp (S) Timestamp (s)
(@) Per Executor JVM Heap Utilization, without backpressure (b) Per Executor JVM Heap Utilization, with backpressure

160000 -
10000-
150000 = Avg. Proc. Time = Avg. Sched. Delay = Proc. Time = Sched. Delay = Window Time
= Proc. Time = Sched. Delay = Avg. Proc. Time = Avg. Sched. Delay = Window Time

140000 - 9000~

130000 -

8000~
120000 -

110000 - 70004

100000 -
90000 - 60007

80000 -

—Crash start point 5000~

70000 -

Total Delay (ms)
Total Delay (ms)

60000 - 4000~

50000 -

3000~
40000 -

30000 -

20000 -

10000 - L 1000+

o : : : : : : : : \ ; } iy . il A T
S o v $ > N 0+ —— — = T
S T A R A S SO TF 2 e e & & &
Timestamp (s) Timestamp (s)

%
%

-

o]
&,

%

(c) Total Delay, without backpressure (d) Total Delay, with backpressure

Figure 5. Stateless SumServer Application-Pipeline 2-Parasilo Cluster.

The experiments in Pipeline 1 demonstrate how simple changes in the application life
cycle may affect the overall SP pipeline performance. Figure 6a presents a regular use of
the JVM heap memory in the Parasilo cluster. It demonstrates that almost 50% of allocated
heap memory is free to be used for Executors and Driver instances.

This occurs because Spark completely takes the incoming data, and there are no data
being cached in heap memory, leading to a regular and stable use of the heap memory.
The PT and SD reinforce this assumption since the metrics were intensive at the beginning
due to high data ingestion but steady when data processing was faster than data sending
to the MQs. In this case, the PT stabilized below the defined time window (1585 ms on
average), and the SD did not present any intrusiveness (519 ms on average), indicating an
under utilization of resources; see Figure 6c.

Sensors 2022, 22, 4756

17 of 28

16504 .
Driver

Executor 1
Executor 2
Executor 3
Executor 4
Executor 5
Executor 6
Executor 7
Executor 8

1500 4

13509

12004

1050 4

Available JVM Heap Memory

Global Memory Utilization (GB)
©
8

©

o S & '
3 v & S N IS

Timestamp (s)
(a) Global JVM Heap Utilization Parasilo Cluster

8000 -
7600- = Avg. Proc. Time = Avg. Sched. Delay = Proc. Time = Sched. Delay = Window Time
7200 -
6800 -

6400 -

0+ TR B e T T T T — T T lQ'Q'Q"Q'Q'Q.Q.Q
O QO O O © O O O & N & A £ W)
S A Sl R R VI S S SN S I SR SN

Timestamp (s)
(c) Total Delay, Parasilo Cluster

1000~
B MQ AVG Throughput Spark AVG Throughput

900 -

800~

700

600

500

400

Throughput (MBps)

300

200

100

o
S O
0 PP L PP LSS S

\{P 6‘0
%
\7\5:? >
\76‘9 >

Timestamp (s)

(e) Throughput Average, Parasilo Cluster

Throughput (MBps)

Global Memory Utilization (GB)

1650
1500
Available JVM Heap Memory

1350

1200+ B Driver
B Executor 1
B Executor 2

1050 B Executor 3
B Executor 4
B Executor 5

900 B Executor 6
I Executor 7
I Executor 8

750+

N N Q
© » ks <

N
&3
S

o S S
AV Y NG

Timestamp (s)

(b) Global JVM Heap Utilization Dahu Cluster

90000 = Avg. Proc. Time = Avg. Sched. Delay = Proc. Time - Sched. Delay = Window Time
85000~

80000~

75000 -
70000 -
65000 -
60000 -

Timestamp (s)

(d) Total Delay, Dahu Cluster

1000~

B MQ AVG Throughput = Spark AVG Throughput

S O P LS
B P F S

&,
%

©
g
Timestamp (s)

(f) Throughput Average, Dahu Cluster

Figure 6. Stateful SumServer Application Without Backpressure—Pipeline 1.

Sensors 2022, 22, 4756

18 of 28

In the opposite direction, see Figure 6b for cluster Dahu. The JVM heap memory
utilization grows over time, and the heap is not uniform, leading to a potentially unstable
processing scenario. This happens because Spark Streaming queues data in memory for
later processing, and this behavior is reflected in heap memory utilization.

In this case, data ingestion is slightly faster than the processing capacity for a single
time window. The PT, for instance, reached up to 2094 ms on average; see Figure 6d
(Grenoble). Unfortunately, case Spark cannot keep PT alongside the window time. The SD
will keep growing until the JVM heap memory gets full, overloading Spark UMM execution,
storage, and user memory regions in the JVM. It is important to mention unpredicted data
ingestion, as presented in the Dahu cluster, which reached an SD of 50,679 ms on average,
which may lead the application to an unstable processing scenario. As a consequence,
the system falls behind due to OOM at JVM heap memory.

Finally, it is possible to observe that Figure 6e,f presents a similar average throughput,
slightly better in the Dahu cluster. Although the Dahu cluster allowed for a promising
throughput gain for long-term applications, the average PT obtained overpasses the win-
dow time, demonstrating that the system starts to be under pressure. Table 6 summarizes
the obtained performance indicators for the evaluated scenario.

