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Abstract  
This study aims to analyze the performance of the ensemble model – the combination of Long Short-
Term Memory Recurring Neural Network model with the ARIMA model. We developed these models 
separately to perform the best on their own in predicting prices 1, 7, and 14 observations ahead while 
taking into account the last 30, 60 and 90 observations and checking if the combination of them 
outperforms the standalone models. We evaluated the models based on RMSE and their ability to 
predict the turning points. Models were developed and tested on two different types of securities – 
index S&P 500 and cryptocurrency Bitcoin (BTC). The combined methods demonstrated strong 
performance on BTC data set and gave at least 90% turning point prediction accuracy when predicting 
the price for one observation ahead. For the S&P 500 data set, the performance of the stacked model 
was poor – it outperformed the standalone models only in one test out of eighteen – while predicting 
prices one observation ahead, looking back at the past 30 observations. 
Keywords Reoccurring Neural Networks, Deep Learning, Long Short-Term Memory, Financial 
Time Series, ARIMA. 
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1 Introduction 

Analyzing financial time series has been an area of interest for the past few decades and has an 
essential role in the financial market. The researchers are interested in tackling the challenging task of 
predicting financial time series data due to the volatility and unknown changes in the economic 
situation. On the other hand, laypeople also started to gain interest in this field. They want a quality, 
wealthy life which requires more financial resources. Working more and saving up does not seem 
appealing anymore – it results in less free time, making people unproductive, less happy, and 
unhealthy (A. V. Whillans, 2019). Also,  stress caused by issues concerning time affects happiness more 
negatively than unemployment (A. Whillans, 2020). In addition to the need for more financial 
resources, people are more willing to understand that money is constantly losing its buying power. 
This leads people to look for alternative ways to increase their income - one of them is investing.  

There are two main investment strategies – passive and active. While passive investment is a long-
term investment strategy, also called buy-and-hold strategy, that aims to benefit from the expected 
market price increase over time; active investment strategy seeks short-term profits from actively 
buying and selling assets. This investment strategy is relevant for financial time series analysis, more 
precisely – stock price predictions. While some laypeople try to make the predictions themselves and 
avoid giving the decision power to their counterparts, others tend to trust experts in their judgment 
on forecasts in the stock market(Huber et al., 2019). Hence financial institutions need to have a 
strategy and valid forecasting models that demonstrate financial institutions’ ability to use and divide 
the investment portfolio to obtain the gains promised. Due to the fast growth of the financial market 
and higher accessibility to historical data, we can use time series forecasting, which utilizes historical 
time-stamped data to make future predictions. It is a helpful approach for the development of 
forecasting models. Hence, lately, this approach has been used extensively in developing models for 
stock price prediction (Brockwell & Davis, 2016; Shen & Shafiq, 2020). 

In this work, we will focus on comparing performance of several time series forecasting methods - 
an ensemble model based on ARIMA and LSTM models and standalone models. Comparisons will be 
made for price predictions on two different time series – index S&P 500 and Bitcoin (BTC) 
cryptocurrency historical daily prices. For both methods, we will develop models that predict the stock 
open and close prices 1, 7, and 14 observations ahead based on the past 30, 60, and 90 observations. 
To make the ensemble model, we will use the stacking strategy. To compare the models, we will use 
statistical parameters RMSE and MAPE and their ability to predict turning points.  

The structure of this paper is as follows: section 2 presents the review of relevant studies on stock 
market prediction methods; section 3 makes the description of the methodology; section 4 describes 
the data sets and models used in the methodology; section 5 presents the results of the experiments 
performed and; section 6 makes the conclusions and presents future work. 

2 Related work 

There are many methods to choose from when deciding which to use for financial time series 
forecasting. Some well-known ones are ARIMA family models, neural networks, and ensembles 
(Brockwell & Davis, 2016; Christiansen, 2018; Mauldin et al., 2021; Shen & Shafiq, 2020; Wolpert, 
1992). 
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2.1 ARIMA 

ARIMA method was introduced half a century ago by Box and Jenkins(Box & Jenkins, 1970). 
According to Stellwagen’s and Tashman’s (Stellwagen & Tashman, 2013) review, ARIMA models were 
not widely used in business mainly because of the difficulty of finding a suitable form of the model for 
the data set given. However, that changed with the discovery of methods for automatically finding the 
best ARIMA model. One of the most well-known methods is the Akaike information criterion (AIC) 
minimization method (Akaike, 1974, 1979),(Guthery et al., 2003). ARIMA is one of the traditional 
forecasting techniques, but it is more sensitive to variability and does not perform as well when there 
is no pattern in the data  (Kolarik & Rudorfer, 1994). Also, this method can use only one factor for 
predictions – the same factor you want to predict. 

2.2 Neural Networks 

Another well-known and currently most used approach to forecasting is Artificial Neural Networks. 
It was the first time used in time series forecasting in 1964 (Hu & Root, 1964). More than two decades 
later, Rumelhart, Hinton, and Williams (Rumelhart et al., 1986) introduced a backpropagation 
algorithm called Recurrent Neural Network, which was further formulated by Werbos (Werbos, 1988). 
By then, the number of publications where ANNs were applied to forecasting increased substantially. 
Zhang, Patuvo and Hu (G. Zhang et al., 1998) presented a survey on all the research about ANN 
applications in forecasting. They mention research comparing ANNs (specifically MLP models) with 
traditional statistical methods, one of them being ARIMA. Most of them find ANNs to be superior to 
ARIMA, but one research finds that “ANNs are hardly better than ARIMA” for short-term predictions 
(1-step ahead) (Caire et al., 1992). ANNs are so popular in the forecasting field because of their wide 
range of applications and the low amount of information on the data needed for analysis. Kolarik and 
Rudorfer (Kolarik & Rudorfer, 1994) used artificial neural networks to analyze financial time series. 
They also mention one of the main advantages of neural networks over ARIMA – these models are 
able to describe nonlinear time series and are able to deal with increased variance. In their research, 
authors find neural networks to be “viable alternatives” to already widely used techniques, and they 
also point out that ANNs can be used alone or in ensemble models. Moreover, ANNs can be not only 
univariate, but also multivariate. 

