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ABSTRACT 

Learning management systems are essential intermediaries between students and educational 

content in the digital era. Among other factors, the institutional adoption of such systems is meant to 

foster student engagement and lead to better educational outcomes in a scalable manner. However, 

a significant challenge facing educators and institutions is the timely identification of students who 

may require special attention and feedback. Early identification of students allows educators to 

provide necessary feedback and adopt suitable corrective measures. Therefore, a significant body of 

research has been dedicated to developing early warning systems with clickstream data. However, 

comprehensive studies that attempt prediction on multiple courses are few and far between. 

Moreover, most predictive models require sophisticated domain knowledge, data skills and 

computational power that may not be available in practice. In this work, we used an academic year’s 

worth of data collected from all courses at a Portuguese information management school to perform 

two main experiments on two binary classification problems: the first being students at risk vs students 

not at risk and the second being high-performing students vs not high-performing students.  

In the first experiment, we compared the performances obtained with traditional machine learning 

classifiers against majority class classifiers at multiple stages of course completion (more specifically, 

the 10%, 25%, 33%, 50% and 100% course completion thresholds). For both classification problems, 

performances on all metrics peaked when using all of the data collected throughout the course – 88.6% 

accuracy and 92.3% Area Under the Receiver Operating Characteristic (AUROC) using Random Forest 

(RF) for students at risk and 78.2% accuracy and 79.6% AUROC using ExtraTrees for high-performing 

students. Concerning early prediction, acceptable performances for classifying at-risk students are 

achieved as early as the 25% course duration threshold (72.8% AUROC using RF). Performances for 

high-performing students were generally lower, with AUROC at earlier stages peaking at the courses’ 

midway point (64.4% AUROC using RF). Our second experiment deployed long-short term memory 

units (LSTM) trained with a time-dependent representation of a single feature (number of total clicks). 

While this approach achieved inferior performances, we argue that the more straightforward data pre-

processing of this approach may represent a worthwhile tradeoff against relatively small losses in 

model performance, especially at earlier moments of prediction. We found the best tradeoff at 33% 

course duration – 64% AUROC against 74% AUROC using RF to predict at-risk students. To predict high-

performing students, we found the best tradeoff to occur at 25% course duration (56% AUROC against 

61% using RF).  

Results obtained using a different set of logs validate the portability of our approach when it comes to 

static aggregate models. However, our deep learning approach did not generalize well on this data, 

which suggests that portability between courses using this approach may only be possible in specific 

instances.    

KEYWORDS 

Student performance; Learning Analytics; Machine Learning; Classification, Deep Learning     
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1. INTRODUCTION 

1.1. BIG DATA AND ANALYTICS IN THE CONTEXT OF HIGHER EDUCATION 

In the present day, most of the data-intensive approaches to educational research are performed by 

either the Educational Data Mining (EDM) or the Learning Analytics (LA) research communities 

(Romero & Ventura, 2020). While formally distinct, both communities share similar goals (to solve 

problems using data to enhance educational practice), and each community’s researchers use identical 

methods to reach said goals. Moreover, EDM and LA are relatively young communities that have 

experienced substantial growth over the past decade and are expected to continue to grow in the 

foreseeable future (Calvet Liñán & Juan Pérez, 2015; Romero & Ventura, 2020). Figure 1 presents the 

number of papers obtained in Google scholar when searching by EDM and LA. 

 

Figure 1.1 – Search results obtained for EDM and LA, by year, in Google Scholar1  

Higher education institutions (HEI) have unprecedented means, in volume and variety, to digitally 

gather and store the behavioural footprint left by students as they interact with different university 

systems (Daniel, 2015). Relevant stakeholders (researchers, faculty members and administrators) 

recognise that this data has the potential to assist in the fulfilment of either institutional or educational 

goals (Jones et al., 2020; Romero & Ventura, 2020; Tsai et al., 2020). Thus, HEI data is a prime research 

subject in a broad spectrum of different educational problems and domains, with student performance 

being among the most researched (Aldowah et al., 2019; Khan & Ghosh, 2021). 

1.2. STUDENT PERFORMANCE AND CLICKSTREAM DATA 

To the best of our knowledge, student performance is used as an all-encompassing umbrella term that 

includes academic success and how academic success is measured (Baker & Yacef, 2009; Romero & 

 
1For every year the between 2005 and 2021, the number returned search results for the term “Educational 

Data Mining” was collected. We repeated the same process for the term “Learning Analytics”. 
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Ventura, 2010; Hellas et al., 2018). The importance of student performance intuitively stands out 

because metrics such as the Grade Point Average (GPA) are among the main observable proxies for 

overall academic and professional aptitude universities and private sector employers have while 

screening applications for scholarships, graduate programs, or employment opportunities (Grove et 

al., 2006; Imose & Barber, 2015). A student's GPA is computed as an average of the performances 

displayed across multiple curricular units (referred to as courses from this point onward). Educators 

use a plurality of internal assessments in each course to measure student performance and represent 

it as a grade (Shahiri et al., 2015). As most internal assessments of student performance occur at later 

stages of the course, the educator's ability to identify students who could benefit from timely feedback 

to adopt meaningful corrective measures is severely hindered (Chickering & Gamson, 1987).  

Learning Management Systems (LMS) are feature-rich web applications where students and educators 

can, among other things, communicate remotely, share course materials or deliver assignments 

(Coates et al., 2005). Clickstream data are the timestamped records created whenever a student clicks 

on the LMS (Baker et al., 2020). From a constructivist perspective on learning, according to which 

learners are not mere recipients of concepts and ideas but active members who should interact with 

and extract knowledge from the available learning resources (Duffy & Cunningham, 1996), clickstream 

data, partial and noisy as it may be, encodes patterns of learning behaviour (Baker et al., 2020). Using 

different approaches, different authors have been able to, with moderate success, obtain early 

predictions of student performance using exclusively clickstream data (Chen & Cui, 2020; Conijn et al., 

2017; Riestra-González et al., 2021). 

1.3. OUTLINE 

This work presents a basis for portable early warning systems (EWS) that identify at-risk and high-

performing students using clickstream data from a Portuguese information management HEI. In more 

precise terms, the work investigates the following research questions: 

1. Can features extracted from LMS data, on their own, predict student performance? 

2. Is there a general set of rules/features that can inform academic performance across 

modalities and courses within NOVA IMS? 

3. Can performance be inferred when, at most, 50% of the course is completed? 

4. Do time-dependent representations of clickstream data yield comparable results in the 

early prediction of student outcomes? 

To answer the research questions posited above, we use data from 3.2 million logs belonging to 1590 

unique students attending 138 unique courses (9296 unique student-course pairings) to predict, at 

different stages of course completion (10%, 25%, 33%, 50% and 100%), each student’s exam 

performance. We use various supervised learning techniques to make predictions on a dataset built 

from the LMS logs. Moreover, we argue that, at least in some instances, adopting a single-feature 

temporal approach using long short-term memory units (LSTM) yields comparable results to those 

obtained using multiple features and traditional machine learning classifiers. 

The remainder of this work is organised as follows: the next chapter reviews the relevant work that 

predicts student performance using LMS clickstream data. The third chapter presents our approach to 

addressing the research questions at hand. The fourth chapter assesses whether our results match the 
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expected outcomes while discussing the work's most relevant implications. The fifth chapter 

summarises our main findings, and the sixth and final chapter outlines the work’s most significant 

limitations and future research paths. 
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2. LITERATURE REVIEW 

When preparing for this chapter, we adapted the methods introduced by the Preferred Reporting 

Items for Systematic reviews and Meta-Analyses (PRISMA) checklist. PRISMA is a 27-item checklist that 

guides the elaboration of systematic literature reviews (Moher et al., 2009) that was initially designed 

to be used in healthcare but has seen adoption in other disciplines (Page, McKenzie, et al., 2021). 

2.1. PRISMA GUIDELINES 

As we do not consider this section to be an exhaustive literature review, our PRISMA adaptation 

focused primarily on defining objectives aligned with our research questions and developing an 

appropriate search strategy with clear and explicit criteria for eligibility. 

2.1.1. Objectives 

Our main objective is to identify and discuss the core approaches, techniques, and predictors used 

when predicting student performance using LMS data. We are especially interested in understanding: 

1. What are the most common targets used in student performance prediction? Moreover, 

which predictors and techniques are the most successful in predicting student 

performance? 

2. How is predictive power affected by portability (i.e. adoption of a general course-

agnostic model) and timeliness of prediction (i.e. early prediction)? 

3. How is LMS data organised for predictive purposes? 

When appropriate, we identify the research gaps that ultimately led to the formulation of our research 

questions and highlight the unique contributions this work adds to the space. 

2.1.2. Eligibility criteria 

For this literature review, we looked at English-written research papers published until December 2021 

in peer-reviewed academic journals and conference proceedings associated with data mining, machine 

learning and, more particularly, the EDM and the LA research communities. As a preliminary approach 

to identifying eligible research papers, we followed the guidance provided in PRISMA 2020 and 

adopted the Population/Intervention/Control/Outcome (PICO) structure (Page, Moher, et al., 2021). A 

brief description of the eligibility criteria for each PICO component is presented in table 2.1.  

Table 2.1 – Eligibility criteria of research papers using the PICO framework 

Component Criteria 

Population 
Eligible surveys attempt to predict the performance of students attending higher 
education, either at the undergraduate or graduate level. 

Intervention 

At least partly, performance must be predicted at the course level using LMS log data.  

Therefore, surveys that do not use LMS or whose only focus is the prediction of a 
multi-course aggregate (e.g. GPA) were excluded.  
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Comparison 
Surveys must use classification as a predictive method. In addition, there must be a 
baseline value (e.g. chance, results from the previous year, majority class or even 
results from other surveys) that allows comparison of results.  

Outcome 
The authors must have used one or more of the following metrics to assess model 
performance: Accuracy, Precision, Recall, F1-Score or area under the receiver 
operating characteristic (AUROC). 

 

A preliminary selection of eligible research papers was conducted based on the title and number of 

citations. Afterwards, the inclusion or exclusion of each specific research paper was decided using a 

double-filter strategy similar to that used in López-Zambrano et al. (2021). Using this approach, 

research papers that did not meet the criteria for inclusion were either disregarded after reading the 

abstract (first filter) or after reading the full paper (second filter).  

2.1.3. Information sources 

Between September and December 2021, we extensively and iteratively searched for research papers 

in different international databases: Google Scholar, Scopus, Web of Science, ACM Digital Library and 

IEEE Xplore. In addition, we also looked at the conference proceedings of the International Conference 

on Educational Data Mining2 and the International Learning Analytics and Knowledge Conference 

(LAK)3. 

2.1.4. Search strategy 

Whenever a search was conducted, we resorted to using the following strings as search terms: 

▪ “Higher education” AND (“Learning Analytics” OR “Educational Data Mining”), 

▪ “Higher education” AND “Performance prediction” AND (“LMS” OR “MOODLE” OR 

“Clickstream”), 

▪ “Student performance” AND (“Learning Analytics” OR “Educational Data Mining”), 

▪ “Student performance” AND “Prediction” AND (“LMS” OR “MOODLE” OR 

“Clickstream”), 

▪ “Academic performance” AND “Prediction” AND (“LMS” OR “MOODLE” OR 

“Clickstream”) 

▪ “Student performance” AND (“Portability” OR “Course-Agnostic”) 

Using this strategy, we found 103 potentially eligible research papers that advanced to the double-

filter stage.  

2.1.5. Selection process 

A single reviewer was responsible for applying the double-filter strategy to all potentially eligible 

research papers and deciding on inclusion/exclusion according to the PICO criteria outlined in Table 

 
2 Available at https://educationaldatamining.org/conferences/ (last visited on the 15th of February 2022)  
3 The conference proceedings for LAK are published in the ACM Digital Library but can also be accessed 

via https://www.solaresearch.org/publications/conference-proceedings/ (last visited on the 15th of February 
2022) 

https://educationaldatamining.org/conferences/
https://www.solaresearch.org/publications/conference-proceedings/
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2.1. The entire selection process, from which 39 papers were selected as eligible for review, is 

summarised by the flowchart in Figure 2.1. A detailed literature review table of the selected papers 

can be found in Appendix A.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 – Summary of the selection process 

2.2. RELATED WORK 

The simultaneous use of data from different sources – documented in 16 of the 39 selected research 

papers – often results in increased predictive performance than LMS data alone. For example, models 

combining LMS features and student characteristics have been shown to outperform baseline models 

that solely use either student characteristics (Gašević et al., 2016; Sandoval et al., 2018) or LMS 

clickstreams (Adejo & Connolly, 2018; Waheed et al., 2020; R. Yu et al., 2020). In practice, as educators 

tend to have limited access to student data early on, their ability to leverage data to create effective 

early warning systems using data from multiple sources is not impossible (as shown by Kuzilek et al. 

(2015)) but is undoubtedly hindered. LMS clickstream is one of the primary data sources in student 

performance research. Often – as shown in 23 of the 39 research papers - LMS is the single data source 

used when making predictions. Following the PICO criteria in Table 2.1, the following sub-sections will 
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cover the educational research landscape concerning LMS log data usage to predict student 

performance at the course level. 

2.2.1. Key variables when predicting performance 

In this sub-section, we start by reviewing the different ways the literature defines course-level student 

performance to make predictions using classification models. Then, in the second part, we look into 

the predictive features used to predict performance independently of how performance is defined. 

2.2.1.1. Targets 

When it comes to the definition of targets for student performance at the course level, most of the 

reviewed works implement solutions that rely on one of the following key variables: final mark (used 

in 28 research papers), exam mark (used in 5) and dropout (also used in 4).  

A student’s final mark is a weighted average of the student’s performance across all grading events 

undertaken in the course (e.g. quizzes, assignments or exams). To meet a course’s minimum passing 

requirements, the student must have a final mark equal to or greater than a specific threshold. More 

than half of the research papers under review (20 in total) used that rationale to identify whether a 

student passed or failed the course (Baneres et al., 2019; Brooks et al., 2015; Buschetto Macarini et 

al., 2019; Calvo-Flores et al., 2006; Chui et al., 2020; Costa et al., 2017; Fahd et al., 2021; Gašević et al., 

2016; Hasan et al., 2020; Helal et al., 2018; Kuzilek et al., 2015; López-Zambrano et al., 2020; Mahzoon 

et al., 2018; Romero, López, et al., 2013; Sandoval et al., 2018; Tsiakmaki et al., 2019, 2020; Waheed 

et al., 2020; Yu & Wu, 2021; Zacharis, 2018). A second group of researchers followed a similar, albeit 

more nuanced, rationale. Macfadyen & Dawson (2010), Saqr et al. (2017) and Zacharis (2015) opted 

not to stick to the rigid pass/fail paradigm and joined barely passing students with failing students into 

students at risk of failing. In a slightly different way, the binary decision boundaries drawn by Chen & 

Cui (2020), Huang et al. (2020) and R. Yu et al. (2020) discriminated between good and worse 

performance without much consideration for the final mark’s impact on the student’s success (e.g. the 

latter work only splits between having a final mark above or below the median grade). Moreover, the 

final group of approaches went beyond binary classification and into the realm of multi-class 

prediction. Chui et al. (2020) ran an experiment that discriminates students between Passing, Barely 

Passing and Failing. Aljohani et al. (2019) adapted the pass or fail approach by introducing the classes 

Withdraw and Distinction. These approaches were similar to the second experiment performed by 

Romero, Espejo et al. (2013) using discretised data, whose first experiment using continuous data 

treated each possible value of the final mark (integers from 0 to 10) as a discrete class. The use of the 

actual final mark as a target is more common in regression approaches (Gašević et al., 2016; Zacharis, 

2015) which go beyond the scope of our work. 

The grade obtained by the student in the course’s final exam mark is also featured as a viable outcome 

variable that is converted into a classification target similarly to the final mark. The works under review 

using the exam mark either strictly follow the pass or fail dichotomy (Casey & Azcona, 2017; Fahd et 

al., 2021; Marras et al., 2021; Tomasevic et al., 2020) or make minor adaptations to where the decision 

boundary is drawn to also include bare passers as students at risk (Conijn et al., 2017). As the exam 

mark usually makes up for a significant proportion of the final mark, its use may seem unnecessary at 

first glance. However, as the exam grade is not directly computed from other graded records, its use 
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allows, where applicable, intermediary grades to be used as performance predictors (Conijn et al., 

2017). 

The third featured outcome variable focuses on whether or not a student gives up on attending the 

course. Student attrition is a cause for concern for HEI (Adejo & Connolly, 2018), and the research 

efforts using this outcome were mainly focused on the development of tools to identify if a student 

will dropout or not (Adejo & Connolly, 2018; Tsiakmaki et al., 2019; Waheed et al., 2020; Whitehill et 

al., 2017; Xing & Du, 2019). In other works, dropout students were generally treated as students who 

failed, with only Aljohani et al. (2019) explicitly including Withdraw as a possible class in their multi-

class implementation of the final mark into a pass or fail classifier. 

