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ABSTRACT 

 

Post-hospital discharge returns to emergency departments are associated with reducing the efficiency 

of the emergency department (ED) utilisation and the quality of healthcare. These returns are often 

related to the nature of the disease and/or inadequate care.  

This thesis aims to develop a machine-learning model that predicts ED returns within 30 days of 

inpatient discharge from Portuguese public hospitals. Different binary classification models were 

trained and evaluated with a particular focus on sensitivity (predictive power of the critical class of 

returning patients). The selected model was the Extreme gradient boost Classifier, which showed the 

best performance on recall and the other considered performance metrics. A cohort of 93 449 medical 

hospitalisations of adult patients discharged between January 1st, 2018, and December 31st, 2019, 

was assembled with diagnoses details  to be used in this study. According to the problem's 

requirement, the recall was the performance metric to be maximised. Therefore, Performance 

optimisation methods were considered, and the final model resulted in a recall of 84.38%, precision of 

84.35%, F1 score of 84.36% and accuracy of 84.10%.  

Future deployment and integration of this ED return predictive analytics into the inpatient care 

workflow may allow identifying patients that require targeted care interventions that reduce overall 

healthcare expense and improve health outcomes.  

 

KEYWORDS 

Machine Learning; Binary Classification; Emergency Department Returns; Performance Metrics; 

Performance Optimisation     
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1. INTRODUCTION 

1.1. THESIS CONTEXT AND RESEARCH QUESTIONS:  

Post-discharge returns to emergency departments are undesirable, not only from the point of view of 

patients and their families but also providers and the health system since they increase healthcare 

costs and utilisation. In Portugal, previous studies showed that about 23.26% of patients discharged 

from the hospital return to the emergency department (ED) at least once within 30 days(Salgado et 

al., 2022). ED revisits can be classified as treat-and-discharge visits, observation stays, and hospital 

readmissions and are often associated with inadequate post-discharge care.  

This thesis is conducted as part of a research project entitled READY1, which aims to reduce avoidable 

ED utilisation by identifying patients at increased risk of returning to the ED in the 30 days post 

inpatient discharge from Portuguese hospitals, enabling targeted post-discharge interventions such as 

phone calls, home visits or online monitoring of patients with increased risk. 

The project READY has three specific objectives. The first is to identify predictors of return to the ED 

within 30 days after discharge and develop a prediction model to identify high-risk patients at 

discharge. The second is to characterise the factors reported by patients that contributed to the ED 

return 30 days post-hospital discharge and the measures they feel could have been avoided. The final 

aim is to identify innovations in transitional care with a high potential to reduce avoidable returns to 

ED.  

This thesis tackles the project's first objective and aims to develop a classification machine-learning 

model to predict the risk of returns to ED within 30 days of discharge from hospital inpatient 

departments. 

For the READY project, files containing inpatient hospitalisation episodes and emergency episodes for 

patients discharged between 2018 and 2021 were provided from 3 university hospitals in Portugal - 

CHU2 Algarve, Central Lisbon, and São João.  

The integration of the files from the three hospitals, followed by the primary transformations and 

feature engineering, were performed in the first place. Then, a study sample of medical adult patients 

(aged >= 18 years) discharged between January 1st 2018 and December 31th, 2019, from the 

participating hospitals was selected and preprocessed to train and evaluate the model for this study.   

The completion of this project will allow a deeper understanding of the patterns of care utilisation and 

the development of recommendations that will contribute to the improvement of transitional care by 

promoting the reduction of avoidable returns to ED. 

 
1 Reduction of Emergency department returns After Discharge from hospital 
2 Centro Hospitalar Universitário 
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1.2. THESIS STRUCTURE: 

The present document is structured into five chapters, including the Introduction: 

• Chapter 2 includes a review of previous studies related to the topic. 

• Chapter 3 describes the methodology used, from the exploration and understanding of the 

data to the different pre-processing steps performed and the modelling techniques 

experimented with.   

• In Chapter 4, the results of the experiments were reported and discussed, and the model 

selection process was explained.  

• Chapter 5 concludes this thesis with the limitations, achieved objectives and future work 
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2. LITERATURE REVIEW 

Risk prediction of Emergency Department (ED) returns is a research topic of great interest, and it has 

been extensively studied in recent years since it helps identify patients requiring further post-discharge 

attention and reduces healthcare costs and utilisation. Previously built predictive models generally try 

to evaluate the risk of  a specific subgroup within ED returns which is the risk of unscheduled hospital 

readmissions. This prediction is performed within a given period after the patient's discharge from the 

hospital.  

Several previous risk prediction studies of early hospital readmission have been published. Most of 

them targeted a particular subpopulation, such as elderly patients (>65 years old) or postoperative 

patients (Marcantonio et al., 1999; Mišić et al., 2020). Others focused on specific conditions or chronic 

diseases, for example, AIDS, Pneumonia, Congestive Heart Failure and/or chronic obstructive 

pulmonary disease (COPD) (Artetxe et al., 2017; Grant et al., 1999; Krumholz et al., 1997; Smith et al., 

2000).  

Artetxe et al. used the Kaiser Permanente Risk Stratification Model to predict 30-day ED readmission 

risk for high-risk patients, including patients with a specific organ disease and high multi-morbidity. 

Different classifiers were tested, with a particular focus on sensitivity when evaluating the 

performance, and the best sensitivity was achieved by the Support Vector Machine SVM algorithm 

using over-sampling methods to deal with the class imbalance problem (Artetxe et al., 2017).  

Most studies that predicted hospital readmission risk focused primarily on medical admissions, 

whereas surgical admissions received less attention (Mišić et al., 2020). In recent research, a sample 

of surgical patients was used to show that tree-based machine learning methods can accurately predict 

readmissions in postoperative patients via the emergency department 30 days after surgery with 

excellent discrimination using surgical and demographic features along with lab features(Mišić et al., 

2020). The same study further demonstrated that the risk of readmission could be confidently 

calculated the 36 hours post-surgery which increases the efficacity of the model allowing medical care 

to take action earlier when needed (Mišić et al., 2020).  This would avoid waiting for discharge-level 

data, which leads to ineffective transitional care coordination or eventual prolongation of a hospital 

stay. 

Moreover, some studies on hospital readmission risk considered patients discharged from a single 

hospital or unit such as an acute-care teaching hospital (Phillips et al., 1987) or Veterans Affairs medical 

centres (Smith et al., 2000). However, studies conducted using data from more than one hospital also 

exist, such as Billings et al.2006, and Bottle et al. 2006 that both used admissions from hospitals within 
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the National Health Service hospital trust in England ( Billings et al., 2006; Bottle et al., 2006) which is 

also the case for this work since data was provided from 3 public hospitals in Portugal. 

The downside of Bottle et al.'s model for identifying patients at high risk of emergency hospital 

admissions is that it requires access to data such as community-level and socio-economic-level 

(community-level admission rates, ethnicity and education) that are difficult to collect. Another 

impractical model, in terms of variables, used administrative data and detailed sociodemographic and 

health information collected from the patients during interviews conducted within 48 hours of 

admission and 30 days after discharge (Hasan et al., 2009). 

