
i

Master Degree Program in
Information Management

Time series forecasting by combining LSTM RNN with ARIMA
method

Akvilina Akstinaitė

Dissertation
 presented as partial requirement for obtaining the Master Degree Program in Information Management

NOVA Information Management School
Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

MGI

1

NOVA Information Management School

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

TIME SERIES FORECASTING BY COMBINING LSTM RNN WITH
ARIMA METHOD

By

Akvilina Akstinaitė

Master Thesis presented as partial requirement for obtaining the Master’s degree in Information
Management, with a specialization in Knowledge Management and Business Intelligence

Supervisor: Roberto Henriques

November 2022

2

INDEX

1 Introduction ... 5
2 Related work .. 5

2.1 ARIMA .. 6
2.2 Neural Networks .. 6
2.3 Ensemble ... 7
2.4 Research gap ... 7

3 Methodology ... 8

3.1 Data ... 8
3.2 ARIMA .. 9
3.3 LSTM RNN .. 11
3.4 Ensemble Approach ... 12
3.5 Error Assessment ... 13

4 Experimental settings ... 14

4.1 Data sets .. 14
4.2 ARIMA .. 15
4.3 LSTM .. 16

5 Results ... 16
6 Conclusions .. 18
References .. 20
Annexes .. 23

Annex 1 .. 23
Annex 2 .. 26

3

LIST OF ABBREVIATIONS AND ACRONYMS

DLNN Deep Learning Neural Network
ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
SARIMA Seasonal ARIMA
LSTM Long Short-Term Memory
RNN Recurrent Neural Network
BPTT Backpropagation Through Time
ADF Augmented Dickey Fuller
ACF Autocorrelation Function
PACF Partial Autocorrelation Function
AIC Akaike Information Criterion
TPA Turning Point Accuracy
APA Action Prediction Accuracy
AIC Akaike Information Criterion

4

Abstract
This study aims to analyze the performance of the ensemble model – the combination of Long Short-
Term Memory Recurring Neural Network model with the ARIMA model. We developed these models
separately to perform the best on their own in predicting prices 1, 7, and 14 observations ahead while
taking into account the last 30, 60 and 90 observations and checking if the combination of them
outperforms the standalone models. We evaluated the models based on RMSE and their ability to
predict the turning points. Models were developed and tested on two different types of securities –
index S&P 500 and cryptocurrency Bitcoin (BTC). The combined methods demonstrated strong
performance on BTC data set and gave at least 90% turning point prediction accuracy when predicting
the price for one observation ahead. For the S&P 500 data set, the performance of the stacked model
was poor – it outperformed the standalone models only in one test out of eighteen – while predicting
prices one observation ahead, looking back at the past 30 observations.
Keywords Reoccurring Neural Networks, Deep Learning, Long Short-Term Memory, Financial
Time Series, ARIMA.

5

1 Introduction

Analyzing financial time series has been an area of interest for the past few decades and has an
essential role in the financial market. The researchers are interested in tackling the challenging task of
predicting financial time series data due to the volatility and unknown changes in the economic
situation. On the other hand, laypeople also started to gain interest in this field. They want a quality,
wealthy life which requires more financial resources. Working more and saving up does not seem
appealing anymore – it results in less free time, making people unproductive, less happy, and
unhealthy (A. V. Whillans, 2019). Also, stress caused by issues concerning time affects happiness more
negatively than unemployment (A. Whillans, 2020). In addition to the need for more financial
resources, people are more willing to understand that money is constantly losing its buying power.
This leads people to look for alternative ways to increase their income - one of them is investing.

There are two main investment strategies – passive and active. While passive investment is a long-
term investment strategy, also called buy-and-hold strategy, that aims to benefit from the expected
market price increase over time; active investment strategy seeks short-term profits from actively
buying and selling assets. This investment strategy is relevant for financial time series analysis, more
precisely – stock price predictions. While some laypeople try to make the predictions themselves and
avoid giving the decision power to their counterparts, others tend to trust experts in their judgment
on forecasts in the stock market(Huber et al., 2019). Hence financial institutions need to have a
strategy and valid forecasting models that demonstrate financial institutions’ ability to use and divide
the investment portfolio to obtain the gains promised. Due to the fast growth of the financial market
and higher accessibility to historical data, we can use time series forecasting, which utilizes historical
time-stamped data to make future predictions. It is a helpful approach for the development of
forecasting models. Hence, lately, this approach has been used extensively in developing models for
stock price prediction (Brockwell & Davis, 2016; Shen & Shafiq, 2020).

In this work, we will focus on comparing performance of several time series forecasting methods -
an ensemble model based on ARIMA and LSTM models and standalone models. Comparisons will be
made for price predictions on two different time series – index S&P 500 and Bitcoin (BTC)
cryptocurrency historical daily prices. For both methods, we will develop models that predict the stock
open and close prices 1, 7, and 14 observations ahead based on the past 30, 60, and 90 observations.
To make the ensemble model, we will use the stacking strategy. To compare the models, we will use
statistical parameters RMSE and MAPE and their ability to predict turning points.

The structure of this paper is as follows: section 2 presents the review of relevant studies on stock
market prediction methods; section 3 makes the description of the methodology; section 4 describes
the data sets and models used in the methodology; section 5 presents the results of the experiments
performed and; section 6 makes the conclusions and presents future work.

2 Related work

There are many methods to choose from when deciding which to use for financial time series
forecasting. Some well-known ones are ARIMA family models, neural networks, and ensembles
(Brockwell & Davis, 2016; Christiansen, 2018; Mauldin et al., 2021; Shen & Shafiq, 2020; Wolpert,
1992).

6

2.1 ARIMA

ARIMA method was introduced half a century ago by Box and Jenkins(Box & Jenkins, 1970).
According to Stellwagen’s and Tashman’s (Stellwagen & Tashman, 2013) review, ARIMA models were
not widely used in business mainly because of the difficulty of finding a suitable form of the model for
the data set given. However, that changed with the discovery of methods for automatically finding the
best ARIMA model. One of the most well-known methods is the Akaike information criterion (AIC)
minimization method (Akaike, 1974, 1979),(Guthery et al., 2003). ARIMA is one of the traditional
forecasting techniques, but it is more sensitive to variability and does not perform as well when there
is no pattern in the data (Kolarik & Rudorfer, 1994). Also, this method can use only one factor for
predictions – the same factor you want to predict.