The remaining research works assembled their classifiers using none of the previously mentioned 

outcome variables. The approach by Yu et al. (2019) discriminated between students who earned a 

certificate in a Massive Open Online Course (MOOC) and those who did not. A different approach was 

adopted by Yang et al. (2020), who first used the interaction patterns and homework scores to create 

6 clusters of students and assigned a final mark to each cluster (from F to A) and then, in a second 

stage, used the resulting clusters as the prediction target. Riestra-González et al. (2021) also predicted 

targets obtained from an inferred final mark. In that case, the final mark was estimated from the 

available grades of assignments. Later, the inferred final mark was used to create three parallel 

classification problems: students at risk vs not at risk, pass vs fail and excellent students vs not excellent 

students.    

2.2.1.2. Features 

The literature showcases varied and distinct approaches concerning the LMS and the features 

extracted from them (Conijn et al., 2017). Feature engineering is regularly left to the researcher's 

discretion and is consequently limited by the researcher’s domain knowledge and available resources 

(Tomasevic et al., 2020; Tsiakmaki et al., 2019). Furthermore, different researchers provide different 

justifications for their LMS feature usage: some authors grounded their choice on features adopted by 

other researchers beforehand (Conijn et al., 2017)), and others opted to ground their choices solely on 

learning theory (e.g. the importance of forum usage by Romero, López, et al. (2013)), or self-regulated 

learning (SRL) theory by Gašević et al. (2016) and Saqr et al. (2017)). In other instances, the authors do 

not justify their choice of features (Calvo-Flores et al., 2006; Romero, Espejo, et al., 2013) or even go 

as far as not disclosing any specific features used for predictive modelling (Baneres et al., 2019; Chui 

et al., 2020). Moreover, there are some questions on whether a de facto general set of predictive 

features obtainable from LMS even exists, with the works by Gašević et al. (2016) and Conijn et al. 

(2017) using the small number of statistically significant features with consistent effects across 

multiple courses as an explicit argument against the use of general predictive models. These arguments 

against general models open the door to discussing the portability of the predictive models, which we 

will cover later in section 2.2.2.2.  

Nevertheless, some discernible common trends have emerged from our reading of the published 

research works. A noteworthy standalone mention goes to grades obtained by the students in 

intermediary quizzes, assessments or assignments (which, going forward, we will refer to as partial 

grades). While this feature is not present in most works under review, it was found to be among the 

most influential when used (Conijn et al., 2017; Costa et al., 2017; Riestra-González et al., 2021).  
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An essential set of popular features is activity counts: the number of times a student performs a 

particular action. The use of features that count actions is overwhelmingly popular in the literature, as 

only 4 of the 39 papers under review do not explicitly refer to using this sort of feature in their 

predictive models (Baneres et al., 2019; Chui et al., 2020; Marras et al., 2021; Yang et al., 2020)4. 

Popular choices in the literature range from general features, such as the number of online sessions 

(used in 11 papers) or the total number of clicks (used in 8 papers), to other, more specific features, 

such as the number of clicks on course forums (used in 12 papers), the number of resources viewed 

(used in 13 papers) or even the number of assignments submitted (used in 9 papers). Unless under 

particular circumstances (e.g. evaluating the effects of forum interactions in performance as 

performed by Romero, López, et al. ((2013)), authors tend to extract features that reference different 

activities. For example, López-Zambrano et al. (2020) extracted activity counts from 50 log event types, 

while Aljohani et al. (2019) aggregated counts of log events into 20 different activities. 

Time-related features are also relatively popular. Unlike activity counts, these features are generally 

computed from the timestamps to estimate the time a student spends engaging with the course 

contents (time on task). The most popular application we found in the literature was estimating the 

total time spent online (used in 11 papers). However, many authors have found other applications for 

this type of feature. Other use cases include, among others, finding how frequently a student accesses 

the LMS (Costa et al., 2017), the amount of time a student is not engaging with the system in a lab-

session environment (Fahd et al., 2021) or how close to the deadline are students delivering their 

homework assignments (Yang et al., 2020). In total, time-related features were used in 20 research 

papers (Adejo & Connolly, 2018; Casey & Azcona, 2017; Chen & Cui, 2020; Conijn et al., 2017; Costa et 

al., 2017; Fahd et al., 2021; Hasan et al., 2020; Hu et al., 2014; Huang et al., 2020; Macfadyen & 

Dawson, 2010; Marras et al., 2021; Riestra-González et al., 20215; Romero, Espejo, et al., 2013; 

Romero, López, et al., 2013; Saqr et al., 2017; Tomasevic et al., 2020; Whitehill et al., 2017; Yang et al., 

2020; R. Yu et al., 2020; Zacharis, 2015).  

The literature also has a place for other, more complex predictive features. For example, Marras et al. 

(2021) presented a new set of features based on alignment, anticipation and strength when using 

content, and Yu et al. (2019) created n-grams from the sequences of click types students made when 

watching pre-recorded video lectures. However, complex approaches also raise concerns over their 

practicality, which lead other authors to argue for approaches that are less reliant on intensive and 

expensive data pre-processing and feature engineering, with Chen & Cui (2020) obtaining promising 

results using clicks per day as the single feature. 

2.2.2. Relevant distinctions in experimental design 

Going past the differences in approach when it comes to the outcome variables and features used, the 

research works also differ in other aspects. In this sub-section, we start by reviewing how authors differ 

regarding when a prediction is made throughout the course duration. Then,  we look at the portability 

(i.e. course-agnosticism) of the predictive models used in the literature. The sub-section ends with a 

review of researchers' possible data analysis strategies when manipulating clickstream data for 

predictive purposes. 

 
4 The work by Riestra-González et al. (2021) converts raw activity counts into relative variables. 
5 The work by Riestra-González et al. (2021) also converts time-related features into relative variables. 
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2.2.2.1.   Moment of prediction 

A significant body of work is dedicated to post-hoc predictions using data collected throughout the 

entire duration of the course - 15 of the 39 research papers under review exclusively made predictions 

(Adejo & Connolly, 2018; Calvo-Flores et al., 2006; Casey & Azcona, 2017; Chui et al., 2020; Gašević et 

al., 2016; Helal et al., 2018; Huang et al., 2020; López-Zambrano et al., 2020; Macfadyen & Dawson, 

2010; Mahzoon et al., 2018; Romero, Espejo, et al., 2013; Tsiakmaki et al., 2020; Yang et al., 2020; 

Zacharis, 2015, 2018). Unfortunately, while this line of research has explored the potential of LMS 

features as effective predictors of student performance, it does not give educators the means to 

provide timely interventions to students in need.  

The earlier the moment of prediction, the more time a student has to make adjustments. EWS aim to 

identify students of interest while there is still time to provide helpful feedback (Macfadyen & Dawson, 

2010). In other words, early prediction requires the exclusive use of data generated up to the moment 

of prediction (Hu et al., 2014). It is possible to find research work predicting performance every week 

(Aljohani et al., 2019; Buschetto Macarini et al., 2019; Casey & Azcona, 2017; Conijn et al., 2017; Costa 

et al., 2017; Kuzilek et al., 2015; Marras et al., 2021; Whitehill et al., 2017; Xing & Du, 2019; C.-C. Yu & 

Wu, 2021; C.-H. Yu et al., 2019), after each assessment (Baneres et al., 2019; Kuzilek et al., 2015; 

Tomasevic et al., 2020) or at other stages of course completion (Brooks et al., 2015; Chen & Cui, 2020; 

Fahd et al., 2021; Hu et al., 2014; Riestra-González et al., 2021; Romero, Espejo, et al., 2013; Sandoval 

et al., 2018; Saqr et al., 2017; Tsiakmaki et al., 2020; Waheed et al., 2020; R. Yu et al., 2020). In most 

works, predictive performance tends to increase at later moments of prediction. However, reasonable 

tradeoffs between early prediction and predictive performance have been reached by the courses’ 

halfway point (e.g. Riestra-González et al. (2021) reached AUROCs above 0.90 for all classification 

targets).  

2.2.2.2.   Portability 

In the context of this work, we refer to portability as a model’s ability to generalise to multiple courses. 

Works on performance prediction on a single course have been historically popular in the literature – 

as showcased in 17 papers  (Adejo & Connolly, 2018; Buschetto Macarini et al., 2019; Calvo-Flores et 

al., 2006; Casey & Azcona, 2017; Chen & Cui, 2020; Fahd et al., 2021; Hu et al., 2014; Macfadyen & 

Dawson, 2010; Mahzoon et al., 2018; Marras et al., 2021; Romero, López, et al., 2013; Saqr et al., 2017; 

Xing & Du, 2019; Yang et al., 2020; C.-H. Yu et al., 2019; Zacharis, 2015, 2018). In the papers making 

predictions of multiple courses, some use the same model to make predictions on multiple courses 

and others use one predictive model for each course. 

Four multi-course research works exclusively rely on course-specific approaches (Brooks et al., 2015; 

Chui et al., 2020; Huang et al., 2020; Tsiakmaki et al., 2019). In addition, a transfer learning approach 

by Tsiakmaki et al. (2020) found that the accuracy of a deep learning model trained on the course itself 

tended to be lower than that of models trained on data from another course.  

Course-agnostic approaches assume that LMS interactions reflect patterns of behaviour transferrable 

from one course to another and that those patterns are predictive of performance. The development 

of general models is an active research topic that, over the years, has seen research works gradually 

improve in predictive performance: starting with an accuracy of 0.66 obtained by Romero, Espejo et 

al. (2013) on data from seven courses, Gašević et al. (2016) reaching 0.749 AUROC with a nine-course 
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general Logistic Regression (LR)-based classifier model, Costa et al. (2017) managed F-scores over 0.80 

at the courses’ halfway point and 0.90 by the end of the courses using Support Vector Machines (SVM) 

on data from 2 courses. More recently, Aljohani et al. (2019) and  Yu & Wu (2021) have achieved 

accuracies of 0.952 and 0.93 with deep learning models. However, there are also sceptical perspectives 

on the potential value of creating general models. For example, Gašević et al. (2016), closely followed 

by Conijn et al. (2017) and, to some extent, López-Zambrano et al. (2020) have all concluded that, for 

most general models, there is a significant dropoff in predictive performance in comparison to course 

specific models. 

2.2.2.3.   Strategies for data analysis 

Due to their usefulness for this specific section, we adopted concepts used in a paper that did not meet 

our PICO criteria (Baker et al., 2020). The authors identify two primary data analysis strategies when 

working with clickstream data: the first being the use of static aggregate representations and the 

second being time-dependent or sequence-dependent representations. Figure 2.2 illustrates how, 

depending on the chosen data analysis strategy, the same feature of a hypothetical student is 

represented differently. 

In static-aggregate representations, each student is treated as a flat multidimensional vector. While it 

loses the sequential aspects of the information, this representation is easier to work with in statistical 

analyses. Therefore, it is the most widely adopted, as demonstrated by the 34 research papers under 

review that adopted this format (Adejo & Connolly, 2018; Baneres et al., 2019; Buschetto Macarini et 

al., 2019; Calvo-Flores et al., 2006; Casey & Azcona, 2017; Chui et al., 2020; Conijn et al., 2017; Costa 

et al., 2017; Fahd et al., 2021; Gašević et al., 2016; Helal et al., 2018; Hu et al., 2014; Huang et al., 2020; 

Kuzilek et al., 2015; López-Zambrano et al., 2020; Macfadyen & Dawson, 2010; Marras et al., 2021; 

Riestra-González et al., 2021; Romero, Espejo, et al., 2013; Romero, López, et al., 2013; Sandoval et al., 

2018; Saqr et al., 2017; Tomasevic et al., 2020; Tsiakmaki et al., 2019, 2020; Waheed et al., 2020; 

Whitehill et al., 2017; Xing & Du, 2019; Yang et al., 2020; C.-H. Yu et al., 2019; R. Yu et al., 2020; 

Zacharis, 2015, 2018).  

 

Figure 2.2 – Aggregate non-temporal representation and time-dependent representation of the 
same feature (e.g. number of clicks) using the same clickstream data 

In time-dependent representations, each student is represented by a number of time series equal to 

the number of features. Researchers who adopt this format can access and extract latent information 
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that would be lost otherwise. Historically,  there is a comparatively low number of tools and techniques 

to work with when using this format. Moreover, retaining sequential patterns whilst creating 

representations amenable to working with the classifiers used on aggregate data is not trivial (Brooks 

et al., 2015; Mahzoon et al., 2018). In recent years, the rise in popularity of deep learning techniques 

like Recurrent Neural Networks (RNN) and LSTM has contributed to an increase in works in time-

dependent representations (Aljohani et al., 2019; Chen & Cui, 2020; Yu & Wu, 2021). 

2.2.3. Knowledge gaps 

The use of LMS logs to predict student performance is extensively documented in the literature and 

has respectable results using multiple approaches. However, to the best of our knowledge, the work 

by Riestra-González et al. (2021) is the only institution-wide course-agnostic approach that exclusively 

uses LMS logs and partial grades in predictive modelling. Therefore, assessing whether similar results 

can be obtained using data from other institutions is relevant. Moreover, while the work showed 

promising results using a target computed from an inferred grade, it remains an open question 

whether using actual marks would work just as well. 

Another open question is the ability of such course-agnostic models to work using approaches that are 

less reliant on extensive domain knowledge and pre-processing (i.e. what Sandoval et al. (2018) called 

low-cost variables). To that effect, we looked at the work by Chen & Cui (2020), who use a single 

feature in time-dependent representation to reach comparable performances to that of full-fledged 

multi-feature static aggregate representations on standard machine learning (ML) classifiers. 

To that effect, our work introduces multiple novel contributions: first, it introduces a course-agnostic 

approach to early warning systems meant to predict exam performance in a sample of over 90 courses. 

Secondly, to our knowledge, our work has the largest sample of courses used to date when using deep 

learning to predict student performance. Finally, we introduce an early warning system that uses a 

time-dependent representation of a single feature in a course-agnostic setting.    
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3. METHODOLOGY 

We used the data and methods described in this section to answer our research questions. Our 

manipulations and exploratory analyses were made using version 3.8.3 of the python programming 

language (McKinney, 2018). Moreover, most feature selection and traditional ML classifier models 

trained on static aggregate representations used the implementation available in the Scikit-learn 

(Pedregosa et al., 2011) package. All time-dependent deep learning implementations used PyTorch 

(Paszke et al., 2019). Our entire methodology can be found using the link 

https://github.com/RicardoSantos0/Msc_thesis.  

3.1. DATA  

Nova Information Management School (Nova IMS)6 is an information management school that is part 

of Universidade Nova de Lisboa7 that offers undergraduate, graduate and executive programs in Data 

Science, Information Management, and Information Systems and Technologies. In this work, we 

extracted the MOODLE logs for all courses taught at Nova IMS throughout the 2020/2021 academic 

year. In addition, we obtained the students’ partial and final grades from the school’s Student 

Information System (SIS). From the inner join of the information extracted from both systems, we 

obtained close to four million logs performed by 2140 unique students attending, in total, 222 courses. 

All student data were anonymized in compliance with the General Data Protection Regulation (GDPR). 

Moreover, the Nova IMS ethics committee reviewed and approved the study. 

As we are considering courses that belong to different programs at both the undergraduate and 

graduate levels with different educators and grading schemas, we hypothesized that there is significant 

heterogeneity in MOODLE usage patterns between courses. Our hypothesis found support in Figure 

3.1, which showcases the number of clicks made each week for each Nova IMS course: some courses 

have tens of thousands of clicks on MOODLE in a given week, while others do not go past 100 clicks.  It 

should be noted that this heterogeneity occurred during an academic year where classes were held 

remotely due to Covid-19 protection measures and during which MOODLE was ubiquitously used 

across Nova IMS courses. 

 
6 https://www.novaims.unl.pt/en/ 
7 https://www.unl.pt/en 

https://github.com/RicardoSantos0/Msc_thesis
https://www.novaims.unl.pt/en/
https://www.unl.pt/en
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Figure 3.1 – Total number of LMS interactions by all students per week in each course 

3.2. DATA PRE-PROCESSING 

3.2.1. Setting target variables 

We were provided with each student’s exam mark and final mark. In the Portuguese system, grades 

vary between 0 and 20. To be approved, a student’s final mark must be equal to or greater than 10. 

This work uses the exam mark as the outcome variable of interest. More specifically, we use the exam 

mark to create target variables for two different binary classification problems: 

▪ Students at risk vs students not at risk: for this classification problem, all students who 

obtained an exam grade equal to 11 or less were labelled as students at risk (1), with 

the remaining student population being labelled as not at risk (0), 

▪ High-performing students vs Not high-performing students: To compute this target, we 

calculate, for each course, the grade matching the 85th percentile in the course’s 

distribution of grades as the decision threshold. Students whose exam marks surpassed 

the threshold were labelled as high-performing students (1), with the remaining 

students becoming not high-performing students (0).  

