
1

Master Degree Program in

Data Science and Advanced Analytics

 Reduction of emergency department returns after discharge

from hospital

Machine learning model to predict emergency department returns 30

days post hospital discharge for medical patients

Ikram Bouziri

Dissertation
presented as partial requirement for obtaining the Master Degree Program in Data Science and Advanced Analytics

MDSAA

1

NOVA Information Management School

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

REDUCTION OF EMERGENCY DEPARTMENT RETURNS AFTER

DISCHARGE FROM HOSPITAL

by

Ikram Bouziri

Dissertation report presented as partial requirement for obtaining the Master's degree in Advanced

Analytics, with a Specialisation in Business Analytics

Supervisors: Professor Roberto Henriques and Professor Sílvia Lopes

 November 2022

2

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading

to its elaboration. I further declare that I have fully acknowledge the Rules of Conduct and Code of

Honor from the NOVA Information Management School.

Ikram Bouziri

Lisbon, 25/11/2022

3

ACKNOWLEDGEMENTS

I would like to extend my deepest recognition to my academic advisors Prof. Roberto Henriques and

Prof. Sílvia Lopes for giving me the opportunity to work on this project, and I would like to thank them

for the guidance, encouragement and commitment they have been showing throughout this thesis

period.

Additionally ,This journey could not be possible without the efforts of my parents, I can never thank

them enough for what they have been offering to me, for always believing in me , for their

unconditional love and sacrifices. I am also very grateful to my beloved brother for his continuous

encouragement and positive energy.

Moreover, I would like to express my deep gratitude to my whole family and my friends in Tunisia,

Portugal and all over the world. I would like to thank them for the moral support and constant source

of inspiration, their belief in me has kept my spirit and motivation high during this process.Thank you

for all the beautiful moments shared with you, they counted a lot.

I am also thankful to my office team for their support and understanding during these months.

I dedicate this work to everyone that contributed in making this incredible experience happen and

helped me become the person I am today.

I am very grateful to have you all by my side, thank you for all the support, love and care.

4

ABSTRACT

Post-hospital discharge returns to emergency departments are associated with reducing the efficiency

of the emergency department (ED) utilisation and the quality of healthcare. These returns are often

related to the nature of the disease and/or inadequate care.

This thesis aims to develop a machine-learning model that predicts ED returns within 30 days of

inpatient discharge from Portuguese public hospitals. Different binary classification models were

trained and evaluated with a particular focus on sensitivity (predictive power of the critical class of

returning patients). The selected model was the Extreme gradient boost Classifier, which showed the

best performance on recall and the other considered performance metrics. A cohort of 93 449 medical

hospitalisations of adult patients discharged between January 1st, 2018, and December 31st, 2019,

was assembled with diagnoses details to be used in this study. According to the problem's

requirement, the recall was the performance metric to be maximised. Therefore, Performance

optimisation methods were considered, and the final model resulted in a recall of 84.38%, precision of

84.35%, F1 score of 84.36% and accuracy of 84.10%.

Future deployment and integration of this ED return predictive analytics into the inpatient care

workflow may allow identifying patients that require targeted care interventions that reduce overall

healthcare expense and improve health outcomes.

KEYWORDS

Machine Learning; Binary Classification; Emergency Department Returns; Performance Metrics;

Performance Optimisation

5

INDEX

1. Introduction .. 1

1.1. Thesis context and research questions: .. 1

1.2. Thesis structure: .. 2

2. Literature review .. 3

3. Methodology .. 5

3.1. Data understanding and integration ... 5

3.1.1. Sources files description ... 5

3.1.2. Data integration ... 5

3.2. Data preparation ... 8

3.2.1. Data transformation and feature engineering ... 8

3.2.2. Target creation ... 9

3.2.3. Sample selection... 9

3.2.4. Data pre-processing ... 10

3.2.5. Feature selection techniques ... 16

3.3. Modelling ... 18

3.3.1. Class imbalance handling ... 19

3.3.2. Classification algorithms... 20

3.3.3. Model validation processes .. 21

3.3.4. Performance metrics .. 22

4. Results and discussion .. 25

5. Conclusion, limitation and future work .. 30

5.1. Conclusion ... 30

5.2. Limitations ... 31

5.3. Future work ... 31

References ... 32

Appendix.. 35

6

TABLE OF FIGURES

Figure 1: Methodology diagram ... 5

Figure 2: Data integration .. 6

Figure 3: Feature engineering and target creation .. 9

Figure 4: Outliers boxplots ... 11

Figure 5: Statistical measure for filter-based feature selection .. 17

Figure 6: Feature importance using the LASSO model .. 18

Figure 7: Confusion matrix ... 23

Figure 8: Confusion matrix using XGBoost ... 26

Figure 9: Confusion matrix using XGboost after hyperparameters tuning 27

Figure 10: Discrimination threshold chart ... 28

Figure 11: Confusion matrix using XGboost after threshold tuning .. 29

7

LIST OF TABLES

Table 1: Description of the datasets .. 8

Table 2: Independent and target variables .. 10

Table 3: Number of outliers ... 12

Table 4: Percentage of missing values and strategies applied .. 12

Table 5: Cardinality of categorical variables .. 16

Table 6: Performance measure using two under-sampling techniques 25

Table 7: Class distribution before and after class imbalance handling.................................... 25

Table 8: Performance measures using different classification models 25

Table 9: XGBoost hyperparameters ... 26

Table 10: Hyperparameters passed to GridSearchCV .. 26

Table 11: Optimal hyperparameters .. 27

Table 12: Performance measures using tuned XGBoost.. 27

Table 13: Threshold moving impact on performance measures ... 28

8

LIST OF EQUATIONS

Equation 1: Standardisation equation ... 13

Equation 2: Normalisation equation .. 14

Equation 3: Accuracy equation .. 23

Equation 4: Precision equation .. 23

Equation 5: Recall equation ... 24

Equation 6: F1 score equation ... 24

1

1. INTRODUCTION

1.1. THESIS CONTEXT AND RESEARCH QUESTIONS:

Post-discharge returns to emergency departments are undesirable, not only from the point of view of

patients and their families but also providers and the health system since they increase healthcare

costs and utilisation. In Portugal, previous studies showed that about 23.26% of patients discharged

from the hospital return to the emergency department (ED) at least once within 30 days(Salgado et

al., 2022). ED revisits can be classified as treat-and-discharge visits, observation stays, and hospital

readmissions and are often associated with inadequate post-discharge care.

This thesis is conducted as part of a research project entitled READY1, which aims to reduce avoidable

ED utilisation by identifying patients at increased risk of returning to the ED in the 30 days post

inpatient discharge from Portuguese hospitals, enabling targeted post-discharge interventions such as

phone calls, home visits or online monitoring of patients with increased risk.

The project READY has three specific objectives. The first is to identify predictors of return to the ED

within 30 days after discharge and develop a prediction model to identify high-risk patients at

discharge. The second is to characterise the factors reported by patients that contributed to the ED

return 30 days post-hospital discharge and the measures they feel could have been avoided. The final

aim is to identify innovations in transitional care with a high potential to reduce avoidable returns to

ED.

This thesis tackles the project's first objective and aims to develop a classification machine-learning

model to predict the risk of returns to ED within 30 days of discharge from hospital inpatient

departments.

For the READY project, files containing inpatient hospitalisation episodes and emergency episodes for

patients discharged between 2018 and 2021 were provided from 3 university hospitals in Portugal -

CHU2 Algarve, Central Lisbon, and São João.

The integration of the files from the three hospitals, followed by the primary transformations and

feature engineering, were performed in the first place. Then, a study sample of medical adult patients

(aged >= 18 years) discharged between January 1st 2018 and December 31th, 2019, from the

participating hospitals was selected and preprocessed to train and evaluate the model for this study.

The completion of this project will allow a deeper understanding of the patterns of care utilisation and

the development of recommendations that will contribute to the improvement of transitional care by

promoting the reduction of avoidable returns to ED.

1 Reduction of Emergency department returns After Discharge from hospital
2 Centro Hospitalar Universitário

2

1.2. THESIS STRUCTURE:

The present document is structured into five chapters, including the Introduction:

• Chapter 2 includes a review of previous studies related to the topic.

• Chapter 3 describes the methodology used, from the exploration and understanding of the

data to the different pre-processing steps performed and the modelling techniques

experimented with.

• In Chapter 4, the results of the experiments were reported and discussed, and the model

selection process was explained.