2.2 Neural Networks

Another well-known and currently most used approach to forecasting is Artificial Neural Networks.
It was the first time used in time series forecasting in 1964 (Hu & Root, 1964). More than two decades
later, Rumelhart, Hinton, and Williams (Rumelhart et al., 1986) introduced a backpropagation
algorithm called Recurrent Neural Network, which was further formulated by Werbos (Werbos, 1988).
By then, the number of publications where ANNs were applied to forecasting increased substantially.
Zhang, Patuvo and Hu (G. Zhang et al., 1998) presented a survey on all the research about ANN
applications in forecasting. They mention research comparing ANNs (specifically MLP models) with
traditional statistical methods, one of them being ARIMA. Most of them find ANNs to be superior to
ARIMA, but one research finds that “ANNs are hardly better than ARIMA” for short-term predictions
(1-step ahead) (Caire et al., 1992). ANNs are so popular in the forecasting field because of their wide
range of applications and the low amount of information on the data needed for analysis. Kolarik and
Rudorfer (Kolarik & Rudorfer, 1994) used artificial neural networks to analyze financial time series.
They also mention one of the main advantages of neural networks over ARIMA – these models are
able to describe nonlinear time series and are able to deal with increased variance. In their research,
authors find neural networks to be “viable alternatives” to already widely used techniques, and they
also point out that ANNs can be used alone or in ensemble models. Moreover, ANNs can be not only
univariate, but also multivariate.

In 1997 Hochreiter & Schmidhuber introduced a kind of RNN called Long Short-Term Memory
network(Hochreiter & Schmidhuber, 1997). It is one of currently the most attraction grabbing DLNN
models. This kind of network was proposed to overcome the main problem of RNNs – carrying over
“long-term dependencies”. Bengio, Simard and Frasconi explored this problem in-depth (Bengio et al.,
1994) and found that this problem occurs due to vanishing and exploding gradients. LSTM networks
are designed to tackle this long-term dependency problem. Moreover, these networks are capable of
learning how to connect time intervals that have more than 1000 steps even when the input sequence
is noisy and incompressible, without losing its ability to remember short-term information. However,
some research find that DL models are unreliable in cryptocurrency price predictions (Pintelas et al.,
2020). Also, these models can be too complex for a smaller data sets that can lead to overfitting
(Mauldin et al., 2021).

7

2.3 Ensemble

Another approach to the forecasting is ensemble method. Previously mentioned research on DNNs
models application for cryptocurrency prices prediction suggest that ensemble methods should be
investigated to obtain more reliability in the model (Pintelas et al., 2020). In the research that
investigates the ensemble DL models for cryptocurrency price prediction (Livieris et al., 2020) - to make
the model more reliable authors combine three deep learning models – LSTM, Bi-directional LSTM and
Convolutional NN with an ensemble method (averaging, bagging and stacking strategies used) which
in the end leads to development of ‘strong, stable, and reliable forecasting models’. Besides that,
ensemble methods are known because of their ability to outperform individual models also in
ensemble model of NN and traditional model - the combination of SARIMA and neural networks in
seasonal time series forecasting has been tested (Tseng et al., 2002) and the results showed that the
combined model is superior to stand alone models. Moreover, in one research it was found that the
ensemble mean often has an error that is 30% smaller than the median error of the individual
ensemble member (Christiansen, 2018) and it helps to deal with the overfitting problem in LSTM
models composed on small datasets (Mauldin et al., 2021).

2.4 Research gap

The performance of ARIMA and LSTM methods on financial time series were compared multiple
times, and it was found that LSTM performs better than ARIMA (Kolarik & Rudorfer, 1994; Liu, 2022;
Ma, 2020; Mahadik et al., 2021; Siami-Namini et al., 2019; Siami-Namini & Namin, 2018). Moreover,
one of these studies showed that the LSTM model outperformed the ARIMA model and reduced error
rates by 84 – 87 percent (Siami-Namini et al., 2019). In these previous researches ARIMA and LSTM
there mostly being compared against each other. Nevertheless, they could benefit from each other –
ARIMA can be only univariate. Hence combining it with LSTM would allow us to introduce more factors
in the analysis. Also, with LSTM, we get the ability to identify nonlinear relationships, and at the same
time, the ARIMA method could help avoid overfitting in the LSTM method. Considering the previous
research on using a combined model of SARIMA and LSTM(Tseng et al., 2002) there is ground to believe
that the combined model of ARIMA and LSTM would outperform independent models.

Moreover, more recent research investigated the application of the ARIMA and LSTM ensemble
method in medical and energy fields and found that the ensemble model outperformed the individual
models (Deng et al., 2020; Tang et al., 2019; Wang et al., 2020). The application of the DLNN and ARIMA
ensemble model has also been tested in the financial field, specifically for stock price or exchange rate
predictions (Fathi, 2019; Verma et al., 2022; Xiao & Su, 2022; P. G. Zhang, 2003). Though, the approach
used in these researches is different than the approach we are going to use - (P. G. Zhang, 2003) does
not use LSTM as a DLNN model, and the other three use different ensemble approaches. In (Verma et
al., 2022) the authors are making an ensemble method by choosing the prediction that falls between
the set threshold (5% price limit is considered for the threshold value). (Fathi, 2019)uses a different
ensemble approach - ARIMA to obtain trend function (seasonal component and noise are retained for
later), and then LSTM to use the retained seasonal component and noise to make the forecast of the
original time series and (Xiao & Su, 2022) uses mean errors of LSTM and ARIMA models and the weights
calculated based on them to obtain the hybrid model prediction and does not consider turning point
as comparison option. Nevertheless, all of them demonstrated good results where the ensemble
method did outperform the standalone models and (Verma et al., 2022) suggest the usage of different
ensemble methods for the future research. Hence, this study introduces a different ensemble of LSTM

8

and ARIMA models approach and aims to compare its performance against the standalone models for
short term stock price prediction.

3 Methodology

In this paper we propose the methodology with the following steps illustrated in the Figure 1.

Figure 1 - Methodology

3.1 Data

We collected the data for the historical daily stock prices of the index S&P 500 and cryptocurrency
Bitcoin (BTC) from YAHOO Finance for the period between Jan 2017 and May 2022. The dataset
contains daily information about the date and the open, high, low and close prices. We will check if
there are any missing values in the data sets, although we will not be removing any outliers, as financial
time series grow in time. As LSTM uses sigmoid and tanh functions, which are sensitive to magnitude,
we will standardize the prices using the Sciki-learn function StandardScaler. To make the comparison
more accessible, we will develop all models on standardized data.