3.2.2. Setting course duration thresholds 

One of the most important factors to consider when creating an EWS is the setting at which points in 

time a prediction has to be made. An educator’s ability to identify students of interest tends to be 

better when the prediction is made at later stages of the course. Conversely, it is in the interest of 
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educators to identify students in need as early as possible. In this work, we set our early moments of 

prediction similarly to Riestra-González et al. (2021): with predictions made at 10%, 25%, 33% and 50% 

stages of course duration. In addition, we include a prediction after course completion. To calculate 

these duration thresholds, we used, for each course, the starting date and the regular season final 

exam date. 

To ensure that predictions were made at the intended stages of course duration, we created a different 

set of logs for each course duration threshold – five in total. In each set of logs, we only kept the 

interactions made between the week before the start of the course and the corresponding threshold 

date. As we have pre-emptively created different sets of logs for each duration threshold, we note that 

all methods described from this point onward were performed five times in total – one for each course 

duration threshold. 

3.2.3. Feature engineering – static aggregate representation 

Our first step was to separate the logs by course. For each student in each course, we computed 31 

predictive features from the logs, most previously used in works found in the literature. From the 

MOODLE logs, we computed 14 activity count features (total clicks – raw count and as a percentage, 

online sessions, forums clicks, forum posts, discussions viewed, course clicks, folder clicks, resources 

viewed, Uniform Resource Locators (URL) viewed, assessments started, assignments viewed and 

assignments submitted - raw count and as a percentage), 12 time-related features (total time online, 

largest period of inactivity and the relative starting time for each one of the first ten sessions) and five 

complex features (clicks/day, clicks/session, the average duration of each session and number of days 

with zero clicks – raw count and as a percentage). 

As we have access to partial grades, we also computed the average of the student’s partial grades and 

used it as a feature. The Nova IMS SIS stores each student’s partial grades, but it neither stores what 

event the partial grade refers to nor when that event occurs. Therefore, computing this feature was 

trivial for the 100% course duration threshold but relatively challenging for shorter course completion 

thresholds. A preliminary naïve approach could assume a one-to-one relationship between 

submissions and partial grades (the first partial grade would refer to the first submission, the second 

partial grade to the second submission and the same would apply to the remaining partial grades). 

However, such an approach would not account for other relevant factors, such as not all partial grades 

resulting from individual quizzes or assignments. For example, we find it unlikely that all group 

members would have submitted the same group project separately. Ultimately, our solution associates 

partial grades with submissions but with some caveats. We start by assuming that in courses with 

multiple group projects, all submissions tend to be made by the same student and, for these students, 

that the ith submission corresponds to the event responsible for the ith partial grade. Thus, we 

chronologically ordered the submissions made by each student and assigned an ordinal number to 

each submission (where 1 represents that student’s first submission to the course, 2 represents the 

student’s second submission to the course and so on). Then, we considered that the delivery deadline 

for the ith grading event matches the median date of the students’ ith submissions. Using this method, 

we assigned each partial grade to a date that was later used to decide whether a partial grade should 

be considered at each course duration threshold.   

After computing all features, we had, for each duration threshold, a dataset with 11297 rows 

containing 1677 unique students attending, in total, 181 unique courses (each row representing a 
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unique student-course pair). A complete list of the 32 features we computed and their description is 

presented in Appendix B’s Table B.1.  

3.2.4. Course filtering 

Using the dataset with the features extracted from the 100% duration logs, we filtered out all courses 

that met at least one of the following conditions: having less than 25 students; having the median 

student not make a click in at least 85% of the days of the course duration; having no at-risk or no-high 

performing students as defined in section 3.2.1. The resulting dataset had 9296 student-course 

pairings, representing 1590 unique students attending 138 courses. 

For consistency purposes, we also filtered the remaining datasets (one for each course duration 

threshold) to ensure that all experiments' student population was identical. Table 3.1 shows how the 

population is distributed depending on the classification target.  

Table 3.1 – Class representation in each classification problem 

Classification target Yes No 

Students at risk 1872 (20%) 7424 (80%) 

High-performing students 2574 (28%) 6722 (72%) 

 

3.2.5. Feature engineering – time-dependent representation 

While creating the datasets made of static aggregate representations, we parallelly created datasets 

featuring a time-dependent representation of the number of total clicks for each duration threshold 

(10%, 25%, 33%, 50% and 100%). Our goal was to make all sequences have the same number of steps, 

regardless of the student-course pair. However, our experimental setting included multiple courses 

whose duration could either be one trimester or one semester. Moreover, we also intended to create 

one dataset for each course duration threshold, increasing the problem's difficulty. Previous works 

using time-dependent representations considered a single course or a relatively small number of 

courses with similar durations. That simplicity allowed researchers to extract sequential data daily 

(Chen & Cui, 2020) or even weekly (Aljohani et al., 2019; Mahzoon et al., 2018; Yu & Wu, 2021). While 

intuitive, these approaches do not address our need to create sequences with the same number of 

steps from courses with different temporal lengths.  

Our approach towards temporal representations of multiple courses involved treating time as a 

relative variable. For every course and duration threshold, we started from the logs generated in 

section 3.2. and computed the total time elapsed between the week before the start of the course and 

the course’s duration threshold date. Then, we divided that time into 25 splits, each representing 4% 

of the period under consideration and, in each split, counted the total clicks made by each student. A 

representative row of the datasets created using this approach is displayed in Figure 3.2. 
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Figure 3.2 – Time-dependent representation of one feature (e.g. number of clicks) using our 
proposed split of the period in 25 steps of equal duration   

3.3. PREDICTIVE MODELS 

In this section, we cover the predictive models used in this work. We start by covering the feature 

selection techniques and classification algorithms used for the datasets built on a static aggregate 

representation of clickstream data. Then, we introduce the structure of the deep learning model we 

trained using the time-dependent representation of the number of clicks. Finally, the section ends with 

a review of the metrics we chose to assess model performance. 

3.3.1. Static aggregate representation 

To answer our first, second and third research questions (and provide a baseline for comparison of our 

fourth research question), we used the methods described in this sub-section on the static datasets 

obtained from section 3.2.3. Each dataset, one per course duration threshold, contained the features 

presented in Appendix B’s Table B.1. 

3.3.1.1. Feature selection techniques 

The use of feature selection techniques contributes to the creation of less computationally expensive 

models that tend to simultaneously have better predictive performances than models that apply no 

feature selection techniques (Chen & Cui, 2020; Hasan et al., 2020; Romero, Espejo, et al., 2013).  

We used a multi-layered feature selection process with eight algorithms in this work. To not be 

excluded, a feature had to be selected by at least half of the algorithms. Seven of the algorithms used 

in this process used the respective Scikit-learn implementations (Pedregosa et al., 2011): Recursive 

Feature Elimination (Guyon et al., 2002) both in its simple form (RFE) and with cross-validation (RFECV); 

multiple forms of regression such as Ridge, Lasso, Logistic and ElasticNet; and Random Forest (RF), 

which is a tree-based ensemble method. The eighth algorithm we used was Light Gradient Boosting 

Machine (LGBM), a very efficient tree-based learning algorithm with no Scikit-learn implementation 

(Ke et al., 2017). A complete list of the feature selection algorithms and their respective hyper-

parameters is available in Appendix C’s Table C.1. 

3.3.1.2. Classification algorithms 

To predict student performance from the static aggregate data, we used the Scikit-learn 

implementations of ten traditional ML classification algorithms: K-Nearest Neighbors (KNN), LR, Naïve 

Bayes (NB), Classification and Regression Tree (CART), Multi-layer Perceptron (MLP) which is also 

commonly referred to as Artificial Neural Network (ANN),  SVM, RF, ExtraTrees Classifier, Adaptive 

Boosting (AdaBoost) and Gradient Boosting (GBoost).  

A complete list of the models and the hyper-parameters used is available in Appendix C’s Table C.2. 

For CART, LR, MLP and SVM we adopted the hyper-parameters that Riestra-González et al. (2021) 
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determined to have the best results when discriminating between passing and failing students at the 

50% course duration threshold. 

3.3.2. Time-dependent representation 

To address our fourth and final research question, we use a 25-step time-dependent representation 

of the number of clicks. We use LSTM networks to predict student performance from time-series LMS 

behaviour. Our implementation of LSTM uses the PyTorch package (Paszke et al., 2019).  

3.3.2.1. Overview of LSTM networks 

RNNs are a family of neural networks especially apt to handle sequential data. At the core, a RNN is 

deceptively simple: they take as input a vector x and output a different vector h. However, a crucial 

distinction of RNN from other neural networks is that for a given timestep t, the output (ht) is not only 

influenced by the input of the current timestep (xt) but also by all previous inputs as well. RRN have 

internal loops that allow information to flow from one timestep to the next (Rumelhart et al., 1986). 

As showcased in Figure 3.3, the RNN loop can also be understood as a sequence of multiple copies of 

the same cell that inherit information from the previous cells.     

 

Figure 3.3 – Representation of a RNN 

RNNs have historically exhibited good performances when working with small sequences. However, 

they are prone to suffer from either the exploding or vanishing gradient problems, which severely 

hinder the ability of RNNs to retain information across longer sequences (Pascanu et al., 2013). 

Hochreiter & Schmidhuber (1997) presented LSTM, an RNN-based architecture, to address the 

vanishing gradient problem. The advantage of LSTM is that they feature an internal cell state C, which 

can be thought of as the cell’s memory, that flows between self-connected cells with minimal 

perturbations. At each timestep, the vanilla LSTM protected C via two multiplicative gates: an input 

gate (it) that softened the effect of irrelevant inputs and an output gate (ot) that protected future units 

from inheriting irrelevant memories of the current cell. As a result, LSTM achieved state-of-the-art on 

previously unsolvable problems with O(n) complexity – the same as RNN.  
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Figure 3.4 – LSTM architecture 

The current form of LSTM, displayed in Figure 3.4, results from the contributions of multiple 

researchers. Its structure features the same input and output gates found in the vanilla LSTM with an 

added forget gate (ft) introduced later by Gers et al. (2000). Let Wg and bg represent the weights and 

biases of a specific gate. At a given timestep t, the current unit starts by receiving cell state Ct-1 and 

hidden state ht-1 from the preceding unit and input xt and has to choose what information is to be kept 

and what information can be thrown away. The first step is to look at Ct-1 and xt and decide what 

information of the preceding cell states can be discarded, a decision made at the forget gate using 

equation (1).   

𝑓𝑡 =  𝜎(𝑊𝑓 ∙ [ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)  

(1) 

The second step is to decide what new information will update Ct. That is decided by the input gate, 

described by equation (2). The results are combined with a vector of candidate values Čt described by 

equation (3). The new cell state Ct is determined by equation (4), combining the previous equations' 

results.  

𝑖𝑡 =  𝜎(𝑊𝑖 ∙ [ ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖)  

(2) 

 Č𝑡 =  tanh( 𝑊𝐶 ∙ [ ℎ𝑡−1, 𝑥𝑡] +  𝑏𝐶)  

(3) 

𝐶𝑡 =  𝑓𝑡𝐶𝑡−1 +  𝑖𝑡  Č𝑡)  

(4) 

Legend: 

Neural network layer 

Pointwise operation 

Vector transfer 

Concatenation 

Copy Čt 
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The final step is deciding whether the current unit’s cell state should be allowed to perturb future 

units. That is determined by the output gate, determined by equation (5). Finally, the new hidden state 

ht results from the product between the output gate and the current cell state, as described by 

equation (6). 

𝑜𝑡 =  𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)  

(5) 

ℎ𝑡 = 𝑜𝑡 tanh(𝐶𝑡)  

(6) 

3.3.2.2. Modelling student clicks with LSTM networks 

In this work, we examine the potential of a single-feature LSTM network to make early predictions of 

student performance. To that end, we implement an architecture inspired by Chen & Cui (2020): the 

input nodes have a single LSTM layer on top that is followed by a 50% dropout layer and then a fully 

connected dense layer with a Softmax activation function that returns the probabilities for each class. 

 

Figure 3.5 – 25-step implementation of LSTM to predict student performance from clickstream data 

All of our deep learning implementations used an LSTM layer with 25 self-connected units to match 

the number of timesteps used in creating the time-dependent datasets documented in section 3.2.5. 

The weights for cell state C0 and hidden state h0 were initialized using Xavier (or Glorot) normal 

initialization  (Glorot & Bengio, 2010), and only the final hidden state h25 was sent to the subsequent 

layers. The dense layer has 40 nodes which is the same size as the output of LSTM output. Training of 

the model was made in batches of 32 observations throughout 200 epochs. PyTorch’s 

CrossEntropyLoss() was our loss function of choice and Adam was chosen as the optimizer (Kingma & 

Ba, 2017). A complete list with all hyper-parameters used for LSTM networks, most of them also used 

by (Chen & Cui, 2020), is presented in Appendix C’s Table C.3. 
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3.3.3. Model performance metrics 

To evaluate the performance of our predictive models, we used four metrics. The mathematical 

definition of accuracy, precision and recall is shown in the following equations: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

(7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(9) 

The fourth metric we used to assess model performance was AUROC, a popular model performance 

metric in education (as showcased by its usage in 14 of the 39 papers used in our literature review). In 

a binary classification problem, the receiver operating characteristic (ROC) curve plots the fraction of 

zeros misclassified as ones (false positive rate – defined in equation (10)) on the x-axis against the 

fraction of ones correctly assigned by the classifier (true positive rate or recall) on the y-axis. AUROC 

measures the classifier's ability to discriminate between classes correctly. AUROC varies between 0 

and 1, with 0 meaning a classifier that got all predictions wrong, 0.5 meaning that the classifier cannot 

discriminate between classes (i.e. always predicts the same class) and 1 meaning that the classifier 

perfectly predicted all instances. In this work, we adopt the AUROC categorizations used by Gašević et 

al. (2016), where AUROC < 0.5, 0.5 ≤ AUROC < 0.7, 0.7 ≤ AUROC < 0.8, 0.8 ≤ AUROC < 0.9, and AUROC 

≥ 0.9 respectively represent no discrimination, poor, acceptable, excellent, and outstanding 

discrimination.  

Despite its popularity, the efficacy of the ROC curve and AUROC is not unanimous, as some authors in 

other fields have historically argued for its use (Provost et al., 1998) while others have argued against 

it (Drummond & Holte, 2004).  

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(10) 

3.4. EXPERIMENTAL DESIGN 

Figure 3.6 outlines the general experimental design we adopted to answer our research questions 

using the data and algorithms introduced in previous sub-sections. In this work, we followed two 

distinct approaches: the first using a multi-feature static aggregate representation of the data 

extracted from Moodle logs and the second using a temporal representation of the total number of 

clicks. For each approach, we created a dataset for each moment of prediction (10%, 25%, 33%, 50% 

and 100% course duration). Then, we computed the classification targets: the first classification 

problem being students at risk vs students not at risk and the second being high-performing students 
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vs students that are not high-performers and used them to train our predictive models. In total, each 

approach had ten different classification problems.  

All experiments shared to following commonalities: all features were standardized with scikit-learn’s 

StandardScaler, training was performed with 30 repeats of stratified randomized 10-fold cross-

validation (using RepeatedStratifiedKFold) and all model performances were compared against a 

baseline majority class classifier. 

 

Figure 3.6 – Overview of the overall approach adopted throughout the work 
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3.4.1. Static aggregate representation 

Figure 3.7 illustrates the four experiments made for each classification problem. The first experiment 

used all 32 features introduced in section 3.2.3. In the second experiment, partial grades were not 

considered a potential feature. The third and fourth experiments were repeats of the first and second 

experiments with a key distinction: we used Synthetic Minority Oversampling Technique (SMOTE) to 

handle class imbalances (Chawla et al., 2002). Standardization and feature selection were performed 

independently for each fold. 

 

Figure 3.7 – Set of experiments performed for each moment of prediction using a static aggregate 
data representation 

3.4.2. Time-dependent representation 

Similarly to the static representation, different deep learning models were trained for each binary 

classification problem at each moment of prediction. Moreover, data standardization was performed 

independently for each fold. 

As described in Figure 3.8, our modelling of time-dependent representations relied on two different 

experiments for each classification problem, with the first using the temporal representations of the 

number of clicks and the second using oversampled data. 
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Figure 3.8 – Set of experiments performed for each moment of prediction using a time-dependent 
data representation 
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4. RESULTS AND DISCUSSION 

In this section, we analyse the results obtained from the sets of experiments described in the previous 

sections and contextualize them to answer the research questions formulated in section 1.3. We 

created models aimed at addressing ten different classification problems. We ran 30 repeats of 10-

fold stratified cross-validation on multiple ML classification algorithms for each classification problem. 

The average AUROC for all standard ML classifiers (i.e. those using static aggregate representations) 

are presented in Tables D.1 and D.2 of Appendix D. 