• Chapter 5 concludes this thesis with the limitations, achieved objectives and future work

3

2. LITERATURE REVIEW

Risk prediction of Emergency Department (ED) returns is a research topic of great interest, and it has

been extensively studied in recent years since it helps identify patients requiring further post-discharge

attention and reduces healthcare costs and utilisation. Previously built predictive models generally try

to evaluate the risk of a specific subgroup within ED returns which is the risk of unscheduled hospital

readmissions. This prediction is performed within a given period after the patient's discharge from the

hospital.

Several previous risk prediction studies of early hospital readmission have been published. Most of

them targeted a particular subpopulation, such as elderly patients (>65 years old) or postoperative

patients (Marcantonio et al., 1999; Mišić et al., 2020). Others focused on specific conditions or chronic

diseases, for example, AIDS, Pneumonia, Congestive Heart Failure and/or chronic obstructive

pulmonary disease (COPD) (Artetxe et al., 2017; Grant et al., 1999; Krumholz et al., 1997; Smith et al.,

2000).

Artetxe et al. used the Kaiser Permanente Risk Stratification Model to predict 30-day ED readmission

risk for high-risk patients, including patients with a specific organ disease and high multi-morbidity.

Different classifiers were tested, with a particular focus on sensitivity when evaluating the

performance, and the best sensitivity was achieved by the Support Vector Machine SVM algorithm

using over-sampling methods to deal with the class imbalance problem (Artetxe et al., 2017).

Most studies that predicted hospital readmission risk focused primarily on medical admissions,

whereas surgical admissions received less attention (Mišić et al., 2020). In recent research, a sample

of surgical patients was used to show that tree-based machine learning methods can accurately predict

readmissions in postoperative patients via the emergency department 30 days after surgery with

excellent discrimination using surgical and demographic features along with lab features(Mišić et al.,

2020). The same study further demonstrated that the risk of readmission could be confidently

calculated the 36 hours post-surgery which increases the efficacity of the model allowing medical care

to take action earlier when needed (Mišić et al., 2020). This would avoid waiting for discharge-level

data, which leads to ineffective transitional care coordination or eventual prolongation of a hospital

stay.

Moreover, some studies on hospital readmission risk considered patients discharged from a single

hospital or unit such as an acute-care teaching hospital (Phillips et al., 1987) or Veterans Affairs medical

centres (Smith et al., 2000). However, studies conducted using data from more than one hospital also

exist, such as Billings et al.2006, and Bottle et al. 2006 that both used admissions from hospitals within

4

the National Health Service hospital trust in England (Billings et al., 2006; Bottle et al., 2006) which is

also the case for this work since data was provided from 3 public hospitals in Portugal.

The downside of Bottle et al.'s model for identifying patients at high risk of emergency hospital

admissions is that it requires access to data such as community-level and socio-economic-level

(community-level admission rates, ethnicity and education) that are difficult to collect. Another

impractical model, in terms of variables, used administrative data and detailed sociodemographic and

health information collected from the patients during interviews conducted within 48 hours of

admission and 30 days after discharge (Hasan et al., 2009).

A trendy and straightforward model that embraced a general population of medical and surgical

patients is the LACE index (van Walraven et al., 2010). It was developed to predict the risk of death or

unscheduled readmissions within 30 days after discharge from hospitals using four main admission-

level variables: length of stay ("L"); acuity of the admission ("A"); comorbidity of the patient ("C"); and

emergency department use ("E") (van Walraven et al., 2010). LACE index showed satisfactory

performance and accuracy at predicting outcome risk. The same authors further improved this index

and developed an extension called LACE+ that utilises administrative data to predict better the risk of

post-discharge returns (van Walraven et al., 2012).

The period fixed for predictions in the previously mentioned studies is 30 days post-discharge.

However, other models were trained to predict the risk of readmissions within only 72 h of discharge,

and they were called "Short-term reattendances" or "early bounce-backs" (Chmiel et al., 2021;

Davazdahemami et al., 2022).

From this review of literature, it can be noticed that the previous studies on this research topic focused

particularly on predicting hospital readmissions rather than ED returns, which helps healthcare units

to manage better the utilisation of the departments by identifying patients with a high risk of being

readmitted to the hospital after discharge. However, the information about the overall ED returns is

missing; this is where this thesis comes to use. In this study, all the patient's emergency department

admissions were considered when creating the target variable. Thus, the model was trained to predict

if the patient will return to ED or not independently of whether it is a treat-and-discharge visit, an

observation stay, or hospital readmission. This would give the vision to understand better the ED

returns patterns and increase the efficiency of the ED utilisation. Moreover, for adult patients, the

model developed in this thesis could be applied to any medical inpatient admission case,

independently of the category or severity of diagnoses.

5

3. METHODOLOGY

This chapter presents all steps followed from data understanding until the modelling phase as shown

in Figure 1. Section 3.1. describes the files collected from the hospitals and their integration. Further,

in Section 3.2., the data preparation steps of data transformation, features engineering, target

creation, sample selectiopn and pre-processing are explained along with the techniques used for

feature selection. At last, Section 3.3. details the steps done for modelling explaining the class

imbalance methods performed, the classification models trained and the performance metrics used to

evaluate them.

Figure 1: Methodology diagram

3.1. DATA UNDERSTANDING AND INTEGRATION

3.1.1. Sources files description

Data was collected from three university hospitals in Portugal, specifically from Algarve, Central Lisbon,

and São João. After approval from the ethics committee, each hospital provided four source files

containg the following types of information:

➢ Inpatient hospitalisations episodes files: record all episodes discharged from inpatient care

between January 2018 and December 2021.

➢ Emergency episodes files: record all ED admissions from January 2018 until December 2021.

➢ Diagnoses files: detail the principal and additional diagnoses recorded within each inpatient

hospitalsation.

➢ Death files: record the death dates of all the patients that died

3.1.2. Data integration

The source files were preprocessed and transformed to deal with inconsistent variable names, values

and data types. Then, files from the three hospitals containing the same information type were merged

Data understanding and
integration

•Source files
description

•Data integration

Data preparation

•Data transformation and feature
engineering

•Target creation

•Sample selection

•Data pre-precessing

•Feature selection

Modelling

•Class imbalance
handling

•Classification models

•Model validation
processes

•Performance metrics

6

to obtain four primary datasets as illustrated in Figure 2. Table 1 details the features of each resulting

dataset and their descriptions.

Figure 2: Data integration

Dataset level feature Description

Inpatient
hospitalisations
episodes

Admission-level
variables

Inpatient admission ID Admission identifier

Admission date Date of admission to the
hospital

Major Diagnostic
Category (MDC)

Major Diagnostic Category
code

Diagnosis Related Group
(DRG)

Diagnosis Related Group
code

DRG severity level Level of severity

DRG mortality level Level of mortality

Length of stay Number of days of the stay

Type of stay Type of the stay (long,
short…)

Discharge date Date of discharge from
hospital (between January
2018 and December 2021)

Discharge status Reason of discharge or
destination after discharge

São João

Inpatient
hospitalisations
episodes files

Death files

Emergency
episodes files

Diagnoses
files

Inpatient
hospitalisations
episodes data

Emergency
episodes data

Diagnoses
data

Lisboa
Central

Death data

Algarve

7

Patient-level
variables

Patient ID (fictitious) Patient fictitious identifier
(created for this project
purposes, not possible to
link with other databases)

Age Age of the patient

Gender Gender of the patient

Residence location 3 variables : district,
municipality and parish of
the patient’s residence

Emergency episodes Emergency-
level variables

Emergency ID ED admission identifier

Patient ID (fictitious) Patient fictitious identifier
(created for this project
purposes, not possible to
link with other databases)

Emergency admission
date

Date of admission to ED
(between January 2018
and December 2021)

Emergency area Specific emergency area

Triage priority Priority of the ED
admission (very urgent,
urgent, not urgent…)

Cause Primary cause of the ED
admission

Origin From where the patient
came (home, another
hospital..)

Emergency discharge
date

Date of discharge from ED

Emergency discharge
status

Reason of discharge or
destination after discharge
from ED

Diagnoses Diagnosis-level
variables

Inpatient admission ID Admission identifier

Patient ID (fictitious) Patient fictitious identifier
(created for this project
purposes, not possible to
link with other databases)

ICD version International Classification
of Diseases used

Diagnosis order Ranking of the diagnoses
(rank 0 is the main
diagnosis …)

Diagnosis code ICD code of the diagnosis

Diagnosis description Description of the
diagnosis

Present on admission Whether the diagnosis is
present on the admission
or not

Death Patient ID (fictitious) Patient fictitious identifier
(created for this project

8

Patient-level
variables

purposes, not possible to
link with other databases)

Death date Date of death

Table 1: Description of the datasets

3.2. DATA PREPARATION

3.2.1. Data transformation and feature engineering

As mentioned in the last section, diagnoses data details all the principal and additional diagnoses

recorded within each inpatient hospitalsation. The resulted diagnosis dataset was used to create more

useful features. In fact, a new variable of the total number of diagnoses per inpatient admission was

created. Moreover, the shape of this dataset was transformed to aggregated the diagnoses

information by creating two comorbidity indices; Charlson and Elixhauser. The Charlson and the

Elixhauser comorbidity indices are methods used to classify patients' comorbidities based on the

International Classification of Diseases (ICD) diagnoses codes found in administrative data (Anne

Elixhauser et al., 1998; Charlson et al., 1987). These indices are further explained in the Appendix of

this document.