To make LSTM models we are going to divide the data set to train, validation and test datasets. For
training we will use 70%, 10% for validation and for testing – 20% of the data. For LSTM model it is
required to have each data set in two formats. The first format will contain the information to make
the prediction and we will call it X, and the second format will have the information of what we want
to predict – we will call it Y. The first format has to be in a shape of

9

n!"#$%&! 	× 	n$"!' ×	n(&"')*&!

where n!"#$%&! is the number of samples we are going to make the model on, 𝑛+,-. – timesteps we
are going to look back at to make a prediction and n(&"')*&! is the number of features we are going to
be using. Each sample is going to have n(&"')*&! 	× 	n'/#&!'&$!	to predict the corresponding sample in
the second format. Hence, the second format has to be in a shape of

n!"#$%&! 	× 	n(&"')*&!

where n!"#$%&! is the same as in the first format and n(&"')*&! is the number of features we are going
to be predicting. We are not going to use the resampling for this model, but we are going to train and
validate each model 100 times (epochs) and we will save the best model based on lowest validation
loss.

To fit the ARIMA models, we are going to use only one data set – test. This is because in our test
case we want to make predictions based on the last 30, 60 or 90 observations, hence the model will
be developed and the prediction will be made on them. Also, for ensemble model we will need to have
the same size data set as for LSTM model. Hence this method does not require train and validation
data sets to make the model and to make the predictions we will use only testing data set which will
be the same size as for LSTM – 20% of the latest observations. Our chosen approach for ARIMA method
also does not utilize resampling (where the train data set is divided into different samples and the best
model is chosen), hence for training the model we are going to use the first 30, 60 or 90 (n$"!')
observations from the test data set and modify this set with each iteration. After each prediction is
made, we will append the data set with the next in line observation from test data set and delete the
first observation from the used data set to make the predictions leaving us with the last 30, 60 and 90
observations to make accurate predictions in the following step. This procedure will be repeated until
the predictions are made for the whole train data seta.

The data set for the ensemble model will consist of the predictions from both ARIMA and LSTM
models – predictions made on the test data set which will form a new data set for ensemble. We will
divide the new data set into 80% training and 20% testing. We will also use similar way of resampling
as used for ARIMA method – after the prediction is made, we will append the train data set with the
first observation from the test data set, but we will not be deleting any observations from train data
set as the requirement to look at the specific amount of data to make the prediction is already satisfied
while making the data set for ensemble itself.

3.2 ARIMA

According to Box and Jenkins (Box & Jenkins, 1970), time series 𝑧. , 𝑡 = 0,1,2, … is generated by
𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) process, if

𝜙(𝐵)(1 − 𝐵)0𝑧. = 𝜃(𝐵)𝑎.

where:

• 𝜙(𝐵) = ;1 − 𝜙1𝐵 −⋯− 𝜙+𝐵+=	and 𝜃	(𝐵) = (1 + 𝜃1𝐵 +⋯+ 𝜃2𝐵2 are polynomial
operators in 𝐵 of degree 𝑝 and 𝑞 respectively. 𝜙(𝐵) is called the autoregressive operator

10

𝐴𝑅(𝑝) and 𝜃(𝐵) is called the moving average operator 𝑀𝐴(𝑞). Also, these operators are
assumed to be stationary, that is the roots of 𝜙(𝐵) = 0 and 𝜃(𝐵) = 0 lie outside the unit
circle.

• (1 − 𝐵) is differencing operator with 𝑑 being the number of regular differences.
• 𝑧. is the observed value at the time 𝑡.
• 𝑎. is called Gaussian white noise with mean 0 and variance 𝛿,3.
• 𝐵 is backwards shift operator.

To define hyperparameters 𝑝, 𝑑, 𝑞 we will use multiple methods. First, we will define the
differencing operator 𝑑. Then we will use the pmdarima function auto_arima. This function discovers
the optimal order of ARIMA model by first conducting differencing tests to determine 𝑑 (This step will
be skipped, as we will specify 𝑑 to be used) and then fitting different models while minimizing AIC
value. However, with this method we are not able to specify how many days ahead we want the model
to predict, so additionally to this we will use the following method:

- Define the range for possible 𝑝 values by using Partial autocorrelation function.
- Define the range for possible 𝑞 values by using Autocorrelation function.
- Perform a grid search with different combinations of 𝑝, 𝑞 and 𝑑 values to find the best

hyperparameters for each 30, 60 and 90 observations train data set predicting 1, 7 and 14
observations ahead. We will choose the best parameters based on the lowest RMSE value.

As mentioned before, we will be redeveloping the model in each iteration by introducing new
values to the train data set:

1. Make the train data set - based on the first 30, 60 or 90 observations from test data set.
2. Train the model and make the prediction 14 time steps ahead
3. Save the 1st, 7th and 14th prediction (as it represents the observations ahead predictions we are

aiming for).
4. Append training dataset with the actual value of the next observation and delete the first value

in the training data set
5. Repeat steps 2-4 till predictions for the whole test data set are made.
This methodology is represented in Figure 2.

Figure 2 - ARIMA model methodology

11

3.3 LSTM RNN

Figure 3 – LSTM architecture

 The architecture of LSTM model can be seen above in Figure 3 and is defined by the following
equations:

𝑓. = 𝜎;𝑊45ℎ.61 +𝑊75𝑥.61 + 𝑏5=

𝑖. = 𝜎(𝑊48ℎ.61 +𝑊78𝑥.61 + 𝑏8)

𝑜. = 𝜎(𝑊49ℎ.61 +𝑊79𝑥.61 + 𝑏9)

𝑐. = 𝑓. ∗ 𝐶.61 + 𝑖. ∗ 𝑡𝑎𝑛ℎ(𝑊4:ℎ.61 +𝑊7:𝑥.61 + 𝑏:)

ℎ. = 𝑜. ∗ tanh	(𝑐.)

where 𝑓. , 𝑖. , 𝑜. , 𝑐. and ℎ. represent the forget gate, input gate, output gate, memory cell and hidden
state respectively. 𝑊 and 𝑏 are the weight matrix and bias vector, ⊗ and ⊕ denotes the element-
wise product.

The main component of LSTMs is the memory cell 𝑐. – the horizontal line in the top of the diagram.
To control the cell state we have three gates – forget, input and output – that decide on what
information is taken and what is left out by using sigmoid function 𝜎. However, for the memory cell
itself and the hidden state we will use rectifier linear activation function or ReLu, which helps with
unstable gradients problem and has shown a better performance (Brownlee, 2016).

To predict the ‘Open’ and ‘Close’ prices with LSTM we are going to use all four features – “Open”,
“High”, “Low” and “Close”.

To choose the best model we are going to try out 5 different combinations of the number of hidden
layers and neurons as follows:

- One layer with 32 neurons (code: SP_32 or BTC_32)
- One layer with 48 neurons (code: SP_48 or BTC_48)
- One layer with 64 neurons (code: SP_64 or BTC_64)
- Two layers where 1st layer with 32 neurons 2nd layer with 16 neurons (code: SP_32_16 or

BTC_32_16)
- Two layers where 1st layer with 64 neurons 2nd layer with 32 neurons (code: SP_64_32 or

BTC_64_32)

12

We are going to train models with different number of hidden layers and neurons 100 times each
and will save the best out of these 100 tries. The

To select the best model for each prediction type we will use RMSE – the model with the lowest
RMSE will be selected for stacking.