4.1.  LMS FEATURES AS PREDICTORS OF STUDENT PERFORMANCE  

To address our first research question (can features extracted from LMS data, on their own, predict 

student performance?), we compared the performance of standard ML classifiers exclusively using LMS 

features (thus, not using partial grades) against a baseline majority class classifier. First, for each 

classification problem and moment of prediction, we selected the algorithm with the highest AUROC 

value (all AUROC values obtained for standard ML classifiers are presented in Tables D.1 and D.2 of 

Appendix D). Then, we used a paired-samples t-test to compare their accuracy and AUROC at the 0.05 

and 0.01 significance levels. 

4.1.1. Students at risk 

As showcased in Table D.1, RF ubiquitously had the highest AUROC with respect to the prediction of 

students at risk. When assessing differences between our best classifier and the baseline, we note that 

statistically significant differences are noticeable starting from the early stages of course completion. 

Table 4.1 shows the accuracy and AUROC of RF at different moments of prediction. Differences in 

accuracy start being significant at the 25% course duration threshold (with accuracy = 0.803), which is 

consistent with the results obtained by Riestra-González et al. (2021), for whom the 25% course 

duration threshold marked the point in time where the dummy classifier started to be outperformed 

by the ML classifiers.  

Table 4.1 – Model performance when predicting students at risk from LMS features using standard 

ML classifiers (averaged across 30 repeats of 10-fold cross-validation) 

Performance 
metric 

(Baseline) 

10% duration 

(RF) 

25% duration 

(RF) 

33% duration 

(RF) 

50% duration 

(RF) 

100% 
duration 

(RF) 

Accuracy 

(0.799) 
0.800 0.803** 0.808** 0.810** 0.817** 

AUROC 

(0.5) 
0.678** 0.713** 0.718** 0.730** 0.756** 

Significance levels on the one-tailed paired-samples t-test against baseline classifier: * p < .05,  ** p < .01 

When considering AUROC, the differences between RF and the dummy classifier were significant from 

the 10% course duration threshold. However, these results should be interpreted cautiously because 

RF performance is compared against a classifier with no discriminative ability.  



 

38 
 

Overall, when looked at in isolation, the obtained recall scores tend to be low. For example, at 100% 

course duration, RF only detects 14.9% of students at risk. However, these tend to be compensated by 

relatively high precision scores (72.7% precision in the same example), which translates into acceptable 

AUROC (0.756 in the same example). Ultimately, the exclusive use of LMS features to predict students 

at risk yields statistically significant improvements in accuracy when compared to the baseline 

classifier. Moreover, our AUROC scores obtained at every moment hint at acceptable predictive 

capabilities of the models obtained exclusively from LMS data. 

4.1.2. High-performing students 

Similar to what we observed for the classifiers of at-risk students, RF had the highest average AUROC 

in all moments of prediction equal to or greater than the 25% course duration threshold. Moreover, it 

is a close second to LR at 10% course duration. Differences in accuracy, showcased in Table 4.2, start 

to be significant at the 25% course duration threshold, which is also consistent with the point in time 

at which the classifiers for excellent students started to outperform the baseline in work by Riestra-

González et al. (2021).  

Both recall and AUROC scores hint at LMS features having some predictive power to predict high-

performing students, albeit comparatively lower than the displayed when predicting students at risk. 

Table 4.2 – Model performance when predicting high-performing students from LMS features using 

standard ML classifiers (averaged across 30 repeats of 10-fold cross-validation) 

Performance 
metric 

(Baseline) 

10% duration 

(LR) 

25% duration 

(RF) 

33% duration 

(RF) 

50% duration 

(RF) 

100% 
duration 

(RF) 

Accuracy 

(0.723) 
0.723 0.725* 0.727** 0.729** 0.728** 

AUROC 

(0.5) 
0.593** 0.603** 0.606** 0.611** 0.634** 

Significance levels on the one-tailed t-test against baseline classifier: * p < .05,  ** p < .01 

4.1.3. Introducing partial grades 

While the results shown in the previous sub-sections indicate that LMS features have, on their own, 

low to acceptable degrees of discriminative power, the models we created did not consider all 

information we believe educators can reasonably access for an EWS. At any particular moment of 

prediction, educators not only have access to each student’s clickstream logs but also know the partial 

grades obtained up to that point. Whenever used to predict student performance, partial grades have 

been documented among the most influential features in other works (Conijn et al., 2017; Costa et al., 

2017; Riestra-González et al., 2021). 

To assess whether the introduction of partial grades leads to better predictions, we compared the 

performances of the models that did not use partial grades against models that used partial grades. 

The results, showcased in Tables 4.3 for students at risk and Table 4.4 for high-performing students, 

confirm that the use of partial grades, in general, leads to improvements in the discriminative ability 

of the predictive models when compared against models that do not use partial grades. 
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Differences in discriminative performance between models using partial grades and models not using 

them are smaller at earlier stages but tend to increase at later moments of prediction. For example, 

when predicting students at risk at a 33% course duration threshold, the introduction of partial grades 

results in a 0.4 percentage point increase in accuracy (from 80.8% to 81.2%) and, when using all logs, 

the improvement in accuracy is 6.9 percentage points (from 81.7% to 88.6%). A similar trend is 

observable for classifiers of high-performing students. These results are consistent with observations 

from educational practice: grading events tend to be more common at later stages in the course 

duration. Therefore, the impact of partial grades as predictors of performance also tends to increase 

at later moments of prediction (Conijn et al., 2017). 

Table 4.3 – Model performance when predicting students at risk from LMS features and partial 

grades using standard ML classifiers (averaged across 30 repeats of 10-fold cross-validation) 

Performance 
metric 

10% duration 

(RF) 

25% duration 

(RF) 

33% duration 

(RF) 

50% duration 

(RF) 

100% 
duration 

(RF) 

Accuracy 0.802 0.804 0.812* 0.825** 0.886** 

Precision 0.713 0.607 0.678 0.732** 0.817** 

Recall 0.028* 0.086** 0.123** 0.205** 0.713** 

AUROC 0.681 0.728** 0.749** 0.793** 0.923** 

Significance levels on one-tailed t-test against model without partial grades: * p < .05,  ** p < .01 

Overall, features extracted from LMS clickstream exhibit the potential to help educators identify either 

students at risk or high-performing students. That potential can be enhanced by combining the LMS 

features with other data from other reasonably accessible sources of data, as is the case with the 

partial grades obtained throughout the course.  

Table 4.4 – Model performance when predicting high-performing students from LMS features and 

partial grades using standard ML classifiers (averaged across 30 repeats of 10-fold cross-validation) 

Performance 
metric 

10% duration 

(LR) 

25% duration 

(RF) 

33% duration 

(GBoost) 

50% duration 

(RF) 

100% 
duration 

(GBoost) 

Accuracy 0.723 0.724 0.731* 0.735** 0.782** 

Precision 0.504** 0.562 0.572** 0.655** 0.668** 

Recall 0.033 0.044** 0.110** 0.095** 0.423** 

AUROC 0.598** 0.611** 0.624** 0.644** 0.782** 

Significance levels on one-tailed t-test against model without partial grades: * p < .05,  ** p < .01 

4.2. PREDICTORS OF COURSE PERFORMANCE AT NOVA IMS 

Our second research question (is there a general set of rules/features that can inform academic 

performance across modalities and courses within NOVA IMS?) focuses on identifying whether there 
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is a consistent set of features that are found to be important predictors across classification targets 

and moments of prediction. To that effect, we analysed the outputs of our feature selection protocol 

for each different classifier. Table 4.5 lists the 14 features selected for all course-agnostic classification 

problems. These findings support the existence of a common set of features that can be used to predict 

performance in a course-agnostic context. 

Table 4.5 – List of features selected that were selected in all classification problems 

Selected Features 

Online sessions  
Total clicks 
Clicks (%) 
Clicks/day 
Clicks/session 
Resources viewed 
URL views 
Course clicks 
Days with 0 clicks 
Days with 0 clicks (%) 
Total time online (min) 
Average duration of sessions (min) 
Largest period of inactivity (h) 
1st session (%) 

 

Table 4.6 lists the remaining features that were selected for different classification problems. While 

not ubiquitous, four features (folder clicks, forum clicks, the start of 2nd session and the start of 3rd 

session) were selected in at least eight classification problems. A common trend between these 

features and Table 4.5 is that they represent general interactions that we expected to be measurable 

for most students across most courses. Moreover, these are among the most widely adopted features 

in the literature (Table B.1 in Appendix B). Another relevant feature is the average of the partial grades, 

although it only becomes ubiquitously important from the 33% course duration threshold onward, 

which is consistent with the findings presented in section 4.1.3. 

We found the heterogeneity observed in the set of features that disclose the moment when each of 

the first ten logins to be particularly interesting. First, knowledge of when the first login occurred was 

considered important for all targets and moments of prediction. Then, the second and third logins 

were always relevant to identify students at risk but not as much when identifying high-performing 

students. Surprisingly, knowing when the remaining logins are is comparatively less important, 

especially in identifying high-performing students. We expected that more frequent and evenly spread 

login patterns would be relevant predictors of better students (Conijn et al., 2017; Riestra-González et 

al., 2021). At the end of the spectrum, we have forum posts as the least selected feature, closely 

followed by assignment submissions, discussions viewed and assessments started. These features have 

been proven helpful in other works (Macfadyen & Dawson, 2010; Sandoval et al., 2018), but their 

effectiveness has been observed in course-specific approaches and not in course-agnostic contexts 

(Conijn et al., 2017; Gašević et al., 2016). 
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Table 4.6 – Remaining features selected for each classification problem 

 10% duration 25% duration 33% duration 50% duration 
100% 

duration 

Students at 
risk/ 

Students not at 
risk 

Folder clicks 
Forum clicks 
2nd session (%) 
3rd session (%) 
Assignment 
views 
9th session (%) 
4th session (%) 
5th session (%) 
6th session (%) 
7th session (%) 

Folder clicks 
Forum clicks 
2nd session 
(%) 
3rd session (%) 
Partial grades 
Assignment 
views 
9th session (%) 
4th session (%) 
5th session (%) 
6th session (%) 
10th session 
(%) 
8th session (%) 
Assessments 
started 

Folder clicks 
Forum clicks 
2nd session 
(%) 
3rd session (%) 
Partial grades 
Assignment 
views 
4th session (%) 
5th session (%) 
6th session (%) 
7th session (%) 
10th session 
(%) 
8th session (%) 

Folder clicks 
Forum clicks 
2nd session 
(%) 
3rd session (%) 
Partial grades 
Assignment 
views 
9th session (%) 
4th session (%) 
7th session (%) 
10th session 
(%) 
Discussions 
viewed 

2nd session 
(%) 
3rd session (%) 
Partial grades 
Submissions 
(%) 

High-
performing 
students/ 

Not high-
performing 
students 

Folder clicks 
2nd session (%) 
3rd session (%) 
9th session (%) 
4th session (%) 
5th session (%) 
6th session (%)  

Folder clicks 
Forum clicks 
2nd session (%) 
3rd session (%) 
Assignment 
views 
9th session (%) 
4th session (%) 
5th session (%) 
6th session (%) 
7th session (%) 
10th session 
(%) 
 

Forum clicks 
Partial grades 
9th session (%) 
7th session (%)  

Folder clicks 
Forum clicks 
2nd session (%) 
3rd session (%) 
Partial grades 
Assignment 
views 
9th session (%) 
6th session (%) 
7th session (%) 
10th session 
(%) 
Assignments 
submitted  

Folder clicks 
Forum clicks 
Partial grades 
Assignment 
views 
5th session (%) 
10th session 
(%) 
8th session (%)  

4.3. EARLY PREDICTION OF STUDENT PERFORMANCE 

In previous sections, we established that LMS features could assist educators in identifying either at-

risk or high-performing students. Moreover, using partial grades significantly improved the 

discriminative ability of our models, especially at later moments of prediction (Tables 4.3 and 4.4). For 

example, using all logs and partial grades, our best classifier for students at risk achieved an accuracy 

> 0.85, a recall > 0.70, a precision > 0.8 and an AUROC > 0.90. When predicting at the 50% course 

threshold, performances on most metrics were still respectable, even if comparatively lower. In broad 

strokes, an affirmative answer to our third research question (Can performance be inferred when, at 

most, 50% of the course is completed?) seems trivial. However, at that same moment of prediction, 

our best classifiers could only correctly identify 20% of students at risk and 10% of high-performing 

students at the courses’ midway point, raising questions about our models' usefulness as EWS. 
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The use of SMOTE turned into an elegant solution with immediate improvements in our models’ ability 

to identify students of interest. Tables 4.7 and 4.8 present the performance metrics obtained for each 

best early classifier using SMOTE and compare them with the best performing models presented in 

Tables 4.3 and 4.4, respectively. In general, the models we trained using oversampled data had worse 

accuracy and AUROC than those trained without oversampled data, an observation consistent with 

other works (Riestra-González et al., 2021; Romero, Espejo, et al., 2013). However, they also had much 

higher recall values. A decent compromise using SMOTE is achieved at the 25% course duration 

threshold where AUROC remains similar, but our classifiers can identify 50% of the students of interest 

(for both at-risk and high-performing students). 

The models we trained using oversampled data have shown greater potential in identifying students 

of interest at earlier stages (as indicated by the recall values). However, this increased potential is also 

tied to a higher proneness to predict false positives (and consequently lower accuracy and precision). 

On the contrary, models trained without using SMOTE are less capable of detecting students of interest 

but much more precise. 

Table 4.7 – Model performance when predicting students at risk from LMS features and partial 

grades using standard ML classifiers and SMOTE (averaged across 30 repeats of 10-fold cross-

validation) 

Performance 
metric 

10% duration 

(RF) 

25% duration 

(RF) 

33% duration 

(RF) 

50% duration 

(RF) 

Accuracy 0.733** 0.732** 0.736** 0.764** 

Precision 0.354** 0.376** 0.387** 0.436** 

Recall 0.396** 0.500** 0.527** 0.577** 

AUROC 0.674** 0.725 0.741** 0.788** 

Significance levels on two-tailed t-test against the best model with partial grades: * p < .05,  ** p < .01 

When comparing against the general LA research landscape, the results obtained by our traditional ML 

classifiers are on par with the ones obtained by other authors. For example, at the 50% duration 

threshold, our best classifiers for students at risk (RF with 0.788 AUROC on the version trained on 

oversampled data and 0.793 on the model trained without it) achieved AUROC scores above the 

general models developed by Gašević et al. (2016) and Helal et al. (2018) – respectively 0.749 and 

0.700 by the end of the course. Moreover, other works trained on data from a single course are 

outperformed by our predictions at the 50% duration threshold, such as the 0.69 AUROC obtained by  

Saqr et al. (2017) at the course’s midway point or all classifiers used by Chen & Cui (2020). 

Table 4.8 – Model performance when predicting high-performing students from LMS features and 

partial grades using standard ML classifiers and SMOTE (averaged across 30 repeats of 10-fold cross-

validation) 

Performance 
metric 

10% duration 

(LR) 

25% duration 

(ExtraTrees) 

33% duration 

(ExtraTrees) 

50% duration 

(ExtraTrees) 

Accuracy 0.592** 0.581** 0.599** 0.611** 
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Precision 0.341** 0.342** 0.353** 0.365** 

Recall 0.508** 0.552** 0.537** 0.548** 

AUROC 0.596 0.608 0.624** 0.632** 

Significance levels on two-tailed t-test against the best model with partial grades: * p < .05,  ** p < .01 

The results obtained using either approach (training without oversampling or with oversampling) 

support our proposition that student performance can be inferred using only data collected up to the 

moment of prediction. Ultimately, deciding which approach is better suited for a given situation 

depends on the educators’ goals for implementing the EWS and the cost associated with wrong 

predictions. We argue that models trained with SMOTE are better suited for identifying students at 

risk to provide timely feedback. An EWS should be able to detect as many students of interest as 

possible, as the cost of false negatives is not receiving feedback and taking corrective action. Moreover, 

a small number of false positives is almost innocuous for students incorrectly receiving the 

intervention. Conversely, if the goal is to provide more challenging content to high-performing 

students, we argue that the cost of a false positive is much greater than the potential costs associated 

with false negatives. Therefore, a more conservative and precise approach would be better suited in 

these cases, which, in the case of our models, is the use of models trained without SMOTE.   