In 1997 Hochreiter & Schmidhuber introduced a kind of RNN called Long Short-Term Memory 
network(Hochreiter & Schmidhuber, 1997). It is one of currently the most attraction grabbing DLNN 
models. This kind of network was proposed to overcome the main problem of RNNs – carrying over 
“long-term dependencies”. Bengio, Simard and Frasconi explored this problem in-depth (Bengio et al., 
1994) and found that this problem occurs due to vanishing and exploding gradients. LSTM networks 
are designed to tackle this long-term dependency problem. Moreover, these networks are capable of 
learning how to connect time intervals that have more than 1000 steps even when the input sequence 
is noisy and incompressible, without losing its ability to remember short-term information. However, 
some research find that DL models are unreliable in cryptocurrency price predictions (Pintelas et al., 
2020). Also, these models can be too complex for a smaller data sets that can lead to overfitting 
(Mauldin et al., 2021). 
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2.3 Ensemble 

Another approach to the forecasting is ensemble method. Previously mentioned research on DNNs 
models application for cryptocurrency prices prediction suggest that ensemble methods should be 
investigated to obtain more reliability in the model (Pintelas et al., 2020). In the research that 
investigates the ensemble DL models for cryptocurrency price prediction (Livieris et al., 2020) - to make 
the model more reliable authors combine three deep learning models – LSTM, Bi-directional LSTM and 
Convolutional NN with an ensemble method (averaging, bagging and stacking strategies used) which 
in the end leads to development of ‘strong, stable, and reliable forecasting models’. Besides that, 
ensemble methods are known because of their ability to outperform individual models also in 
ensemble model of NN and traditional model - the combination of SARIMA and neural networks in 
seasonal time series forecasting has been tested (Tseng et al., 2002) and the results showed that the 
combined model is superior to stand alone models. Moreover, in one research it was found that the 
ensemble mean often has an error that is 30% smaller than the median error of the individual 
ensemble member (Christiansen, 2018) and it helps to deal with the overfitting problem in LSTM 
models composed on small datasets (Mauldin et al., 2021).  

2.4 Research gap 

The performance of ARIMA and LSTM methods on financial time series were compared multiple 
times, and it was found that LSTM performs better than ARIMA (Kolarik & Rudorfer, 1994; Liu, 2022; 
Ma, 2020; Mahadik et al., 2021; Siami-Namini et al., 2019; Siami-Namini & Namin, 2018). Moreover, 
one of these studies showed that the LSTM model outperformed the ARIMA model and reduced error 
rates by 84 – 87 percent (Siami-Namini et al., 2019). In these previous researches ARIMA and LSTM 
there mostly being compared against each other. Nevertheless, they could benefit from each other – 
ARIMA can be only univariate. Hence combining it with LSTM would allow us to introduce more factors 
in the analysis. Also, with LSTM, we get the ability to identify nonlinear relationships, and at the same 
time, the ARIMA method could help avoid overfitting in the LSTM method. Considering the previous 
research on using a combined model of SARIMA and LSTM(Tseng et al., 2002) there is ground to believe 
that the combined model of ARIMA and LSTM would outperform independent models. 

Moreover, more recent research investigated the application of the ARIMA and LSTM ensemble 
method in medical and energy fields and found that the ensemble model outperformed the individual 
models (Deng et al., 2020; Tang et al., 2019; Wang et al., 2020). The application of the DLNN and ARIMA 
ensemble model has also been tested in the financial field, specifically for stock price or exchange rate 
predictions (Fathi, 2019; Verma et al., 2022; Xiao & Su, 2022; P. G. Zhang, 2003). Though, the approach 
used in these researches is different than the approach we are going to use - (P. G. Zhang, 2003) does 
not use LSTM as a DLNN model, and the other three use different ensemble approaches. In (Verma et 
al., 2022) the authors are making an ensemble method by choosing the prediction that falls between 
the set threshold (5% price limit is considered for the threshold value). (Fathi, 2019)uses a different 
ensemble approach - ARIMA to obtain trend function (seasonal component and noise are retained for 
later), and then LSTM to use the retained seasonal component and noise to make the forecast of the 
original time series and (Xiao & Su, 2022) uses mean errors of LSTM and ARIMA models and the weights 
calculated based on them to obtain the hybrid model prediction and does not consider turning point 
as comparison option. Nevertheless, all of them demonstrated good results where the ensemble 
method did outperform the standalone models and (Verma et al., 2022) suggest the usage of different 
ensemble methods for the future research. Hence, this study introduces a different ensemble of LSTM 
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and ARIMA models approach and aims to compare its performance against the standalone models for 
short term stock price prediction. 

3 Methodology 

In this paper we propose the methodology with the following steps illustrated in the Figure 1.  

 
Figure 1 - Methodology 

3.1 Data 

We collected the data for the historical daily stock prices of the index S&P 500 and cryptocurrency 
Bitcoin (BTC) from YAHOO Finance for the period between Jan 2017 and May 2022. The dataset 
contains daily information about the date and the open, high, low and close prices. We will check if 
there are any missing values in the data sets, although we will not be removing any outliers, as financial 
time series grow in time. As LSTM uses sigmoid and tanh functions, which are sensitive to magnitude, 
we will standardize the prices using  the Sciki-learn function StandardScaler. To make the comparison 
more accessible, we will develop all models on standardized data. 