For each combination of hidden layers the methodology for making LSTM model is presented in
Figure 4.

Figure 4 - LSTM model methodology

3.4 Ensemble Approach

We chose to use stacking as an ensemble method in this work. Stacking or stacked
generalization is a technique which aims to achieve highest generalization accuracy possible (Wolpert,
1992). In this technique we use the first-level learners (base models) to generate a new data set called
meta-dataset (made out of results of first-level learners) for second-level learner (meta learner). For
regression tasks linear regression is usually used as meta learner. To avoid bias it is recommended to
train first-level learners on a different training set than the one used to generate meta-dataset,
therefore we are having 20% of the data set for testing

For stacking method we will use predictions from base learners. Depending on the number of
observations to future we will be predicting, ARIMA predictions data set might be longer than from
LSTM (, hence we will choose only applicable predictions from ARIMA model based on LSTM
predictions interval. To make the stacking model we used similar approach as with ARIMA model:

1. Divide the dataset in train and test sets.
2. Fit the model on the training dataset (used Logistic Regression as meta learner) aiming for the

corresponding value from the original test data set
3. Make predictions on new test data set and save the first prediction.
4. Append train data set with the corresponding value from original test dataset.
5. Repeat steps 1-4 for the whole test data set.
This methodology is represented in Figure 5.

Figure 5 - Stacking model methodology

13

3.5 Error Assessment

To evaluate our forecasting, we will be using two main statistical criteria:
• Root Mean Square Error (RMSE)
• Mean Absolute Percentage Error (MAPE)
RMSE and MAPE can be described by the following equations respectively:

𝑅𝑀𝑆𝐸 = RS
(𝑃. − 𝑍.)3

𝑇

;

.<1

𝑀𝐴𝑃𝐸 =
1
𝑇
S

𝑃. − 𝑍.
𝑍.

;

.<1

where 𝑃. is the predicted value at time 𝑡, 𝑍. is the actual value at time 𝑡 and 𝑇	is the number of
predictions.

In addition to the statistical evaluation methods, in stock markets, it is also essential to understand
how good the model is in predicting the turning points or if the model can make the right decision
based on predicted price changes. To predict the turning points correctly the following has to be met:

𝑠𝑖𝑔𝑛 Y𝑃. − 𝑃.6=!"#"$%Z = 𝑠𝑖𝑔𝑛(𝑍. − 𝑍.6=!"#"$%)

Hence we are going to calculate the Turning Point Accuracy (TPA) with the following formula:

𝑇𝑃𝐴 =
1
𝑇
S𝐴. ⟺ 𝑡
;

.<1

where	

\

𝐴. = 1	𝑖𝑓	∆𝑍. > 0
𝐴. = 0	𝑖𝑓	∆𝑍. ≤ 0
𝐹. = 1	𝑖𝑓	∆𝑃. > 0
𝐹. = 0	𝑖𝑓	∆𝑃. ≤ 0

	

Moreover, we are going to implement a method proposed by (Chen et al., 2021) which evaluates the
turning point prediction based on calculated “Buy” or “Sell” signal. We will adapt the method to our
use case and define the signal for the actual prices and the forecasted value using the following
method:

1. Calculate the difference of the actual (𝐴.) and forecasted (𝐹.) stock price:

𝐹. = 𝑃.>=!"#"$% − 𝑍.

𝐴. = 𝑍.>=!"#"$% − 𝑍.

2. Calculate the change rates:

𝐹𝑟. =
𝐹.
𝑍;

14

𝐴𝑟. =
𝐴.
𝑍;

3. If the change rate is greater than 𝜃 the time point 𝑡 + 𝑛5?.?@A is signed as “Buy” signal. If the
change rate is less than −𝜃 the time point 𝑇 is signed as “Sell” signal. For the change rates
between 𝜃 and −𝜃 we are going to assign “Hold” signal.

4. If the signal for 𝐴𝑟. is equal to the signal for 𝐹𝑟., we are going to count it as correct classification
and sum all of them.

5. Calculate the Action Prediction Accuracy (APA) of the correct classifications by dividing the
sum of correct classification by 𝑇.

To test the APA we chose to use the 5% threshold.

4 Experimental settings

4.1 Data sets

S&P 500

The shape of the data before processing is (1357, 5), which means that we have 1357 observations
and five features in each observation. No missing values were detected in the data set. We removed
the ‘Date’ feature from the further analysis, as we will be using only Open High, Low and Close prices
for the predictions. Main statistics for the data (rounded till 2 digits after comma):

 Open High Low Close
Mean 3211.64 3228.71 3192.62 3211.76
Standard deviation 719.67 724.38 714.27 719.45
Min 2251.57 2263.88 2191.86 2237.4
Max 4804.51 4818.62 4780.04 4796.56

Table 1 – S&P 500 main statistics before processing

After the standardization, the mean and standard deviation became 0 and 1, respectively, and min
and max values as follows (rounded till two digits after the comma):

 Open High Low Close

Min -1.33 -1.33 -1.4 -1.35
Max 2.21 2.19 2.22 2.2

Table 2 – S&P 500 min and max values after processing

After splitting the data set for ARIMA model the test data set contains 1085 observations and test
data set contains 272 observations.

The shapes of data for LSTM models after splitting and reshaping the data as well as the data set
sizes for stacking model can be seen in Table 8 in Annex 2.

BTC

The shape of the data before processing is (1969, 7), which means that we have 1969 observations
and 7 features in each observation. Two additional features in this data set are ‘Adj. Close’ and
‘Volume’. No missing values were detected in the data set. We removed the ‘Date’, ‘Adj. Close’ and

15

‘Volume’ features from further analysis, as we will be using only Open High, Low and Close prices for
the predictions. Main statistics for the data (rounded till 2 digits after comma):

 Open High Low Close
Mean 17261.92 17716.21 16757.33 17273.93
Standard deviation 17586.23 18040.13 17057.70 17580.01
Min 775.18 67549.73 755.76 777.76
Max 67549.73 68789.62 66382.06 67566.83

Table 3 – BTC main statistics before processing

After the standardization the mean and standard deviation became 0 and 1 respectively, and min
and max values as follows (rounded till 2 digits after comma):

 Open High Low Close
Min -0.94 -

0.94
-

0.94
-0.94

Max 2.83 2.83 2.91 2.86
Table 4 – BTC min and max values after processing

After splitting the data set for ARIMA model the test data set contains 1575 observations and test
data set contains 394 observations.
The shapes of data for LSTM models after splitting and reshaping the data as well as the data set sizes
for stacking model can be seen in Table 9 in Annex 2.