4.4. EARLY PREDICTION USING LSTM NETWORKS 

Converting LMS logs to a format amenable to standard ML classifiers is not trivial. Effective pre-

processing and manipulation of data require domain knowledge, data skills and computational 

resources that may not be accessible to educators. In this section, we analyze the potential of a single-

feature temporal representation of the number of clicks as a predictor of student performance. We 

rely on the datasets created in section 3.2.5 and use LSTM networks to identify students at risk or high-

performing students. Figure 4.1 compares, for each moment of early prediction, the model 

performances obtained from the single feature LSTM network against those obtained by each of the 

best traditional ML classifiers presented in Tables 4.3 through 4.8. A complete display of the 

comparison between models, including differences in the 100% duration threshold, is presented in 

Tables E.1 and E.2 found in Appendix E. 
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 Figure 4.1 – Comparison between model performances on early prediction between the best 
traditional ML classifiers and the single-feature LSTM 

Among all combinations of targets and moments of early prediction, AUROC values vary between 0.54 

(high-performing students at the 25% duration threshold using oversampled data) and 0.65 (students 

at risk at the 50% duration threshold without oversampling), which places our LSTM models as having 

poor discriminative power (Gašević et al., 2016). With minimal optimisation, our LSTM networks 

obtained results comparable to the ones published by Yu & Wu (2021) (who reported 67% accuracy by 

the courses’ midway point) and Chen & Cui (2020) (who reported AUROC values varying between 0.596 

and 0.682 on their education course test data). Nevertheless, our results are below the validation 

performances (all AUROC values above 0.7) reported by Chen & Cui (2020) and the 90% accuracy 

achieved by Aljohani et al. (2019) by the courses’ 25% duration threshold (the 10th week on courses 

with 38 weeks).  

One possible justification for the reported differences in performance is the amount of data used. Our 

approach relies on a powerful deep learning algorithm (LSTM) using a single, easily extractable feature. 

Educators without the resources or expertise can avoid the need to perform sophisticated pre-

processing or feature engineering. The works by Aljohani et al. (2019) and Yu & Wu (2021) rely on 

similar algorithms while using additional features. Therefore, even if, at some stages, we reach 

comparable performances to those obtained by the latter, our models are expected to underperform 

more sophisticated deep learning models. 

Other possible justifications involve differences in experimental design, particularly sample size and 

the number of nodes. The work by Chen & Cui (2020) uses a single course and 41 students per fold, 

whereas each of our folds considers close to 1000 students and multiple courses. Even if we set aside 

the self-evident differences in sample size, our observations are still compatible with previous claims 

of course-agnostic models performing worse than models trained on a single course (Conijn et al., 
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2017; Gašević et al., 2016; López-Zambrano et al., 2020). For the number of nodes, the works found in 

the literature use weekly (Aljohani et al., 2019; Mahzoon et al., 2018; Yu & Wu, 2021) or daily time 

intervals (Chen & Cui, 2020). In our work, we use a fixed window of 25 timesteps, each node 

representing 4% of the time passed from the start of the course to the moment of prediction. Treating 

time as a relative variable allows the creation of course-agnostic models that capture sequential 

dependencies from multiple courses with different hypothetical lengths. However, the differences in 

course length are not highlighted using this approach. For example, 4% of a trimestral course is, in 

absolute terms, close to half of the time passed in 4% of a semestral course. When counting the 

number of clicks made in a timestep, we treat periods of different lengths as similar. Thus, the ability 

of LSTM to capture patterns detectable when working with absolute time intervals may be hindered.  

When analyzing the results obtained from our LSTM in the context of Nova IMS data, we observed 

trends similar to those previously detected for traditional classifiers. Accuracy, recall and AUROC 

values tend to increase over time. Moreover, models trained with oversampling had lower accuracy 

and precision than the ones trained without using SMOTE whilst having a significantly higher recall and 

close to the same AUROC. While our LSTM models were generally on par with popular traditional ML 

classifiers such as SVM, NB and or CART, they consistently underperformed their corresponding best 

traditional classifier on most metrics. However, while statistically significant, the differences are 

relatively small, especially with respect to accuracy and recall. When it comes to accuracy, the most 

prominent differences found between models trained without SMOTE were observed at the 50% 

course duration threshold: 3.2 percentage points for students at risk (from 82.5% for RF to 79.3% for 

LSTM) and 2 percentage points for high performing students (73.5% for LR to 71.5% for LSTM). In 

models trained using SMOTE, the differences in accuracy increased substantially (to close to 20 

percentage points) for both targets at all moments of prediction. The most considerable difference in 

recall between the best traditional classifier and the LSTM model when classifying students at risk was 

3 percentage points, also observed at the 50% duration threshold (20.5% for RF to 17.2% for LSTM). 

When using models trained using SMOTE, LSTM models have higher recall than the traditional ML 

counterpart.  

In objective terms, our analysis of model performances alone advises against adopting the single 

feature LSTM instead of RF, Gboost or ExtraTrees for most instances. Arguably, using LSTM at 10%, 

25% or the 33% course duration threshold can be justified by simpler pre-processing and feature 

extraction with minimal performance losses compared to the corresponding best classifier. For 

example, when comparing the classifiers for students at risk at the 25% duration threshold, the LSTM 

and RF were separated by 1 percentage point for accuracy values (respectively, 79% against 80%) and 

recall values (0.071 against 0.086).   

4.5. A FOLLOW-UP STUDY FOR GENERALIZABILITY 

In order to verify the potential for generalizability of our EWS, we performed a follow-up analysis on a 

different set of data. Our goal with this section was to validate the promising results obtained with our 

static aggregate representations and to obtain additional information concerning our single feature 

deep learning approach. 



 

46 
 

4.5.1. Data description 

For this section, we used the Oviedo University data presented by Riestra-González et al. (2021). The 

raw data included over 47 million log entries belonging to 29602 unique students and was collected 

throughout the 2014/2015 academic year. The main reason behind the choice of this data was the 

scale of the number of students and courses it contained. Moreover, as the data includes all courses 

taught at the University of Oviedo, there is a large variability in click patterns and course durations.  

We started by downloading the MySQL dump the authors made available8 and replicated the initial 

pre-processing and filtering steps. As neither course duration nor the outcome variable are provided 

in the raw logs, we estimated both by adopting the same methodology as the authors of the paper. 

Then, to create new static aggregate datasets for each target and moments of early prediction9, we 

replicated the feature extraction and filtering criteria we adopted on the Nova IMS data in sections 

3.2.3 and 3.2.4. Likewise, for the temporal representations, we also followed the methods described 

in section 3.2.5. At the end of the process, we had eight static aggregate datasets (one for each target 

at the 10%, the 25%, the 33% and the 50% course duration thresholds) and eight time-dependent 

datasets. Each dataset had 13857 rows, with each row representing a unique student-course pair. 

Table 4.9 summarizes the class imbalances for each classification problem. For the remainder of the 

work, we strictly followed the analytical procedures described for the Nova IMS data. 

Table 4.9 – Class representation in each classification problem 

Classification target Yes No 

Students at risk 5280 (38%) 8577 (62%) 

High-performing students 2751 (20%) 11106 (80%) 

4.5.2. Results and discussion 

Figure 4.2 compares the model performances obtained for each model on the Oviedo University 

datasets. The results validate our approach’s potential to identify both students at risk and high-

performing students. Across all metrics, the model performances obtained by our best static aggregate 

models tend to be better at later moments of prediction, with an excellent discriminative ability 

(AUROC between 0.8 and 0.9) being achieved from the 25% course duration threshold onward when 

identifying students at risk and from the 33% course duration threshold for high-performing students. 

Furthermore, as in our previous results obtained with Nova IMS data, the models trained with 

oversampled data have lower precision and higher recall than the non-oversampled models, ultimately 

resulting in similar AUROC. A complete display of the comparison between models is presented in 

Tables E.3 and E.4 found in Appendix E. 

 
8 Available at https://github.com/moisesriestra/moodle-early-performance-prediction (last visited on the 

23rd of April 2022)  
9 As the outcome variable used by Riestra-González et al. (2021) is estimated using a regression from 

assignment grades, we did not consider the 100% duration threshold for this data.  

https://github.com/moisesriestra/moodle-early-performance-prediction
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Figure 4.2 – Comparison between model performances on early prediction between the best 
traditional ML classifiers and the single-feature LSTM on a new dataset 

Whilst static aggregate model performances with the Oviedo University datasets were comparatively 

higher than those obtained with Nova IMS data, it had worse performances when using the 25-

timestep temporal representations of the number of clicks. The low discriminative ability of our models 

trained using this approach is highlighted by AUROC scores below 0.60 for all targets and moments of 

prediction. For these datasets, we consider that there is no point where a reasonable tradeoff between 

loss in performance and easier data pre-processing can be achieved. 

Overall, the results we obtained from the Oviedo University data match those we obtained from the 

Nova IMS data as the models created using static aggregate data representation achieved significantly 

better performances than the single-feature temporal representations. 
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5. CONCLUSIONS 

In the post-Covid era, LMS and other virtual learning environments play a vital role in delivering 

educational content to students, making them invaluable tools for educators and HEI. A major 

challenge facing educators is the timely identification of students at risk of failing. Early identification 

allows educators to provide feedback and develop corrective measures to prevent student failure (Hu 

et al., 2014; Macfadyen & Dawson, 2010). A similar rationale for EWS may be applied to the early 

identification of students who excel and whose development would benefit from more challenging 

materials (Riestra-González et al., 2021). 

In this work, we used LMS log data collected throughout the 2020/2021 academic year at a portuguese 

information management school and created different predictive models to identify at-risk or high-

performing students across multiple courses and at multiple stages of course completion. First, for 

each course, we calculated the moment in time that would represent the 10%, 25%, 33%, 50% and 

100% course duration threshold and created a different set of logs for each moment of prediction. 

Then, we created two types of dataset: the first being datasets containing an aggregate non-temporal 

representation of the log data and the second being datasets present using a time-dependent 

representation of the number of clicks. In total, we created 20 datasets: two forms of data 

representation for two different classification problems, each with five moments of prediction. 

Predictive models trained with the datasets constructed using an aggregate non-temporal logic 

achieved excellent to outstanding discriminative abilities when using all data: 0.923 AUROC when 

predicting students at risk using RF and 0.796 when predicting high-performing students with  GBoost. 

In addition, our models had respectable performances at earlier moments of prediction, especially in 

the students at risk classification problem: from 0.728 AUROC when making predictions at 25% of 

course duration up to 0.793 AUROC at 50% of course duration. However, when predicting high-

performing students, model performances were comparatively lower across the board, with the best 

AUROC (0.644) being attained using RF at the 50% course duration threshold.  

To demonstrate that the information encoded into a temporal representation of data can yield 

comparable without requiring such extensive domain knowledge or data skills, we trained LSTM 

networks with the 25-timestep temporal representation of a single feature (the number of clicks). 

Unlike previous studies (Chen & Cui, 2020), our implementation of LSTM networks using sequences of 

the number of clicks did not outperform other traditional ML classifiers at any moment of prediction. 

However, the results from Nova IMS students suggest that there is potential for the use of these single 

feature datasets, especially at the earliest stages. For both the classification of students at risk and the 

classification of high-performing students, the results obtained at the 10%, 25% and 33% course 

duration with LSTM point towards much simpler data pre-processing at the expense of relatively small 

losses in performance (below 5 percentage points in accuracy and recall and below 10 percentage 

points in AUROC). In particular, we find that the best moment of prediction using LSTM to predict 

students at risk is after one third of the course has been completed - 0.64 AUROC against the 0.74 

AUROC obtained with RF. Furthermore, for high-performing students, that tradeoff occurs after one 

fourth of the course is completed - 0.563 AUROC against 0.611 AUROC obtained with RF. 

Finally, we replicated our experiments on another set of logs obtained from Oviedo University. Our 

results validated our previous observations with respect to the performance of the traditional ML 
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classifiers trained with data using a static aggregate representation. For both students at risk and high-

performing students, excellent discriminative performances are achieved at early moments of 

prediction: the classification of students at risk achieves AUROC greater than 0.80 from the 25% course 

threshold onward, and the classification of high-performing students does the same starting from the 

33% course threshold. Peak performances are achieved at the courses’ midway point, where RF 

achieves 0.89 AUROC when distinguishing between students at risk and students not at risk. Likewise, 

at that moment of prediction, GBoost achieved 0.88 AUROC when identifying high-performing 

students. Unfortunately, the promising signs displayed by the temporal representation of the number 

of clicks observed with Nova IMS data did not generalize to this dataset, as LSTM performances are 

lower than 0.6 AUROC across the board. 

Ultimately, the findings presented herein provide insights into using traditional ML classifiers and deep 

learning into early predictions of student performance within a course-agnostic context. Our results 

with traditional ML classifiers on different datasets support the view that student activity on LMS is 

predictive of student performance across different courses and educational contexts. Furthermore, 

our deep learning results indicate that portability may be possible in specific contexts. All models and 

reusable Python source code are freely available at the following link 

https://github.com/RicardoSantos0/Msc_thesis. 

https://github.com/RicardoSantos0/Msc_thesis
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6. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

Our work has some relevant limitations we intend to address in future works. A first concern is the 

data’s ability to generalize, as this survey's primary set of logs concerns a single academic year in an 

information management school. In addition, due to Covid-19 security measures, all courses worked 

similarly to online courses, which made 2020/2021 a particularly unique academic year. LMS are 

expected to be the primary interface between students and educational content in a completely online 

context. However, that may not necessarily be the case in a typical year with an open campus and face-

to-face classes. While our analysis of the data collected throughout an entire university in a different 

pre-Covid academic year shows promising results concerning our static aggregate models’ ability to 

generalize, further validation on Nova IMS data across different academic years would be a welcome 

addition. 

A second relevant limitation of our survey concerns our data preprocessing and feature extraction 

strategies. As extensively discussed in previous sections, these tasks are not trivial and require 

significant domain knowledge and data skills. In this work, our primary focus was extracting features 

that enjoy widespread adoption in the literature. However, promising experimental features such as 

those introduced by Marras et al. (2021) were not considered, even though their introduction could 

potentially lead to more accurate predictive models. A similar limitation concerns our choice of 25 

timesteps for the temporal representation of the number of clicks, an approach that had promising 

results with the Nova IMS data but did not perform as well with the Oviedo University data. Multiple 

possible alternatives can be considered for future works: from developing more elaborate filtering 

strategies that only maintain courses with relatively similar course durations to having a different 

number of timesteps be considered for different moments of predictions. 

There is also room for improvement in our deep learning approach. More particularly, the number of 

clicks is not the only feature that exhibits predictive power using a time-dependent representation and 

future works should consider the addition of other, simple to obtain, sequences of activity counts 

(Aljohani et al., 2019; Yu & Wu, 2021). Furthermore, predictive performance can likely be enhanced 

with more elaborate deep learning algorithms such as bi-directional LSTM (Graves & Schmidhuber, 

2005). 

Our final highlight-worthy limitation concerns model optimization. The experiments performed in this 

work were, for the most part, exploratory. While we adopted the hyper-parameters used in other 

works (Chen & Cui, 2020; Riestra-González et al., 2021), minimal effort was placed into additional fine-

tuning of hyper-parameters. It is not self-evident that the best hyper-parameters in other works are 

the most adequate for our data and future experiments should place a more explicit emphasis on 

model optimization and fine-tuning. 
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APPENDIX A. LITERATURE REVIEW TABLE 

In total, 39 research papers met the selection criteria laid out in section 2.1. This table summarises the main attributes of the research work used throughout 

our literature review. All of them share the following commonalities: 

- All works use features extracted from LMS clickstream to predict student performance (independently of how performance is defined), 

- Predict performance on courses intended for higher education students (the course itself may be face-to-face, MOOC or blended), 

- All works use at least one of the following model performance metrics: Accuracy, Precision, Recall, F-score or AUROC. 

It should be noted that, while some of these references go beyond the scope of our initial criteria (that may range from, e.g. adopting other model performance 

metrics to making a full-fledged analysis of student groups via clustering), our summarisation efforts were directed towards presenting the elements that fall 

under the main scope of this work. The consequence of this choice is that, for any given reference, our summary will not cover the entire body of work 

published in each specific paper. 