To make LSTM models we are going to divide the data set to train, validation and test datasets. For 
training we will use 70%, 10% for validation and for testing – 20% of the data. For LSTM model it is 
required to have each data set in two formats. The first format will contain the information to make 
the prediction and we will call it X, and the second format will have the information of what we want 
to predict – we will call it Y. The first format has to be in a shape of  
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n!"#$%&! 	× 	n$"!' ×	n(&"')*&! 

 
where n!"#$%&! is the number of samples we are going to make the model on, 𝑛+,-. – timesteps we 
are going to look back at to make a prediction and n(&"')*&! is the number of features we are going to 
be using. Each sample is going to have n(&"')*&! 	× 	n'/#&!'&$!	to predict the corresponding sample in 
the second format. Hence, the second format has to be in a shape of 
 

n!"#$%&! 	× 	n(&"')*&! 
 

where n!"#$%&! is the same as in the first format and n(&"')*&! is the number of features we are going 
to be predicting. We are not going to use the resampling for this model, but we are going to train and 
validate each model 100 times (epochs) and we will save the best model based on lowest validation 
loss. 

To fit the ARIMA models, we are going to use only one data set – test. This is because in our test 
case we want to make predictions based on the last 30, 60 or 90 observations, hence the model will 
be developed and the prediction will be made on them. Also, for ensemble model we will need to have 
the same size data set as for LSTM model. Hence this method does not require train and validation 
data sets to make the model and to make the predictions we will use only testing data set which will 
be the same size as for LSTM – 20% of the latest observations. Our chosen approach for ARIMA method 
also does not utilize resampling (where the train data set is divided into different samples and the best 
model is chosen), hence for training the model we are going to use the first 30, 60 or 90 (n$"!') 
observations from the test data set and modify this set with each iteration. After each prediction is 
made, we will append the data set with the next in line observation from test data set and delete the 
first observation from the used data set to make the predictions leaving us with the last 30, 60 and 90 
observations to make accurate predictions in the following step. This procedure will be repeated until 
the predictions are made for the whole train data seta. 

The data set for the ensemble model will consist of the predictions from both ARIMA and LSTM 
models – predictions made on the test data set which will form a new data set for ensemble. We will 
divide the new data set into 80% training and 20% testing. We will also use  similar way of resampling 
as used for ARIMA method – after the prediction is made, we will append the train data set with the 
first observation from the test data set, but we will not be deleting any observations from train data 
set as the requirement to look at the specific amount of data to make the prediction is already satisfied 
while making the data set for ensemble itself.  

3.2 ARIMA 

According to Box and Jenkins (Box & Jenkins, 1970), time series 𝑧. , 𝑡 = 0,1,2, … is generated by 
𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) process, if 

 
𝜙(𝐵)(1 − 𝐵)0𝑧. = 𝜃(𝐵)𝑎. 

 
where:  

• 𝜙(𝐵) = ;1 − 𝜙1𝐵 −⋯− 𝜙+𝐵+=	and 𝜃	(𝐵) = (1 + 𝜃1𝐵 +⋯+ 𝜃2𝐵2 are polynomial 
operators in 𝐵 of degree 𝑝 and 𝑞 respectively. 𝜙(𝐵) is called the autoregressive operator 
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𝐴𝑅(𝑝) and 𝜃(𝐵) is called the moving average operator 𝑀𝐴(𝑞).  Also, these operators are 
assumed to be stationary, that is the roots of 𝜙(𝐵) = 0 and 𝜃(𝐵) = 0 lie outside the unit 
circle. 

• (1 − 𝐵) is differencing operator with 𝑑 being the number of regular differences. 
• 𝑧. is the observed value at the time 𝑡. 
• 𝑎. is called Gaussian white noise with mean 0 and variance 𝛿,3. 
• 𝐵 is backwards shift operator. 

To define hyperparameters 𝑝, 𝑑, 𝑞 we will use multiple methods. First, we will define the 
differencing operator 𝑑. Then we will use the pmdarima function auto_arima. This function discovers 
the optimal order of ARIMA model by first conducting differencing tests to determine 𝑑 (This step will 
be skipped, as we will specify 𝑑 to be used) and then fitting different models while minimizing AIC 
value. However, with this method we are not able to specify how many days ahead we want the model 
to predict, so additionally to this we will use the following method: 

- Define the range for possible 𝑝 values by using Partial autocorrelation function. 
- Define the range for possible 𝑞 values by using Autocorrelation function. 
- Perform a grid search with different combinations of 𝑝, 𝑞 and 𝑑 values to find the best 

hyperparameters for each 30, 60 and 90 observations train data set predicting 1, 7 and 14 
observations ahead. We will choose the best parameters based on the lowest RMSE value. 

As mentioned before, we will be redeveloping the model in each iteration by introducing new 
values to the train data set: 

1. Make the train data set -  based on the first 30, 60 or 90 observations from test data set. 
2. Train the model and make the prediction 14 time steps ahead 
3. Save the 1st, 7th and 14th prediction (as it represents the observations ahead predictions we are 

aiming for). 
4. Append training dataset with the actual value of the next observation and delete the first value 

in the training data set 
5. Repeat steps 2-4 till predictions for the whole test data set are made. 
This methodology is represented in Figure 2. 