4.2 ARIMA

First we are going to define 𝑑 – the number of differences. For this we will first check the stationary
of the time series with Augmented Dickey Fuller test.

For S&P 500 Open price data series 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.713, which is way above the significance level
0.05	(5%). After differencing the time series 1 time 𝑝	 − 𝑣𝑎𝑙𝑢𝑒 = 0.00, hence we defined 𝑑 = 1. For
Close price data series 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.708, which is also way above the significance level 0.05	(5%).
After differencing the time series 1 time 𝑝	 − 𝑣𝑎𝑙𝑢𝑒 = 0.00, hence we defined 𝑑 = 1. For BTC Open
price data series 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.575, which is above the significance level. After differencing the time
series 1 time 𝑝	 − 𝑣𝑎𝑙𝑢𝑒 = 0.00, hence we defined 𝑑 = 1. For BTC Close price data series 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
0.585, which is also above the significance level. After differencing the time series 1 time 𝑝	 − 𝑣𝑎𝑙𝑢𝑒 =
0.00, hence we defined 𝑑 = 1.

For auto_arima function we specified these parameters:

𝑎𝑢𝑡𝑜_𝑎𝑟𝑖𝑚𝑎	 = 	 (𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎, 𝑡𝑒𝑠𝑡 = ”	𝑎𝑑𝑓”, 𝑑 = 1, 𝑡𝑟𝑎𝑐𝑒 = 𝑇𝑟𝑢𝑒)

Models chosen as the best ones by this function are as follows:

Obs.
back

BTC S&P 500
Open Close Open Close

30 (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0)
60 (0, 1, 0) (0, 1, 0) (0, 1, 0) (2, 1, 2)
90 (0, 1, 0) (0, 1, 0) (0, 1, 0) (2, 1, 2)

Table 5 - Best models from auto_arima function

16

From partial autocorrelation and autocorrelation graphs for S&P 500 Open and BTC Open and Close
price series in Annexes

Annex 1 we see that after 0, the first point to stand above the significance line in all graphs is 9.
Hence for these time series the range for 𝑝 = [0,9] and the range for 𝑞 = [0,9]. From S&P 500 Close
price data series partial autocorrelation graphs in Annexes

Annex 1 we see that after 0, the first point to stand above the significance line is 2, hence the range
for 𝑝 = [0,2]. Based on autocorrelation plot we can see that the first point to stand above the
significance line is 9, hence the range for 𝑞 = [0,9].

After performing the grid search with specified parameter ranges for applicable models we define
that the parameters for all models are (0, 1, 0) except for one - for BTC Close time series model looking
back 60 observations and predicting 14 observations forward ARIMA parameters (3,1,3) demonstrated
the best performance than comparing RMSE.

We are going to use the parameters defined by the grid search.

4.3 LSTM

The models we selected can be seen bellow:

Obs.
ahead

Data set
Observations to look back

30 60 90
1 S&P 500 Open SP_48 SP_48 SP_64

BTC Open BTC_48 BTC_64 BTC_64
S&P 500 Close SP_64_32 SP_64 SP_64
BTC Close BTC_64 BTC_48 BTC_64

7 S&P 500 Open SP_48 SP_32_16 SP_48
BTC Open BTC_ 32 BTC_48 BTC_48
S&P 500 Close SP_64 SP_32_16 SP_64
BTC Close BTC_64 BTC_ 64 BTC_32

14 S&P 500 Open SP_48 SP_ 32 SP_32_16
BTC Open BTC_64 BTC_ 64 BTC_64_32
S&P 500 Close SP_64_32 SP_32_16 SP_32
BTC Close BTC_48 BTC_48 BTC_32

Table 6 – Best LSTM models for S&P 500 and BTC data sets

5 Results

Table 7 presents the results for standalone and stacked models on Open and Close price time-series
predictions.

Obs. back/ahead,

Model
Open Model Close

RMSE MAPE TPA APA RMSE MAPE TPA APA

30
/1

S&
P

50
0 ARIMA 0.064 0.029 0.491 0.819 0.090 0.043 0.509 0.697

SP_48 0.035 0.178 0.814 0.880 SP_64_32 0.085 0.182 0.517 0.727
Stacked 0.033 0.020 0.898 0.857 0.104 0.062 0.510 0.571

BT
C ARIMA 0.039 0.179 0.509 0.880 0.027 0.117 0.509 0.868

BTC_48 0.032 1.150 0.462 0.904 BTC_64 0.017 1.263 0.692 0.937

17

Stacked 0.007 0.007 0.685 1.000 0.002 0.002 0.781 1.000
60

/1

S&
P

50
0 ARIMA 0.025 0.012 0.867 0.893 0.067 0.032 0.483 0.804

SP_48 0.030 0.175 0.868 0.892 SP_64 0.085 0.184 0.538 0.783
Stacked 0.032 0.020 0.953 0.814 0.104 0.060 0.488 0.581

BT
C

ARIMA 0.039 0.179 0.519 0.870 0.026 0.116 0.537 0.865
BTC_64 0.014 0.173 0.455 0.961 BTC_48 0.006 0.174 0.793 0.976
Stacked 0.003 0.002 0.448 1.000 0.001 0.001 0.791 1.000

90
/1

S&
P

50
0 ARIMA 0.025 0.011 0.860 0.904 0.067 0.032 0.498 0.804

SP_64 0.034 0.191 0.835 0.879 SP_64 0.152 0.215 0.500 0.291
Stacked 0.034 0.021 0.946 0.757 0.110 0.065 0.459 0.568

BT
C

ARIMA 0.039 0.179 0.517 0.870 0.026 0.116 0.483 0.863
BTC_64 0.013 0.115 0.378 0.993 BTC_64 0.006 0.117 0.674 0.993
Stacked 0.002 0.002 0.475 1.000 0.002 0.002 0.361 1.000

30
/7

S&
P

50
0 ARIMA 0.150 0.072 0.587 0.483 0.159 0.077 0.475 0.392

SP_48 0.452 0.255 0.441 0.281 SP_64 0.205 0.167 0.483 0.277
Stacked 0.219 0.137 0.583 0.352 0.237 0.152 0.521 0.278

BT
C

ARIMA 0.073 0.278 0.501 0.788 0.070 0.282 0.549 0.742
BTC_32 0.071 1.041 0.358 0.775 BTC_64 0.068 1.143 0.394 0.835
Stacked 0.006 0.005 0.528 0.923 0.007 0.005 0.569 0.923