A trendy and straightforward model that embraced a general population of medical and surgical 

patients is the LACE index (van Walraven et al., 2010). It was developed to predict the risk of death or 

unscheduled readmissions within 30 days after discharge from hospitals using four main admission-

level variables: length of stay ("L"); acuity of the admission ("A"); comorbidity of the patient ("C"); and 

emergency department use ("E") (van Walraven et al., 2010). LACE index showed satisfactory 

performance and accuracy at predicting outcome risk. The same authors further improved this index 

and developed an extension called LACE+ that utilises administrative data to predict better the risk of 

post-discharge returns (van Walraven et al., 2012). 

The period fixed for predictions in the previously mentioned studies is 30 days post-discharge. 

However, other models were trained to predict the risk of readmissions within only 72 h of discharge, 

and they were called "Short-term reattendances" or "early bounce-backs" (Chmiel et al., 2021; 

Davazdahemami et al., 2022).  

From this review of literature, it can be noticed that the previous studies on this research topic focused 

particularly on predicting hospital readmissions rather than ED returns, which helps healthcare units 

to manage better the utilisation of the departments by identifying patients with a high risk of being 

readmitted to the hospital after discharge. However, the information about the overall ED returns is 

missing; this is where this thesis comes to use. In this study, all the patient's emergency department 

admissions were considered when creating the target variable. Thus, the model was trained to predict 

if the patient will return to ED or not independently of whether it is a treat-and-discharge visit, an 

observation stay, or hospital readmission. This would give the vision to understand better the ED 

returns patterns and increase the efficiency of the ED utilisation. Moreover, for adult patients, the 

model developed in this thesis could be applied to any medical inpatient admission case, 

independently of the category or severity of diagnoses.   
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3. METHODOLOGY 

This chapter presents all steps followed from data understanding until the modelling phase as shown 

in Figure 1. Section 3.1. describes the files collected from the hospitals and their integration. Further, 

in Section 3.2., the data preparation steps of data transformation, features engineering, target 

creation, sample selectiopn and pre-processing are explained along with the techniques used for 

feature selection. At last, Section 3.3. details the steps done for modelling explaining the class 

imbalance methods performed, the classification models trained and the performance metrics used to 

evaluate them.  

 

Figure 1: Methodology diagram 

3.1. DATA UNDERSTANDING AND INTEGRATION 

3.1.1.  Sources files description 

Data was collected from three university hospitals in Portugal, specifically from Algarve, Central Lisbon, 

and São João. After approval from the ethics committee, each hospital provided four source files 

containg the following types of information:   

➢ Inpatient hospitalisations episodes files: record all episodes discharged from inpatient care 

between January 2018 and December 2021. 

➢ Emergency episodes files: record all ED admissions from January 2018 until December 2021. 

➢ Diagnoses files: detail the principal and additional diagnoses recorded within each inpatient 

hospitalsation. 

➢ Death files: record the death dates of all the patients that died 

3.1.2. Data integration 

The source files were preprocessed and transformed to deal with inconsistent variable names, values 

and data types. Then, files from the three hospitals containing the same information type were merged 

Data understanding and 
integration

•Source files 
description

•Data integration

Data preparation

•Data transformation and feature 
engineering

•Target creation

•Sample selection

•Data pre-precessing

•Feature selection

Modelling

•Class imbalance 
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•Classification models
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processes
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6 
 

to obtain four primary datasets as illustrated in Figure 2. Table 1 details the features of each resulting 

dataset and their descriptions. 

 

Figure 2: Data integration 

Dataset level feature Description 

Inpatient 
hospitalisations 
episodes 

Admission-level 
variables 

Inpatient admission ID Admission identifier 

Admission date Date of admission to the 
hospital 

Major Diagnostic 
Category (MDC) 

Major Diagnostic Category 
code 

Diagnosis Related Group 
(DRG) 

Diagnosis Related Group 
code 

DRG severity level Level of severity 

DRG mortality level Level of mortality 

Length of stay Number of days of the stay 

Type of stay Type of the stay (long, 
short…) 

Discharge date Date of discharge from 
hospital (between January 
2018 and December 2021) 

Discharge status Reason of discharge or 
destination after discharge 
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Inpatient 
hospitalisations 
episodes data 
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episodes data 
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Patient-level 
variables 

Patient ID (fictitious) Patient fictitious identifier 
(created for this project 
purposes, not possible to 
link with other databases) 

Age Age of the patient 

Gender Gender of the patient 

Residence location 3 variables : district, 
municipality and parish of 
the patient’s residence  

Emergency episodes  Emergency-
level variables 

Emergency ID ED admission identifier 

Patient ID (fictitious) Patient fictitious identifier 
(created for this project 
purposes, not possible to 
link with other databases) 

Emergency admission 
date 

Date of admission to ED 
(between January 2018 
and December 2021) 

Emergency area Specific emergency area 

Triage priority Priority of the ED 
admission (very urgent, 
urgent, not urgent…) 

Cause Primary cause of the ED 
admission 

Origin From where the patient 
came (home, another 
hospital..) 

Emergency discharge 
date 

Date of discharge from ED 

Emergency discharge 
status 

Reason of discharge or 
destination after discharge 
from ED 

Diagnoses Diagnosis-level 
variables 

Inpatient admission ID Admission identifier 

Patient ID (fictitious) Patient fictitious identifier 
(created for this project 
purposes, not possible to 
link with other databases) 

ICD version International Classification 
of Diseases used 

Diagnosis order Ranking of the diagnoses 
(rank 0 is the main 
diagnosis …) 

Diagnosis code ICD code of the diagnosis  

Diagnosis description Description of the 
diagnosis 

Present on admission Whether the diagnosis is 
present on the admission 
or not 

Death  Patient ID (fictitious) Patient fictitious identifier 
(created for this project 
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Patient-level 
variables 

purposes, not possible to 
link with other databases) 

Death date Date of death 

Table 1: Description of the datasets 

3.2. DATA PREPARATION 

3.2.1. Data transformation and feature engineering 

As mentioned in the last section, diagnoses data details all the principal and additional diagnoses 

recorded within each inpatient hospitalsation. The resulted diagnosis dataset was used to create more 

useful features. In fact, a new variable of the total number of diagnoses per inpatient admission was 

created. Moreover, the shape of this dataset was transformed to aggregated the diagnoses 

information by creating two comorbidity indices; Charlson and Elixhauser. The Charlson and the 

Elixhauser comorbidity indices are methods used to classify patients' comorbidities based on the 

International Classification of Diseases (ICD) diagnoses codes found in administrative data (Anne 

Elixhauser et al., 1998; Charlson et al., 1987). These indices are further explained in the Appendix of 

this document. 

As shown in Figure 3, the new diagnosis-level features were added to the inpatient episodes dataset 

containing a total of 435 883 records. Then, to remove the records that should not be considered, 

three exclusions rules were performed: 

➢ 68 records of duplicated inpatient IDs that were removed because they were assumed to 

be mistaken.  