Table 6. Performance Indicators of Stateful SUMServer Application—Pipeline 1 without Backpressure.

Metrics Parasilo Dahu
AVG Th (MBps) 870 918
AVG PT (ms) 1585 2094
AVG SD (ms) 519 50,679
AVG Proc. Events 95,051 100,279

The second set of experiments uses Pipeline 2 to evaluate how SS reacts to the data-
intensive pipelines. Figure 7 summarizes the experiments for the SUMServer Stateful
application over Pipeline 2. Figure 7a (Parasilo) and Figure 7b (Dahu) present the per node
JVM heap utilization in Parasilo and Dahu clusters. The figures aim to present the total
memory used per executor and driver components over time in seconds. Still, Figure 7c,d
presents the total delay related to PT, SD metrics, and their respective averages in ms over
time in seconds.

Figure 7 revealed limitations related to the internals of SS and its incapacity to support
data management and memory coordination for a sudden surge of data. As we can see in
Figure 7c (Parasilo) and Figure 7d (Dahu), the PT is at least five times greater than the time
window. Although this behavior helps to increase the data throughput, the Spark UMM
execution and storage memory will be quickly overwhelmed with data. Thus, as UMM
has priority during processing tasks, it can disturb memory-boring operations at the UMM
level and raise data block exceptions. This means that data will be lost and performance
issues will be imminent. In fact, Table 7 presents exactly this behavior. In such a case,
after data ingestion peaks, several exceptions happened, and the loss of data was noticed.

Table 7. Performance Crashing Indicators of Stateful SUMServer Application—Pipeline 2 without

Backpressure.
Metrics Parasilo Dahu
MAXPT (ms) 63,371 69,044
MAX SD (ms) 90,792 137,480

Crashing Start Time (s) 14 26

Sensors 2022, 22, 4756

19 of 28

User Region

Storage and Execution Regions

User Region

Storage and Execution Regions

____________ userRegion _ __.__ | &
Storage and Execution Regions ~
____________ userRegion _ __.__ | &
Storage and Execution Regions o
____________ userRegon _ _ __ _ | &
Storage and Execution Regions =3
______________ userRegon _ _ __ _ | &
Storage and Execution Regions ~
______________ userRegion _ _ __ _ | &
Storage and Execution Regions ©
o Y P e P F P P N I N N T G R S
Timestamp (s) Timestamp (s)
(a) Per Executor JVM Heap Ultilization, Parasilo Cluster (b) Per Executor JVM Heap Utilization, Dahu Cluster
160000 = 160000 =
150000 = Avg.Proc. Time = Avg. Sched. Delay = Proc. Time - Sched. Delay = Window Time 150000 = Avg.Proc. Time = Avg. Sched. Delay = Proc. Time - Sched. Delay = Window Time
140000 - 140000 - .1_/ ~ Crash start point
130000 - 130000~
120000 - 120000~
110000 = 110000 -
100000 - . 100000 -
'g’ J/— Crash start point 'g
£ 90000- £ 90000-
& &
© 80000- © 80000~
o fa
g 70000- g 70000-
= 60000~ = 60000~
50000 - 50000 -
40000 - 40000~
30000 - 30000-
20000 - 20000-
10000 - 10000~
0 T T T T N T T i i i N ' 0+ ™ ~— i i N i i i i i N '
O O O T A ° I N S T A R AN
Timestamp (s) Timestamp (s)
(c) Total Delay, Parasilo Cluster (d) Total Delay, Dahu Cluster

Figure 7. Stateful SumServer Application Without Backpressure—Pipeline 2.

Consequently, the SD increases quickly since the Spark cluster cannot handle the
incoming data properly. This may lead to a crash scenario since too much data are waiting
to be processed: more than one minute in Parasilo and more than two minutes in the
Dahu cluster.

It is possible to see in Figure 7a,b memory regions (execution and storage) from
executors’ getting full of data and spilling data to user memory. In such a case, the executors
may start to evict data blocks from memory by using the LRU algorithm to free some space
for storing the new RDD blocks.

Furthermore, the sudden surges of data may congest Spark Block Manager at the
driver’s daemon. This overwhelms the driver with metadata from RDD block, states, shuffle
operations, data caching, and processing references. Consequently, the communication
between the executors process will take longer, reproducing an invalid state of the system,
and incurring application processing failures at any execution point. See the Start Crash
Points in Figure 7c (Rennes) and Figure 7d (Grenoble).

These points represent an internal noise at the system level because receivers con-
tinuously receive incoming data and perform data processing tasks. In contrast, the PT

Sensors 2022, 22, 4756 20 of 28

decreases until 0, while SD follows the same direction. In summary, if the incoming data
are not under control and PT is not steady, the eviction process becomes inevitable. In such
a case, Spark cannot be considered stable anymore, losing data and collapsing completely
due to the OOM issue at JVM heap memory.