60
/7

S&
P

50
0 ARIMA 0.149 0.072 0.587 0.487 0.159 0.077 0.471 0.392

SP_32_16 0.320 0.204 0.330 0.297 SP_32_16 0.585 0.292 0.495 0.335
Stacked 0.221 0.139 0.500 0.354 0.240 0.156 0.381 0.188

BT
C

ARIMA 0.073 0.276 0.504 0.780 0.069 0.282 0.567 0.736
BTC_48 0.048 0.159 0.369 0.793 BTC_64 0.047 0.161 0.345 0.841
Stacked 0.005 0.005 0.515 0.917 0.005 0.005 0.561 0.917

90
/7

S&
P

50
0 ARIMA 0.149 0.072 0.587 0.494 0.159 0.077 0.510 0.392

SP_48 0.258 0.170 0.511 0.379 SP_64 1.100 0.604 0.557 0.396
Stacked 0.228 0.148 0.500 0.310 0.243 0.161 0.250 0.190

BT
C

ARIMA 0.073 0.276 0.491 0.780 0.069 0.282 0.522 0.731
BTC_48 0.035 0.112 0.352 0.901 BTC_32 0.036 0.116 0.339 0.885
Stacked 0.006 0.005 0.467 0.909 0.005 0.005 0.817 0.909

30
/1

4 S&
P

50
0 ARIMA 0.217 0.106 0.584 0.310 0.227 0.112 0.461 0.256

SP_48 2.411 1.326 0.546 0.368 SP_64_32 4.188 1.888 0.410 0.277
Stacked 0.342 0.223 0.630 0.271 0.363 0.243 0.500 0.237

BT
C

ARIMA 0.111 0.405 0.510 0.697 0.107 0.432 0.553 0.653
BTC_64 0.098 0.818 0.305 0.124 BTC_48 0.100 0.948 0.288 0.124
Stacked 0.007 0.006 0.775 0.845 0.009 0.009 0.268 0.845

60
/1

4 S&
P

50
0 ARIMA 0.216 0.106 0.576 0.326 0.225 0.111 0.473 0.256

SP_32 0.434 0.208 0.523 0.340 SP_32_16 3.120 1.374 0.442 0.325
Stacked 0.383 0.263 0.375 0.189 0.387 0.264 0.575 0.208

BT
C

ARIMA 0.114 0.402 0.501 0.700 0.111 0.430 0.471 0.663
BTC_64 0.073 0.155 0.280 0.060 BTC_48 0.079 0.158 0.259 0.048
Stacked 0.007 0.006 0.692 0.833 0.008 0.007 0.215 0.833

90
/1

4 S&
P

50
0 ARIMA 0.216 0.106 0.584 0.326 0.225 0.111 0.510 0.256

SP_32_16 0.835 0.438 0.568 0.412 SP_32 1.079 0.586 0.550 0.434
Stacked 0.372 0.262 0.529 0.170 0.418 0.304 0.206 0.064

BT
C

ARIMA 0.110 0.403 0.488 0.697 0.107 0.431 0.559 0.642
BTC_
64_32 0.051 0.125 0.447 0.714 BTC_32 0.042 0.111 0.254 0.783

Stacked 0.007 0.007 0.271 0.819 0.007 0.006 0.525 0.819

18

Table 7 - Model comparison for Open and Close price predictions (best values in bold)

First of all we can notice, that considering statistical model evaluation criteria, RMSE and MAPE,

and turning point prediction evaluation criteria APA all stacked models on both, Open and Close, time
series of BTC prices performed better than standalone models. Considering TPA – 8 out of 18 times it
was also better for the stacked model than standalone. 8 out of 10 times then it underperformed the
standalone model comparing TPA it was ARIMA model that had the best performance. Although
overall the performance in predicting the turning point was low for BTC time series – it went above
80% accuracy only once while predicting BTC Close prices 7 observations ahead with 90 previous
observations. It is worth mentioning, that in this case standalone models predicted the turning point
correctly only 52% (ARIMA) and 34% (BTC_48). Also, the best model chosen for BTC LSTM models was
always with 1 hidden layer, except when making the model looking back 90 observations and
predicting 14 observations ahead the deepest and widest LSTM was chosen – 2 hidden layers with 64
and 32 neurons.

Considering the stacked models’ behavior on S&P 500 data set – 11 out 18 times it underperformed
in all criteria compared to standalone models. The worst performance of stacked models was observed
while predicting Close prices. In fact, in these predictions it outperformed standalone models only 3
times out of 9 and only in one evaluation criteria – Turning Point Accuracy, and it was not more than
58%. 6 times out of 18 it underperformed standalone models in 3 criteria and the one measure that it
performed better at was TPA. Though worthy to mention, that 2 times the turning point prediction
accuracy was at least 90% – while predicting the Open prices 1 observation ahead looking back 30, 60
and 90 observations. For all of the other models TPA was mainly around 50%. Overall the performance
of LSTM networks decreased in Close price predictions than we gave them more observations to look
back at in case on 1 and 7 observations ahead prediction. In the prediction of 14 observations ahead
LSTM models performance improved with the bigger amount of history data. While it was not the case
with Open price predictions. In both, Open and Close price predictions, ARIMA was the dominant best
performing model.

6 Conclusions

In this study we test the usage of stacking ensemble learning method with statistical model ARIMA
and RNN LSTM in forecasting the prices for the index S&P500 and cryptocurrency Bitcoin. The
ensemble models are composed of the best performing ARIMA and LSTM models and their
performance is check against the standalone models. We evaluated classification and regression
performance of standalone and stacked models.

It was found that combining ARIMA method with LSTM by stacking (using linear regression as meta
learner) does show better performance in predicting price for 1, 7 and 14 observations ahead on
Bitcoin crypto currency data set. Although for turning point prediction accuracy it shares the same
success rate as ARIMA models. LSTM models on BTC dataset outperformed the Stacked and ARIMA
only 2 times out of 18 in turning point prediction accuracy. Although the highest reached accuracy for
BTC data set was 79% (by LSTM model). On the other hand, when we look at the models’ performance
on S&P 600 prices data set, stacked model most of the times underperformed the individual models.
Despite that, the best performance of the stacked model was observed on Open price predictions 1
day ahead and the turning point accuracy achieved by this model was at least 90%.

19

For the future work it would be worthy to study the importance of other factors than Open, High,
Low and Close prices of the stock – such as Volume (as it identifies the total number of shares
bought/sold), sentiment analysis and level of the earnings base (e. g. Price-to-Earnings ratio). Another
area worthy of interest is the study of the benefit of these forecast models with metrics that test the
performance based on earnings. Lastly, the ability of the models to identify the outliers in the stock
price time series could be tested in order to identify the market instability and adapt decisions based
on that.