➢ 5021 records of the patients discharged after December 2nd,  2021 were excluded. In fact, 

the 30 days interval could not be captured for those records since the latest provided 

emergency admission data was until December 2021. 

➢ 51937 records having one of the following descriptions in the discharge status variable 

were excluded:  

• Death during the hospital stay 

• Home hospitalisation 

• Transfer to another hospital  

•  Left against medical advice  

After performing these exclusion rules, the final dataset contained 378 875 inpatient episode records 

as shown in Figure 3. 
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3.2.2. Target creation 

This thesis aims to develop a classification machine-learning model to predict whether the patient will 

return to ED within 30 days of discharge from hospital inpatient department or not. To build this 

classification model, a binary target variable should be created. First, the number of ED admissions 

within 30 days of hospital discharge was calculated for each patient having an inpatient episode, using 

the emergency admission date from the emergency episodes dataset. Then, this newly created 

numerical variable was transformed to binary, creating the target variable in the final inpatient 

episodes dataset as shown in Figure3 : 

➢ 1: the patient concerned with the admission returned to ED within 30 days of hospital 

discharge 

➢ 0: the patient concerned with the admission returned to ED within 30 days of hospital 

discharge 

 

Figure 3: Feature engineering and target creation 

3.2.3. Sample selection  

To build the model, a sample including adult patients (age greater or equal to 18 years old) hospitalised 

for medical admissions and discharged between January 1st  2018, and December 31st 2019, was 

selected from the final dataset. This sample represented 93 449 records, 20 independent variables, 

and a target variable described in Table 2. 

Variable name Variable type description 

ID_inpat String Identifier of the inpatient episode (index of the dataset) 

ID_patient String Identifier of the patient 

hospital String Hospital name 

age_rounded Integer Patient's age rounded 

 

Inpatient 
hospitalisations 
episodes data 

Emergency 
episodes data 

 

Diagnoses 
data 

 

 

300k 

400k Feature engineering 

Exclusions 

Target creation 

Final inpatient 
episodes 
dataset 
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age_group String Patient's age group 

gender String Patient's gender 

disch_status_inpat String Description of the discharge status of the patient after the 
episode 

drg String Diagnosis Related Group code 

mdc String  Major Diagnostic Category code 

severity_level String Severity level 

mortality_level String Mortality level 

district String Patient's residence district 

municipality String Patient's residence municipality 

parish String Patient's residence parish 

los Integer Length of stay  

LOS_type String Length of stay type 

number_diagn Integer Number of diagnoses of the inpatient episode (principal and 
additional) 

charlson Integer Charlson comorbidity index  

elixhauser Integer Elixhauser comorbidity index  

diagn_cat String Main diagnosis category 

target_return Binary Target variable, indicates if the patient returned with 30 days 
of discharge or not 

Table 2: Independent and target variables 

3.2.4. Data pre-processing  

After selecting the sample, further data cleaning and transformation were done by treating missing 

data and outliers, standardising the numerical variables, and encoding the categorical variables.  

3.2.4.1. Data cleaning: 

⮚ Outliers handling 

Outliers are extreme values that appear in the dataset and can be extremely small or large. Outliers 

are abnormal values, and their presence can often skew the results of statistical analyses on the 

dataset. Since machine learning models learn from data to understand the trends and relationship 

between data points, outliers can impact the overall effectiveness and usefulness of the model 

(Brownlee Jason, 2020). 

Outlier detection and removal are critical in safeguarding data quality and ensuring that the trained 

model generalises well to the valid range of test inputs. It also must be noted that outlier detection is 

also performed after deployment to maintain the effectiveness of models.  

Outliers were visualised using boxplots as shown in Figure 4. 
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Severity level Mortality level 

  

Length of stay Number of diagnoses 

  

Charlson index Elixhauser index 

 

 

Age rounded  

Figure 4: Outliers boxplots 

Except for the variable age, outliers were removed from all numerical variables. For this purpose, the 

clipping method was used where values outside a given interval are clipped to the interval edges. The 

intervals, in this case, were defined using percentiles, the 1st percentile defines the lower limit, and 

the 99th percentile defines the upper limit.  Therefore, all values below the 1st percentile become the 
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value of the 1st percentile for each variable. All values greater than the 99th percentile become equal 

to the value of the 99th percentile.  

Table 3 presents the defined intervals and number of outliers: 

Variable Defined interval Number of lower outliers Number of upper outliers 

Length of stay [1 ; 63] 0 923 

Number of diagnoses [1 ; 21] 0 809 

Charlson index [0 ; 7 ] 0 789 

Elixhauser index [-5 ; 24] 842 819 

Table 3: Number of outliers 

⮚ Missing values handling 

One of the most common problems in data pre-processing when working with real datasets is handling 

missing values. Missing data is the values or data that is not stored (or not present) for some variable/s 

in the given dataset. This could occur because of many reasons. It could be because some observations 

were not recorded due to human errors, or data is corrupted, or it could be intentional when data is 

not provided for some reason.  Missing values can bias the results of the machine learning models and 

reduce their accuracy and performance. Therefore, it is essential to treat them (Brownlee Jason, 2020).  

Many strategies exist to handle this problem, and the most basic one is to ignore all the records having 

a missing value in one of the columns. This approach is simple, but it leads to losing valuable data. That 

is why it is used in those cases where the number of missing values is minimal.  

Other strategies to impute or substitute this incomplete data are: 

• Drop the records with missing values: performed only for data errors and small data 

• Drop the column with missing values: usually performed only when the percentage records 

having missing values os greater than 20%.  

• Substitute or impute the missing value: for numerical features missing values could be 

substituted by zero or any user‐defined value, the mean, the median, the maximum value or 

the minimum value. For categorical features, missing values could be substituted by a user‐

defined value, a new category inidicating missing value or the mode. The missing values could 

also be imputed using an imputation algorithm like K-Nearest Neigbors. 

After analysing the missing values in all the variables, Table 4 presents the decisions made to treat 

them:   

Variable  Percentage of missing values Strategy 

District 0.01% Drop the records 

Municipality 0.01% Drop the records 

Parish 0.01% Drop the records 

LOS_type 54% Drop the column 

Table 4: Percentage of missing values and strategies applied 
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3.2.4.2. Data transformation:  

The data transformation step is one of the fundamental steps in data pre-processing and helps increase 

accuracy in the models. In this case, data transformation was performed when scaling the feature and 

encoding the categorical variables.  

⮚ Feature scaling 

Generally, datasets include different kinds of variables, and the range of values varies widely in the 

same. A significant issue is that when using the original scale, the model may put more weight on the 

variables with an extensive range; thus, results will be biased (Brownlee Jason, 2020). In order to deal 

with this problem, we need to apply the technique of feature scaling to ensure features are on almost 

the same scale so that each feature is equally important and makes it easier to process by most ML 

algorithms (Brownlee Jason, 2020). Some machine learning models, such as K-Nearest-Neighbours and 

SVM, are fundamentally based on distance matrix; they are also known as distance-based classifiers. 