 
Figure 2 - ARIMA model methodology 
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3.3 LSTM RNN 

 
Figure 3 – LSTM architecture 

 The architecture of LSTM model can be seen above in Figure 3 and is defined by the following 
equations: 

𝑓. = 𝜎;𝑊45ℎ.61 +𝑊75𝑥.61 + 𝑏5= 

𝑖. = 𝜎(𝑊48ℎ.61 +𝑊78𝑥.61 + 𝑏8) 

𝑜. = 𝜎(𝑊49ℎ.61 +𝑊79𝑥.61 + 𝑏9) 

𝑐. = 𝑓. ∗ 𝐶.61 + 𝑖. ∗ 𝑡𝑎𝑛ℎ(𝑊4:ℎ.61 +𝑊7:𝑥.61 + 𝑏:) 

ℎ. = 𝑜. ∗ tanh	(𝑐.) 

where 𝑓. , 𝑖. , 𝑜. , 𝑐. and ℎ. represent the forget gate, input gate, output gate, memory cell and hidden 
state respectively. 𝑊 and 𝑏 are the weight matrix and bias vector, ⊗ and ⊕ denotes the element-
wise product. 

The main component of LSTMs is the memory cell 𝑐. – the horizontal line in the top of the diagram. 
To control the cell state we have three gates – forget, input and output – that decide on what 
information is taken and what is left out by using sigmoid function 𝜎. However, for the memory cell 
itself and the hidden state we will use rectifier linear activation function or ReLu, which helps with 
unstable gradients problem and has shown a better performance (Brownlee, 2016).  

To predict the ‘Open’ and ‘Close’ prices with LSTM we are going to use all four features – “Open”, 
“High”, “Low” and “Close”.  

To choose the best model we are going to try out 5 different combinations of the number of hidden 
layers and neurons as follows: 

- One layer with 32 neurons (code: SP_32 or BTC_32) 
- One layer with 48 neurons (code: SP_48 or BTC_48) 
- One layer with 64 neurons (code: SP_64 or BTC_64) 
- Two layers where 1st layer with 32 neurons 2nd layer with 16 neurons (code: SP_32_16 or 

BTC_32_16) 
- Two layers where 1st layer with 64 neurons 2nd layer with 32 neurons (code: SP_64_32 or 

BTC_64_32) 
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We are going to train models with different number of hidden layers and neurons 100 times each 
and will save the best out of these 100 tries. The  

To select the best model for each prediction type we will use RMSE – the model with the lowest 
RMSE will be selected for stacking. 

For each combination of hidden layers the methodology for making LSTM model is presented in 
Figure 4. 

 
Figure 4 - LSTM model methodology 

 

3.4 Ensemble Approach 

We chose to use stacking as an ensemble method in this work. Stacking or stacked 
generalization is a technique which aims to achieve highest generalization accuracy possible (Wolpert, 
1992). In this technique we use the first-level learners (base models) to generate a new data set called 
meta-dataset (made out of results of first-level learners) for second-level learner (meta learner). For 
regression tasks linear regression is usually used as meta learner. To avoid bias it is recommended to 
train first-level learners on a different training set than the one used to generate meta-dataset, 
therefore we are having 20% of the data set for testing 

For stacking method we will use predictions from base learners. Depending on the number of 
observations to future we will be predicting, ARIMA predictions data set might be longer than from 
LSTM (, hence we will choose only applicable predictions from ARIMA model based on LSTM 
predictions interval. To make the stacking model we used similar approach as with ARIMA model: 

1. Divide the dataset in train and test sets. 
2. Fit the model on the training dataset (used Logistic Regression as meta learner) aiming for the 

corresponding value from the original test data set 
3. Make predictions on new test data set and save the first prediction. 
4. Append train data set with the corresponding value from original test dataset.  
5. Repeat steps 1-4 for the whole test data set. 
This methodology is represented in Figure 5. 

 
Figure 5 - Stacking model methodology 
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3.5  Error Assessment 

To evaluate our forecasting, we will be using two main statistical criteria: 
• Root Mean Square Error (RMSE) 
• Mean Absolute Percentage Error (MAPE) 
RMSE and MAPE can be described by the following equations respectively: 
 

𝑅𝑀𝑆𝐸 = RS
(𝑃. − 𝑍.)3

𝑇

;

.<1

 

𝑀𝐴𝑃𝐸 =
1
𝑇
S

𝑃. − 𝑍.
𝑍.

;

.<1

 

where 𝑃. is the predicted value at time 𝑡, 𝑍. is the actual value at time 𝑡 and 𝑇	is the number of 
predictions. 

In addition to the statistical evaluation methods,  in stock markets, it is also essential to understand 
how good the model is in predicting the turning points or if the model can make the right decision 
based on predicted price changes. To predict the turning points correctly the following has to be met: 
 

𝑠𝑖𝑔𝑛 Y𝑃. − 𝑃.6=!"#"$%Z = 𝑠𝑖𝑔𝑛(𝑍. − 𝑍.6=!"#"$%) 

 
Hence we are going to calculate the Turning Point Accuracy (TPA) with the following formula: 

𝑇𝑃𝐴 =
1
𝑇
S𝐴. ⟺ 𝑡
;

.<1

 

where	

\

𝐴. = 1	𝑖𝑓	∆𝑍. > 0
𝐴. = 0	𝑖𝑓	∆𝑍. ≤ 0
𝐹. = 1	𝑖𝑓	∆𝑃. > 0
𝐹. = 0	𝑖𝑓	∆𝑃. ≤ 0

	

 
Moreover, we are going to implement a method proposed by (Chen et al., 2021) which evaluates the 
turning point prediction based on calculated “Buy” or “Sell” signal. We will adapt the method to our 
use case and define the signal for the actual prices and the forecasted value using the following 
method: 

1. Calculate the difference of the actual (𝐴.) and forecasted (𝐹.)  stock price: 

𝐹. = 𝑃.>=!"#"$% − 𝑍. 

𝐴. = 𝑍.>=!"#"$% − 𝑍. 