20

References

Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Transactions on Automatic
Control, 19(6). https://doi.org/10.1109/TAC.1974.1100705

Akaike, H. (1979). A Bayesian extension of the minimum aic procedure of autoregressive model fitting.
Biometrika, 66(2). https://doi.org/10.1093/biomet/66.2.237

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning Long-Term Dependencies with Gradient Descent
is Difficult. IEEE Transactions on Neural Networks, 5(2). https://doi.org/10.1109/72.279181

Box, G., & Jenkins, G. (1970). Time Series Analysis: Forecasting and Control. Holden-Day.
Brockwell, P. J., & Davis, R. A. (2016). Introduction to Time Series and Forecasting. Springer

International Publishing. https://doi.org/10.1007/978-3-319-29854-2
Brownlee, J. (2016). Deep Learning With Python Develop Deep Learning Models On Theano And

TensorFlow Using Keras i Deep Learning With Python. Machine Learning Mastery.
Caire, P., Hatabian, G., & Muller, C. (1992). Progress in Forecasting by Neural Networks. Proceedings

of the International Joint Conference on Neural Networks, 2.
https://doi.org/10.1109/IJCNN.1992.226932

Chen, J., Yang, S., Zhang, D., & Nanehkaran, Y. A. (2021). A turning point prediction method of stock
price based on RVFL-GMDH and chaotic time series analysis. Knowledge and Information Systems,
63(10). https://doi.org/10.1007/s10115-021-01602-3

Christiansen, B. (2018). Ensemble averaging and the curse of dimensionality. Journal of Climate, 31(4).
https://doi.org/10.1175/JCLI-D-17-0197.1

Deng, Y., Fan, H., & Wu, S. (2020). A hybrid ARIMA-LSTM model optimized by BP in the forecast of
outpatient visits. Journal of Ambient Intelligence and Humanized Computing.
https://doi.org/10.1007/s12652-020-02602-x

Fathi, O. (2019). Time series forecasting using a hybrid ARIMA and LSTM model. Velvet Consulting.
Guthery, F. S., Burnham, K. P., & Anderson, D. R. (2003). Model Selection and Multimodel Inference: A

Practical Information-Theoretic Approach. The Journal of Wildlife Management, 67(3).
https://doi.org/10.2307/3802723

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8).
https://doi.org/10.1162/neco.1997.9.8.1735

Hu, M. J. C., & Root, H. E. (1964). An Adaptive Data Processing System for Weather Forecasting. Journal
of Applied Meteorology, 3(5). https://doi.org/10.1175/1520-
0450(1964)003<0513:aadpsf>2.0.co;2

Huber, C., Huber, J., & Hueber, L. (2019). The effect of experts’ and laypeople’s forecasts on others’
stock market forecasts. Journal of Banking and Finance, 109.
https://doi.org/10.1016/j.jbankfin.2019.105662

Kolarik, T., & Rudorfer, G. (1994). Time series forecasting using neural networks. Proceedings of the
International Conference on APL : The Language and Its Applications, APL 1994.
https://doi.org/10.1145/190271.190290

Liu, P. (2022). Time Series Forecasting Based on ARIMA and LSTM. Proceedings of the 2022 2nd
International Conference on Enterprise Management and Economic Development (ICEMED 2022),
1203–1208. https://doi.org/10.2991/aebmr.k.220603.195

Livieris, I. E., Pintelas, E., Stavroyiannis, S., & Pintelas, P. (2020). Ensemble Deep learning models for
forecasting cryptocurrency time-series. Algorithms, 13(5). https://doi.org/10.3390/A13050121

21

Ma, Q. (2020). Comparison of ARIMA, ANN and LSTM for Stock Price Prediction. E3S Web of
Conferences, 218. https://doi.org/10.1051/e3sconf/202021801026

Mahadik, A., Vaghela, D., & Mhaisgawali, A. (2021). Stock Price Prediction using LSTM and ARIMA.
Proceedings of the 2nd International Conference on Electronics and Sustainable Communication
Systems, ICESC 2021. https://doi.org/10.1109/ICESC51422.2021.9532655

Mauldin, T., Ngu, A. H., Metsis, V., & Canby, M. E. (2021). Ensemble Deep Learning on Wearables Using
Small Datasets. ACM Transactions on Computing for Healthcare, 2(1).
https://doi.org/10.1145/3428666

Pintelas, E., Livieris, I., Stavroyiannis, S., Kotsilieris, T., & Pintelas, P. (2020). Fundamental Research
Questions and Proposals on Predicting Cryptocurrency Prices using DNNs.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error
propagation. In: Rumelhart D E, McClelland J L et al. (eds.) Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. MIT Press, Cambridge, MA, 1(V).

Shen, J., & Shafiq, M. O. (2020). Short-term stock market price trend prediction using a comprehensive
deep learning system. Journal of Big Data, 7(1), 66. https://doi.org/10.1186/s40537-020-00333-
6

Siami-Namini, S., & Namin, A. S. (2018). Forecasting Economics and Financial Time Series: ARIMA vs.
LSTM.

Siami-Namini, S., Tavakoli, N., & Siami Namin, A. (2019). A Comparison of ARIMA and LSTM in
Forecasting Time Series. Proceedings - 17th IEEE International Conference on Machine Learning
and Applications, ICMLA 2018. https://doi.org/10.1109/ICMLA.2018.00227

Stellwagen, E., & Tashman, L. (2013). ARIMA: The Models of Box and Jenkins. Foresight: The
International Journal of Applied Forecasting, 30.

Tang, L., Yi, Y., & Peng, Y. (2019). An ensemble deep learning model for short-term load forecasting
based on ARIMA and LSTM. 2019 IEEE International Conference on Communications, Control, and
Computing Technologies for Smart Grids, SmartGridComm 2019.
https://doi.org/10.1109/SmartGridComm.2019.8909756

Tseng, F. M., Yu, H. C., & Tzeng, G. H. (2002). Combining neural network model with seasonal time
series ARIMA model. Technological Forecasting and Social Change, 69(1).
https://doi.org/10.1016/S0040-1625(00)00113-X

Verma, S., Prakash Sahu, S., & Prasad Sahu, T. (2022). Ensemble Approach for Stock Market Forecasting
Using ARIMA and LSTM Model. https://doi.org/10.1007/978-981-16-7330-6_6

Wang, Z., Qu, J., Fang, X., Li, H., Zhong, T., & Ren, H. (2020). Prediction of early stabilization time of
electrolytic capacitor based on ARIMA-Bi_LSTM hybrid model. Neurocomputing, 403.
https://doi.org/10.1016/j.neucom.2020.03.054

Werbos, P. J. (1988). Generalization of backpropagation with application to a recurrent gas market
model. Neural Networks, 1(4). https://doi.org/10.1016/0893-6080(88)90007-X

Whillans, A. (2020). Time Smart: How to Reclaim Your Time and Live a Happier Life. Harvard Business
Review Press.