Feature scaling is exceptionally essential to those models, especially when the range of the features is 

very different (Brownlee Jason, 2020). Otherwise, the model will assign larger weights to features with 

an extensive range, thus, influencing the computation of the distance. 

Also, machine learning algorithms that use gradient descent as an optimisation technique, like linear 

regression, logistic regression, neural network, etc., require data to be scaled to ensure that the 

gradient descent moves smoothly towards the minima and that the steps for gradient descent are 

updated at the same rate for all the features. Moreover, gradient descent converges much faster 

towards the minima with feature scaling than without it.  

However, tree-based algorithms are relatively invariant to the scale of the features because a decision 

tree splits a node on a single feature, which increases the homogeneity of the node. Therefore, the 

remaining features have virtually no effect on the split. 

There are several techniques to scale the variables, but, in this case, the two most known methods, 

standardisation and normalisation, were tested: 

● Standardisation (standard scaler):  

Standardisation, also called Z-score normalisation, is a scaling technique that gives each attribute 

zeromean and a standard deviation of one. 

𝑋′ =  
𝑋 − 𝜇

𝜎
 

Equation 1: Standardisation equation 

𝜇 : mean of the feature values  

𝜎 : standard deviation of the feature values 
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It must be noted that, in this case, the values are not restricted to a particular range. Standardisation 

is more effective when the attribute has a Gaussian distribution. It is useful when the data has varying 

scales and the algorithm used makes assumptions that the data has a Gaussian distribution, such 

as linear regression, logistic regression, and linear discriminant analysis. 

● Normalisation (Min Max scaler):  

The normalisation, also known as Min-Max scaling, is another scaling technique where, for every 

feature, the minimum value of that feature gets transformed into 0, and the maximum value gets 

transformed into one resulting in all features having a distribution value between 0 and 1.  

    𝑋′ =  
𝑋−𝑋max

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 

Equation 2: Normalisation equation 

Normalisation is a simple technique, and it is good to use when the distribution of data is not known 

or not Gaussian. It is useful when the data has varying scales and the algorithm used does not make 

assumptions about the distribution of the data, such as k-nearest neighbours and artificial neural 

networks. 

However, Normalisation does not treat outliners very well. On the contrary, standardisation is more 

robust to outliers since it does not have a bounding range and facilitates convergence for some 

computational algorithms like gradient descent. Therefore, in many cases, it is preferable to use 

standardisation over Max-Min normalisation, but it highly depends on the use case and the machine 

learning algorithm being used.  

In this project, Feature scaling using standardisation method showed better results that normalisation. 

⮚ Categorical data handling 

A machine learning model's performance depends on the model and the hyperparameters and on how 

we process and feed different variables to the model. Most machine learning algorithms cannot 

directly operate on categorical data and require independent variables to be numeric; treating the 

categorical variables becomes necessary. Encoding categorical data is turning categorical data into 

integer format so that data with converted categorical values can be fed into models and improve the 

accuracy of predictions (Brownlee Jason, 2020). 

Usually, there are two kinds of categorical data: 

o Ordinal Data: The categories have an inherent order. Thus, the information regarding the 

order in which the category is provided should be retained while encoding. 

o Nominal Data: The categories do not have an inherent order. While encoding, only the 

presence or absence of a feature must be considered.  

https://towardsai.net/p/machine-learning/machine-learning-algorithms-for-beginners-with-python-code-examples-ml-19c6afd60daa
https://towardsai.net/p/machine-learning/calculating-simple-linear-regression-and-linear-best-fit-an-in-depth-tutorial-with-math-and-python-804a0cb23660
https://towardsai.net/p/machine-learning/machine-learning-algorithms-for-beginners-with-python-code-examples-ml-19c6afd60daa
https://towardsai.net/p/machine-learning/k-nearest-neighbors-knn-algorithm-tutorial-machine-learning-basics-ml-ec6756d3e0ac
https://towardsai.net/p/machine-learning/building-neural-networks-from-scratch-with-python-code-and-math-in-detail-i-536fae5d7bbf
https://towardsai.net/p/machine-learning/building-neural-networks-from-scratch-with-python-code-and-math-in-detail-i-536fae5d7bbf
https://www.codecademy.com/articles/normalization
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Compared to tree-based models, linear models are more sensitive to the order of ordinal data, which 

is why the appropriate encoding methods should be selected depending on the algorithm used.   

The following is a brief presentation of four popular approaches for categorical data encoding: 

● Label encoding 

This type of encoding is used when the categorical feature in the data is ordinal, and order retention 

is essential. Ordinal encoding is an easy and informative process that assigns an integer value to each 

label (Brownlee Jason, 2020). Therefore, the encoded data reflects the sequence of labels. 

Label Encoding causes a prioritisation issue because machine learning models assign a high value with 

a higher priority than the lower value. Consequently, it is mostly only applicable to ordinal data and 

would mislead the model when used with data that does not have any meaningful order.  

● One-hot encoding  

This encoding technique is used when the data is nominal. It transforms each category of any 

categorical variable into a new binary column represented by 0 or 1 to signify the presence of the 

category value. Newly created binary features can be considered dummy variables. After one hot 

encoding, the number of dummy variables depends on the number of categories presented in the data. 

One-Hot Encoding is helpful for categorical columns without any order and less cardinality because it 

treats all the values within the categorical column as equal. Moreover, a high cardinal categorical 

column would produce many columns, leading to the curse of dimensionality, which is the main 

drawback of this technique (Brownlee Jason, 2020).  

It must also be noted that One-Hot Encoding might not be suitable for Tree-based Machine Learning 

because it causes inefficiency during splitting. 

● Target encoding 

Target encoding is a Bayesian technique that uses information from that target variable to encode the 

categorical data. It converts a categorical value into the mean of the target variable. It is performed 

for train data only, and the test data is coded using results obtained from the training dataset. The 

main issue with this technique is that it can lead to target leakage or overfitting. However, some 

modified versions of this technique helps to reduce this problem, such as the Leave-one-out encoding 

(LOO encoder). As its name mentions, this encoding type leaves out the value's target value to be 

encoded when calculating the mean. Another technique is the Generalised Linear Mixed Model 

(GLMM encoder), which basically applies a linear regression on target encoding. This method gives 

robust results but is time-consuming compared to the other methods. 

In the context of this thesis, a high cardinality issue was identified, which eliminated the possibility of 

using one-hot encoding. As the type of all the categorical features in the dataset is nominal, it was 
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impossible to apply label encoding. Therefore, trials were made using the target encoder and its more 

advanced versions. Table 5 shows the details of the cardinality of all the categorical variables: 

Variable Cardinality 

disch_status_inpat 11 unique values 

drg 161 unique values 

mdc 25 unique values 

district 28 unique values 

municipality 292 unique values 

parish 2251 unique values 

Diagn_cat 1166 unique values 

Table 5: Cardinality of categorical variables 

3.2.5. Feature selection techniques 

Adding redundant variables when developing a predictive model reduces the generalisation capability 

of the model, increases its overall complexity, and could also reduce the overall accuracy of a classifier. 

Therefore, it is preferable to do the feature selection process, which is performed using some 

techniques to reduce the number of input variables to reduce the computational cost of modelling and 

increase the performance (Brownlee Jason, 2020). 