2. Calculate the change rates: 

𝐹𝑟. =
𝐹.
𝑍;
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𝐴𝑟. =
𝐴.
𝑍;

 

3. If the change rate is greater than 𝜃 the time point 𝑡 + 𝑛5?.?@A is signed as “Buy” signal. If the 
change rate is less than −𝜃 the time point 𝑇 is signed as “Sell” signal. For the change rates 
between 𝜃 and −𝜃 we are going to assign “Hold” signal. 

4. If the signal for 𝐴𝑟. is equal to the signal for 𝐹𝑟., we are going to count it as correct classification 
and sum all of them. 

5. Calculate the Action Prediction Accuracy (APA) of the correct classifications by dividing the 
sum of correct classification by  𝑇. 

To test the APA we chose to use the 5% threshold. 

4 Experimental settings 

4.1 Data sets 

S&P 500 

The shape of the data before processing is (1357, 5), which means that we have 1357 observations 
and five features in each observation. No missing values were detected in the data set. We removed 
the ‘Date’ feature from the further analysis, as we will be using only Open High, Low and Close prices 
for the predictions. Main statistics for the data (rounded till 2 digits after comma): 

 
 Open High Low Close 
Mean 3211.64 3228.71 3192.62 3211.76 
Standard deviation 719.67 724.38 714.27 719.45 
Min 2251.57 2263.88 2191.86 2237.4 
Max 4804.51 4818.62 4780.04 4796.56 

Table 1 – S&P 500 main statistics before processing 

After the standardization, the mean and standard deviation became 0 and 1, respectively, and min 
and max values as follows (rounded till two digits after the comma): 

 
 Open High Low Close 

Min -1.33 -1.33 -1.4 -1.35 
Max 2.21 2.19 2.22 2.2 

Table 2 – S&P 500 min and max values after processing 

After splitting the data set for ARIMA model the test data set contains 1085 observations and test 
data set contains 272 observations. 

The shapes of data for LSTM models after splitting and reshaping the data as well as the data set 
sizes for stacking model can be seen in Table 8 in Annex 2. 

BTC 

The shape of the data before processing is (1969, 7), which means that we have 1969 observations 
and 7 features in each observation. Two additional features in this data set are ‘Adj. Close’ and 
‘Volume’. No missing values were detected in the data set. We removed the ‘Date’, ‘Adj. Close’ and 
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‘Volume’ features from further analysis, as we will be using only Open High, Low and Close prices for 
the predictions. Main statistics for the data (rounded till 2 digits after comma): 

 
 Open High Low Close 
Mean 17261.92 17716.21 16757.33 17273.93 
Standard deviation 17586.23 18040.13 17057.70 17580.01 
Min 775.18 67549.73 755.76 777.76 
Max 67549.73 68789.62 66382.06 67566.83 

Table 3 – BTC main statistics before processing 

After the standardization the mean and standard deviation became 0 and 1 respectively, and min 
and max values as follows (rounded till 2 digits after comma): 

 
 Open High Low Close 
Min -0.94 -

0.94 
-

0.94 
-0.94 

Max 2.83 2.83 2.91 2.86 
Table 4 – BTC min and max values after processing 

After splitting the data set for ARIMA model the test data set contains 1575 observations and test 
data set contains 394 observations.  
The shapes of data for LSTM models after splitting and reshaping the data as well as the data set sizes 
for stacking model can be seen in Table 9 in Annex 2. 

4.2 ARIMA 

First we are going to define 𝑑 – the number of differences. For this we will first check the stationary 
of the time series with Augmented Dickey Fuller test.  

For S&P 500 Open price data series 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.713, which is way above the significance level 
0.05	(5%). After differencing the time series 1 time 𝑝	 − 𝑣𝑎𝑙𝑢𝑒 = 0.00, hence we defined 𝑑 = 1. For 
Close price data series 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.708, which is also way above the significance level 0.05	(5%). 
After differencing the time series 1 time 𝑝	 − 𝑣𝑎𝑙𝑢𝑒 = 0.00, hence we defined 𝑑 = 1. For BTC Open 
price data series 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.575, which is above the significance level. After differencing the time 
series 1 time 𝑝	 − 𝑣𝑎𝑙𝑢𝑒 = 0.00, hence we defined 𝑑 = 1. For BTC Close price data series 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
0.585, which is also above the significance level. After differencing the time series 1 time 𝑝	 − 𝑣𝑎𝑙𝑢𝑒 =
0.00, hence we defined 𝑑 = 1. 

For auto_arima function we specified these parameters: 

𝑎𝑢𝑡𝑜_𝑎𝑟𝑖𝑚𝑎	 = 	 (	𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎, 𝑡𝑒𝑠𝑡 = ”	𝑎𝑑𝑓”, 𝑑 = 1, 𝑡𝑟𝑎𝑐𝑒 = 𝑇𝑟𝑢𝑒) 

Models chosen as the best ones by this function are as follows: 
 

Obs. 
back 

BTC S&P 500 
Open Close Open Close 

30 (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) 
60 (0, 1, 0) (0, 1, 0) (0, 1, 0) (2, 1, 2) 
90 (0, 1, 0) (0, 1, 0) (0, 1, 0) (2, 1, 2) 

Table 5 - Best models from auto_arima function 
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From partial autocorrelation and autocorrelation graphs for S&P 500 Open and BTC Open and Close 
price series in Annexes 

Annex 1 we see that after 0, the first point to stand above the significance line in all graphs is 9. 
Hence for these time series the range for 𝑝 = [0,9] and the range for 𝑞 = [0,9]. From S&P 500 Close 
price data series partial autocorrelation graphs in Annexes 

Annex 1 we see that after 0, the first point to stand above the significance line is 2, hence the range 
for 𝑝 = [0,2]. Based on autocorrelation plot we can see that the first point to stand above the 
significance line is 9, hence the range for 𝑞 = [0,9]. 