Whillans, A. V. (2019). Time for Happiness: Why the Pursuit of Money Isn’t Bringing You Joy—and What
Will. Harvard Business Review (Website) , Special Issue on HBR Big Idea: Time Poor and Unhappy.

Wolpert, D. H. (1992). Original Contribution: Stacked Generalization. Neural Netw., 5(2).
Xiao, D., & Su, J. (2022). Research on Stock Price Time Series Prediction Based on Deep Learning and

Autoregressive Integrated Moving Average. Scientific Programming, 2022, 1–12.
https://doi.org/10.1155/2022/4758698

22

Zhang, G., Eddy Patuwo, B., & Y. Hu, M. (1998). Forecasting with artificial neural networks: The state
of the art. International Journal of Forecasting, 14(1). https://doi.org/10.1016/S0169-
2070(97)00044-7

Zhang, P. G. (2003). Time series forecasting using a hybrid ARIMA and neural network model.
Neurocomputing, 50. https://doi.org/10.1016/S0925-2312(01)00702-0

23

Annexes

Annex 1

S&P 500 Open price time series

S&P 500 Close price time series

24

BTC Open price time series

25

BTC 500 Close price time series

26

Annex 2

Obs.
ahead

Observations to look back to the future
30 60 90

1 X for train: (919, 30, 4),
Y for train: (919, 1),
X for validation: (106, 30, 4),
Y for validation: (106, 1),
X for test: (242, 30, 4),
Y for test: (242, 1).

Stacking data set size: 242,
Train size: 194,
Test size: 48

X for train: (889, 60, 4),
Y for train: (889, 1),
X for validation: (76, 60, 4),
Y for validation: (76, 1),
X for test: (212, 60, 4),
Y for test: (212, 1).

Stacking data set size: 212,
Train size: 170,
Test size: 42

X for train: (859, 90, 4),
Y for train: (859, 1),
X for validation: (46, 90, 4),
Y for validation: (46, 1),
X for test: (182, 90, 4),
Y for test: (182, 1).

Stacking data set size: 182,
Train size: 146,
Test size: 36

7 X for train: (913, 30, 4),
Y for train: (913, 1),
X for validation: (100, 30, 4),
Y for validation: (100, 1),
X for test: (236, 30, 4),
Y for test: (236, 1).

Stacking data set size: 236,
Train size: 189,
Test size: 47

X for train: (883, 60, 4),
Y for train: (883, 1),
X for validation: (70, 60, 4),
Y for validation: (70, 1),
X for test: (206, 60, 4),
Y for test: (206, 1).

Stacking data set size: 206,
Train size: 165,
Test size: 41

X for train: (853, 90, 4),
Y for train: (853, 1),
X for validation: (40, 90, 4),
Y for validation: (40, 1),
X for test: (176, 90, 4),
Y for test: (176, 1).

Stacking data set size: 176,
Train size: 141,
Test size: 35

14 X for train: (906, 30, 4),
Y for train: (906, 1),
X for validation: (93, 30, 4),
Y for validation: (93, 1),
X for test: (229, 30, 4),
Y for test: (229, 1).

Stacking data set size: 229,
Train size: 183,
Test size: 46

X for train: (876, 60, 4),
Y for train: (876, 1),
X for validation: (63, 60, 4),
Y for validation: (63, 1),
X for test: (199, 60, 4),
Y for test: (199, 1).

Stacking data set size: 199,
Train size: 159,
Test size: 40

X for train: (846, 90, 4),
Y for train: (846, 1),
X for validation: (33, 90, 4),
Y for validation: (33, 1),
X for test: (169, 90, 4),
Y for test: (169, 1).

Stacking data set size: 169,
Train size: 135,
Test size: 34

Table 8 – S&P data shapes after transformation

Obs.

Ahead
Observations to look back to the future

30 60 90
1 X for train: (1348, 30, 4),

Y for train: (1348, 1),
X for validation: (167, 30, 4),
Y for validation: (167, 1),
X for test: (364, 30, 4),
Y for test: (364, 1).

X for train: (1318, 60, 4),
Y for train: (1318, 1),
X for validation: (137, 60, 4),
Y for validation: (137, 1),
X for test: (334, 60, 4),
Y for test: (334, 1).

X for train: (1288, 90, 4),
Y for train: (1288, 1),
X for validation: (107, 90, 4),
Y for validation: (107, 1),
X for test: (304, 90, 4),
Y for test: (304, 1).

27

Stacking data set size: 364,
Train size: 291,
Test size: 73.

Stacking data set size: 334,
Train size: 267,
Test size: 67.

Stacking data set size: 304,
Train size: 243,
Test size: 61.

7 X for train: (1342, 30, 4),
Y for train: (1342, 1),
X for validation: (161, 30, 4),
Y for validation: (161, 1),
X for test: (358, 30, 4),
Y for test: (358, 1).

Stacking data set size: 358,
Train size: 286,
Test size: 72.

X for train: (1312, 60, 4),
Y for train: (1312, 1),
X for validation: (131, 60, 4),
Y for validation: (131, 1),
X for test: (328, 60, 4),
Y for test: (328, 1).

Stacking data set size: 328,
Train size: 262,
Test size: 66.

X for train: (1282, 90, 4),
Y for train: (1282, 1),
X for validation: (101, 90, 4),
Y for validation: (101, 1),
X for test: (298, 90, 4),
Y for test: (298, 1).

Stacking data set size: 298,
Train size: 238,
Test size: 60.

14 X for train: (1335, 30, 4),
Y for train: (1335, 1),
X for validation: (154, 30, 4),
Y for validation: (154, 1),
X for test: (351, 30, 4),
Y for test: (351, 1).

Stacking data set size: 351,
Train size: 281,
Test size: 70.

X for train: (1305, 60, 4),
Y for train: (1305, 1),
X for validation: (124, 60, 4),
Y for validation: (124, 1),
X for test: (321, 60, 4),
Y for test: (321, 1).

Stacking data set size: 321,
Train size: 257,
Test size: 64.

X for train: (1275, 90, 4),
Y for train: (1275, 1),
X for validation: (94, 90, 4),
Y for validation: (94, 1),
X for test: (291, 90, 4),
Y for test: (291, 1).

Stacking data set size: 291,
Train size: 233,
Test size: 58.

Table 9 – BTC data shapes after transformation