There are two main types of feature selection techniques: 

● Supervised feature selection techniques: they consider the target variable and can be used for 

the labelled dataset 

● Unsupervised feature selection techniques discard the target variable and can be used for the 

unlabelled dataset. 

Supervised feature Selection may be divided into three other techniques:  

3.2.5.1. Filter methods 

These methods evaluate the importance of features based on their inherent characteristics, not 

including any machine learning algorithm. Instead, they use statistical measures to score the 

correlation between the input variables as well as the relationship between each input variable with 

the target, then select the subset of features that have the most substantial relationship with the 

target variable and choose between the independent variables that are highly correlated with each 

other. The advantages of filter methods are that they do not overfit the data, and due to their 

simplicity, they tend to be fast and have a low computational cost. Thus, these approaches are 

extensively used on high-dimensional data. 

Although these methods are fast and effective in most cases, it can be challenging to choose the 

appropriate statistical measure for feature selection because it highly depends on the data type of 

both the input and response variables. This tree graph in Figure 5 presents a way to choose the relevant 
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statistical measure for filter-based feature selection based on whether the input and output variables 

are numerical or categorical.    

 

Figure 5: Statistical measure for filter-based feature selection 

In this case, the target variable is numerical, and the dataset contains different input features. For 

numerical features, Spearman's correlation was used, and the results of the highly correlated features 

are:  

● Severity level and mortality level with a correlation value of 0.6 

● Severity level and number of diagnoses with a correlation value of 0.6  

● Mortality level and number of diagnoses with a correlation value of 0.6 

● Charlson index and Elixhauser index with a correction value if 0.8  

3.2.5.2. Wrapper methods 

These methods are based on algorithms and consider selecting a set of features as a search problem. 

A subset of features is used to train a model, and based on the resulting performance of the applied 

learning algorithm, features and added or removed from the subset that will be used to train the 

algorithm again.  These methods are usually computationally costly and are subject to overfitting.  

Some common examples of wrapper methods are forward feature selection, backward feature 

elimination and recursive feature elimination (RFE), that was used in this model.  

With the number of features to select equal to 4, RFE selected these variables:  

● Severity_level 

● Mortality_level 

● Number_diagn 
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● Age_rounded 

3.2.5.3. Embedded methods 

These methods encompass the advantages of both filter and wrapper methods. These methods are 

iterative; they evaluate each iteration of the model training process and optimally find essential 

features that contribute the most to training in a particular iteration. Generally, they use built-in 

penalisation functions to reduce overfitting, and this is usually implemented by using a sparsity 

regulariser or constraint, which decreases the weight of some features to (near) zero.  

The most famous examples of these methods are LASSO and RIDGE regression.  

The example that was used to implement embedded methods, in this case, was LASSO which picked 

six important features as shown in Figure 6:  

 

Figure 6: Feature importance using the LASSO model 

After training the model with different subsets of variables based on the mentioned techniques, the 

subset that gave the best results contained these ten features: mortality_level, los, number_diagn, 

elixhauser, age_rounded, district, mdc, disch_status_inpat, gender, diagn_cat 

3.3. MODELLING 

The dataset prepared in the previous step is used to create the classification model. Several 

experiments will be taken to select the best model based on the performance metrics. These 

experiments tested various input variables subsets and different class imbalance handling methods. 

Moreover, for the modelling part, two model validation processes were performed with many 

classification algorithms. This section describes all the techniques, processes and algorithms used in 

the modelling phase and the metrics used to evaluate the performance of the models.  
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3.3.1. Class imbalance handling  

Most real-world classification problems have an imbalanced class distribution, such as fraud detection, 

spam detection, and churn prediction. This problem occurs when there is an unequal distribution 

between the known classes. As most of the machine learning algorithms used for classification assume 

an equal number of examples for each class, classifiers tend to be overwhelmed by the majority of 

classes and ignore the small ones when faced with an imbalanced dataset. Therefore, the performance 

decreases significantly, specifically for the minority positive class. This is a severe problem because the 

classification errors will affect the minority class, which is more important in most cases. 

The imbalance may be slight or severe depending on the ratio of the positive class over the negative 

one. A slight imbalance can often be negligible and treated like a normal case; however, a severe one 

should be carefully treated by implementing specialised techniques. In this case, the ratio is  

Various strategies exist, but the main ones are: 

3.3.1.1. Over-sampling  

This technique synthesises new examples from the existing examples in the minority class. The most 

popular approach is called Synthetic Minority Over-sampling Technique (SMOTE). SMOTE works by 

selecting close examples in the feature space, drawing a line between them, and then creating a new 

sample at a point along that line. 

Some extensions to SMOTE are more efficient in selecting the examples from the minority class that 

represent the basis for generating new synthetic examples. Borderline-SMOTE and Borderline-SMOTE 

SVM are popular extensions to SMOTE that involve selecting the instances of the minority class that 

are misclassified using algorithms such as k-nearest neighbour or SVM. Another approach called 

Adaptive Synthetic Sampling (ADASYN) generates synthetic samples inversely proportional to the 

density of the examples in the minority class in the feature space.  

3.3.1.2. Under-sampling 

In this technique, examples from the majority class are deleted. The disadvantage of this technique is 

that it reduces the number of records in the dataset and may delete helpful examples from the 

majority class. Random Undersampling is the most straightforward technique that randomly removes 

samples from the majority class. On the other hand, other techniques focus on which events to keep 

rather than which ones should be deleted. For example, the Condensed nearest neighbours (CNN) 

undersampling method keeps, in a "store", all the examples in the minority class and, using the KNN 

algorithm, only keep examples from the majority set that cannot be classified correctly by the current 

contents of the store. 

https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-classification/#caption-attachment-9442:~:text=Condensed%20Nearest%20Neighbor%20Rule%20Undersampling
https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-classification/#caption-attachment-9442:~:text=Condensed%20Nearest%20Neighbor%20Rule%20Undersampling
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More efficient approaches focus on which events to delete are  Tomek Links method, where cross-

class nearest neighbours pairs called Tomek links are created based on Euclidean distance. Then,  all 

the examples in the majority class closest to the minority class are removed from the dataset, which 

will not be balanced along the classes, only less ambiguous. Another approach for finding and removing 

noisy examples is called Edited Nearest Neighbors (ENN), which uses the three-nearest neighbour rule 

to identify the misclassified examples. Then, the majority class instances among the neighbours are 

removed. Moreover, combinations of Keep and Delete under-sampling techniques were developed, 

such as One-sided selection (OSS) that combines Tomeks Links and CNN and Neighborhood cleaning 

rule  (NCR) that combines CNN and ENN. 

3.3.1.3. Combining Data Undersampling and Oversampling 

Another possible strategy is to manually combine both techniques by defining specific oversampling 

and undersampling in a pipeline or using pre-defined combinations such as the combination of SMOTE 

with Tomek Links undersampling and SMOTE with Edited Nearest Neighbors undersampling.  