Finally, the preliminary results indicated that Spark could not handle a sudden data
surge. Still, the need for a system or feature to help in controlling data processing for SP
applications is noticeable. This is the point where Spark backpressure comes in. It was
designed to handle the sudden surge of data and to keep processing stable. In such a case,
the following section evaluates how Spark handles data-intensive pipelines by applying
the backpressure mechanism.

5.2.2. Backpressure-Based Assay

This section presents a backpressure-based performance analysis. This evaluation
investigates how Spark reacts to data-intensive processing pipelines using the backpres-
sure mechanism and related components. The first step of this analysis evaluates the
use of the spark.streaming.backpressure.initialRate property and its related impact on the
application’s performance.

The spark.streaming.backpressure.initialRate property helps Spark backpressure to define
the initial maximum receiving rate of the executors. The experiments were conducted using
the Stateful SUMServer application on Dahu and Parasilo clusters over Pipeline 2; observe
the pipeline configuration in Table 5 and the Spark configuration in Table 4.

Figure 8 shows Spark’s throughput for Stateful SUMServer application in MBps for
Dahu and Parasilo clusters. Each figure presents the application performance with and
without the initial rate property configured. The initial rate value was set to allow up to
2000 records per executor. It represents a small value that introduces a slow start to help
the PID algorithm in the preliminary measurements.

2500~ 5500~
o Initial Value ® WO Initial Value 52258 o Initial Value ® WO Initial Value
2250 -

Pl]

2000 -

1750~

[
@
=}
S}

1250~

1000 -

Throughput (MBps)

750 -

' ' ' ' ' ' ' ' ' e e ! ol el e ls v le
N b o & R N RS S S 870V G S 8 o
Timestamp (s) Timestamp (s)
(a) Parasilo Cluster (b) Dahu Cluster

Figure 8. Backpressure Initial Rate Feature Comparison for Stateful SUMServer Application—
Pipeline 2.

In the experiments performed without an initial value set for the backpressure, it is
possible to observe a sudden surge of data at the beginning of execution; see Figure 8b.
Although it presented a high throughput for a short time, it ramped the SD up quickly. Thus,
even backpressure keeps processing rates under control. Spark accumulated a huge amount
of data in the executors’ cache, requiring a considerable effort from PID backpressure to
stabilize the processing rates on the fly; see the obtained average throughput for this
comparison in Table 8.

Sensors 2022, 22, 4756 21 of 28
Table 8. Backpressure Initial Value Comparison.
Initial Value Set Initial Value Not Set
Average Throughput Average Throughput
(MBps) (MBps)
Parasilo 874 764
Dahu 1076 590

Then, backpressure identified that the processing rate was greater than the time
window and suddenly decreased the number of events allowed to be processed per executor.
This process is effective but time-consuming since the state remains in memory for a long
time, degrading the performance over time.

In comparison, in the experiments performed with an initial value set for the backpres-
sure, the initial rate slowed down the application’s processing at the beginning of execution.
Although processing slows at the beginning, it helped the PID controller to adjust to steady
processing rates; see the obtained throughput average (initial values) in Figure 8a,b.

Finally, the results indicate that initial values improved the performance to 14% in the
Parasilo cluster and 82% in the Dahu cluster. The following section presents the backpres-
sure evaluation for data-intensive SP pipelines. The following experiments used the Stateful
SUMServer application with the backpressure spark.streaming.backpressure.initialRate feature
enabled and set to 2000 records per executor.

Figure 9 presents the global JVM heap memory utilization in GB for the Stateful SUM-
Server application in Pipeline 2 in Figure 9a (Parasilo) and Figure 9b (Dahu). The figures
are stacked and aim to present the total memory used per executor and driver components
over time in seconds. Figure 9¢c,d shows per-executor JVM heap utilization. Still, Figure 9e
(Parasilo) and Figure 9f (Dahu) present the total delay, which shows the PT, SD metrics,
and their respective averages over time in seconds.

It is possible to observe that backpressure failed to keep processing under control,
leading to a crash issue in both clusters. This occurred due to a lack of management of
incoming data at the Spark level, meaning that the MQ kept sending data to Spark receivers
without any control. Internally, the backpressure took care of SD and PT metrics by
managing executor processing rates to fit with the window time as presented in Figure e f.

However, backpressure could not keep UMM healthy since Spark UMM execution
has priority over the storage region, leading to a memory starvation condition. In this
case, Spark keeps filling the storage region that tries to borrow space from the execution
region; the user region will be used as a “backup” to avoid OOM issues since Spark was
configured to use the on-heap data persistence. Thus, in the case that JVM gets full of data,
a new stream of data and a set of old RDD blocks will be evicted from memory to allow
for free space for new computation and storage needs. Thus, as the SUMServer can not
compute their jobs due to data loss, the application falls behind, raising an issue known as
Block Not Found Exception.

The eviction process may be observed in Figure 9a,b; observe the Memory Leak zone
regions in the Figures. Still, it is possible to observe in depth the JVM heap utilization
per executor in Figure 9¢,d. Figure 9a reveals the exact moment of the OOM issue; look
at second 220 and analyze the memory utilization of the executors. Still, it is possible to
see them reaching the JVM capacity side by several SD oscillations before a full outage,
as demonstrated in Figure 9e. Similarly, the Dahu cluster presents the eviction process at
the time slice 2200, 3000, 3800 (s), and others, as observed in Figure 9f.