After performing the grid search with specified parameter ranges for applicable models we define 
that the parameters for all models are (0, 1, 0) except for one - for BTC Close time series model looking 
back 60 observations and predicting 14 observations forward ARIMA parameters  (3,1,3) demonstrated 
the best performance than comparing RMSE.  

We are going to use the parameters defined by the grid search. 
 

4.3 LSTM 

The models we selected can be seen bellow: 
 

Obs. 
ahead 

Data set 
Observations to look back 

30 60 90 
1 S&P 500 Open SP_48 SP_48 SP_64 

BTC Open BTC_48 BTC_64 BTC_64 
S&P 500 Close SP_64_32 SP_64 SP_64 
BTC Close BTC_64 BTC_48 BTC_64 

7 S&P 500 Open SP_48 SP_32_16 SP_48 
BTC Open BTC_ 32 BTC_48 BTC_48 
S&P 500 Close SP_64 SP_32_16 SP_64 
BTC Close BTC_64 BTC_ 64 BTC_32 

14 S&P 500 Open SP_48 SP_ 32 SP_32_16 
BTC Open BTC_64 BTC_ 64 BTC_64_32 
S&P 500 Close SP_64_32 SP_32_16 SP_32 
BTC Close BTC_48 BTC_48 BTC_32 

Table 6 – Best LSTM models for S&P 500 and BTC data sets 

5 Results 

Table 7 presents the results for standalone and stacked models on Open and Close price time-series 
predictions. 

 
Obs. back/ahead, 

Model 
Open Model Close 

RMSE MAPE TPA APA RMSE MAPE TPA APA 

30
/1

 

S&
P 

50
0  ARIMA 0.064 0.029 0.491 0.819  0.090 0.043 0.509 0.697 

SP_48 0.035 0.178 0.814 0.880 SP_64_32 0.085 0.182 0.517 0.727 
Stacked 0.033 0.020 0.898 0.857  0.104 0.062 0.510 0.571 

BT
C  ARIMA 0.039 0.179 0.509 0.880  0.027 0.117 0.509 0.868 

BTC_48 0.032 1.150 0.462 0.904 BTC_64 0.017 1.263 0.692 0.937 
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Stacked 0.007 0.007 0.685 1.000  0.002 0.002 0.781 1.000 
60

/1
 

S&
P 

50
0 ARIMA 0.025 0.012 0.867 0.893  0.067 0.032 0.483 0.804 

SP_48 0.030 0.175 0.868 0.892 SP_64 0.085 0.184 0.538 0.783 
Stacked 0.032 0.020 0.953 0.814  0.104 0.060 0.488 0.581 

BT
C 

ARIMA 0.039 0.179 0.519 0.870  0.026 0.116 0.537 0.865 
BTC_64 0.014 0.173 0.455 0.961 BTC_48 0.006 0.174 0.793 0.976 
Stacked 0.003 0.002 0.448 1.000  0.001 0.001 0.791 1.000 

90
/1

 

S&
P 

50
0 ARIMA 0.025 0.011 0.860 0.904  0.067 0.032 0.498 0.804 

SP_64 0.034 0.191 0.835 0.879 SP_64 0.152 0.215 0.500 0.291 
Stacked 0.034 0.021 0.946 0.757  0.110 0.065 0.459 0.568 

BT
C 

ARIMA 0.039 0.179 0.517 0.870  0.026 0.116 0.483 0.863 
BTC_64 0.013 0.115 0.378 0.993 BTC_64 0.006 0.117 0.674 0.993 
Stacked 0.002 0.002 0.475 1.000  0.002 0.002 0.361 1.000 

30
/7

 

S&
P 

50
0 ARIMA 0.150 0.072 0.587 0.483  0.159 0.077 0.475 0.392 

SP_48 0.452 0.255 0.441 0.281 SP_64 0.205 0.167 0.483 0.277 
Stacked 0.219 0.137 0.583 0.352  0.237 0.152 0.521 0.278 

BT
C 

ARIMA 0.073 0.278 0.501 0.788  0.070 0.282 0.549 0.742 
BTC_32 0.071 1.041 0.358 0.775 BTC_64 0.068 1.143 0.394 0.835 
Stacked 0.006 0.005 0.528 0.923  0.007 0.005 0.569 0.923 

60
/7

 

S&
P 

50
0 ARIMA 0.149 0.072 0.587 0.487  0.159 0.077 0.471 0.392 

SP_32_16 0.320 0.204 0.330 0.297 SP_32_16 0.585 0.292 0.495 0.335 
Stacked 0.221 0.139 0.500 0.354  0.240 0.156 0.381 0.188 

BT
C 

ARIMA 0.073 0.276 0.504 0.780  0.069 0.282 0.567 0.736 
BTC_48 0.048 0.159 0.369 0.793 BTC_64 0.047 0.161 0.345 0.841 
Stacked 0.005 0.005 0.515 0.917  0.005 0.005 0.561 0.917 

90
/7

 

S&
P 

50
0 ARIMA 0.149 0.072 0.587 0.494  0.159 0.077 0.510 0.392 

SP_48 0.258 0.170 0.511 0.379 SP_64 1.100 0.604 0.557 0.396 
Stacked 0.228 0.148 0.500 0.310  0.243 0.161 0.250 0.190 

BT
C 

ARIMA 0.073 0.276 0.491 0.780  0.069 0.282 0.522 0.731 
BTC_48 0.035 0.112 0.352 0.901 BTC_32 0.036 0.116 0.339 0.885 
Stacked 0.006 0.005 0.467 0.909  0.005 0.005 0.817 0.909 