As shown in Figure 3, the new diagnosis-level features were added to the inpatient episodes dataset

containing a total of 435 883 records. Then, to remove the records that should not be considered,

three exclusions rules were performed:

➢ 68 records of duplicated inpatient IDs that were removed because they were assumed to

be mistaken.

➢ 5021 records of the patients discharged after December 2nd, 2021 were excluded. In fact,

the 30 days interval could not be captured for those records since the latest provided

emergency admission data was until December 2021.

➢ 51937 records having one of the following descriptions in the discharge status variable

were excluded:

• Death during the hospital stay

• Home hospitalisation

• Transfer to another hospital

• Left against medical advice

After performing these exclusion rules, the final dataset contained 378 875 inpatient episode records

as shown in Figure 3.

9

3.2.2. Target creation

This thesis aims to develop a classification machine-learning model to predict whether the patient will

return to ED within 30 days of discharge from hospital inpatient department or not. To build this

classification model, a binary target variable should be created. First, the number of ED admissions

within 30 days of hospital discharge was calculated for each patient having an inpatient episode, using

the emergency admission date from the emergency episodes dataset. Then, this newly created

numerical variable was transformed to binary, creating the target variable in the final inpatient

episodes dataset as shown in Figure3 :

➢ 1: the patient concerned with the admission returned to ED within 30 days of hospital

discharge

➢ 0: the patient concerned with the admission returned to ED within 30 days of hospital

discharge

Figure 3: Feature engineering and target creation

3.2.3. Sample selection

To build the model, a sample including adult patients (age greater or equal to 18 years old) hospitalised

for medical admissions and discharged between January 1st 2018, and December 31st 2019, was

selected from the final dataset. This sample represented 93 449 records, 20 independent variables,

and a target variable described in Table 2.

Variable name Variable type description

ID_inpat String Identifier of the inpatient episode (index of the dataset)

ID_patient String Identifier of the patient

hospital String Hospital name

age_rounded Integer Patient's age rounded

Inpatient
hospitalisations
episodes data

Emergency
episodes data

Diagnoses
data

300k

400k Feature engineering

Exclusions

Target creation

Final inpatient
episodes
dataset

10

age_group String Patient's age group

gender String Patient's gender

disch_status_inpat String Description of the discharge status of the patient after the
episode

drg String Diagnosis Related Group code

mdc String Major Diagnostic Category code

severity_level String Severity level

mortality_level String Mortality level

district String Patient's residence district

municipality String Patient's residence municipality

parish String Patient's residence parish

los Integer Length of stay

LOS_type String Length of stay type

number_diagn Integer Number of diagnoses of the inpatient episode (principal and
additional)

charlson Integer Charlson comorbidity index

elixhauser Integer Elixhauser comorbidity index

diagn_cat String Main diagnosis category

target_return Binary Target variable, indicates if the patient returned with 30 days
of discharge or not

Table 2: Independent and target variables

3.2.4. Data pre-processing

After selecting the sample, further data cleaning and transformation were done by treating missing

data and outliers, standardising the numerical variables, and encoding the categorical variables.

3.2.4.1. Data cleaning:

⮚ Outliers handling

Outliers are extreme values that appear in the dataset and can be extremely small or large. Outliers

are abnormal values, and their presence can often skew the results of statistical analyses on the

dataset. Since machine learning models learn from data to understand the trends and relationship

between data points, outliers can impact the overall effectiveness and usefulness of the model

(Brownlee Jason, 2020).

Outlier detection and removal are critical in safeguarding data quality and ensuring that the trained

model generalises well to the valid range of test inputs. It also must be noted that outlier detection is

also performed after deployment to maintain the effectiveness of models.

Outliers were visualised using boxplots as shown in Figure 4.

11

Severity level Mortality level

Length of stay Number of diagnoses

Charlson index Elixhauser index

Age rounded

Figure 4: Outliers boxplots

Except for the variable age, outliers were removed from all numerical variables. For this purpose, the

clipping method was used where values outside a given interval are clipped to the interval edges. The

intervals, in this case, were defined using percentiles, the 1st percentile defines the lower limit, and

the 99th percentile defines the upper limit. Therefore, all values below the 1st percentile become the

12

value of the 1st percentile for each variable. All values greater than the 99th percentile become equal

to the value of the 99th percentile.

Table 3 presents the defined intervals and number of outliers:

Variable Defined interval Number of lower outliers Number of upper outliers

Length of stay [1 ; 63] 0 923

Number of diagnoses [1 ; 21] 0 809

Charlson index [0 ; 7] 0 789

Elixhauser index [-5 ; 24] 842 819

Table 3: Number of outliers

⮚ Missing values handling

One of the most common problems in data pre-processing when working with real datasets is handling

missing values. Missing data is the values or data that is not stored (or not present) for some variable/s

in the given dataset. This could occur because of many reasons. It could be because some observations

were not recorded due to human errors, or data is corrupted, or it could be intentional when data is

not provided for some reason. Missing values can bias the results of the machine learning models and

reduce their accuracy and performance. Therefore, it is essential to treat them (Brownlee Jason, 2020).

Many strategies exist to handle this problem, and the most basic one is to ignore all the records having

a missing value in one of the columns. This approach is simple, but it leads to losing valuable data. That

is why it is used in those cases where the number of missing values is minimal.

Other strategies to impute or substitute this incomplete data are:

• Drop the records with missing values: performed only for data errors and small data

• Drop the column with missing values: usually performed only when the percentage records

having missing values os greater than 20%.

• Substitute or impute the missing value: for numerical features missing values could be

substituted by zero or any user‐defined value, the mean, the median, the maximum value or

the minimum value. For categorical features, missing values could be substituted by a user‐

defined value, a new category inidicating missing value or the mode. The missing values could

also be imputed using an imputation algorithm like K-Nearest Neigbors.

After analysing the missing values in all the variables, Table 4 presents the decisions made to treat

them:

Variable Percentage of missing values Strategy

District 0.01% Drop the records

Municipality 0.01% Drop the records

Parish 0.01% Drop the records

LOS_type 54% Drop the column

Table 4: Percentage of missing values and strategies applied

13

3.2.4.2. Data transformation:

The data transformation step is one of the fundamental steps in data pre-processing and helps increase

accuracy in the models. In this case, data transformation was performed when scaling the feature and

encoding the categorical variables.

⮚ Feature scaling

Generally, datasets include different kinds of variables, and the range of values varies widely in the

same. A significant issue is that when using the original scale, the model may put more weight on the

variables with an extensive range; thus, results will be biased (Brownlee Jason, 2020). In order to deal

with this problem, we need to apply the technique of feature scaling to ensure features are on almost

the same scale so that each feature is equally important and makes it easier to process by most ML

algorithms (Brownlee Jason, 2020). Some machine learning models, such as K-Nearest-Neighbours and

SVM, are fundamentally based on distance matrix; they are also known as distance-based classifiers.

Feature scaling is exceptionally essential to those models, especially when the range of the features is

very different (Brownlee Jason, 2020). Otherwise, the model will assign larger weights to features with

an extensive range, thus, influencing the computation of the distance.

Also, machine learning algorithms that use gradient descent as an optimisation technique, like linear

regression, logistic regression, neural network, etc., require data to be scaled to ensure that the

gradient descent moves smoothly towards the minima and that the steps for gradient descent are

updated at the same rate for all the features. Moreover, gradient descent converges much faster

towards the minima with feature scaling than without it.

However, tree-based algorithms are relatively invariant to the scale of the features because a decision

tree splits a node on a single feature, which increases the homogeneity of the node. Therefore, the

remaining features have virtually no effect on the split.

There are several techniques to scale the variables, but, in this case, the two most known methods,

standardisation and normalisation, were tested:

● Standardisation (standard scaler):

Standardisation, also called Z-score normalisation, is a scaling technique that gives each attribute

zeromean and a standard deviation of one.