Sensors 2022, 22, 4756

22 of 28

Total Delay (ms)

1650 .
Driver

Executor 1
Executor 2
Executor 3
Executor 4
Executor 5
Executor 6
Executor 7
Executor 8

1500 4

[|
]
]
[|
=
13504
35 H
]
[]

N
)
=1
S

1050 Memory Leak Zone

Available JVM Heap Memor

9004

7504

6004

Global Memory Utilization (GB)

4504

3004

1504

N
®

O O S
@ L »

Timestamp (s)

4

(a) Global Heap Memory Utilization, Parasilo Cluster

Memory Utilization (GB)

L o 0
S

Timestamp (s)

S &
R

(c) Per Executor Heap Memory Utilization, Parasilo Cluster

60000 -
= Avg. Proc. Time = Avg. Sched. Delay = Proc. Time = Sched. Delay = Window Time

50000 -
40000~

30000~

20000 -

[

10000~

S

- DR T
o S o o S o
P B AL P S

Timestamp (s)

'
»
®

(e) Total Delay, Parasilo Cluster

3

Global Memory Utilization (GB)

1650
1500
Available JVM Heap Memory

13504 Memory Leak Zone

1200

1050 4
I Driver
B Executor 1

9004 B Executor 2
B Executor 3
B Executor 4

750 B Executor 5
I Executor 6
I Executor 7

600 I Executor 8

~
o
=]

W
1=
S

O
&

®
S
kg

Timestamp (s)

(b) Global Memory Utilization, Dahu Cluster

User Region

Storage and Execution Regions

O L N L O
i) O N} Ny O
kg 4 © & & o

Timestamp (s)

(d) Per Executor Heap Memory Utilization, Dahu Cluster
10000~
= Avg. Proc. Time = Avg. Sched. Delay = Proc. Time = Sched. Delay = Window Time
9000~

8000~

7000 -

[
6000 -

Total Delay (ms)

&
Timestamp (s)

(f) Total Delay, Dahu Cluster

Figure 9. Stateful SumServer Application With Backpressure—Pipeline 2.

Sensors 2022, 22, 4756

23 of 28

Such a situation may occur because the storage region at the executors gets full of data,
then borrows space from the execution and fills it, and finally overloads the user region.
Thus, if a single executor starts to fail, it can lead to a system crash that will result in several
GC operations or data eviction from memory by the LRU strategy from Spark. Finally, it is
possible to observe that small-sized or non-intensive applications may use backpressure
without any problem since those scenarios do not push Spark to the limit.

5.2.3. Garbage Collection Comparison Analysis

This section aims to understand how GC operations imply the performance of data-
intensive SP scenarios. It presents a performance comparison of the stateful SUMServer
application performed under stress conditions with and without Spark backpressure over
Pipeline 2. The GC metrics were collected for both Spark driver and executor instances
by setting the spark.driver.extraJavaOptions configuration parameter and the respective
value -XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:file.log. The obtained data
were parsed through the Universal GC Log Analyzer tool Geeasy (GC Analyser tool: https:
//gceasy.io/). The Gceasy application provides the following GC processes metrics from
the logs:

e Ergonomic: this is a JVM and garbage auto-tuning process that dynamically tunes the
JVM heap size to meet the application needs with minimum pauses;

* Allocation Failure: this happens when there is not enough free space to create new objects;

* GCLocker Initiated GC: this process prevents GC operations when the JNI code is in a
critical region. Thus, if GC is needed while a thread is in a critical region, then it will
allow them to complete, i.e., call the corresponding release function;

* Metadata GC Threshold: this process happens when a configured meta-space size is
smaller than the current system requirements;

These processes may lead the JVM to perform the following GC operations:

¢ Minor GC stats: this collects garbage from JVM spaces. Minor GC is always triggered
when JVM cannot allocate space for new objects, e.g., one region getting full. Thus,
the higher the allocation rate, the more frequently that Minor GC will be executed.

¢ Full acGC stats: this cleans the entire heap—all memory spaces.

Furthermore, we can also observe some performance indicators, such as:

¢ Throughput (%): the percentage of time spent processing real transactions vs. time
spent in GC activity. A higher percentage indicates that GC overhead is low;

e Avg Pause GC Time (ms): this is the average amount of time taken by one Stop-the-
World GC pause;

¢ Max Pause GC Time (ms): this is the maximum amount of time taken by one Stop-the-
World GC to run;

Table 9 summarizes the sources of GC operations, the GC operations, and some per-
formance indicators for the scenario Stateful SUMServer application without backpressure.
Initially, it is possible to observe that the driver instance achieves almost 100% of Through-
put in both environments. It demonstrates that JVM heap memory at the driver node
is healthy and does not represent a bottleneck. This occurs because JVM heap memory
utilization at the driver is under control, resulting in a lower number of GC operations and
maintaining a low latency when operations are required. Although the driver is healthy,
the executors will keep processing and storing data at a high level in memory, overloading
the JVM heap.

https://gceasy.io/
https://gceasy.io/

Sensors 2022, 22, 4756 24 of 28

Table 9. GC Statistics for Stateful SUMServer Application Without Backpressure—Pipeline 2.