In this specific project, the class imbalance had a ratio of 17:73. Both pre-defined combinations were 

performed as well as manual approaches where ADASYN and SVMSMOTE were used for over-sampling 

and Random undersampling or Tomek Links technique for under-sampling.  

3.3.2. Classification algorithms 

Several classification algorithms were experimented to select the model with the best performance, 

namely RF, Adabosst, XGBoost.. 

Random Forest is a popular machine learning algorithm based on ensemble learning. Ensemble 

methods combine multiple weak learners, such as decision trees, to produce a stronger learner, 

showing a better predictive performance than could be obtained using any of the constituent learning 

algorithms alone. Random forest is a typical application of one of the ensemble methods called 

bagging.  Bagging or Bootstrap Aggregation creates a different training subset from the original 

training data with replacement. Each subset is independently used to train a model and generate a 

result. Then the final output is based on majority voting. Random forest follows this process using 

multiple decision trees as a learning algorithm—generally, the greater the tree number, the higher the 

accuracy and the lower the risk of overfitting.  

Ada-boost or Adaptive Boosting is another algorithm based on ensemble learning. Unlike RF, AdaBoost 

follows boosting approach where models are trained sequentially and, in each iteration, the weights 

are improved and updated to train the next model in the sequence, aiming to correct the prediction 

https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-classification/#caption-attachment-9443:~:text=rule.-,Tomek%20Links%20for%20Undersampling
https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-classification/#caption-attachment-9444:~:text=Edited%20Nearest%20Neighbors%20Rule%20for%20Undersampling,-Another
https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-classification/#caption-attachment-9445:~:text=Rule.-,One%2DSided%20Selection%20for%20Undersampling
https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-classification/#caption-attachment-9448:~:text=Neighborhood%20Cleaning%20Rule%20for%20Undersampling,-The
https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-classification/#caption-attachment-9448:~:text=Neighborhood%20Cleaning%20Rule%20for%20Undersampling,-The
https://en.wikipedia.org/wiki/Predictive_inference
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errors made by the prior model. AdaBoost is one of the first successful boosting approaches, and it 

also uses decision trees as a constituent learning algorithm. 

Extreme Gradient Boosting or XGBoost is a popular and efficient open-source library that implements 

gradient-boosted trees algorithm. Gradient boosting is an extension of boosting that uses a gradient 

descent algorithm in additively generating weak models to minimise the loss. XGBoost is a scalable and 

highly accurate implementation of gradient boosting that pushes the limits of computing power for 

boosted tree algorithms. It is known to be highly efficient and effective in terms of computational 

speed and performance. Some studies showed that XGBoost is almost always faster than the other 

benchmarked implementations.  

Multi-layer Perceptron Classifier (MLP) is a neural network method. It is a fully connected multi-

layer feedforward artificial neural network composed of neurons called perceptions, an input layer, an 

output layer and hidden layers. Each perception, apart from the input nodes, has a nonlinear activation 

function. An MLP uses backpropagation for training the network. MLP is widely used for solving 

problems that require supervised learning and research into computational neuroscience and parallel 

distributed processing. Applications include speech recognition, image recognition and 

machine translation. 

3.3.3. Model validation processes 

After Model Training, it is required to carry out Model validation using a testing data set.  Model 

validation determines whether the trained model is trustworthy and performs as expected.  

The testing data may or may not be a chunk from the same dataset that is used to build the model 

There are various techniques of model validation, among which the two most known methods are 

Cross Validation and train test split, both tested to validate the model in this thesis.  

3.3.3.1. Train/Test Split 

The most basic technique of Model Validation is to perform a train/validate/test split on the data. The 

model is first trained with the training set. Then, the results are validated, and the hyperparameters 

are tuned using the validation. This process is repeated until a good performance metric is reached. 

Once this stage is completed, the model is tested with the remaining test set to predict and evaluate 

the performance.  

3.3.3.2. K-fold cross-validation  

This technique is used to avoid losing valuable data on the validation set and preserve as much as 

possible for the training step. Instead of giving up the validation set to be used only for testing, in this 

https://en.wikipedia.org/wiki/AdaBoost
https://developer.nvidia.com/blog/gradient-boosting-decision-trees-xgboost-cuda/
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approach, the dataset is randomly divided into k number of folds of approximately equal size, where 

one fold will be used as the test set, and the remaining k-1 folds will be used as the training dataset. 

This will be repeated K number of times specified by the user.  The final result of k-fold cross-validation 

in a classification problem is the average score of the results of each performance metric from all 

repetitions. 

A repeated k-fold cross validation exists where after completing the above-explained process, it will 

be fully repeated k number of times. 

In our case, a repeated k-fold Cross Validation method with the following parameters was finally 

selected as a model validation process: 

• Repeated stratified k-Fold with 10 splits and 3 repeats  

• Scoring = accuracy, F1 score, recall and precision 

3.3.4. Performance metrics 

Test datasets are used to determine the model's effectiveness using some evaluation metrics. The 

metric choice depends on the problem type because classification models are evaluated using different 

metrics from regression models. Further, in classification, the nature of the problem, whether it is a 

recommender, spam detection, client churn or the presence of a disease, will determine which metric 

to focus more on.  

The most popular metrics used to evaluate the performance of classification models are Confusion 

matrix, Accuracy, Presison, Recall and F1-score (Sunasra Mohammed, 2017). 

3.3.4.1. Confusion matrix 

The Confusion matrix is an intuitive and easy tool for finding the correctness and accuracy of a 

classification model where the output can be of two or more classes. It is not an actual performance 

measure, but the numbers inside it are the basis of almost all performance metrics (Sunasra 

Mohammed, 2017). The confusion matrix is a table with two dimensions ("Actual" and "Predicted") 

and sets of "classes" in both dimensions. The Actual classifications are columns, and the Predicted ones 

are rows (Sunasra Mohammed, 2017) (Figure 7). 
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Positive TP FP 

Negative FN TN 

Figure 7: Confusion matrix 

True Positives (TP):  the actual class of the data point was 1(True), and the predicted is also 1(True) 

True Negatives (TN): the actual class of the data point was 0(False), and the predicted is also 0(False 

False Positives (FP):  the actual class of the data point was 0(False), and the predicted is 1(True).  

False Negatives (FN):  the actual class of the data point was 1(True), and the predicted is 0(False). 

Model errors result in False Positives and False Negatives. The decision of which error should be 

minimised depends on the business needs and problem context. Based on that, it might be better to 

minimise either False Positives or False negatives. 

For example, in a spam detection problem, it is more important to minimise false positives than false 

negatives because classifying an email as spam while it is not worse than classifying a spam email as 

essential or not spam where it is spam.  

However, in our case, it is more important to minimise false negatives than false positives because 

classifying a patient who will return to ED as a negative case is worse than classifying a patient who 

will not return as a positive case.  

3.3.4.2. Accuracy 

Accuracy in classification problems is the number of correct predictions made by the model over all 

kinds of predictions made (Joshi Renuka, 2016). 