𝑋′ =
𝑋 − 𝜇

𝜎

Equation 1: Standardisation equation

𝜇 : mean of the feature values

𝜎 : standard deviation of the feature values

14

It must be noted that, in this case, the values are not restricted to a particular range. Standardisation

is more effective when the attribute has a Gaussian distribution. It is useful when the data has varying

scales and the algorithm used makes assumptions that the data has a Gaussian distribution, such

as linear regression, logistic regression, and linear discriminant analysis.

● Normalisation (Min Max scaler):

The normalisation, also known as Min-Max scaling, is another scaling technique where, for every

feature, the minimum value of that feature gets transformed into 0, and the maximum value gets

transformed into one resulting in all features having a distribution value between 0 and 1.

 𝑋′ =
𝑋−𝑋max

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛

Equation 2: Normalisation equation

Normalisation is a simple technique, and it is good to use when the distribution of data is not known

or not Gaussian. It is useful when the data has varying scales and the algorithm used does not make

assumptions about the distribution of the data, such as k-nearest neighbours and artificial neural

networks.

However, Normalisation does not treat outliners very well. On the contrary, standardisation is more

robust to outliers since it does not have a bounding range and facilitates convergence for some

computational algorithms like gradient descent. Therefore, in many cases, it is preferable to use

standardisation over Max-Min normalisation, but it highly depends on the use case and the machine

learning algorithm being used.

In this project, Feature scaling using standardisation method showed better results that normalisation.

⮚ Categorical data handling

A machine learning model's performance depends on the model and the hyperparameters and on how

we process and feed different variables to the model. Most machine learning algorithms cannot

directly operate on categorical data and require independent variables to be numeric; treating the

categorical variables becomes necessary. Encoding categorical data is turning categorical data into

integer format so that data with converted categorical values can be fed into models and improve the

accuracy of predictions (Brownlee Jason, 2020).

Usually, there are two kinds of categorical data:

o Ordinal Data: The categories have an inherent order. Thus, the information regarding the

order in which the category is provided should be retained while encoding.

o Nominal Data: The categories do not have an inherent order. While encoding, only the

presence or absence of a feature must be considered.

https://towardsai.net/p/machine-learning/machine-learning-algorithms-for-beginners-with-python-code-examples-ml-19c6afd60daa
https://towardsai.net/p/machine-learning/calculating-simple-linear-regression-and-linear-best-fit-an-in-depth-tutorial-with-math-and-python-804a0cb23660
https://towardsai.net/p/machine-learning/machine-learning-algorithms-for-beginners-with-python-code-examples-ml-19c6afd60daa
https://towardsai.net/p/machine-learning/k-nearest-neighbors-knn-algorithm-tutorial-machine-learning-basics-ml-ec6756d3e0ac
https://towardsai.net/p/machine-learning/building-neural-networks-from-scratch-with-python-code-and-math-in-detail-i-536fae5d7bbf
https://towardsai.net/p/machine-learning/building-neural-networks-from-scratch-with-python-code-and-math-in-detail-i-536fae5d7bbf
https://www.codecademy.com/articles/normalization

15

Compared to tree-based models, linear models are more sensitive to the order of ordinal data, which

is why the appropriate encoding methods should be selected depending on the algorithm used.

The following is a brief presentation of four popular approaches for categorical data encoding:

● Label encoding

This type of encoding is used when the categorical feature in the data is ordinal, and order retention

is essential. Ordinal encoding is an easy and informative process that assigns an integer value to each

label (Brownlee Jason, 2020). Therefore, the encoded data reflects the sequence of labels.

Label Encoding causes a prioritisation issue because machine learning models assign a high value with

a higher priority than the lower value. Consequently, it is mostly only applicable to ordinal data and

would mislead the model when used with data that does not have any meaningful order.

● One-hot encoding

This encoding technique is used when the data is nominal. It transforms each category of any

categorical variable into a new binary column represented by 0 or 1 to signify the presence of the

category value. Newly created binary features can be considered dummy variables. After one hot

encoding, the number of dummy variables depends on the number of categories presented in the data.

One-Hot Encoding is helpful for categorical columns without any order and less cardinality because it

treats all the values within the categorical column as equal. Moreover, a high cardinal categorical

column would produce many columns, leading to the curse of dimensionality, which is the main

drawback of this technique (Brownlee Jason, 2020).

It must also be noted that One-Hot Encoding might not be suitable for Tree-based Machine Learning

because it causes inefficiency during splitting.

● Target encoding

Target encoding is a Bayesian technique that uses information from that target variable to encode the

categorical data. It converts a categorical value into the mean of the target variable. It is performed

for train data only, and the test data is coded using results obtained from the training dataset. The

main issue with this technique is that it can lead to target leakage or overfitting. However, some

modified versions of this technique helps to reduce this problem, such as the Leave-one-out encoding

(LOO encoder). As its name mentions, this encoding type leaves out the value's target value to be

encoded when calculating the mean. Another technique is the Generalised Linear Mixed Model

(GLMM encoder), which basically applies a linear regression on target encoding. This method gives

robust results but is time-consuming compared to the other methods.

In the context of this thesis, a high cardinality issue was identified, which eliminated the possibility of

using one-hot encoding. As the type of all the categorical features in the dataset is nominal, it was

16

impossible to apply label encoding. Therefore, trials were made using the target encoder and its more

advanced versions. Table 5 shows the details of the cardinality of all the categorical variables:

Variable Cardinality

disch_status_inpat 11 unique values

drg 161 unique values

mdc 25 unique values

district 28 unique values

municipality 292 unique values

parish 2251 unique values

Diagn_cat 1166 unique values

Table 5: Cardinality of categorical variables

3.2.5. Feature selection techniques

Adding redundant variables when developing a predictive model reduces the generalisation capability

of the model, increases its overall complexity, and could also reduce the overall accuracy of a classifier.

Therefore, it is preferable to do the feature selection process, which is performed using some

techniques to reduce the number of input variables to reduce the computational cost of modelling and

increase the performance (Brownlee Jason, 2020).

There are two main types of feature selection techniques:

● Supervised feature selection techniques: they consider the target variable and can be used for

the labelled dataset

● Unsupervised feature selection techniques discard the target variable and can be used for the

unlabelled dataset.

Supervised feature Selection may be divided into three other techniques:

3.2.5.1. Filter methods

These methods evaluate the importance of features based on their inherent characteristics, not

including any machine learning algorithm. Instead, they use statistical measures to score the

correlation between the input variables as well as the relationship between each input variable with

the target, then select the subset of features that have the most substantial relationship with the

target variable and choose between the independent variables that are highly correlated with each

other. The advantages of filter methods are that they do not overfit the data, and due to their

simplicity, they tend to be fast and have a low computational cost. Thus, these approaches are

extensively used on high-dimensional data.

Although these methods are fast and effective in most cases, it can be challenging to choose the

appropriate statistical measure for feature selection because it highly depends on the data type of

both the input and response variables. This tree graph in Figure 5 presents a way to choose the relevant

17

statistical measure for filter-based feature selection based on whether the input and output variables

are numerical or categorical.

Figure 5: Statistical measure for filter-based feature selection

In this case, the target variable is numerical, and the dataset contains different input features. For

numerical features, Spearman's correlation was used, and the results of the highly correlated features

are:

● Severity level and mortality level with a correlation value of 0.6

● Severity level and number of diagnoses with a correlation value of 0.6

● Mortality level and number of diagnoses with a correlation value of 0.6

● Charlson index and Elixhauser index with a correction value if 0.8

3.2.5.2. Wrapper methods

These methods are based on algorithms and consider selecting a set of features as a search problem.

A subset of features is used to train a model, and based on the resulting performance of the applied

learning algorithm, features and added or removed from the subset that will be used to train the

algorithm again. These methods are usually computationally costly and are subject to overfitting.

Some common examples of wrapper methods are forward feature selection, backward feature

elimination and recursive feature elimination (RFE), that was used in this model.

With the number of features to select equal to 4, RFE selected these variables:

● Severity_level

● Mortality_level

● Number_diagn

Input variables

Numerical Output variable

Numerical

Pearson's

Spearman's

Categorical

ANOVA

Kendall's

Categorical Output variable

Numerical

ANOVA

Kendall's

Categorical

Chi-squared

Mutual information

18

● Age_rounded

3.2.5.3. Embedded methods

These methods encompass the advantages of both filter and wrapper methods. These methods are

iterative; they evaluate each iteration of the model training process and optimally find essential

features that contribute the most to training in a particular iteration. Generally, they use built-in

penalisation functions to reduce overfitting, and this is usually implemented by using a sparsity

regulariser or constraint, which decreases the weight of some features to (near) zero.

The most famous examples of these methods are LASSO and RIDGE regression.