30
/1

4 S&
P 

50
0 ARIMA 0.217 0.106 0.584 0.310  0.227 0.112 0.461 0.256 

SP_48 2.411 1.326 0.546 0.368 SP_64_32 4.188 1.888 0.410 0.277 
Stacked 0.342 0.223 0.630 0.271  0.363 0.243 0.500 0.237 

BT
C  

ARIMA 0.111 0.405 0.510 0.697  0.107 0.432 0.553 0.653 
BTC_64 0.098 0.818 0.305 0.124 BTC_48 0.100 0.948 0.288 0.124 
Stacked 0.007 0.006 0.775 0.845  0.009 0.009 0.268 0.845 

60
/1

4  S&
P 

50
0 ARIMA 0.216 0.106 0.576 0.326  0.225 0.111 0.473 0.256 

SP_32 0.434 0.208 0.523 0.340 SP_32_16 3.120 1.374 0.442 0.325 
Stacked 0.383 0.263 0.375 0.189  0.387 0.264 0.575 0.208 

BT
C  

ARIMA 0.114 0.402 0.501 0.700  0.111 0.430 0.471 0.663 
BTC_64 0.073 0.155 0.280 0.060 BTC_48 0.079 0.158 0.259 0.048 
Stacked 0.007 0.006 0.692 0.833  0.008 0.007 0.215 0.833 

90
/1

4 S&
P 

50
0 ARIMA 0.216 0.106 0.584 0.326  0.225 0.111 0.510 0.256 

SP_32_16 0.835 0.438 0.568 0.412 SP_32 1.079 0.586 0.550 0.434 
Stacked 0.372 0.262 0.529 0.170  0.418 0.304 0.206 0.064 

BT
C 

ARIMA 0.110 0.403 0.488 0.697  0.107 0.431 0.559 0.642 
BTC_ 
64_32 0.051 0.125 0.447 0.714 BTC_32 0.042 0.111 0.254 0.783 

Stacked 0.007 0.007 0.271 0.819  0.007 0.006 0.525 0.819 
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Table 7 - Model comparison for Open and Close price predictions (best values in bold) 
 
First of all we can notice, that considering statistical model evaluation criteria, RMSE and MAPE, 

and turning point prediction evaluation criteria APA all stacked models on both, Open and Close, time 
series of BTC prices performed better than standalone models. Considering TPA – 8 out of 18 times it 
was also better for the stacked model than standalone. 8 out of 10 times then it underperformed the 
standalone model comparing TPA it was ARIMA model that had the best performance. Although 
overall the performance in predicting the turning point was low for BTC time series – it went above 
80% accuracy only once while predicting BTC Close prices 7 observations ahead with 90 previous 
observations. It is worth mentioning, that in this case standalone models predicted the turning point 
correctly only 52% (ARIMA) and 34% (BTC_48). Also, the best model chosen for BTC LSTM models was 
always with 1 hidden layer, except when making the model looking back 90 observations and 
predicting 14 observations ahead the deepest and widest LSTM was chosen – 2 hidden layers with 64 
and 32 neurons. 

Considering the stacked models’ behavior on S&P 500 data set – 11 out 18 times it underperformed 
in all criteria compared to standalone models. The worst performance of stacked models was observed 
while predicting Close prices. In fact, in these predictions it outperformed standalone models only 3 
times out of 9 and only in one evaluation criteria – Turning Point Accuracy, and it was not more than 
58%. 6 times out of 18 it underperformed standalone models in 3 criteria and the one measure that it 
performed better at was TPA. Though worthy to mention, that 2 times the turning point prediction 
accuracy was at least 90% – while predicting the Open prices 1 observation ahead looking back 30, 60 
and 90 observations. For all of the other models TPA was mainly around 50%. Overall the performance 
of LSTM networks decreased in Close price predictions than we gave them more observations to look 
back at in case on 1 and 7 observations ahead prediction. In the prediction of 14 observations ahead 
LSTM models performance improved with the bigger amount of history data. While it was not the case 
with Open price predictions. In both, Open and Close price predictions, ARIMA was the dominant best 
performing model. 

6 Conclusions 

In this study we test the usage of stacking ensemble learning method with statistical model ARIMA 
and RNN LSTM in forecasting the prices for the index S&P500 and cryptocurrency Bitcoin. The 
ensemble models are composed of the best performing ARIMA and LSTM models and their 
performance is check against the standalone models. We evaluated classification and regression 
performance of standalone and stacked models. 

It was found that combining ARIMA method with LSTM by stacking (using linear regression as meta 
learner) does show better performance in predicting price for 1, 7 and 14 observations ahead on 
Bitcoin crypto currency data set. Although for turning point prediction accuracy it shares the same 
success rate as ARIMA models. LSTM models on BTC dataset outperformed the Stacked and ARIMA 
only 2 times out of 18 in turning point prediction accuracy. Although the highest reached accuracy for 
BTC data set was 79% (by LSTM model). On the other hand, when we look at the models’ performance 
on S&P 600 prices data set, stacked model most of the times underperformed the individual models. 
Despite that, the best performance of the stacked model was observed on Open price predictions 1 
day ahead and the turning point accuracy achieved by this model was at least 90%. 
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For the future work it would be worthy to study the importance of other factors than Open, High, 
Low and Close prices of the stock – such as Volume (as it identifies the total number of shares 
bought/sold), sentiment analysis and level of the earnings base (e. g. Price-to-Earnings ratio). Another 
area worthy of interest is the study of the benefit of these forecast models with metrics that test the 
performance based on earnings. Lastly, the ability of the models to identify the outliers in the stock 
price time series could be tested in order to identify the market instability and adapt decisions based 
on that.  
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Annexes 

Annex 1 

S&P 500 Open price time series 

 

 
S&P 500 Close price time series 
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BTC Open price time series 
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BTC 500 Close price time series 
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Annex 2 

Obs. 
ahead 

Observations to look back to the future 
30 60 90 

1 X for train: (919, 30, 4), 
Y for train: (919, 1), 
X for validation: (106, 30, 4), 
Y for validation: (106, 1), 
X for test: (242, 30, 4), 
Y for test: (242, 1). 
 