Dahu Cluster Parasilo Cluster
GC Events GC Events GC Events GC Events
Driver Executors Driver Executors
Ergonomics 0 133 0 19
Allocation Failure 13 1392 36 184
GCLocker Initiated GC 6 25 0 9
Metadata GC Threshold 0 22 3 2
Total 19 1572 39 214
GC Operations
Minor GC stats 16 1428 36 194
Full GC stats 3 144 3 20
Total 19 1572 39 214
Performance Indicators
Throughput % 99 45 99 45
Avg Pause GC Time (ms) 34 835 57 591
Max Pause GC Time (ms) 90 10,184 160 7920

Thus, the pressure on the JVM introduced some performance degradation. For in-
stance, the throughput metric for the executor degraded by at least 55% for both envi-
ronments compared to the scenario with (Table 10) and without (Table 9) backpressure
enabled. It is possible to observe that the performance degradation is mainly related to
the successive GC operations made in both scenarios. In addition, they mainly came from
allocation failures that happen when there is not enough free memory space to create
new objects in memory. Thus, if the system is not under control, minor GC events will
continuously try to allocate space for new objects to keep processing stable. However, if the
Eden region is getting full, a major GC event may occur, clearing the entire JVM heap.

Table 10. GC Statistics’ for Stateful SUMServer Application With Backpressure over Pipeline 2.

Dahu Cluster Parasilo Cluster
GC Events GC Events GC Events GC Events
Driver Executors Driver Executors
Ergonomics 1 125 0 38
Allocation Failure 725 1045 95 152
GCLocker Initiated GC 6 18 6 0
Metadata GC Threshold 1 32 0 30
Total 733 1220 101 220
GC operations
Minor GC stats 731 1079 98 167
Full GC stats 6 141 3 53
Total 737 1220 101 220
Performance Indicators
Throughput % 100 99 100 95
Avg Pause GC Time (ms) 26 338 21 238

Max Pause GC Time (ms) 300 1854 90 755

Sensors 2022, 22, 4756

25 of 28

Table 10 summarizes the sources of GC operations, the GC operations, and some
performance indicators for the scenario running the Stateful SUMServer application with
backpressure. Initially, it is possible to see the driver achieving 100% of Throughput in both
environments, like presented before. The GC operations at the driver side increased since it
must be more active than a scenario where Spark suddenly crashes.

Finally, the obtained results at the executors were slightly better than a non-backpressure
scenario. Both applications were kept alive and stable for a longer time—more than 300 in
Parasilo and more than 2000 in the Dahu cluster—and maintained a satisfactory throughput
level near 100%. Furthermore, backpressure was quite suitable since Dahu decreased the
number of GC operations by more than 30%.

At the same time, Parasilo maintained a similar number of operations but for a longer
execution time.The use of backpressure decreased memory utilization since it controls
the speed at which data have been unrolling in memory. In addition, GC spends less
time swapping objects in memory, avoiding minor or full operations at heap memory
and maximizing the applications’ performance.

6. Conclusions

It is well known that the available memory of computing systems is constantly in-
creasing, allowing for in-memory data processing at a high scale. Moreover, in-memory
data-intensive frameworks have been widely used to handle challenging problems in
various domains, such as machine learning, graph computing, and SP.

The use of backpressure seems to guarantee a kind of application’s stability for non-
intensive scenarios, i.e., receiving data as fast as Spark can process in a single time window,
or for scenarios without processing with states. Thus, the application could achieve stable
processing at a high throughput in controlled conditions. However, it is noticeable that
backpressure shifts the task of buffering incoming data to the senders until the stream appli-
cation processes them. This approach can fail in high-intensive scenarios, as demonstrated
in this work. This happens due to a lack of management at the UMM controlled by the PID
algorithm, which only handles the execution region during processing, leading to memory
faults such as OOM issues due to high utilization from the storage region.

Furthermore, UMM storage and execution shares the same memory regions. Then,
while backpressure is performing rate adjustments, the receivers will keep pushing data
and filling memory up to the JVM heap memory limit, reducing the space for execution
due to high storage needs. In such a context, a surge of data may generate high SD peaks
that lead to a crash issue and unhealthy conditions for processing since the system is not
stable. Still, this means that the processing could not be made in a single time window
because plenty of data are waiting in the executor cache to be later processed, letting the
JVM heap memory on pressure at the executor side. In addition, when the Spark needs to
evict data from memory, the execution has priority over the storage region, incurring data
loss in intensive processing scenarios.

The needed time to evict data blocks is relative and really depends on the cluster
capacity and processing performance. Still, several borrowing operations at the UMM level
may lead to multiple entire GC operations to clean up RDD objects from JVM heap memory.
Still, the cleaning operations are critical for processing because some old states may be
required in the current processing steps. Thus, Spark will fail if a block is already evicted
from the executors’ cache.