The example that was used to implement embedded methods, in this case, was LASSO which picked

six important features as shown in Figure 6:

Figure 6: Feature importance using the LASSO model

After training the model with different subsets of variables based on the mentioned techniques, the

subset that gave the best results contained these ten features: mortality_level, los, number_diagn,

elixhauser, age_rounded, district, mdc, disch_status_inpat, gender, diagn_cat

3.3. MODELLING

The dataset prepared in the previous step is used to create the classification model. Several

experiments will be taken to select the best model based on the performance metrics. These

experiments tested various input variables subsets and different class imbalance handling methods.

Moreover, for the modelling part, two model validation processes were performed with many

classification algorithms. This section describes all the techniques, processes and algorithms used in

the modelling phase and the metrics used to evaluate the performance of the models.

0 0.005 0.01 0.015 0.02 0.025 0.03

Charlson index

Elixhauser index

Length of stay

number of diagnoses

Severity level

Age

Mortality level

19

3.3.1. Class imbalance handling

Most real-world classification problems have an imbalanced class distribution, such as fraud detection,

spam detection, and churn prediction. This problem occurs when there is an unequal distribution

between the known classes. As most of the machine learning algorithms used for classification assume

an equal number of examples for each class, classifiers tend to be overwhelmed by the majority of

classes and ignore the small ones when faced with an imbalanced dataset. Therefore, the performance

decreases significantly, specifically for the minority positive class. This is a severe problem because the

classification errors will affect the minority class, which is more important in most cases.

The imbalance may be slight or severe depending on the ratio of the positive class over the negative

one. A slight imbalance can often be negligible and treated like a normal case; however, a severe one

should be carefully treated by implementing specialised techniques. In this case, the ratio is

Various strategies exist, but the main ones are:

3.3.1.1. Over-sampling

This technique synthesises new examples from the existing examples in the minority class. The most

popular approach is called Synthetic Minority Over-sampling Technique (SMOTE). SMOTE works by

selecting close examples in the feature space, drawing a line between them, and then creating a new

sample at a point along that line.

Some extensions to SMOTE are more efficient in selecting the examples from the minority class that

represent the basis for generating new synthetic examples. Borderline-SMOTE and Borderline-SMOTE

SVM are popular extensions to SMOTE that involve selecting the instances of the minority class that

are misclassified using algorithms such as k-nearest neighbour or SVM. Another approach called

Adaptive Synthetic Sampling (ADASYN) generates synthetic samples inversely proportional to the

density of the examples in the minority class in the feature space.

3.3.1.2. Under-sampling

In this technique, examples from the majority class are deleted. The disadvantage of this technique is

that it reduces the number of records in the dataset and may delete helpful examples from the

majority class. Random Undersampling is the most straightforward technique that randomly removes

samples from the majority class. On the other hand, other techniques focus on which events to keep

rather than which ones should be deleted. For example, the Condensed nearest neighbours (CNN)

undersampling method keeps, in a "store", all the examples in the minority class and, using the KNN

algorithm, only keep examples from the majority set that cannot be classified correctly by the current

contents of the store.

https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-classification/#caption-attachment-9442:~:text=Condensed%20Nearest%20Neighbor%20Rule%20Undersampling
https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-classification/#caption-attachment-9442:~:text=Condensed%20Nearest%20Neighbor%20Rule%20Undersampling

20

More efficient approaches focus on which events to delete are Tomek Links method, where cross-

class nearest neighbours pairs called Tomek links are created based on Euclidean distance. Then, all

the examples in the majority class closest to the minority class are removed from the dataset, which

will not be balanced along the classes, only less ambiguous. Another approach for finding and removing

noisy examples is called Edited Nearest Neighbors (ENN), which uses the three-nearest neighbour rule

to identify the misclassified examples. Then, the majority class instances among the neighbours are

removed. Moreover, combinations of Keep and Delete under-sampling techniques were developed,

such as One-sided selection (OSS) that combines Tomeks Links and CNN and Neighborhood cleaning

rule (NCR) that combines CNN and ENN.

3.3.1.3. Combining Data Undersampling and Oversampling

Another possible strategy is to manually combine both techniques by defining specific oversampling

and undersampling in a pipeline or using pre-defined combinations such as the combination of SMOTE

with Tomek Links undersampling and SMOTE with Edited Nearest Neighbors undersampling.

In this specific project, the class imbalance had a ratio of 17:73. Both pre-defined combinations were

performed as well as manual approaches where ADASYN and SVMSMOTE were used for over-sampling

and Random undersampling or Tomek Links technique for under-sampling.

3.3.2. Classification algorithms

Several classification algorithms were experimented to select the model with the best performance,

namely RF, Adabosst, XGBoost..

Random Forest is a popular machine learning algorithm based on ensemble learning. Ensemble

methods combine multiple weak learners, such as decision trees, to produce a stronger learner,

showing a better predictive performance than could be obtained using any of the constituent learning

algorithms alone. Random forest is a typical application of one of the ensemble methods called

bagging. Bagging or Bootstrap Aggregation creates a different training subset from the original

training data with replacement. Each subset is independently used to train a model and generate a

result. Then the final output is based on majority voting. Random forest follows this process using

multiple decision trees as a learning algorithm—generally, the greater the tree number, the higher the

accuracy and the lower the risk of overfitting.

Ada-boost or Adaptive Boosting is another algorithm based on ensemble learning. Unlike RF, AdaBoost

follows boosting approach where models are trained sequentially and, in each iteration, the weights

are improved and updated to train the next model in the sequence, aiming to correct the prediction

https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-classification/#caption-attachment-9443:~:text=rule.-,Tomek%20Links%20for%20Undersampling
https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-classification/#caption-attachment-9444:~:text=Edited%20Nearest%20Neighbors%20Rule%20for%20Undersampling,-Another
https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-classification/#caption-attachment-9445:~:text=Rule.-,One%2DSided%20Selection%20for%20Undersampling
https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-classification/#caption-attachment-9448:~:text=Neighborhood%20Cleaning%20Rule%20for%20Undersampling,-The
https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-classification/#caption-attachment-9448:~:text=Neighborhood%20Cleaning%20Rule%20for%20Undersampling,-The
https://en.wikipedia.org/wiki/Predictive_inference

21

errors made by the prior model. AdaBoost is one of the first successful boosting approaches, and it

also uses decision trees as a constituent learning algorithm.

Extreme Gradient Boosting or XGBoost is a popular and efficient open-source library that implements

gradient-boosted trees algorithm. Gradient boosting is an extension of boosting that uses a gradient

descent algorithm in additively generating weak models to minimise the loss. XGBoost is a scalable and

highly accurate implementation of gradient boosting that pushes the limits of computing power for

boosted tree algorithms. It is known to be highly efficient and effective in terms of computational

speed and performance. Some studies showed that XGBoost is almost always faster than the other

benchmarked implementations.

Multi-layer Perceptron Classifier (MLP) is a neural network method. It is a fully connected multi-

layer feedforward artificial neural network composed of neurons called perceptions, an input layer, an

output layer and hidden layers. Each perception, apart from the input nodes, has a nonlinear activation

function. An MLP uses backpropagation for training the network. MLP is widely used for solving

problems that require supervised learning and research into computational neuroscience and parallel

distributed processing. Applications include speech recognition, image recognition and

machine translation.

3.3.3. Model validation processes

After Model Training, it is required to carry out Model validation using a testing data set. Model

validation determines whether the trained model is trustworthy and performs as expected.

The testing data may or may not be a chunk from the same dataset that is used to build the model

There are various techniques of model validation, among which the two most known methods are

Cross Validation and train test split, both tested to validate the model in this thesis.

3.3.3.1. Train/Test Split

The most basic technique of Model Validation is to perform a train/validate/test split on the data. The

model is first trained with the training set. Then, the results are validated, and the hyperparameters

are tuned using the validation. This process is repeated until a good performance metric is reached.

Once this stage is completed, the model is tested with the remaining test set to predict and evaluate

the performance.

3.3.3.2. K-fold cross-validation

This technique is used to avoid losing valuable data on the validation set and preserve as much as

possible for the training step. Instead of giving up the validation set to be used only for testing, in this

https://en.wikipedia.org/wiki/AdaBoost
https://developer.nvidia.com/blog/gradient-boosting-decision-trees-xgboost-cuda/

22

approach, the dataset is randomly divided into k number of folds of approximately equal size, where

one fold will be used as the test set, and the remaining k-1 folds will be used as the training dataset.

This will be repeated K number of times specified by the user. The final result of k-fold cross-validation

in a classification problem is the average score of the results of each performance metric from all

repetitions.