Accuracy is a relevant measure when the target variable classes in the data are nearly balanced, and it 

should never be used in case of a class imbalance.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁/𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 

Equation 3: Accuracy equation 

3.3.4.3. Precision 

Precision is the ratio of correctly predicted positive observations over the total predicted positive 

observations (Joshi Renuka, 2016). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃/𝑇𝑃 + 𝐹𝑃 

Equation 4: Precision equation 



24 
 

3.3.4.4. Recall (Sensitivity) 

The recall is the ratio of correctly predicted positive observations and overall positive observations in 

the actual class. Recall answers the question, "Of all the truly positive observations, how many did we 

label correctly?" (Joshi Renuka, 2016).  

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃/𝑇𝑃 + 𝐹𝑁 

Equation 5: Recall equation 

3.3.4.5. F1 score 

The F1 score is the weighted average of Precision and Recall. Therefore, this score takes both false 

positives and false negatives into account. It is not as intuitive as accuracy, but it is usually more helpful, 

especially in the cases of an uneven class distribution (Joshi Renuka, 2016). 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗ (𝑅𝑒𝑐𝑎𝑙𝑙 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) / (𝑅𝑒𝑐𝑎𝑙𝑙 +  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) 

Equation 6: F1 score equation 
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4. RESULTS AND DISCUSSION  

Different undersampling and oversampling techniques were used to handle the class imbalance 

problem. For oversampling, the most performing approach was SVM SMOTE. Then, both random 

undersampling and Tomek Links were tested for undersampling.   

 Accuracy F1 score Recall Precision 

Train Test Train Test Train Test Train Test 

SVM SMOTE and 
Random Undersampler 

0. 
838 

0. 799 0. 815 0. 769 0. 713 0. 670 0. 949 0. 903 

SVM SMOTE and Tomek 
Links 

0.887 0. 876 0. 877 0. 862 0. 786 0. 770 0. 991 0. 979 

Table 6: Performance measure using two under-sampling techniques 

Table 6 shows that using SVM SMOTE as the oversampling technique, Tomek Links improved 

approximately 10% in all the performance measures compared to the random Undersampler.  Thus, 

Tomek Links was selected as the undersampling method to remove the ambiguous instances from the 

majority class. 

The combination of SVM SMOTE with Tomek links resulted in a nearly balanced dataset and an 

augmentation of the data with synthesised instances done by SVM SMOTE.  Table 7 summarises the 

class distribution of the records before and after handling the class imbalance.  

 Total number of records Class 1 records Class 0 records 

Before 93 449 17 971 75 477 

After 146 134 73 794 72 340 

Table 7: Class distribution before and after class imbalance handling 

The classification models explained in the previous chapter were tested using the ten selected 

variables and the target as input features to select the best model. Considering the default threshold 

of 0.5, Table 8 summarises the cross-validated average performance measures across all folds. 

 
Accuracy F1 score Recall Precision  

 
Train  Test Train  Test Train  Test Train  Test 

MLP 0.6764 0.675 0.689 0.6877 0.7102 0.7088 0.6693 0.668 

Adaboost 0.8648 0.8644 0.8486 0.8481 0.7501 0.7495 0.9768 0.9764 

XGBoost 0.8873 0.8755 0.8754 0.862 0.7838 0.77 0.991 0.979 

Random Forest  0.7257 0.7248 0.734 0.7332 0.7495 0.7486 0.7192 0.7184 

Table 8: Performance measures using different classification models 

As verified in Table 8, the XGBoost Classifier yielded the best scores in terms of all metrics and Table 9 

shows the hyperparameters used for this model.  
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Hyperparameter Explanation Value 

n_estimators Number of gradient-boosted trees  1000 

max_depth Max tree depth for base learners 4 

reg_lamba Regularization term on weights 2 

learning_rate Boosting learning rate 0.2 

random_state Random number seed  123 

Table 9: XGBoost hyperparameters 
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Positive 71864 476 

Negative 16094 57 700 

Figure 8: Confusion matrix using XGBoost 

According to the confusion matrix results (Figure 8), false positives are more significant than false 

negatives. Thus, the model makes more mistakes predicting actual positive values than negative ones. 

Furthermore, this indicates that accuracy values do not give an accurate indication of the model's 

usefulness. The accuracy of 87.55% may indicate that the model is performing well, but considering 

the recall of 77% and the number of false negatives in the confusion matrix, it can be noticed that the 

model has complications in correctly predicting the positive class. 

Since this specific medical case study requires maximising the ability of the model to correctly identify 

patients that will return to ED (class 1), false negatives should be reduced as much as possible; thus, a 

relatively higher recall score is preferred.  

The performance of a model significantly depends on the value of hyperparameters passed to it.                        

A first attempt to improve the results was made by tuning the model's hyperparameters using a 10-

fold cross-validated grid search technique (GridSearchCV). Table 10 presents the hyperparameters an 

the corresponding set of values that were defined and passed to the GridsearchCV function. 

GridsearchCV evaluates the model with all the possible combinations using the cross-validation 

method. 

Hyperparameter Values 

n_estimators {1000, 1500, 2000} 

max_depth {3, 4, 5} 

reg_lamba {2, 5, 8} 

learning_rate {0.1, 0.2, 0.3} 

Table 10: Hyperparameters passed to GridSearchCV 
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Since the objective is to reduce the false negatives and increase recall, GridsearchCV was performed 

with a refit equal to recall. After running the Gridsearch, the function "best_params_" displays the best 

combination of hyperparameters that optimise the recall (Table 11).   

Hyperparameter Value 

n_estimators 1500 

max_depth 5 

reg_lamba 5 

learning_rate 0.1 

Table 11: Optimal hyperparameters 

The model with optimised hyperparameters was evaluated using the repeated 10-fold cross-

validation, and the average values across all folds for test and training are reported in Table 12. Table 

12 shows that tuning the hyperparameters slightly improved the model's performance in terms of 

recall, and this is confirmed by the confusing matrix (Figure 9) that indicates a slight decrease in the 

value of false negatives.  

 
Accuracy F1 score Recall Precision  

 
Train  Test Train  Test Train  Test Train  Test 

XGBoost 0.8895 0.8759 0.8784 0.8630 0.7886 0.7721 0.9913 0.9781 

Table 12: Performance measures using tuned XGBoost 
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Positive 71438 517 

Negative 15743 58051 

Figure 9: Confusion matrix using XGboost after hyperparameters tuning 

Since tuning the hyperparameters did not improve the model recall as expected, an additional 

optimisation method was considered by tuning the model's decision threshold. A discrimination 

threshold visualisation (Figure 10) was plotted with the help of the Yellowbrick library that provides 

DiscriminationThreshold class to which the XGBoost model with the optimised hyperparameters was 

passed.  
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Figure 10: Discrimination threshold chart 

As shown in the legend of the discrimination threshold chart, the blue, green and red lines correspond 

to the performance metrics.  The dotted line is plotted where F1 is maximised, meaning that the 

balance between precision and recall is ideal (threshold = 0.52). 

Figure 10 also shows that when the threshold value increases, the precision increases and recall 

decreases. Consequently, depending on the requirement of the problem, a trade-off between 

precision and recall should be made to select the best threshold.  Since the objective of this particular 

case is to reduce the false negatives, the optimal threshold value is the one that increases the recall 

score.  