Table A.1 – Literature review table 

Reference Population Data sources Target variable 
Moment of 
prediction 

Data 
representation 

Best performance 

Calvo-Flores et 
al. (2006) 

1 course 

240 students 
LMS Final mark: Pass/Fail End of course 

Static aggregate 
representation 

Accuracy: 0.802 (ANN) 

Macfadyen & 
Dawson 
(2010) 

1 course 

118 students 
LMS  

Final mark: 

At risk: <60% 

Not at risk: >60% 

End of course 
Static aggregate 
representation 

Accuracy: 0.737 (LR) 

Precision: 0.703 (LR) 

Recall: 0.809 (LR) 

Romero, 
Espejo, et al. 
(2013) 

7 courses 

438 students 
LMS 

 

Final mark:  0-10 
End of course 

Static aggregate 
representation 

Geometric mean of 
Accuracy: 0.660 (NNEP) 

Romero, 
López, et al. 
(2013) 

1 course 

114 students 

LMS 

Message scores 

Survey 

Final mark: Pass/Fail 

Middle of 
course 

End of course 

Static aggregate 
representations 

Middle of course 

Accuracy: 0.824 (SMO/NB) 

F-score: 0.821 (SMO) 
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End of course 

Accuracy: 0.903 
(BayesNet/NB) 

F-score: 0.895 
(BayesNet/NB) 

Hu et al. 
(2014) 

1 course 

300 students 
LMS Final mark: Pass/Fail 

4 weeks 

8 weeks 

13 weeks 
(end) 

Static aggregate 
representations 

4 weeks 

Accuracy: 0.972 
(AdaBoost+CART/ 

AdaBoost+J48) 

8 weeks 

Accuracy: 0.978 
(AdaBoost+CART) 

Brooks et al. 
(2015) 

4 courses 

350k students 
LMS Final Mark: Pass/Fail 

Throughout 
time 

End of course 

Time-
dependent 
representation 

End of course 

Accuracy: >0.93 all courses 
(J48) 

Kuzilek et al. 
(2015) 

2 courses 

Unspecified 
number of students 

LMS 

Student 
characteristics 

Final mark: Pass/Fail 

Results show  
prediction 
after each 
assessment 

 

The system is 
presented as 
able to predict 
every week 

Static aggregate 
representation 

After second assessment 

Precision: 0.885 

Recall: 0.493 

F-score: 0.574 

(Average of 4 classifiers) 

After fourth assessment 

Precision: 0. 934 

Recall: 0.250 

F-score: 0.387 

(Average of 4 classifiers) 

Zacharis 
(2015) 

1 course 

134 students 
LMS 

Final mark: 

At-risk: <5.5/10 

Not at risk: >5.5/10 

End of course 
Static aggregate 
representation 

Accuracy: 0.813 (LR) 
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Gašević et al. 
(2016) 

9 courses 

4134 students 

LMS 

Student 
characteristics 

Final mark: Pass/Fail End of course 
Static aggregate 
representation 

General model 

AUROC: 0.749 (LR) 

 

Worst single course model 

AUROC: 0.765 (LR) 

 

Best single course model 

Accuracy: 0.915 (LR) 

Casey & 
Azcona (2017) 

1 course 

111 students 
LMS Exam mark: Pass/Fail 

Every week 

End of course 

Static aggregate 
representation 

At 10th week 

AUROC: 0.80(CART) 

 

End of course (16th week) 

AUROC: 0.85 (CART) 

Conijn et al. 
(2017) 

17 courses 

4989 students 
LMS 

Exam mark: 

Pass: >5.5/10 

Fail: <5.5/10 

Every week 

End of course 

Static aggregate 
representation 

At 3rd week 

Accuracy: 0.67 (LR) 

 

End of course (10th week) 

Accuracy: 0.69 (LR) 

Costa et al. 
(2017) 

2 courses 

262 online & 141 
campus students 

LMS 

Student 
characteristics 

Final mark: Pass/Fail 
Every week 

End of course 

Static aggregate 
representation 

At 3rd week 

F-score: 0.83 (SVM) 

 

End of course (5th week) 

F-score: 0.92 (SVM) 

Saqr et al. 
(2017) 

1 course 

133 students 
LMS 

Final mark: 

At-risk: <65% 

Not at-risk: >65% 

Middle of 
course 

End of course 

Static aggregate 
representation 

Middle of course 

AUROC: 0.69 (LR) 

 

End of course 

AUROC: 0.90 (LR) 
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Whitehill et al. 
(2017) 

40 courses 

530k students 

LMS 

Student 
characteristics 

Dropout/ No dropout 
Every week 

End of course 

Static aggregate 
representation 

At 4th week 

AUROC: 0.87 (LR - Trained on 
proxy labels) 

End of course (8th week) 

AUROC: 0.91 (LR - Trained on 
same course) 

Adejo & 
Connolly 
(2018) 

1 course 

141 students 

LMS 

Student 
characteristics 

Survey 

Dropout/ No 
Dropout 

End of course 
Static aggregate 
representation 

Percentage of Accurate 
Predictions (PAP): 0.83 (SVM 

– trained on survey data) 

Precision: 0.796 (Ensemble 
SVM+CART+ANN) 

Recall: 0.780 (Ensemble 
SVM+CART+ANN) 

F-score: 0.777 (Ensemble 
DVM+CART+ANN) 

Helal et al. 
(2018) 

Unspecified 
number of courses 

4010 students 

LMS 

Student 
characteristics 

Final mark: Pass/Fail End of course 
Static aggregate 
representation 

Precision: 0.68 (NB) 

Recall: 0.39 (NB – trained on 
LMS only) 

F-score: 0.48 (NB) 

AUROC: 0.70 (J48) 

Mahzoon et al. 
(2018) 

1 course 

91 students 

LMS 

Student 
characteristics 

Sentiment 
analysis 

Final mark: Pass/Fail End of course 
Time-
dependent 
representation 

Static baseline model 

Accuracy: 0.849 (SVM) 

 

Temporal model 

Accuracy: 0.956 (Progressive 
classification – trained on 

LMS) 

Sandoval et al. 
(2018) 

Unspecified 
number of courses 

Academic 
history 

Final mark: Pass/Fail 
Middle of 
course 

Static aggregate 
representation 

Middle of course 

Average accuracy: 0.844 (RF) 
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21314 students LMS 

Student 
characteristics 

End of course PAP: 0.578 (RF) 

AF-Score: 0.961 (RF) 

RF-Score: 0.514 (RF) 

 

End of course 

Average accuracy: 0.845 (RF) 

PAP: 0.583 (RF) 

AF-Score: 0.960 (RF) 

RF-Score: 0.525 (RF) 

Zacharis 
(2018) 

1 course 

352 students 
LMS Final mark: Pass/Fail End of course 

Static aggregate 
representation 

Accuracy: 0.991 (CART) 

Aljohani et al. 
(2019) 

7 courses 

32593 students 
LMS 

Final mark: 
Withdraw/ 
Fail/Pass/Distinction 

Multiple 
thresholds of 
course 
completion 

End of course 

 

Time-
dependent 
representation 

At 5th week 

Accuracy: 0.802 (LSTM) 

 

At 10th week 

Accuracy: 0.900 (LSTM) 

 

End of course (38th week) 

Accuracy: 0.952 (LSTM) 

Baneres et al. 
(2019) 

608 courses 

316k students 

Data Mart 
(similarities with 
LMS) 

Grades of 
assessments 

Final mark: Pass/Fail 

Every 
assessment up 
to 90% course 
duration 

Static aggregate 
representation 

Middle of course 

Accuracy: 0.896 (SVM) 

Recall: 0.793 (NB) 

 

90% completion threshold 

Accuracy: 0.924 (SVM) 

Recall: 0.793 (NB) 
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Buschetto 
Macarini et al. 
(2019) 

1 course 

89 students 
LMS Final mark: Pass/Fail 

Every week up 
to 50% course 
duration 

Static aggregate 
representation 

Average across all weeks 

AUROC: 0.920 (RF- DB5) 

AUROC: 0.961 (RF- DB5 using 
SMOTE) 

Tsiakmaki et 
al. (2019) 

3 courses 

591 students 
LMS 

Dropout/ No dropout 

 

Final mark: Pass/Fail 

Every month 

End of course 

Static aggregate 
representation 

Physical chemistry course 

Dropout 

3rd month 

AUROC: 0.863 (AutoWeka-
LMT) 

 

End of course (6th month) 

AUROC: 0.896 (AutoWeka-
LMT) 

 

 

Pass/Fail 

3rd month 

Accuracy: 0.812 (AutoWeka-
LMT) 

 

End of course (6th month) 

AUROC: 0.816 (AutoWeka-
PART) 

Xing & Du 
(2019) 

1 course 

3617 students 
LMS 

Dropout/ No 
dropout 

Every week up 
to the week 
before the 
final 
assignment 

Static aggregate 
representation 

At 4th week 

Accuracy: 0.966 (ANN) 

AUROC: 0.960 (ANN) 

 

A week before the end of the 
course (7th week) 
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Accuracy: 0.974 (ANN) 

AUROC: 0.984 (ANN) 

C.-H. Yu et al. 
(2019) 

1 course 

590 students 
LMS 

Earn certificate/ 

Not earn certificate 

Every week 

End of course 

Static aggregate 
representation 

The authors did not publish 
weekly results 

End of course 

Accuracy: 0.955 (ANN) 

Chen & Cui 
(2020) 

1 course 

668 students 
LMS 

Final mark: 

Good: 

B- or more 

Poor:  

C+  or less 

Multiple 
thresholds of 
course 
completion 

Time-
dependent 
representation 

At 28th  day 

AUROC: 0.713 (LSTM) 

 

At 42nd day 

AUROC: 0.734 (LSTM) 

 

At 56th day 

AUROC: 0.752 (LSTM) 

 

End of course (70th day) 

AUROC: 0.738 (LSTM) 

Chui et al. 
(2020) 

7 courses 

32593 students 
LMS 

Final mark: Pass/Fail 

 

Final mark: Fail/ 
Marginal Pass/Pass 

End of course 
Static aggregate 
representation 

Pass/Fail 

Accuracy: [0.922, 0.938] 
(RTV-SVM) 

Fail/Marginal Pass/Pass 

Accuracy: 

[0.913, 0.935] (RTV-SVM) 

Hasan et al. 
(2020) 

2 courses 

772 students 

Degree history 

LSM 
Final mark: Pass/Fail End of course 

Static aggregate 
representation 

Accuracy: 0.883 (RF – equal 
width transformation and 

Information Gain selection) 

AUROC: 0.933 (RF – equal 
width transformation and 
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Information Gain Ratio 
selection) 

Huang et al. 
(2020) 

7 courses 

Unspecified 
number of students 

LMS 

Ebook reading 
behaviours 

Final mark: 

U1: 

High class: >60 

Low class: <60 

 

U2 and U3: 

High class: >70 

Low class: <70 

End of course 
Static aggregate 
representation 

Results for U1: 

Accuracy: 0.88 (ANN) 

Precision: 0.90 (Gaussian NB) 

Recall: 0.88 (ANN) 

F-Score: 0.87 (LR; NB) 

AUROC: 0.86 (NB) 

López-
Zambrano et 
al. (2020) 

24 courses 

3235 students 
LMS 

Final mark: 

Pass: >5/10 

Fail: <5/10 

End of course 
Static aggregate 
representation 

Experiment 1 

Best group: Computer 

AUROC: 0.896 (J48) 

Worst group: Engineering 

AUROC: 0.576 (J48) 

 

Experiment 2 

Best group: Low MOODLE 
use 

AUROC: 0.758 (J48) 

Worst group: High MOODLE 
use 

AUROC: 0.576 (J48) 

Tomasevic et 
al. (2020) 

2 courses 

3166 students 

Degree history 

LMS 

Student 
characteristics 

Exam mark: Pass/Fail 

After each 
assessment 

End of course 

Static aggregate 
representation 

At 3rd assessment 

F-score: 0.86 (ANN – train on 
all sources) 

End of course 
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F-score: 0.97 (ANN – train on 
assessments and activity 

logs) 

Tsiakmaki et 
al. (2020) 

5 courses 

866 students 

LMS 

Student 
characteristics 

Final mark: 

Pass: >5/10 

Fail: <5/10 

End of course 
Static aggregate 
representation 

Average accuracy: 0.861 
(ANN – epoch 100) 

Waheed et al. 
(2020) 

7 courses 

32593 students 

LMS 

Student 
characteristics 

Final mark: 

Pass/Fail 

Withdraw/Pass  

Distinction/Fail  

Distinction/Pass 

Every quarter 

End of course 

Static aggregate 
representation 

Pass/Fail 

At 2nd  quarter 

Accuracy: 0.816 (ANN) 

End of course 

Accuracy: 0.845 (ANN) 

 

Withdraw/Pass 

At 2nd quarter 

Accuracy: 0.860 (ANN) 

End of course 

Accuracy: 0.845 (ANN) 

 

Distinction/Fail 

At 2nd  quarter 

Accuracy: 0.816 (ANN) 

End of course 

Accuracy: 0.864 (ANN) 

 

Distinction/Pass 

At 2nd  quarter 

Accuracy: 0.805 (ANN) 

End of course 

Accuracy: 0.805 (ANN) 
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Yang et al. 
(2020) 

1 course 

242 students 
LMS 

Inferred grade: 

A/B/C/D/E/F 
End of course 

Static aggregate 
representation 

Accuracy: 0.846 (L-SVM – 
trained on categorical 

features 5 folds) 

Precision: 0.870 (L-SVM – 
trained on categorical 

features 10 folds) 

F-score: 0.857 (L-SVM – 
trained on continuous 

features 15 folds) 

R. Yu et al. 
(2020) 

10 courses 

2090 students 

LMS 

Student 
characteristics 

Survey 

Final mark: 

Above median/ 
Below median 

5 weeks 
(unspecified 
course 
duration)  

Static aggregate 
representation 

Accuracy: 0.675 (SVM – 
trained on all data sources) 

Fahd et al. 
(2021) 

1 course 

122 students 
LMS Exam mark: Pass/Fail 

After 6 lab 
sessions  

Static aggregate 
representation 

Accuracy: 0.857 (RF) 

Precision: 0.857 (RF) 

Recall: 0.857 (RF) 

F-score: 0.843 (RF) 

Marras et al. 
(2021) 

1 course 

214 students 
LMS 

Exam mark: 

Pass: >4/6 

Fail: <4/6 

 

Above course 
average/ Below 
course average 

Every week 
Static aggregate 
representation 

Average Balanced Accuracy: 
0.64 (RF) 

Average Pass Recall: 0.78 
(RF)  

Average Fail Recall: 0.43 (RF) 

Average AUROC: 0.43 (RF) 

Riestra-
González et al. 
(2021) 

699 courses 

15944 students 
LMS 

Inferred grade: 

At-risk: <2.5/10 

Not at-risk: >2.5/10 

 

Pass: <5/10 

Multiple 
thresholds of 
course 
completion 

Static aggregate 
representation 

Showing results at 50% 
course duration 

At-risk 

Accuracy: 0.902 (MLP) 

F-score: 0.938 (MLP) 
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Fail: >5/10 

 

Excellent: >8.5/10 

Not excellent: 
<8.5/10 

AUROC: 0.958 (MLP) 

 

Pass/Fail 

Accuracy: 0.872 (MLP) 

F-score: 0.894 (MLP) 

AUROC: 0.947 (MLP) 

 

Excellent 

Accuracy: 0.901 (MLP) 

F-score: 0.942 (DT) 

AUROC: 0.935 (RF) 

Yu & Wu 
(2021) 

3 courses 

234 students 
LMS Final mark: Pass/Fail Every week 

Time-
dependent 
representation 

At 9th week 

Accuracy: 0.67(RNN) 

Precision: 0.46(LSTM) 

Recall: 0.67 (RNN) 

F-score: 0.53(RNN) 

 

End of course (18th week) 

Accuracy: 0.93 (RNN; CNN) 

Precision: 0.87 (RNN; GRU) 

Recall: 0.95 (LSTM) 

F-score: 0.87 (RNN) 
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APPENDIX B. FEATURES USED 

This section presents an overview of the aggregate features extracted from the Nova IMS MOODLE 

logs. Each feature name is accompanied by a short description of the feature and a list of research 

works where that specific feature, or similar, was used previously.  