A repeated k-fold cross validation exists where after completing the above-explained process, it will

be fully repeated k number of times.

In our case, a repeated k-fold Cross Validation method with the following parameters was finally

selected as a model validation process:

• Repeated stratified k-Fold with 10 splits and 3 repeats

• Scoring = accuracy, F1 score, recall and precision

3.3.4. Performance metrics

Test datasets are used to determine the model's effectiveness using some evaluation metrics. The

metric choice depends on the problem type because classification models are evaluated using different

metrics from regression models. Further, in classification, the nature of the problem, whether it is a

recommender, spam detection, client churn or the presence of a disease, will determine which metric

to focus more on.

The most popular metrics used to evaluate the performance of classification models are Confusion

matrix, Accuracy, Presison, Recall and F1-score (Sunasra Mohammed, 2017).

3.3.4.1. Confusion matrix

The Confusion matrix is an intuitive and easy tool for finding the correctness and accuracy of a

classification model where the output can be of two or more classes. It is not an actual performance

measure, but the numbers inside it are the basis of almost all performance metrics (Sunasra

Mohammed, 2017). The confusion matrix is a table with two dimensions ("Actual" and "Predicted")

and sets of "classes" in both dimensions. The Actual classifications are columns, and the Predicted ones

are rows (Sunasra Mohammed, 2017) (Figure 7).

23

 Actual values

Positive Negative

P
re

d
ic

te
d

va
lu

es

Positive TP FP

Negative FN TN

Figure 7: Confusion matrix

True Positives (TP): the actual class of the data point was 1(True), and the predicted is also 1(True)

True Negatives (TN): the actual class of the data point was 0(False), and the predicted is also 0(False

False Positives (FP): the actual class of the data point was 0(False), and the predicted is 1(True).

False Negatives (FN): the actual class of the data point was 1(True), and the predicted is 0(False).

Model errors result in False Positives and False Negatives. The decision of which error should be

minimised depends on the business needs and problem context. Based on that, it might be better to

minimise either False Positives or False negatives.

For example, in a spam detection problem, it is more important to minimise false positives than false

negatives because classifying an email as spam while it is not worse than classifying a spam email as

essential or not spam where it is spam.

However, in our case, it is more important to minimise false negatives than false positives because

classifying a patient who will return to ED as a negative case is worse than classifying a patient who

will not return as a positive case.

3.3.4.2. Accuracy

Accuracy in classification problems is the number of correct predictions made by the model over all

kinds of predictions made (Joshi Renuka, 2016).

Accuracy is a relevant measure when the target variable classes in the data are nearly balanced, and it

should never be used in case of a class imbalance.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁/𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

Equation 3: Accuracy equation

3.3.4.3. Precision

Precision is the ratio of correctly predicted positive observations over the total predicted positive

observations (Joshi Renuka, 2016).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/𝑇𝑃 + 𝐹𝑃

Equation 4: Precision equation

24

3.3.4.4. Recall (Sensitivity)

The recall is the ratio of correctly predicted positive observations and overall positive observations in

the actual class. Recall answers the question, "Of all the truly positive observations, how many did we

label correctly?" (Joshi Renuka, 2016).

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/𝑇𝑃 + 𝐹𝑁

Equation 5: Recall equation

3.3.4.5. F1 score

The F1 score is the weighted average of Precision and Recall. Therefore, this score takes both false

positives and false negatives into account. It is not as intuitive as accuracy, but it is usually more helpful,

especially in the cases of an uneven class distribution (Joshi Renuka, 2016).

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) / (𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

Equation 6: F1 score equation

25

4. RESULTS AND DISCUSSION

Different undersampling and oversampling techniques were used to handle the class imbalance

problem. For oversampling, the most performing approach was SVM SMOTE. Then, both random

undersampling and Tomek Links were tested for undersampling.

 Accuracy F1 score Recall Precision

Train Test Train Test Train Test Train Test

SVM SMOTE and
Random Undersampler

0.
838

0. 799 0. 815 0. 769 0. 713 0. 670 0. 949 0. 903

SVM SMOTE and Tomek
Links

0.887 0. 876 0. 877 0. 862 0. 786 0. 770 0. 991 0. 979

Table 6: Performance measure using two under-sampling techniques

Table 6 shows that using SVM SMOTE as the oversampling technique, Tomek Links improved

approximately 10% in all the performance measures compared to the random Undersampler. Thus,

Tomek Links was selected as the undersampling method to remove the ambiguous instances from the

majority class.

The combination of SVM SMOTE with Tomek links resulted in a nearly balanced dataset and an

augmentation of the data with synthesised instances done by SVM SMOTE. Table 7 summarises the

class distribution of the records before and after handling the class imbalance.

 Total number of records Class 1 records Class 0 records

Before 93 449 17 971 75 477

After 146 134 73 794 72 340

Table 7: Class distribution before and after class imbalance handling

The classification models explained in the previous chapter were tested using the ten selected

variables and the target as input features to select the best model. Considering the default threshold

of 0.5, Table 8 summarises the cross-validated average performance measures across all folds.

Accuracy F1 score Recall Precision

Train Test Train Test Train Test Train Test

MLP 0.6764 0.675 0.689 0.6877 0.7102 0.7088 0.6693 0.668

Adaboost 0.8648 0.8644 0.8486 0.8481 0.7501 0.7495 0.9768 0.9764

XGBoost 0.8873 0.8755 0.8754 0.862 0.7838 0.77 0.991 0.979

Random Forest 0.7257 0.7248 0.734 0.7332 0.7495 0.7486 0.7192 0.7184

Table 8: Performance measures using different classification models

As verified in Table 8, the XGBoost Classifier yielded the best scores in terms of all metrics and Table 9

shows the hyperparameters used for this model.

26

Hyperparameter Explanation Value

n_estimators Number of gradient-boosted trees 1000

max_depth Max tree depth for base learners 4

reg_lamba Regularization term on weights 2

learning_rate Boosting learning rate 0.2

random_state Random number seed 123

Table 9: XGBoost hyperparameters

 Actual values

Positive Negative

P
re

d
ic

te
d

va
lu

es

Positive 71864 476

Negative 16094 57 700

Figure 8: Confusion matrix using XGBoost

According to the confusion matrix results (Figure 8), false positives are more significant than false

negatives. Thus, the model makes more mistakes predicting actual positive values than negative ones.

Furthermore, this indicates that accuracy values do not give an accurate indication of the model's

usefulness. The accuracy of 87.55% may indicate that the model is performing well, but considering

the recall of 77% and the number of false negatives in the confusion matrix, it can be noticed that the

model has complications in correctly predicting the positive class.

Since this specific medical case study requires maximising the ability of the model to correctly identify

patients that will return to ED (class 1), false negatives should be reduced as much as possible; thus, a

relatively higher recall score is preferred.

The performance of a model significantly depends on the value of hyperparameters passed to it.

A first attempt to improve the results was made by tuning the model's hyperparameters using a 10-

fold cross-validated grid search technique (GridSearchCV). Table 10 presents the hyperparameters an

the corresponding set of values that were defined and passed to the GridsearchCV function.

GridsearchCV evaluates the model with all the possible combinations using the cross-validation

method.

Hyperparameter Values

n_estimators {1000, 1500, 2000}

max_depth {3, 4, 5}

reg_lamba {2, 5, 8}

learning_rate {0.1, 0.2, 0.3}

Table 10: Hyperparameters passed to GridSearchCV

27

Since the objective is to reduce the false negatives and increase recall, GridsearchCV was performed

with a refit equal to recall. After running the Gridsearch, the function "best_params_" displays the best

combination of hyperparameters that optimise the recall (Table 11).

Hyperparameter Value

n_estimators 1500

max_depth 5

reg_lamba 5

learning_rate 0.1

Table 11: Optimal hyperparameters

The model with optimised hyperparameters was evaluated using the repeated 10-fold cross-

validation, and the average values across all folds for test and training are reported in Table 12. Table

12 shows that tuning the hyperparameters slightly improved the model's performance in terms of

recall, and this is confirmed by the confusing matrix (Figure 9) that indicates a slight decrease in the

value of false negatives.

Accuracy F1 score Recall Precision

Train Test Train Test Train Test Train Test

XGBoost 0.8895 0.8759 0.8784 0.8630 0.7886 0.7721 0.9913 0.9781

Table 12: Performance measures using tuned XGBoost

 Actual values

Positive Negative

P
re

d
ic

te
d

va
lu

es

Positive 71438 517

Negative 15743 58051

Figure 9: Confusion matrix using XGboost after hyperparameters tuning

Since tuning the hyperparameters did not improve the model recall as expected, an additional

optimisation method was considered by tuning the model's decision threshold. A discrimination

threshold visualisation (Figure 10) was plotted with the help of the Yellowbrick library that provides

DiscriminationThreshold class to which the XGBoost model with the optimised hyperparameters was

passed.