Finally, as far as we can see, the state of the art does not present a solution for this
problem. The solutions relied upon small and medium-sized changes in the core of SP
frameworks, such as a new memory manager, a new eviction policy, or improvements based
on batching or GC counters. However, this study unveils current memory management
issues, specifically the data caching operation at the JVM heap. This issue affects not only
SS but all other SP systems that rely on JVM for processing. In addition, it is possible
to look forward to future work, such as: providing a global coordination mechanism at
upstream components to balance data forwarding based on JVM cache utilization policies;

Sensors 2022, 22, 4756

26 of 28

modifying the PID solution to manage data caching alongside an execution strategy;
providing new data eviction models that track not only recent data block utilization but
also data dependency.

Author Contributions: Conceptualization, K.J.M. and C.ER.G.; methodology, K.J.M.,].C.S.d.A. and
C.ER.G;; software; K.J.M.; validation, K.J.M. and J.C.S.d.A.; supervision C.ER.G.; writing—original
draft preparation, K.J.M.,].C.S.d.A. and VR.Q.L.; writing—review and editing, K.J.M., VR.Q.L.
and J.C.S.d.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by national funds through the “SmartSent” (#17/2551-0001
195-3), CAPES (Finance Code 001), CNPq, PROPESQ-UFRGS-Brazil, program PRONEX 122014
and National Project PIA FSN HYDDA, LIG/UGA Grenoble France. In addition, CEREIA Project
(#2020/09706-7) FAPESP-MCTIC-CGI.BR, and FAPERGS Project “GREEN-CLOUD—Computacéo
em Cloud com Computacado Sustentdvel” (#16/2551-0000 488-9). Fundagdo para a Ciéncia e a Tec-
nologia, I.P. (Portuguese Foundation for Science and Technology) by the project UIDB/05064 /2020
(VALORIZA-Research Centre for Endogenous Resource Valorization), and Project UIDB/04111/2020,
ILIND-Instituto Luséfono de Investigacdo e Desenvolvimento, under project COFAC/ILIND/
COPELABS/3/2020.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Acknowledgments: Special thanks to Thomas Lavocat for his help in code development. Experiments
presented in this paper were carried out using the Grid’5000 testbed, supported by a scientific interest
group hosted by Inria and including CNRS, RENATER, and several universities, as well as other
organizations.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

API Application Programming Interface
CPU Central Processing Unit

DAG Direct Acyclic Graph

HDFS Hadoop Distributed File System

GC Garbage Collection

JVM Java Virtual Machine

JNI Java Native Interface

LRU Least Recently Used

MPI Message Passing Interface

MQ Message Queue

OOM Out Of Memory

oS Operating System

PID Proportional-Integral-Derivative
PT Processing Time

RAM Random Access Memory
RAMFS Random Access Memory File System
RDD Resilient Distributed Datasets

RC Rate Controller

RE Rate Estimator

RL Rate Limiter

SMM Static Memory Manager
SD Scheduling Delay

SP Stream Processing

SS Spark Streaming

UMM Unified Memory Management

Sensors 2022, 22, 4756 27 of 28

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Hassanien, A.E.; Darwish, A. Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges; Springer
Nature: Berlin/Heidelberg, Germany, 2020; Volume 77.

Avgeris, M.; Spatharakis, D.; Dechouniotis, D.; Leivadeas, A.; Karyotis, V.; Papavassiliou, S. ENERDGE: Distributed Energy-Aware
Resource Allocation at the Edge. Sensors 2022, 22, 660. [CrossRef] [PubMed]

Tang, Z.; Zeng, A.; Zhang, X.; Yang, L.; Li, K. Dynamic Memory-Aware Scheduling in Spark Computing Environmen. J. Parallel
Distrib. Comput. 2020, 141, 10-22. [CrossRef]

da Silva Veith, A.; Dias de Assuncao, M.; Lefevre, L. Latency-Aware Strategies for Deploying Data Stream Processing Applications
on Large Cloud-Edge Infrastructure. IEEE Trans. Cloud Comput. 2021, 11236 [CrossRef]

Toshniwal, A.; Taneja, S.; Shukla, A.; Ramasamy, K.; Patel,].M.; Kulkarni, S.; Jackson, J.; Gade, K.; Fu, M.; Donham, J.; et al.
Storm@twitter. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Snowbird, UT, USA,
22-27 June 2014; pp. 147-156. [CrossRef]

Noghabi, S.A.; Paramasivam, K.; Pan, Y.; Ramesh, N.; Bringhurst, J.; Gupta, I.; Campbell, R.H. Samza: Stateful Scalable Stream
Processing at LinkedIn.]. Very Large Data Base Endowment. 2017, 10, 1634-1645. [CrossRef]

Zaharia, M.; Chowdhury, M.; Franklin, M.].; Shenker, S.; Stoica, I. Spark: Cluster Computing With Working Sets. In Proceedings
of the 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 10), Boston, MA, USA, 22 June 2010; pp. 1-7.
Carbone, P; Katsifodimos, A.; Ewen, S.; Markl, V.; Haridi, S.; Tzoumas, K. Apache Flink: Stream and Batch Processing In A Single
Engine. Bull. IEEE Comput. Soc. Tech. Comm. Data Eng. 2015, 36, 4.

Amazon Web Services, Inc. Collect Streaming Data, at Scale, for Real-Time Analytics. 2021. Available online: https://aws.amaz
on.com/kinesis/data-streams/ (accessed on 20 October 2021).