Table B.1 – Aggregate predictive features 

Features Extracted (unit) Description Used in 

Total clicks (n) Number of clicks made in the course 

Buschetto Macarini et al. 
(2019); 

Chen & Cui (2020);  

Conijn et al. (2017);  

Saqr et al. (2017);  

Tsiakmaki et al. (2019); 

Whitehill et al. (2017);  

R. Yu et al. (2020);  

Zacharis (2015) 

Clicks (% of course total) 
Number of clicks made in the 
course, relative to total clicks all 
students made in the course 

Riestra-González et al. (2021) 

Online sessions (n) Number of online sessions 

Calvo-Flores et al. (2006); 

Casey & Azcona (2017); 

Chen & Cui (2020); 

Conijn et al. (2017); 

Gašević et al. (2016);  

Hu et al. (2014); 

Macfadyen & Dawson (2010);  

Saqr et al. (2017); 

Tomasevic et al. (2020); 

C.-H. Yu et al. (2019); 

Zacharis (2015) 

Clicks/session (n) Total clicks / Online sessions 
Adapted from Buschetto 
Macarini et al. (2019) 

Clicks/day (n) Total clicks/ number of days 
Adapted from Buschetto 
Macarini et al. (2019) 

Forum clicks (n) 
Number of clicks on the course 
forum 

Adejo & Connolly (2018); 

Aljohani et al. (2019);  

Brooks et al. (2015);  

Chen & Cui (2020);  

Costa et al. (2017);  

Gašević et al. (2016);  

Helal et al. (2018);  

López-Zambrano et al. (2020);  

Saqr et al. (2017);  
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Tomasevic et al. (2020); 

Tsiakmaki et al. (2020); 

Whitehill et al. (2017); 

Xing & Du (2019) 

Discussions viewed (n) 
Number of discussions and course 
forum posts viewed 

Conijn et al. (2017); 

Macfadyen & Dawson (2010); 

Romero, Espejo, et al. (2013); 

Sandoval et al. (2018); 
Whitehill et al. (2017) 

Forum posts (n) 
Number of posts and replies in 
discussions and course forum 

Conijn et al. (2017);  

Helal et al. (2018); 

Hu et al. (2014); 

Huang et al. (2020); 

Macfadyen & Dawson (2010); 

Romero, Espejo, et al. (2013); 

Romero, López, et al. (2013); 

Sandoval et al. (2018); 

Saqr et al. (2017); 

Whitehill et al. (2017); 

Yu & Wu (2021); 

Zacharis (2015) 

Folder clicks (n) Number of clicks on folders 
López-Zambrano et al. (2020);  

Tsiakmaki et al. (2020) 

Resources viewed (n) 
Number of course educational 
resources viewed 

Adejo & Connolly, (2018);  

Aljohani et al. (2019);  

Calvo-Flores et al. (2006);  

Conijn et al. (2017);  

Gašević et al., (2016);  

Hu et al. (2014);  

López-Zambrano et al. (2020);  

Sandoval et al. (2018);  

Saqr et al. (2017);  

Tsiakmaki et al. (2019),  

Tsiakmaki et al. (2020);  

Zacharis (2015); 

Zacharis (2018) 

URLs viewed (n) Number of clicks on external links 

Aljohani et al. (2019);  

Conijn et al. (2017); 

 Macfadyen & Dawson (2010); 

Sandoval et al. (2018);  

Zacharis (2015) 

Course clicks (n) Number of clicks on course pages 

Aljohani et al. (2019); 

Conijn et al. (2017); 

 Helal et al. (2018); 
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López-Zambrano et al. (2020); 

Saqr et al. (2017);  

Tsiakmaki et al. (2019) 

Assessments started (n) 
Number of assessments and quiz 
attempts started on MOODLE 

Adejo & Connolly (2018); 

Brooks et al. (2015);  

Conijn et al. (2017); 

Helal et al. (2018); 

 Macfadyen & Dawson (2010);  

Sandoval et al. (2018); 

Saqr et al. (2017);  

C.-H. Yu et al. (2019); 

Zacharis (2015); 

 Zacharis (2018) 

Assignments viewed (n) Number of assignment page views 

Conijn et al., (2017); 

Gašević et al. (2016); 

López-Zambrano et al. (2020); 

Macfadyen & Dawson (2010); 

Mahzoon et al. (2018); 

Riestra-González et al. (2021); 

Sandoval et al. (2018); 

Tsiakmaki et al. (2020);  

Xing & Du (2019) 

Assignments submitted (n) 
Number of assignments submitted 
(either via direct or Turnitin 
submission) 

Conijn et al., (2017); 

Gašević et al. (2016); 

López-Zambrano et al. (2020); 

Macfadyen & Dawson (2010); 

Mahzoon et al. (2018); 

Riestra-González et al. (2021); 

Sandoval et al. (2018); 

Tsiakmaki et al. (2020);  

Xing & Du (2019) 

Submissions (% of course 
total in period) 

Number of submissions made in the 
course, relative to total submissions 
all students made in the course 

Riestra-González et al. (2021) 

Total time online (min) 
Sum of the duration of all online 
sessions undertaken by the student 

Adejo & Connolly (2018); 

Casey & Azcona (2017); 

Chen & Cui (2020);  

Conijn et al. (2017);  

Hu et al. (2014);  

Macfadyen & Dawson (2010); 

Saqr et al. (2017); 

Tomasevic et al., (2020);  

R. Yu et al. (2020);  

Zacharis, (2015) 
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Average duration of online 
sessions (min) 

Total time online / Online sessions 

Chen & Cui (2020); 

Conijn et al. (2017); 

Fahd et al. (2021); 

Hu et al. (2014) 

Largest period of inactivity 
(h) 

Largest temporal interval between 
consecutive online sessions 

Conijn et al. (2017) 

Days with 0 clicks (n) 

Difference between the total 
number of days in the period and 
the number of days with at least 
one click (as used by Xing & Du, 
(2019) 

- 

Days with 0 clicks (% of 
period) 

Days with 0 clicks in percentage 
form 

- 

Start time of nth session 

 

1st Session: Time of first 
login as % of course 
duration 

… 

10th Session: Time of tenth 
login as % of course 
duration 

 

These are ten features: one for each 
of the first ten logins made by the 
student.  

 

It is calculated by the stage of 
course completion the login was 
made: 

The variable takes negative values if 
the login is made before the course 
start, 0% at the start of the course 
date and 100% at the end of course 
date.  

Adapted from Riestra-
González et al. (2021) 

Average of partial grades 
(n) 

Average of the partial glades 
obtained by the student 

Baneres et al. (2019); 

Conijn et al. (2017);  

Costa et al. (2017); 

Riestra-González et al. (2021); 

Tomasevic et al. (2020) 
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APPENDIX C. HYPER-PARAMETERS 

In this appendix, we disclose the hyper-parameters used for the feature selection and classification 

algorithms used throughout this work. The default value was used whenever a hyper-parameter is not 

mentioned. Table C.1 displays the hyper-parameters of the feature selection algorithms, Table C.2 

displays the hyper-parameters used to train the traditional ML classifiers and Table C.3 displays the 

hyperparameters used for training the LSTM models. 

Table C.1 – Hyper-parameters used in feature selection algorithms 

Feature Selection Algorithm Hyper-parameters 

RFE 
estimator = DecisionTreeClassifier() 

step = 2 

RFECV 

estimator = DecisionTreeClassifier() 

step = 1 

cv = 5 

LR 
penalty = l2 

max_features = 32 

RF 
n_estimators = 100 

max_features = 32 

LGBM 

n_estimators=500 

learning_rate=0.05 

num_leaves=32 

colsample_bytree=0.2 

reg_alpha=3 

reg_lambda=1 

min_split_gain=0.01 

min_child_weight=40 

ElasticNet 
cv = 5 

random_state = 123 

Lasso Regression random_state = 123 

Ridge Regression random_state = 123 
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Table C.2 – Hyper-parameters used on standard ML classifiers 

ML Classifier Hyper-parameters 

KNN 
n_neighbors=10 

weights='distance' 

LR 

tol=1e-05  

solver='liblinear'  

penalty='l1'  

max_iter =200 

NB - 

MLP 

alpha=0.01  

hidden_layer_sizes = (20,20) 

activation = 'relu' 

solver = 'adam' 

learning_rate = 'adaptive' 

verbose = 0 

learning_rate_init = 0.02 

CART 

criterion='gini' 

max_depth=10 

class_weight = 'balanced' 

SVM 

tol = 0.01 

probability = True 

gamma='scale' 

kernel='rbf' 

C = 1 

RF 

max_depth = 10 

random_state = 15  

n_estimators=500 

min_samples_leaf = 3 

ExtraTrees 

n_estimators=175 

criterion='entropy' 

max_depth = 10 

min_samples_split= 50 

AdaBoost 

n_estimators = 95 

 learning_rate = 0.8 

 random_state = 15 

GBoost 

n_estimators=175 

learning_rate=0.1 

random_state=15 



 

74 
 

Table C.3 – LSTM hyper-parameters 

Hyper-parameter Value 

Number of epochs 200 

Hidden state size 40 

LSTM layers 1 

Loss function CrossEntropyLoss 

Batch size 32 

Dense layer activation function LogSoftmax 

h0 initialization Xavier normal 

c0 initialization Xavier normal 

Optimizer Adam 

Initial learning rate 0.01 

ReduceLROnPlateau factor 0.1 

ReduceLROnPlateau patience 10 epochs 

ReduceLROnPlateau cooldown 20 epochs 
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APPENDIX D. MODEL PERFORMANCE: TRADITIONAL ML CLASSIFIERS  

We publish all AUROC model performances obtained on all traditional ML classifiers in this appendix. 

In total, we created models to solve ten different classification problems: one per target for each 

moment of prediction. Moreover, we performed four different experiments for each classification 

problem: 

Experiment 1: predictions are made using LMS features and partial grades. 

Experiment 2: predictions are made using LMS features. 

Experiment 3: predictions are made using LMS features and partial grades. The minority class is 

oversampled using SMOTE. 

Experiment 4: predictions are made using LMS features. The minority class is oversampled using 

SMOTE. 

Table D.1 displays the results for predicting the students at risk classification problem. Table D.2 does 

the same for the prediction of high-performing students. 

 

Table D.1 – AUROC measures for predictions of students at risk (traditional ML classifiers) 

Moment of 
prediction 

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Algorithm 

10% 

0.638 +/-0.029 0.635 +/-0.029 0.626 +/-0.03 0.625 +/-0.03 KNN 

0.664 +/-0.023 0.658 +/-0.023 0.662 +/-0.023 0.656 +/-0.023 LR 

0.629 +/-0.024 0.617 +/-0.024 0.627 +/-0.024 0.616 +/-0.024 NB 

0.647 +/-0.023 0.651 +/-0.024 0.639 +/-0.025 0.640 +/-0.025 MLP 

0.622 +/-0.024 0.613 +/-0.026 0.539 +/-0.022 0.611 +/-0.024 CART 

0.619 +/-0.024 0.62 +/-0.024 0.612 +/-0.025 0.670 +/-0.023 SVM 

0.681 +/-0.023 0.678 +/-0.023 0.674 +/-0.024 0.668 +/-0.023 RF 

0.66 +/-0.023 0.653 +/-0.024 0.653 +/-0.023 0.647 +/-0.023 AdaBoost 

0.677 +/-0.024 0.668 +/-0.024 0.671 +/-0.024 0.666 +/-0.024 GBoost 

0.668 +/-0.023 0.663 +/-0.024 0.664 +/-0.023 0.656 +/-0.025 ExtraTrees 

25% 

0.692 +/-0.026 0.678 +/-0.024 0.679 +/-0.025 0.663 +/-0.024 KNN 

0.684 +/-0.023 0.682 +/-0.021 0.682 +/-0.023 0.679 +/-0.021 LR 

0.636 +/-0.025 0.628 +/-0.023 0.633 +/-0.025 0.626 +/-0.023 NB 

0.692 +/-0.026 0.676 +/-0.023 0.677 +/-0.027 0.664 +/-0.024 MLP 

0.655 +/-0.029 0.633 +/-0.023 0.647 +/-0.026 0.638 +/-0.025 CART 

0.678 +/-0.028 0.659 +/-0.023 0.712 +/-0.026 0.697 +/-0.021 SVM 

0.728 +/-0.024 0.713 +/-0.022 0.725 +/-0.023 0.711 +/-0.021 RF 

0.705 +/-0.025 0.691 +/-0.023 0.691 +/-0.025 0.679 +/-0.022 AdaBoost 

0.721 +/-0.025 0.709 +/-0.022 0.714 +/-0.025 0.704 +/-0.022 GBoost 

0.707 +/-0.025 0.695 +/-0.023 0.707 +/-0.026 0.694 +/-0.023 ExtraTrees 
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33% 

0.700 +/-0.025 0.679 +/-0.022 0.686 +/-0.026 0.666 +/-0.023 KNN 

0.694 +/-0.023 0.691+/-0.022 0.693 +/-0.023 0.689 +/-0.022 LR 

0.651 +/-0.025 0.640 +/-0.023 0.651 +/-0.025 0.637 +/-0.023 NB 

0.715 +/-0.027 0.678 +/-0.023 0.698 +/-0.027 0.668 +/-0.023 MLP 

0.674 +/-0.027 0.637  +/-0.026 0.676 +/-0.027 0.642 +/-0.024 CART 

0.708 +/-0.027 0.670 +/-0.024 0.724 +/-0.025 0.700 +/-0.021 SVM 

0.749 +/-0.025 0.718 +/-0.022 0.741 +/-0.025 0.714 +/-0.022 RF 

0.727 +/-0.025 0.694 +/-0.021 0.711 +/-0.026 0.681 +/-0.024 AdaBoost 

0.743 +/-0.025 0.712 +/-0.022 0.734 +/-0.025 0.707 +/-0.022 GBoost 

0.728 +/-0.026 0.699 +/-0.023 0.724 +/-0.025 0.696 +/-0.023 ExtraTrees 

50% 

0.732 +/-0.024 0.690 +/-0.025 0.723 +/-0.023 0.679 +/-0.023 KNN 

0.693 +/-0.023 0.686 +/-0.022 0.693 +/-0.023 0.685 +/-0.022 LR 

0.659 +/-0.025 0.645 +/-0.024 0.657 +/-0.025 0.642 +/-0.024 NB 

0.764 +/-0.024 0.695 +/-0.023 0.748 +/-0.024 0.682 +/-0.023 MLP 

0.700 +/-0.026 0.646 +/-0.026 0.720 +/-0.022 0.651 +/-0.026 CART 

0.755 +/-0.023 0.696 +/-0.025 0.761 +/-0.022 0.715 +/-0.022 SVM 

0.793 +/-0.020 0.730 +/-0.022 0.788 +/-0.020 0.724 +/-0.022 RF 

0.768 +/-0.021 0.708 +/-0.023 0.761 +/-0.022 0.686 +/-0.023 AdaBoost 

0.789 +/-0.021 0.726 +/-0.022 0.785 +/-0.021 0.721 +/-0.022 GBoost 

0.767 +/-0.022 0.704 +/-0.023 0.766 +/-0.022 0.706 +/-0.023 ExtraTrees 

100% 

0.845 +/-0.017 0.724 +/-0.024 0.839 +/-0.018 0.714 +/-0.024 KNN 

0.781 +/-0.018 0.708 +/-0.023 0.783 +/-0.018 0.707 +/-0.023 LR 

0.719 +/-0.025 0.678 +/-0.023 0.716+/-0.025 0.677 +/-0.024 NB 

0.906 +/-0.015 0.720 +/-0.025 0.898+/-0.014 0.712 +/-0.024 MLP 

0.834 +/-0.024 0.676 +/-0.026 0.843+/-0.022 0.678 +/-0.025 CART 

0.888 +/-0.014 0.699 +/-0.025 0.894+/-0.012 0.727+/-0.023 SVM 

0.923 +/-0.011 0.756 +/-0.023 0.921+/-0.011 0.752+/-0.023 RF 

0.907 +/-0.013 0.720 +/-0.024 0.906+/-0.012 0.704+/-0.024 AdaBoost 

0.923 +/-0.011 0.751 +/-0.023 0.922+/-0.011 0.742+/-0.024 GBoost 

0.904 +/-0.013 0.723 +/-0.023 0.897+/-0.014 0.724+/-0.023 ExtraTrees 
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Table D.2 – AUROC measures for predictions of high-performing students (traditional ML classifiers) 

Moment of 
prediction 

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Algorithm 

10% 

0.550 +/-0.025 0.551 +/-0.023 0.544 +/-0.025 0.547 +/-0.022 KNN 

0.598 +/-0.02 0.593 +/-0.023 0.596 +/-0.02 0.590 +/-0.023 LR 

0.572+/-0.023 0.574 +/-0.022 0.574 +/-0.022 0.574 +/-0.022 NB 

0.557+/-0.024 0.559 +/-0.025 0.548 +/-0.023 0.550 +/-0.024 MLP 

0.539 +/-0.022 0.539 +/-0.025 0.544 +/-0.023 0.545 +/-0.024 CART 

0.56 +/-0.025 0.558 +/-0.021 0.539 +/-0.025 0.579 +/-0.021 SVM 

0.593 +/-0.023 0.591 +/-0.023 0.585 +/-0.023 0.586 +/-0.022 RF 

0.580 +/-0.021 0.578 +/-0.022 0.580 +/-0.021 0.580 +/-0.022 AdaBoost 

0.577+/-0.021 0.580 +/-0.022 0.567 +/-0.02 0.568 +/-0.022 GBoost 

0.592+/-0.023 0.592 +/-0.022 0.589+/-0.022 0.590 +/-0.023 ExtraTrees 

25% 

0.569 +/-0.023 0.564 +/-0.022 0.560 +/-0.022 0.557 +/-0.024 KNN 

0.609 +/-0.022 0.602 +/-0.021 0.607 +/-0.022 0.601 +/-0.022 LR 

0.583 +/-0.023 0.579 +/-0.022 0.584 +/-0.023 0.581 +/-0.022 NB 

0.566 +/-0.023 0.566 +/-0.023 0.561 +/-0.023 0.559 +/-0.023 MLP 

0.540 +/-0.025 0.539 +/-0.024 0.556 +/-0.021 0.550 +/-0.024 CART 

0.573 +/-0.023 0.573 +/-0.021 0.590 +/-0.022 0.589 +/-0.022 SVM 

0.611 +/-0.023 0.603 +/-0.021 0.603 +/-0.022 0.598 +/-0.022 RF 

0.599 +/-0.023 0.591 +/-0.022 0.595 +/-0.023 0.591 +/-0.023 AdaBoost 

0.601 +/-0.023 0.587 +/-0.021 0.598 +/-0.022 0.593 +/-0.022 GBoost 

0.611 +/-0.022 0.603 +/-0.022 0.608 +/-0.022 0.600 +/-0.022 ExtraTrees 

33% 

0.584 +/-0.022 0.569 +/-0.024 0.574 +/-0.021 0.560 +/-0.023 KNN 

0.609 +/-0.022 0.603 +/-0.022 0.607 +/-0.022 0.602 +/-0.022 LR 

0.586 +/-0.023 0.580 +/-0.023 0.588 +/-0.023 0.582 +/-0.022 NB 

0.575 +/-0.024 0.570 +/-0.024 0.568 +/-0.023 0.564 +/-0.024 MLP 

0.562 +/-0.026 0.548 +/-0.022 0.556 +/-0.024 0.552 +/-0.022 CART 

0.585 +/-0.022 0.570 +/-0.024 0.600 +/-0.021 0.590 +/-0.021 SVM 

0.619 +/-0.022 0.606 +/-0.022 0.613 +/-0.022 0.600 +/-0.021 RF 

0.607 +/-0.022 0.593 +/-0.021 0.602 +/-0.021 0.590 +/-0.022 AdaBoost 

0.624 +/-0.021 0.597 +/-0.02 0.611 +/-0.02 0.601 +/-0.023 GBoost 

0.619 +/-0.022 0.603 +/-0.023 0.617+/-0.022 0.600 +/-0.022 ExtraTrees 

50% 

0.598 +/-0.022 0.586 +/-0.021 0.590 +/-0.022 0.582 +/-0.022 KNN 

0.615 +/-0.021 0.608 +/-0.021 0.613 +/-0.021 0.607 +/-0.021 LR 

0.593 +/-0.022 0.593 +/-0.022 0.591 +/-0.023 0.593 +/-0.021 NB 

0.594 +/-0.024 0.581 +/-0.023 0.588 +/-0.022 0.576 +/-0.025 MLP 

0.581 +/-0.024 0.551 +/-0.024 0.567 +/-0.024 0.554 +/-0.024 CART 
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0.601 +/-0.023 0.582 +/-0.024 0.614 +/-0.022 0.603 +/-0.022 SVM 