The Threshold function from the library scikit-lego's meta models was used to embed the threshold 

into the model and evaluate its performance. Meta models in scikit-lego can "decorate" an estimator, 

and the Thresholder function helps move the prediction's threshold value.  
 

Accuracy F1 score Recall Precision  
 

Train  Test Train  Test Train  Test Train  Test 

0.20 0.8019 0.7646 0.8295 0.7978 0.9482 0.9137 0.7372 0.7080 

0.30 0.8791 0.8413 0.8806 0.8432 0.8804 0.8425 0.8807 0.8439 

0.52 0.8873 0.8760 0.8761 0.8633 0.7842 0.7706 0.9926 0.9814 

Table 13: Threshold moving impact on performance measures 

Table 13 shows the performance evaluation of the XGBoost model using different threshold values and 

that the values of measures depend on the threshold value embedded in the model. A lower threshold 

results in a high recall and a low precision, and vice versa.  The ideal threshold equal to 0.52 given by 

figure 10 yielded a good F1 score and precision but not the best recall because this is the point that 

only optimises the harmonic mean between the recall and precision. Although the highest recall was 
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given when the threshold value was equal to 0.2, to increase recall and maintain a good enough 

precision score, it was decided to fix the threshold at 0.3. 

 Actual values 

Positive Negative 

P
re

d
ic

te
d

 

va
lu

es
 

Positive 62357 9049 

Negative 9076 64718 

Figure 11: Confusion matrix using XGboost after threshold tuning 

The performance of the final model after tuning the threshold value is shown in the final confusion 

matrix (Figure 11). The considerable decrease in the number of false negatives and the increase in 

the number of false positives reflects the trade-off between precision and recall scores. 
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5. CONCLUSION, LIMITATION AND FUTURE WORK 

5.1. CONCLUSION 

After hospital discharge, patients face a risk of complications that can lead to a return to the ED shortly. 

Since these returns are costly and decrease the healthcare quality, it is becoming vital to evaluate the 

risk of returning to ED after discharge, as it would reduce the number of missed critical illnesses and 

help clinicians identify patients who might need more post-discharge care to prevent their return.  

The objective of this project was to reduce emergency returns costs and improve the efficiency of 

emergency department utilisation by identifying patients' return to the emergency department 30-

days post inpatient hospital discharge. A classification machine learning model was built using 

historical real-word data provided by three different hospitals in Portugal.  

This study was conducted on a cohort of adult patients with medical admissions, and the time scope 

was considered before the COVID-19 pandemic. Admission-level data, including patient demographic 

details and inpatient information, along with diagnosis-level data, were used to build the model.  

The methodology followed to develop this project was divided into three sections. The first section 

was the data understanding, where the different data sources were explored. Then, pre-processing 

data tasks were implemented to prepare the dataset for posterior modelling and evaluation phases. 

This was achieved by integrating all data sources, cleaning the resulting dataset from outliers, and 

missing values, scaling numerical features, encoding categorical variables, and performing feature 

selection techniques. Lastly, different approaches to handle class imbalance were conducted, and four 

classification algorithms were trained and evaluated using Repeated ten-folds Cross-Validation. 

Accuracy, F1 score, recall and precision were passed to the cross-validation process as model 

evaluation metrics. According to the surveyed literature, the models selected to be tested were mainly 

tree-based ensemble learning techniques, more specifically, Random Forest, Adaboost and Xgboost 

classifiers. Multi-layer perceptron classifier was also used but underperformed compared to the other 

models. According to obtained experimental results, it was shown that Xgboost outperforms most of 

the remaining tested classification algorithms for all evaluation metrics.   

Although the model gave good results, especially in accuracy and precision, the confusion matrix 

showed difficulties in correctly predicting the positive class. Since for this problem sensitivity measure 

should be maximised, hyperparameters and threshold tuning techniques were performed  to optimise 

the recall score. The resulting optimised hyperparameters from GridsearchCV slightly improved the 

averaged cross-validated recall in the test set from 77% to 77.21% and after testing different threshold 

values, it was decided to fix the value to 0.3, where recall was increased, and precision still had a good 
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score. In conclusion, the chosen model was an XGBoost classifier with tuned hyperparameters and the 

defined threshold value of 0.3, and it resulted in a recall of 84.38%, precision of 84.35%, F1 score of 

84.36% and an accuracy of 84.10%.  

5.2. LIMITATIONS 

The data used in this study has a before-pandemic scope since discharge dates considered are between 

January 2018 and December 2019. A model using after-pandemic data could be more relevant in 

predicting the return of new patients.                                                                                                                          

Regarding hyperparameter tuning, GridSearchCV was performed with a limited set of 

hyperparameters and values because it is time-consuming and computationally expensive. However, 

better model performance could be achieved if GridSearchCV was fed with more hyperparameters and 

more possible values that could yield better hyperparameter combinations. Also, other classification 

models could be passed to GridSearchCV to more efficiently select the optimal hyperparameters and 

the best model, leading to a better model. 

In the modelling phase of the project, only machine learning algorithms were tested. However, 

considering the large amount of data collected, a deep learning model using configured layer-by-layer 

Artificial Neural Network could be approached.  

5.3. FUTURE WORK 

During the target creation process, the number of times that the patient returned to the emergency 

department the following month after discharge was calculated. In future work, this numerical variable 

could be used as a target variable to transform the problem from a binary  to a multiclass classification 

model. in this case, the added value would be that the model would pass from prediting whether the 

patient will return to the ED or not to predicting, how many times he/she will come back.  

Moreover, this study could be extended to include surgical admissions and pediatric patients. As 

mentioned in the literature review, most studies focus on a specific kind of admission, and surgical 

admissions receive less attention. Therefore, a predictive study of emergency returns that includes 

medical and surgical admissions could be very useful in the health sector.  
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APPENDIX 

Charlson index: The first version of this index was developed in 1987 with 19 categories (Charlson 

et al., 1987).  Each comorbidity category was assigned a weight (from 1 to 6) based on the adjusted 

risk of mortality or resource use. The sum of all the weights results in a single comorbidity score 

for a patient, and a score of zero indicates that no comorbidities were found. The higher the score, 

the higher risk of mortality or resource use (Chang et al., 2016; Charlson et al., 1987). Over time, 

adaptations have been performed, such as the modifications to 17 categories, the translation from 

ICD-9-CM codes to ICD-10-CM codes, and the modification of the original weights(Chang et al., 

2016). 

Elixhauser index: The original Elixhauser comorbidity measure was developed in 1998 with 30 

categories (Anne Elixhauser et al., 1998) where each comorbidity category is dichotomous - it is 

either present or it is not- and the system required 30 binary variables (Carl van Walraven et al., 

2009). Initially, comorbidities were not simplified as an index because each comorbidity affected 

outcomes differently. Later, a set of weights was developed, based on the association between 

comorbidity and death, to summarise disease burden and produce an overall numeric score called 

Elixhauser Index (Carl van Walraven et al., 2009). 
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