Xu, L,; Li, M,; Zhang, L.; Butt, A.R;; Wang, Y.; Hu, Z.Z. MEMTUNE: Dynamic Memory Management for In-Memory Data Analytic
Platforms. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS), Chicago, IL, USA,
3-27 May 2016; pp. 383-392. [CrossRef]

Zhao, Z.; Zhang, H.; Geng, X.; Ma, H. Resource-Aware Cache Management for In-Memory Data Analytics Frameworks. In
Proceedings of the IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable
Computing Communications, Social Computing Networking (ISPA /BDCloud /SocialCom/SustainCom), Xiamen, China, 16-18
December 2019; pp. 364-371. [CrossRef]

Jia, D.; Bhimani, J.; Nguyen, S.N.; Sheng, B.; Mi, N. Atumm: Auto-Tuning Memory Manager in Apache Spark. In Proceedings of
the IEEE International Conference on Performance, Computing and Communications (IPCCC), London, UK, 29-31 October 2019;
pp. 1-8. [CrossRef]

Matteussi, K.J.; Zanchetta, B.F,; Bertoncello, G.; Dos Santos,].D.; Dos Anjos,].C.; Geyer, C.F. Analysis and Performance Evaluation
of Deep Learning on Big Data. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC), Barcelona,
Spain, 29 June-3 July 2019; pp. 1-6. [CrossRef]

Lopes, H.; Pires, .LM.; Sanchez San Blas, H.; Garcia-Ovejero, R.; Leithardt, V. PriADA: Management and Adaptation of Information
Based on Data Privacy in Public Environments. Computers 2020, 9, 77. [CrossRef]

De Souza, PR.R.; Matteussi, K.J.; Veith, A.D.S.; Zanchetta, B.F; Leithardt, V.R.; Murciego, A.L.; De Freitas, E.P.; Dos Anjos, J.C.;
Geyer, C.F. Boosting Big Data Streaming Applications in Clouds With BurstFlow. IEEE Access 2020, 8, 219124-219136. [CrossRef]
Matteussi, K.J.; Geyer, C.ER.; Xavier, M.G.; De Rose, C.A. Understanding and Minimizing Disk Contention Effects for Data-
Intensive Processing in Virtualized Systems. In Proceedings of the Proceedings of International Conference on High Performance
Computing Simulation (HPCS). IEEE Computer Society, Orleans, France, 16-20 July 2018; pp. 901-908. [CrossRef]

Dos Anjos, J.C.; Matteussi, K.J.; De Souza, PR.; Grabher, G.J.; Borges, G.A.; Barbosa, J.L.; Gonzalez, G.V,; Leithardt, V.R.; Geyer,
C.E. Data Processing Model to Perform Big Data Analytics in Hybrid Infrastructures. IEEE Access 2020, 8, 170281-170294.
[CrossRef]

Dos Anjos, J.C.S.; Gross,].L.G.; Matteussi, K.J.; Gonzdlez, G.V.; Leithardt, VR.Q.; Geyer, C.ER. An Algorithm to Minimize Energy
Consumption and Elapsed Time for IoT Workloads in a Hybrid Architecture. Sensors 2021, 21, 2914. [CrossRef] [PubMed]
Pereira Fabio, C.P.; R.Q., L.V. PADRES: Tool for PrivAcy, Data REgulation and Security. SoftwareX 2022, 17, 100895. [CrossRef]
Chen, L.; Zhao,].; Wang, C.; Cao, T.; Zigman, J.; Volos, H.; Mutlu, O.; Lv, E; Feng, X.; Xu, G.H,; et al. Unified Holistic Memory
Management Supporting Multiple Big Data Processing Frameworks over Hybrid Memories. ACM Trans. Comput. Syst. 2022.
[CrossRef]

Hanif, M.; Yoon, H.; Lee, C. A Backpressure Mitigation Scheme in Distributed Stream Processing Engines. In Proceedings of the
2020 International Conference on Information Networking (ICOIN), Barcelona, Spain, 7-10 January 2020; pp. 713-716. [CrossRef]
Das, T.; Zhong, Y.; Stoica, I.; Shenker, S. Adaptive Stream Processing Using Dynamic Batch Sizing. In Proceedings of the ACM
Symposium on Cloud Computing, Seattle, WA, USA, 3-5 November 2014; pp. 1-13. [CrossRef]

Birke, R.; Bjoerkqvist, M.; Kalyvianaki, E.; Chen, L.Y. Meeting Latency Target in Transient Burst: A Case on Spark Streaming. In
Proceedings of the 2017 IEEE International Conference on Cloud Engineering (IC2E), Vancouver, BC, Canada, 4-7 April 2017;
pp. 149-158. [CrossRef]