28

Figure 10: Discrimination threshold chart

As shown in the legend of the discrimination threshold chart, the blue, green and red lines correspond

to the performance metrics. The dotted line is plotted where F1 is maximised, meaning that the

balance between precision and recall is ideal (threshold = 0.52).

Figure 10 also shows that when the threshold value increases, the precision increases and recall

decreases. Consequently, depending on the requirement of the problem, a trade-off between

precision and recall should be made to select the best threshold. Since the objective of this particular

case is to reduce the false negatives, the optimal threshold value is the one that increases the recall

score.

The Threshold function from the library scikit-lego's meta models was used to embed the threshold

into the model and evaluate its performance. Meta models in scikit-lego can "decorate" an estimator,

and the Thresholder function helps move the prediction's threshold value.

Accuracy F1 score Recall Precision

Train Test Train Test Train Test Train Test

0.20 0.8019 0.7646 0.8295 0.7978 0.9482 0.9137 0.7372 0.7080

0.30 0.8791 0.8413 0.8806 0.8432 0.8804 0.8425 0.8807 0.8439

0.52 0.8873 0.8760 0.8761 0.8633 0.7842 0.7706 0.9926 0.9814

Table 13: Threshold moving impact on performance measures

Table 13 shows the performance evaluation of the XGBoost model using different threshold values and

that the values of measures depend on the threshold value embedded in the model. A lower threshold

results in a high recall and a low precision, and vice versa. The ideal threshold equal to 0.52 given by

figure 10 yielded a good F1 score and precision but not the best recall because this is the point that

only optimises the harmonic mean between the recall and precision. Although the highest recall was

29

given when the threshold value was equal to 0.2, to increase recall and maintain a good enough

precision score, it was decided to fix the threshold at 0.3.

 Actual values

Positive Negative

P
re

d
ic

te
d

va
lu

es

Positive 62357 9049

Negative 9076 64718

Figure 11: Confusion matrix using XGboost after threshold tuning

The performance of the final model after tuning the threshold value is shown in the final confusion

matrix (Figure 11). The considerable decrease in the number of false negatives and the increase in

the number of false positives reflects the trade-off between precision and recall scores.

30

5. CONCLUSION, LIMITATION AND FUTURE WORK

5.1. CONCLUSION

After hospital discharge, patients face a risk of complications that can lead to a return to the ED shortly.

Since these returns are costly and decrease the healthcare quality, it is becoming vital to evaluate the

risk of returning to ED after discharge, as it would reduce the number of missed critical illnesses and

help clinicians identify patients who might need more post-discharge care to prevent their return.

The objective of this project was to reduce emergency returns costs and improve the efficiency of

emergency department utilisation by identifying patients' return to the emergency department 30-

days post inpatient hospital discharge. A classification machine learning model was built using

historical real-word data provided by three different hospitals in Portugal.

This study was conducted on a cohort of adult patients with medical admissions, and the time scope

was considered before the COVID-19 pandemic. Admission-level data, including patient demographic

details and inpatient information, along with diagnosis-level data, were used to build the model.

The methodology followed to develop this project was divided into three sections. The first section

was the data understanding, where the different data sources were explored. Then, pre-processing

data tasks were implemented to prepare the dataset for posterior modelling and evaluation phases.

This was achieved by integrating all data sources, cleaning the resulting dataset from outliers, and

missing values, scaling numerical features, encoding categorical variables, and performing feature

selection techniques. Lastly, different approaches to handle class imbalance were conducted, and four

classification algorithms were trained and evaluated using Repeated ten-folds Cross-Validation.

Accuracy, F1 score, recall and precision were passed to the cross-validation process as model

evaluation metrics. According to the surveyed literature, the models selected to be tested were mainly

tree-based ensemble learning techniques, more specifically, Random Forest, Adaboost and Xgboost

classifiers. Multi-layer perceptron classifier was also used but underperformed compared to the other

models. According to obtained experimental results, it was shown that Xgboost outperforms most of

the remaining tested classification algorithms for all evaluation metrics.

Although the model gave good results, especially in accuracy and precision, the confusion matrix

showed difficulties in correctly predicting the positive class. Since for this problem sensitivity measure

should be maximised, hyperparameters and threshold tuning techniques were performed to optimise

the recall score. The resulting optimised hyperparameters from GridsearchCV slightly improved the

averaged cross-validated recall in the test set from 77% to 77.21% and after testing different threshold

values, it was decided to fix the value to 0.3, where recall was increased, and precision still had a good

31

score. In conclusion, the chosen model was an XGBoost classifier with tuned hyperparameters and the

defined threshold value of 0.3, and it resulted in a recall of 84.38%, precision of 84.35%, F1 score of

84.36% and an accuracy of 84.10%.

5.2. LIMITATIONS

The data used in this study has a before-pandemic scope since discharge dates considered are between

January 2018 and December 2019. A model using after-pandemic data could be more relevant in

predicting the return of new patients.

Regarding hyperparameter tuning, GridSearchCV was performed with a limited set of

hyperparameters and values because it is time-consuming and computationally expensive. However,

better model performance could be achieved if GridSearchCV was fed with more hyperparameters and

more possible values that could yield better hyperparameter combinations. Also, other classification

models could be passed to GridSearchCV to more efficiently select the optimal hyperparameters and

the best model, leading to a better model.

In the modelling phase of the project, only machine learning algorithms were tested. However,

considering the large amount of data collected, a deep learning model using configured layer-by-layer

Artificial Neural Network could be approached.

5.3. FUTURE WORK

During the target creation process, the number of times that the patient returned to the emergency

department the following month after discharge was calculated. In future work, this numerical variable

could be used as a target variable to transform the problem from a binary to a multiclass classification

model. in this case, the added value would be that the model would pass from prediting whether the

patient will return to the ED or not to predicting, how many times he/she will come back.

Moreover, this study could be extended to include surgical admissions and pediatric patients. As

mentioned in the literature review, most studies focus on a specific kind of admission, and surgical

admissions receive less attention. Therefore, a predictive study of emergency returns that includes

medical and surgical admissions could be very useful in the health sector.

32

REFERENCES

Artetxe, A., Beristain, A., Graña, M., & Besga, A. (2017). Predicting 30-Day Emergency Readmission
Risk. International Joint Conference SOCO'16-CISIS'16-ICEUTE'16, Advances in Intelligent Systems and
Computing 527. https://doi.org/10.1007/978-3-319-47364-2_1

Grant, R. W., Charlebois, E. D., & Wachter, R. M. (1999). Risk Factors for Early Hospital Readmission in
Patients with AIDS and Pneumonia. Journal of General Internal Medicine, 14(9), 531.
https://doi.org/10.1046/J.1525-1497.1999.08157.X

Krumholz, H. M., Parent, E. M., Tu, N., Vaccarino, V., Wang, Y., Radford, M. J., & Hennen, J. (1997).
Readmission After Hospitalization for Congestive Heart Failure Among Medicare Beneficiaries.
Archives of Internal Medicine, 157(1), 99–104.
https://doi.org/10.1001/ARCHINTE.1997.00440220103013

Mišić, V. v., Gabel, E., Hofer, I., Rajaram, K., & Mahajan, A. (2020). Machine Learning Prediction of
Postoperative Emergency Department Hospital Readmission. Anesthesiology, 132(5), 968–980.
https://doi.org/10.1097/ALN.0000000000003140

Marcantonio, E. R., McKean, S., Goldfinger, M., Kleefield, S., Yurkofsky, M., & Brennan, T. A. (1999).
Factors associated with unplanned hospital readmission among patients 65 years of age and older in
a medicare managed care plan. American Journal of Medicine, 107(1), 13–17.
https://doi.org/10.1016/S0002-9343(99)00159-X

Phillips, R. S., Safran, C., Cleary, P. D., & Delbanco, T. L. (1987). Predicting emergency readmissions
for patients discharged from the medical service of a teaching hospital. Journal of General Internal
Medicine, 2(6), 400–405. https://doi.org/10.1007/BF02596366

Bottle, A., Aylin, P., & Majeed, A. (2006). Identifying patients at high risk of emergency hospital
admissions: a logistic regression analysis. Journal of the Royal Society of Medicine, 99(8), 414.
https://doi.org/10.1258/JRSM.99.8.406
Billings, J., Dixon, J., Mijanovich, T., & Wennberg, D. (2006). Case finding for patients at risk of
readmission to hospital: development of algorithm to identify high risk patients. BMJ (Clinical
Research Ed.), 333(7563), 327–330. https://doi.org/10.1136/BMJ.38870.657917.AE