Stacking data set size: 242, 
Train size: 194, 
Test size: 48 

X for train: (889, 60, 4), 
Y for train: (889, 1), 
X for validation: (76, 60, 4), 
Y for validation: (76, 1), 
X for test: (212, 60, 4), 
Y for test: (212, 1). 
 
Stacking data set size: 212, 
Train size: 170, 
Test size: 42 

X for train: (859, 90, 4), 
Y for train: (859, 1), 
X for validation: (46, 90, 4), 
Y for validation: (46, 1), 
X for test: (182, 90, 4), 
Y for test: (182, 1). 
 
Stacking data set size: 182, 
Train size: 146, 
Test size: 36 

7 X for train: (913, 30, 4), 
Y for train: (913, 1), 
X for validation: (100, 30, 4), 
Y for validation: (100, 1), 
X for test: (236, 30, 4), 
Y for test: (236, 1). 
 
Stacking data set size: 236, 
Train size: 189, 
Test size: 47 

X for train: (883, 60, 4), 
Y for train: (883, 1), 
X for validation: (70, 60, 4), 
Y for validation: (70, 1), 
X for test: (206, 60, 4), 
Y for test: (206, 1). 
 
Stacking data set size: 206, 
Train size: 165, 
Test size: 41 

X for train: (853, 90, 4), 
Y for train: (853, 1), 
X for validation: (40, 90, 4), 
Y for validation: (40, 1), 
X for test: (176, 90, 4), 
Y for test: (176, 1). 
 
Stacking data set size: 176, 
Train size: 141, 
Test size: 35 

14 X for train: (906, 30, 4), 
Y for train: (906, 1), 
X for validation: (93, 30, 4), 
Y for validation: (93, 1), 
X for test: (229, 30, 4), 
Y for test: (229, 1). 
 
Stacking data set size: 229, 
Train size: 183, 
Test size: 46 

X for train: (876, 60, 4), 
Y for train: (876, 1), 
X for validation: (63, 60, 4), 
Y for validation: (63, 1), 
X for test: (199, 60, 4), 
Y for test: (199, 1). 
 
Stacking data set size: 199, 
Train size: 159, 
Test size: 40 

X for train: (846, 90, 4), 
Y for train: (846, 1), 
X for validation: (33, 90, 4), 
Y for validation: (33, 1), 
X for test: (169, 90, 4), 
Y for test: (169, 1). 
 
Stacking data set size: 169, 
Train size: 135, 
Test size: 34 

Table 8 – S&P data shapes after transformation 

 
Obs. 

Ahead 
Observations to look back to the future 

30 60 90 
1 X for train: (1348, 30, 4), 

Y for train: (1348, 1), 
X for validation: (167, 30, 4), 
Y for validation: (167, 1), 
X for test: (364, 30, 4), 
Y for test: (364, 1). 

X for train: (1318, 60, 4), 
Y for train: (1318, 1), 
X for validation: (137, 60, 4), 
Y for validation: (137, 1), 
X for test: (334, 60, 4), 
Y for test: (334, 1). 

X for train: (1288, 90, 4), 
Y for train: (1288, 1), 
X for validation: (107, 90, 4), 
Y for validation: (107, 1), 
X for test: (304, 90, 4), 
Y for test: (304, 1). 
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Stacking data set size: 364, 
Train size: 291, 
Test size: 73. 

 
Stacking data set size: 334, 
Train size: 267, 
Test size: 67. 

 
Stacking data set size: 304, 
Train size: 243, 
Test size: 61. 

7 X for train: (1342, 30, 4), 
Y for train: (1342, 1), 
X for validation: (161, 30, 4), 
Y for validation: (161, 1), 
X for test: (358, 30, 4), 
Y for test: (358, 1). 
 
Stacking data set size: 358, 
Train size: 286, 
Test size: 72. 

X for train: (1312, 60, 4), 
Y for train: (1312, 1), 
X for validation: (131, 60, 4), 
Y for validation: (131, 1), 
X for test: (328, 60, 4), 
Y for test: (328, 1). 
 
Stacking data set size: 328, 
Train size: 262, 
Test size: 66. 

X for train: (1282, 90, 4), 
Y for train: (1282, 1), 
X for validation: (101, 90, 4), 
Y for validation: (101, 1), 
X for test: (298, 90, 4), 
Y for test: (298, 1). 
 
Stacking data set size: 298, 
Train size: 238, 
Test size: 60. 

14 X for train: (1335, 30, 4), 
Y for train: (1335, 1), 
X for validation: (154, 30, 4), 
Y for validation: (154, 1), 
X for test: (351, 30, 4), 
Y for test: (351, 1). 
 
Stacking data set size: 351, 
Train size: 281, 
Test size: 70. 

X for train: (1305, 60, 4), 
Y for train: (1305, 1), 
X for validation: (124, 60, 4), 
Y for validation: (124, 1), 
X for test: (321, 60, 4), 
Y for test: (321, 1). 
 
Stacking data set size: 321, 
Train size: 257, 
Test size: 64. 

X for train: (1275, 90, 4), 
Y for train: (1275, 1), 
X for validation: (94, 90, 4), 
Y for validation: (94, 1), 
X for test: (291, 90, 4), 
Y for test: (291, 1). 
 
Stacking data set size: 291, 
Train size: 233, 
Test size: 58. 

Table 9 – BTC data shapes after transformation 

 