Chen, X; Vigfusson, Y.; Blough, D.M.; Zheng, E.; Wu, K.L.; Hu, L. GOVERNOR: Smoother Stream Processing Through Smarter
Backpressure. In Proceedings of the IEEE International Conference on Autonomic Computing (ICAC), Columbus, OH, USA,
17-21 July 2017; pp. 145-154. [CrossRef]

http://doi.org/10.3390/s22020660
http://www.ncbi.nlm.nih.gov/pubmed/35062619
http://dx.doi.org/10.1016/j.jpdc.2020.03.010
http://dx.doi.org/10.1109/TCC.2021.3097879
http://dx.doi.org/10.1145/2588555.2595641
http://dx.doi.org/10.14778/3137765.3137770
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-streams/
http://dx.doi.org/10.1109/IPDPS.2016.105
http://dx.doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00060
http://dx.doi.org/10.1109/IPCCC47392.2019.8958724
http://dx.doi.org/10.1109/ISCC47284.2019.8969762
http://dx.doi.org/10.3390/computers9040077
http://dx.doi.org/10.1109/ACCESS.2020.3042739
http://dx.doi.org/10.1109/HPCS.2018.00144
http://dx.doi.org/10.1109/ACCESS.2020.3023344
http://dx.doi.org/10.3390/s21092914
http://www.ncbi.nlm.nih.gov/pubmed/33919222
http://dx.doi.org/10.1016/j.softx.2021.100895
http://dx.doi.org/10.1145/3511211
http://dx.doi.org/10.1109/ICOIN48656.2020.9016513
http://dx.doi.org/10.1145/2670979.2670995
http://dx.doi.org/10.1109/IC2E.2017.17
http://dx.doi.org/10.1109/ICAC.2017.31

Sensors 2022, 22, 4756 28 of 28

25.
26.

27.

28.

29.

30.

31.

32.

33.
34.

Ziegler,].G.; Nichols, N.B. Optimum Settings for Automatic Controllers. J. Dyn. Syst. Meas. Control 1993, 115,220-222. [CrossRef]
Startin, R. Tuning Spark Back Pressure by Simulation. 2020. Available online: https://richardstartin.github.io/posts/tuning-sp
ark-back-pressure-by-simulation (accessed on 17 May 2021).

Zaharia, M.; Das, T.; Li, H.; Hunter, T.; Shenker, S.; Stoica, I. Discretized Streams: Fault-Tolerant Streaming Computation at Scale.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, Farminton, PA, USA, 3-6 November
2013; pp. 423-438. [CrossRef]

Dessokey, M.; Saif, S.M.; Salem, S.; Saad, E.; Eldeeb, H. Memory Management Approaches in Apache Spark: A Review. In
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020, Cairo, Egypt, 19-21 October
2020; pp. 394-403. [CrossRef]

Or, A; Rosen, J. Unified Memory Management in Spark 1.6. 2021. Available online: https:/ /www.linuxprobe.com/wp-content/
uploads/2017/04 /unified-memory-management-spark-10000.pdf (accessed on 23 September 2021).

Daoyuan, W.; Huang, J. Tuning Java Garbage Collection for Apache Spark Applications. 2015. Available online: https:
/ /databricks.com/blog/2015/05/28 / tuning-java-garbage-collection-for-spark-applications.html (accessed on 5 March 2022).
Apache Spark. Hardware Provisioning. 2021. Available online: https://spark.apache.org/docs/3.0.0 /hardware-provisioning.ht
ml (accessed on 5 May 2022).

Apache Spark. Memory Management Overview. 2021. Available online: https:/ /spark.apache.org/docs/latest/tuning. html#m
emory-management-overview (accessed on 7 September 2021).

@OMQ—The Guide. 2020. Available online: http:/ /zguide.zeromq.org/php:chapter2 (accessed on 17 November 2021).
DataFlair. Apache Spark DStream. 2021. Available online: https:/ /data-flair.training /blogs /spark-tutorial / (accessed on 15
February 2021).

http://dx.doi.org/10.1115/1.2899060
https://richardstartin.github.io/posts/tuning-spark-back-pressure-by-simulation
https://richardstartin.github.io/posts/tuning-spark-back-pressure-by-simulation
http://dx.doi.org/10.1145/2517349.2522737
http://dx.doi.org/10.1007/978-3-030-58669-0_36
https://www.linuxprobe.com/wp-content/uploads/2017/04/unified-memory-management-spark-10000.pdf
https://www.linuxprobe.com/wp-content/uploads/2017/04/unified-memory-management-spark-10000.pdf
https://databricks.com/blog/2015/05/28/tuning-java-garbage-collection-for-spark-applications.html
https://databricks.com/blog/2015/05/28/tuning-java-garbage-collection-for-spark-applications.html
https://spark.apache.org/docs/3.0.0/hardware-provisioning.html
https://spark.apache.org/docs/3.0.0/hardware-provisioning.html
https://spark.apache.org/docs/latest/tuning.html#memory-management-overview
https://spark.apache.org/docs/latest/tuning.html#memory-management-overview
http://zguide.zeromq.org/php:chapter2
https://data-flair.training/blogs/spark-tutorial/

	Introduction
	Literature Review
	Spark Backpressure: Model and Architecture
	Spark Streaming Memory Management
	Spark Cache Management Problems

	Materials and Methods
	Results and Analysis
	Stateless-Based Application Performance Evaluation
	Stateful-Based Application Performance Evaluation
	Non-Backpressure Assay
	Backpressure-Based Assay
	Garbage Collection Comparison Analysis

	Conclusions
	References