Smith, D. M., Giobbie-Hurder, A., Weinberger, M., Oddone, E. Z., Henderson, W. G., Asch, D. A.,
Ashton, C. M., Feussner, J. R., Ginier, P., Huey, J. M., Hynes, D. M., Loo, L., & Mengel, C. E. (2000).
Predicting non-elective hospital readmissions: A multi-site study. Journal of Clinical Epidemiology,
53(11), 1113–1118. https://doi.org/10.1016/S0895-4356(00)00236-5

Hasan, O., Meltzer, D. O., Shaykevich, S. A., Bell, C. M., Kaboli, P. J., Auerbach, A. D., Wetterneck, T.
B., Arora, V. M., Zhang, J., & Schnipper, J. L. (2009). Hospital Readmission in General Medicine
Patients: A Prediction Model. J Gen Intern Med, 25(3), 211–220. https://doi.org/10.1007/s11606-
009-1196-1

https://doi.org/10.1007/978-3-319-47364-2_1
https://doi.org/10.1007/978-3-319-47364-2_1
https://doi.org/10.1007/978-3-319-47364-2_1
https://doi.org/10.1046/J.1525-1497.1999.08157.X
https://doi.org/10.1001/ARCHINTE.1997.00440220103013
https://doi.org/10.1097/ALN.0000000000003140
https://doi.org/10.1016/S0002-9343(99)00159-X
https://doi.org/10.1007/BF02596366
https://doi.org/10.1258/JRSM.99.8.406
https://doi.org/10.1136/BMJ.38870.657917.AE
https://doi.org/10.1016/S0895-4356(00)00236-5
https://doi.org/10.1007/s11606-009-1196-1
https://doi.org/10.1007/s11606-009-1196-1

33

van Walraven, C., Dhalla, I. A., Bell, C., Etchells, E., Stiell, I. G., Zarnke, K., Austin, P. C., & Forster, A. J.
(2010). Derivation and validation of an index to predict early death or unplanned readmission after
discharge from hospital to the community. CMAJ : Canadian Medical Association Journal = Journal de
l’Association Medicale Canadienne, 182(6), 551–557. https://doi.org/10.1503/CMAJ.091117

van Walraven, C., Wong, J., & Forster, A. J. (2012). LACE+ index: extension of a validated index to
predict early death or urgent readmission after hospital discharge using administrative data. Open
Medicine, 6(3), 90. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659212/pdf/OpenMed-06-
e80.pdf

Chmiel, F. P., Burns, D. K., Azor, M., Borca, F., Boniface, M. J., Zlatev, Z. D., White, N. M., Daniels, T.

W. V., & Kiuber, M. (2021). Using explainable machine learning to identify patients at risk of

reattendance at discharge from emergency departments. Scientific Reports 2021 11:1, 11(1), 1–11.

https://doi.org/10.1038/s41598-021-00937-9

Davazdahemami, B., Peng, P., & Delen, D. (2022). A deep learning approach for predicting early
bounce-backs to the emergency departments. Healthcare Analytics, 2.
https://doi.org/10.1016/J.HEALTH.2022.100018

Anne Elixhauser, Claudia Steiner, D. Robert Harris, & Rosanna M. Coffey. (1998). Comorbidity
Measures for Use with Administrative Data on JSTOR. Medical Care, 36, 8–27.
https://www.jstor.org/stable/3766985

Charlson, M. E., Pompei, P., Ales, K. L., & Mackenzie, C. R. (1987). A NEW METHOD OF CLASSIFYING
PROGNOSTIC COMORBIDITY IN LONGITUDINAL STUDIES: DEVELOPMENT AND VALIDATION. J Chron
Dis, 40(5), 373–383.

Chang, H. J., Chen, P. C., Yang, C. C., Su, Y. C., & Lee, C. C. (2016). Comparison of elixhauser and
charlson methods for predicting oral cancer survival. Medicine (United States), 95(7), e2861.
https://doi.org/10.1097/MD.0000000000002861

Carl van Walraven, Peter C. Austin, Alison Jennings, Hude Quan, & Alan J. Forster. (2009). A
Modification of the Elixhauser Comorbidity Measures into a Point System for Hospital Death Using
Administrative Data. Medical Care, 47, 626–633. https://www.jstor.org/stable/pdf/40221931.pdf

Brownlee Jason. (2020). Data Preparation for Machine Learning: Data Cleaning, Feature Selection,
and Data Transforms in Python. Machine Learning Mastery.
https://machinelearningmastery.com/data-preparation-for-machine-learning/

Joshi Renuka. (2016, September 9th). Accuracy, Precision, Recall & F1 Score: Interpretation of
Performance Measures - Exsilio Blog. https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-
interpretation-of-performance-measures/

Sunasra Mohammed. (2017, November 11th). Performance Metrics for Classification problems in
Machine Learning | by Mohammed Sunasra | Medium.
https://medium.com/@MohammedS/performance-metrics-for-classification-problems-in-machine-
learning-part-i-b085d432082b

https://doi.org/10.1503/CMAJ.091117
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659212/pdf/OpenMed-06-e80.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659212/pdf/OpenMed-06-e80.pdf
https://doi.org/10.1038/s41598-021-00937-9
https://doi.org/10.1016/J.HEALTH.2022.100018
https://www.jstor.org/stable/3766985
https://doi.org/10.1097/MD.0000000000002861
https://www.jstor.org/stable/pdf/40221931.pdf
https://machinelearningmastery.com/data-preparation-for-machine-learning/
https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/
https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/
https://medium.com/@MohammedS/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b
https://medium.com/@MohammedS/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b

34

Salgado, R., Moita, B., & Lopes Id, S. (2022). Frequency and patient attributes associated with
emergency department visits after discharge: Retrospective cohort study. PLOS ONE, 17(10).
https://doi.org/10.1371/JOURNAL.PONE.0275215

https://doi.org/10.1371/JOURNAL.PONE.0275215

35

APPENDIX

Charlson index: The first version of this index was developed in 1987 with 19 categories (Charlson

et al., 1987). Each comorbidity category was assigned a weight (from 1 to 6) based on the adjusted

risk of mortality or resource use. The sum of all the weights results in a single comorbidity score

for a patient, and a score of zero indicates that no comorbidities were found. The higher the score,

the higher risk of mortality or resource use (Chang et al., 2016; Charlson et al., 1987). Over time,

adaptations have been performed, such as the modifications to 17 categories, the translation from

ICD-9-CM codes to ICD-10-CM codes, and the modification of the original weights(Chang et al.,

2016).

Elixhauser index: The original Elixhauser comorbidity measure was developed in 1998 with 30

categories (Anne Elixhauser et al., 1998) where each comorbidity category is dichotomous - it is

either present or it is not- and the system required 30 binary variables (Carl van Walraven et al.,

2009). Initially, comorbidities were not simplified as an index because each comorbidity affected

outcomes differently. Later, a set of weights was developed, based on the association between

comorbidity and death, to summarise disease burden and produce an overall numeric score called

Elixhauser Index (Carl van Walraven et al., 2009).

1

	1. Introduction
	1.1. Thesis context and research questions:
	1.2. Thesis structure:

	2. Literature review
	3. Methodology
	3.1. Data understanding and integration
	3.1.1. Sources files description
	3.1.2. Data integration

	3.2. Data preparation
	3.2.1. Data transformation and feature engineering
	3.2.2. Target creation
	3.2.3. Sample selection
	3.2.4. Data pre-processing
	3.2.4.1. Data cleaning:
	3.2.4.2. Data transformation:

	3.2.5. Feature selection techniques
	3.2.5.1. Filter methods
	3.2.5.2. Wrapper methods
	3.2.5.3. Embedded methods

	3.3. Modelling
	3.3.1. Class imbalance handling
	3.3.1.1. Over-sampling
	3.3.1.2. Under-sampling
	3.3.1.3. Combining Data Undersampling and Oversampling

	3.3.2. Classification algorithms
	3.3.3. Model validation processes
	3.3.3.1. Train/Test Split
	3.3.3.2. K-fold cross-validation

	3.3.4. Performance metrics
	3.3.4.1. Confusion matrix
	3.3.4.2. Accuracy
	3.3.4.3. Precision
	3.3.4.4. Recall (Sensitivity)
	3.3.4.5. F1 score

	4. Results and discussion
	5. Conclusion, limitation and future work
	5.1. Conclusion
	5.2. Limitations
	5.3. Future work

	References
	Appendix