0.644 +/-0.021 0.611 +/-0.021 0.631 +/-0.021 0.607 +/-0.021 RF 

0.631 +/-0.021 0.599 +/-0.022 0.622 +/-0.021 0.599 +/-0.021 AdaBoost 

0.641 +/-0.022 0.603 +/-0.022 0.630 +/-0.021 0.600 +/-0.021 GBoost 

0.635 +/-0.022 0.611+/-0.021 0.632 +/-0.022 0.610 +/-0.022 ExtraTrees 

100% 

0.636 +/-0.022 0.596 +/-0.022 0.623 +/-0.022 0.587 +/-0.021 KNN 

0.636 +/-0.022 0.617 +/-0.022 0.634 +/-0.022 0.616 +/-0.022 LR 

0.609 +/-0.021 0.599 +/-0.021 0.608 +/-0.021 0.600 +/-0.022 NB 

0.700 +/-0.025 0.591 +/-0.023 0.673 +/-0.023 0.584 +/-0.022 MLP 

0.704 +/-0.024 0.563 +/-0.023 0.708 +/-0.022 0.569 +/-0.025 CART 

0.669 +/-0.02 0.591 +/-0.023 0.690 +/-0.019 0.618 +/-0.021 SVM 

0.782 +/-0.018 0.634 +/-0.021 0.756 +/-0.019 0.621 +/-0.021 RF 

0.782 +/-0.017 0.609 +/-0.020 0.755 +/-0.018 0.607 +/-0.021 AdaBoost 

0.796 +/-0.017 0.622+/-0.020 0.781 +/-0.017 0.616 +/-0.020 GBoost 

0.725 +/-0.02 0.626+/-0.021 0.720 +/-0.021 0.626 +/-0.021 ExtraTrees 
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APPENDIX E. COMPARISON BETWEEN TRADITIONAL ML CLASSIFIERS AND 

SINGLE FEATURE LSTM  

In this appendix, we showcase the model performances on all metrics (Accuracy, Precision, Recall and 
AUROC) for our LSTM models at every moment of prediction. Moreover, we also include the 
performances for each of the corresponding best traditional classifiers. Rows in bold highlight rows 
where LSTM is a comparable alternative to the best standard ML classifier. Tables E.1 and E.2 show, 
respectively, the results obtained using Nova IMS data for students at risk and high-performing 
students. Tables E.3 and E.4 do the same for the second dataset used in Riestra-González et al. (2021)  
 
Table E.1 – Model performances for students at risk using Nova IMS data (LSTM and best traditional 

ML classifiers) 

Moment  Model Accuracy Precision Recall AUROC 

10% 

RF 0.802 +/-0.023 0.713 +/-0.208 0.028 +/-0.013 0.681 +/-0.023 

RF – SMOTE 0.733 +/-0.024 0.354 +/-0.029 0.396 +/-0.041 0.674 +/-0.024 

LSTM 0.793 +/-0.006 0.301 +/-0.185 0.027 +/-0.020 0.614 +/-0.024 

LSTM - SMOTE 0.651 +/-0.028 0.259 +/-0.017 0.562 +/-0.050 0.606 +/-0.024 

25% 

RF 0.804 +/-0.024 0.607 +/-0.120 0.086 +/-0.028 0.728 +/-0.024 

RF – SMOTE 0.725 +/-0.023 0.376 +/-0.027 0.500 +/-0.043 0.725 +/-0.023 

LSTM 0.790 +/-0.008 0.372 +/-0.129 0.071 +/-0.040 0.636 +/-0.025 

LSTM - SMOTE 0.590 +/-0.054 0.261 +/-0.016 0.563 +/-0.053 0.614 +/-0.024 

33% 

RF 0.812 +/-0.025 0.678 +/-0.086 0.123 +/-0.027 0.749 +/-0.025 

RF – SMOTE 0.736+/-0.025 0.387 +/-0.029 0.527 +/-0.050 0.741 +/-0.022 

LSTM 0.786 +/-0.011 0.414 +/-0.090 0.143 +/-0.043 0.640 +/-0.024 

LSTM - SMOTE 0.594 +/-0.027 0.262 +/-0.017 0.559 +/-0.052 0.619 +/-0.025 

50% 

RF 0.825 +/-0.020 0.723 +/-0.023 0.205 +/-0.035 0.793 +/-0.020 

RF – SMOTE 0.764 +/-0.020 0.436 +/-0.028 0.577 +/-0.040 0.788 +/-0.020 

LSTM 0.793 +/-0.010 0.458 +/-0.102 0.172 +/-0.055 0.624 +/-0.027 

LSTM - SMOTE 0.612 +/-0.037 0.271 +/-0.021 0.542 +/-0.063 0.682 +/-0.023 

100% 

RF 0.886 +/-0.011 0.817 +/-0.035 0.563 +/-0.044 0.923 +/-0.011 

GBoost – 
SMOTE 

0.849 +/-0.011 0.588 +/-0.024 0.844 +/-0.032 0.921 +/-0.011 

LSTM 0.792 +/-0.011 0.468+/-0.069 0.210 +/-0.040 0.680 +/-0.025 

LSTM - SMOTE 0.609 +/-0.040 0.275+/-0.021 0.576 +/-0.073 0.638 +/-0.028 
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Table E.2 – Model performances for high-performing using Nova IMS data (LSTM and best traditional 

ML classifiers) 

Moment  Model Accuracy Precision Recall AUROC 

10% 

LR 0.723 +/-0.020 0.504 +/-.0137 0.033 +/-0.012 0.598 +/-0.020 

LR – SMOTE 0.592 +/-0.020 0.592 +/-0.034 0.508 +/-0.034 0.596 +/-0.020 

LSTM 0.720 +/-0.005 0.275 +/-0.217 0.013 +/-0.014 0.563 +/-0.021 

LSTM - SMOTE 0.489 +/-0.051 0.303 +/-0.015 0.647 +/-0.101 0.555 +/-0.023 

25% 

RF 0.725 +/-0.023 0.544 +/-0.117 0.044 +/-0.016 0.611 +/-0.023 

ExtraTrees – 
SMOTE 

0.581 +/-0.022 0.342 +/-0.019 0.552 +/-0.035 0.608 +/-0.022 

LSTM 0.717 +/-0.007 0.366 +/-0.161 0.031 +/-0.022 0.563 +/-0.023 

LSTM - SMOTE 0.487 +/-0.054 0.299 +/-0.014 0.631 +/-0.082 0.543 +/-0.023 

33% 

GBoost 0.731 +/-0.021 0.572 +/-0.076 0.110 +/-0.021 0.624 +/-0.021 

ExtraTrees – 
SMOTE 

0.599 +/-0.022 0.353 +/-0.020 0.537 +/-0.034 0.617 +/-0.022 

LSTM 0.715 +/-0.009 0.413 +/-0.103 0.064 +/-0.028 0.565 +/-0.021 

LSTM - SMOTE 0.500 +/-0.036 0.301 +/-0.016 0.608 +/-0.070 0.549 +/-0.026 

50% 

RF 0.735 +/-0.021 0.655 +/-0.021 0.095 +/-0.019 0.644 +/-0.021 

ExtraTrees – 
SMOTE 

0.611 +/-0.022 0.365 +/-0.020 0.548 +/-0.037 0.632 +/-0.022 

LSTM 0.715+/-0.008 0.368 +/-0.141 0.046 +/-0.029 0.567 +/-0.022 

LSTM - SMOTE 0.505 +/-0.025 0.306 +/-0.013 0.621 +/-0.047 0.557 +/-0.021 

100% 

GBoost 0.782 +/-0.017 0.668 +/-0.034 0.423 +/-0.029 0.796 +/-0.017 

ExtraTrees – 
SMOTE 

0.763 +/-0.017 0.575 +/-0.029 0.560 +/-0.034 0.781 +/-0.017 

LSTM 0.708 +/-0.012 0.401 +/-0.102 0.117 +/-0.049 0.589 +/-0.022 

LSTM - SMOTE 0.473 +/-0.050 0.304 +/-0.017 0.694 +/-0.082 0.560 +/-0.026 
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Table E.3 – Model performances for students at risk using the Riestra-González et al. (2021) data 

(LSTM and best traditional ML classifiers) 

Moment  Model Accuracy Precision Recall AUROC 

10% 

MLP 0.686 +/-0.018 0.638 +/-0.036 0.416+/-0.051 0.726 +/-0.016 

RF – SMOTE 0.633 +/-0.015 0.512 +/-0.013 0.747 +/-0.023 0.725 +/-0.015 

LSTM 0.618 +/-0.003 0.441 +/-0.252 0.012 +/-0.021 0.552 +/-0.017 

LSTM - SMOTE 0.489 +/-0.029 0.403 +/-0.012 0.706 +/-0.075 0.542 +/-0.018 

25% 

GBoost 0.743 +/-0.013 0.724 +/-0.023 0.527 +/-0.026 0.806 +/-0.013 

RF – SMOTE 0.722 +/-0.013 0.608 +/-0.018 0.762 +/-0.026 0.818 +/-0.013 

LSTM 0.621 +/-0.008 0.511 +/-0.107 0.087 +/-0.031 0.561 +/-0.019 

LSTM - SMOTE 0.489 +/-0.023 0.399 +/-0.011 0.674 +/-0.072 0.536 +/-0.019 

33% 

RF 0.780 +/-0.011 0.779 +/-0.020 0.591 +/-0.024 0.847 +/-0.011 

RF – SMOTE 0.740+/-0.011 0.626 +/-0.015 0.790 +/-0.021 0.848 +/-0.011 

LSTM 0.618 +/-0.007 0.458 +/-0.151 0.056 +/-0.042 0.555 +/-0.019 

LSTM - SMOTE 0.515 +/-0.025 0.409 +/-0.013 0.610 +/-0.083 0.546 +/-0.018 

50% 

RF 0.820 +/-0.010 0.791 +/-0.018 0.716 +/-0.023 0.891 +/-0.010 

RF – SMOTE 0.890 +/-0.020 0.705 +/-0.017 0.822 +/-0.018 0.890 +/-0.009 

LSTM 0.624 +/-0.009 0.499 +/-0.144 0.123 +/-0.070 0.579 +/-0.025 

LSTM - SMOTE 0.523 +/-0.027 0.411 +/-0.017 0.579 +/-0.090 0.548 +/-0.023 
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Table E.4 – Model performances for high-performing students using the Riestra-González et al. 

(2021) data (LSTM and best traditional ML classifiers) 

Moment  Model Accuracy Precision Recall AUROC 

10% 

RF 0.810 +/-0.018 0.779 +/-0.100 0.063 +/-0.019 0.707 +/-0.018 

RF – SMOTE 0.757 +/-0.015 0.409 +/-0.055 0.412 +/-0.067 0.704 +/-0.018 

LSTM 0.801 +/-0.002 0.145 +/-0.268 0.003 +/-0.006 0.539 +/-0.020 

LSTM - SMOTE 0.445 +/-0.148 0.211 +/-0.018 0.628 +/-0.216 0.526 +/-0.023 

25% 

RF 0.836 +/-0.017 0.740 +/-0.046 0.268 +/-0.026 0.797 +/-0.017 

RF – SMOTE 0.815 +/-0.017 0.534 +/-0.029 0.544 +/-0.036 0.795 +/-0.017 

LSTM 0.801 +/-0.003 0.382 +/-0.244 0.016 +/-0.017 0.553 +/-0.022 

LSTM - SMOTE 0.355 +/-0.079 0.202 +/-0.009 0.754 +/-0.113 0.514 +/-0.027 

33% 

RF 0.848 +/-0.016 0.741 +/-0.040 0.360 +/-0.030 0.832 +/-0.016 

RF – SMOTE 0.828 +/-0.016 0.544 +/-0.027 0.614 +/-0.034 0.828 +/-0.016 

LSTM 0.798 +/-0.005 0.308 +/-0.203 0.036 +/-0.038 0.584 +/-0.027 

LSTM - SMOTE 0.449 +/-0.092 0.209 +/-0.015 0.628 +/-0.125 0.528 +/-0.031 

50% 

Gboost 0.865 +/-0.012 0.726 +/-0.032 0.519 +/-0.034 0.883 +/-0.012 

GBoost – SMOTE 0.791 +/-0.011 0.700 +/-0.016 0.792 +/-0.020 0.874 +/-0.011 

LSTM 0.801 +/-0.001 0.151 +/-0.281 0.002 +/-0.004 0.509 +/-0.024 

LSTM - SMOTE 0.518 +/-0.130 0.224 +/-0.023 0.545 +/-0.180 0.543 +/-0.028 

  



 

1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	1. Introduction
	1.1. Big data and analytics in the context of higher education
	1.2. Student performance and clickstream data
	1.3. Outline

	2. Literature Review
	2.1. PRISMA guidelines
	2.1.1. Objectives
	2.1.2. Eligibility criteria
	2.1.3. Information sources
	2.1.4. Search strategy
	2.1.5. Selection process

	2.2. Related work
	2.2.1. Key variables when predicting performance
	2.2.1.1. Targets
	2.2.1.2. Features

	2.2.2. Relevant distinctions in experimental design
	2.2.2.1.   Moment of prediction
	2.2.2.2.   Portability
	2.2.2.3.   Strategies for data analysis

	2.2.3. Knowledge gaps


	3. Methodology
	3.1. Data
	3.2. Data Pre-Processing
	3.2.1. Setting target variables
	3.2.2. Setting course duration thresholds
	3.2.3. Feature engineering – static aggregate representation
	3.2.4. Course filtering
	3.2.5. Feature engineering – time-dependent representation

	3.3. Predictive models
	3.3.1. Static aggregate representation
	3.3.1.1. Feature selection techniques
	3.3.1.2. Classification algorithms

	3.3.2. Time-dependent representation
	3.3.2.1. Overview of LSTM networks
	3.3.2.2. Modelling student clicks with LSTM networks

	3.3.3. Model performance metrics

	3.4. Experimental design
	3.4.1. Static aggregate representation
	3.4.2. Time-dependent representation


	4. Results and discussion
	4.1.  LMS features as predictors of student performance
	4.1.1. Students at risk
	4.1.2. High-performing students
	4.1.3. Introducing partial grades

	4.2. Predictors of course performance at Nova IMS
	4.3. Early prediction of student performance
	4.4. Early prediction using LSTM networks
	4.5. A Follow-up Study for Generalizability
	4.5.1. Data description
	4.5.2. Results and discussion


	5. Conclusions
	6. Limitations and recommendations for future works
	7. Bibliography
	Appendix A. Literature Review table
	Appendix B. Features Used
	Appendix C. Hyper-parameters
	Appendix D. Model Performance: Traditional ML Classifiers
	Appendix E. Comparison Between Traditional ML Classifiers and Single Feature LSTM

