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A 178‑clinical‑center experiment 
of integrating AI solutions for lung 
pathology diagnosis
Bulat Ibragimov 1,8*, Kirill Arzamasov 2,8, Bulat Maksudov 3, Semen Kiselev 4, 
Alexander Mongolin 4,5, Tamerlan Mustafaev 4,6, Dilyara Ibragimova 6, Ksenia Evteeva 2, 
Anna Andreychenko 2 & Sergey Morozov 2,7

In 2020, an experiment testing AI solutions for lung X-ray analysis on a multi-hospital network 
was conducted. The multi-hospital network linked 178 Moscow state healthcare centers, where all 
chest X-rays from the network were redirected to a research facility, analyzed with AI, and returned 
to the centers. The experiment was formulated as a public competition with monetary awards 
for participating industrial and research teams. The task was to perform the binary detection of 
abnormalities from chest X-rays. For the objective real-life evaluation, no training X-rays were 
provided to the participants. This paper presents one of the top-performing AI frameworks from this 
experiment. First, the framework used two EfficientNets, histograms of gradients, Haar feature 
ensembles, and local binary patterns to recognize whether an input image represents an acceptable 
lung X-ray sample, meaning the X-ray is not grayscale inverted, is a frontal chest X-ray, and 
completely captures both lung fields. Second, the framework extracted the region with lung fields and 
then passed them to a multi-head DenseNet, where the heads recognized the patient’s gender, age 
and the potential presence of abnormalities, and generated the heatmap with the abnormality regions 
highlighted. During one month of the experiment from 11.23.2020 to 12.25.2020, 17,888 cases have 
been analyzed by the framework with 11,902 cases having radiological reports with the reference 
diagnoses that were unequivocally parsed by the experiment organizers. The performance measured 
in terms of the area under receiving operator curve (AUC) was 0.77. The AUC for individual diseases 
ranged from 0.55 for herniation to 0.90 for pneumothorax.

Automated diagnosis of lung diseases from chest X-rays is one of the earliest topics of interest in the field of com-
puterized medical image analysis with the first papers published in the 60 s1. The automated chest X-ray analysis 
has evolved dramatically in the last 60 years and more than 10,000 papers can be found in Google Scholar and 
Pubmed using relevant combinations of keywords “lung X-ray”, “automated”, “machine learning”, “segmentation”, 
etc. Despite high interest in the field, only a relatively small fraction of the published algorithms are validated on 
external databases collected at different hospitals2.

The lack of comprehensive external validation compromises the practical applicability of an algorithm. The 
issue has received additional attention after the outbreak of COVID-19 epidemics and the rapid growth of pub-
lications on the topic in 2020 and 2021. Wynants et al.3 and Roberts et al.4 assessed the risk of bias and potential 
applicability of COVID-19 models using the PROBAST tool. The database composition and training–testing 
protocol were identified as the main sources of bias in the published models. The database composition can 
increase the bias of the reported results when it is unclear how the target patients were selected, or some patients 
were excluded from the analysis without well-justified reasons, or when the database is biased in terms of demo-
graphics. Topol5 has pointed out that machine learning studies are often focused on a small number of potential 
abnormalities, which limits the practical adoption of such studies as physicians are rarely in a position when 
only a few diseases are expected. To minimize the training–testing bias, the models should be tested on exter-
nal databases potentially collected at different hospitals. The conclusion of Roberts et al.4 was that no artificial 
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intelligence (AI) solution for COVID-19 diagnosis satisfies all the requirements for potential clinical adoption. 
Cohen et al.6 used seven publicly available databases with labeled chest X-rays and investigated how the automatic 
diagnostic accuracy changes when an algorithm is trained and tested on databases from the same vs different 
clinical sources. They observed that the accuracy measured in terms of the area under receiving operator curve 
(AUC) can drop from 0.90 to 0.60 for some abnormalities. Similarly, Kitamura and Deible observed an AUC 
drop from 0.90 to 0.59 when a pneumothorax detection algorithm trained and validated on a public database 
was tested on a separate private database of chest X-rays7.

In 2020, an experiment to link 178 clinical centers, i.e. hospitals and polyclinics, in Moscow, Russia – a region 
with more than 20 million inhabitants – into a single network where the X-rays and radiological reports were 
automatically redirected to a research facility, analyzed, and returned to the centers have been conducted8. The 
aim of this experiment was to objectively test the performance of machine learning solutions for X-ray analysis 
in a maximally realistic real-time environment on a megapolis-level scale. There was no restriction on the qual-
ity of the input X-ray images from the participating hospitals or the expected abnormalities. Moreover, it was 
expected that the participating frameworks would be able to automatically recognize if an input image does 
not represent a chest X-ray. The research teams from public institutions and private enterprises were invited 
to participate with monetary awards for the most successful teams. In this paper, we present the results of the 
top-performing AI-based framework.

Results
Experiment design.  The experiment was organized by the Government of Moscow, and conducted under 
the technical supervision of the Research and Practical Clinical Center for Diagnostics and Telemedicine Tech-
nologies of the Moscow Health Care Department (PCCDTT) in 2020. The experiment participants were asked 
to develop a software solution that will be able to handle a continuous flow of X-rays images from 178 clinical 
centers, auto-diagnose chest abnormalities from these X-rays in a close-to-realtime fashion, and send back the 
results. A participating solution should operate for one month of the experiment duration. The total number of 
X-rays to be analyzed was not known in advance because the X-rays were acquired during the routine operation 
of the participating clinical centers. One of the key features of the experiment was the fact that PCCDTT did 
not provide any labeled chest X-rays for the algorithm training to minimize the risks of tuning the algorithms 
toward images from particular hospitals. At the same time, PCCDTT provided two small validation databases of 
100 chest X-rays each without reference diagnoses to check if the participating algorithms satisfy the minimum 
performance requirements. During the experiment, the testing cases were acquired in real-time from Moscow 
healthcare centers and were automatically sent to the servers of participating teams. In particular, a chest X-ray 
was first acquired and read by radiologists from the healthcare centers following the standard workflow protocol. 
The X-ray and the corresponding radiologist’s diagnosis were automatically sent to PCCDTT. From PCCDTT, 
the X-ray was sent to the servers of all experiment participants. During a short time frame, a participating solu-
tion should return the autodiagnosis results in the PCCDTT format. These results were then compared to the 
radiologist’s diagnosis by PCCDTT. The workflow of the participating healthcare centers, therefore, remained 
uninterrupted and unaffected. In total, 178 centers contributed to the data, with 126 and 48 centers specializing 
in outpatient and inpatient care. The experiment was initiated by the Moscow Ministry of Health and Family 
Welfare department. This study is a part of a registered clinical trial on the use of AI technology for computer-
aided diagnosis https://​clini​caltr​ials.​gov/​ct2/​show/​NCT04​489992.

The experiment task was formulated as the binary detection of lung abnormalities. Its overarching aim was 
to figure out if AI solutions can be used to prescreen chest X-rays, identify cases with potential abnormalities, 
and alert physicians about such cases. Most of the chest X-rays in the experiment were first interpreted by the 
attending radiologists, who wrote standardized radiological reports with the findings detected. These X-rays and 
the reports were automatically parsed by the natural language processing (NLP) algorithm, which concluded 
if the X-ray contains an abnormality according to the opinion of the attending physician9. At the same time, 
the X-rays were anonymized and transferred to the servers of each team participating in the experiment. A 
participating solution must label the received X-ray and send back the labeling result to the PCCDTT server in 
a predefined time frame.

First external validation.  Each participating team must have conducted two rounds of external valida-
tions of their solution before entering the experiment. The framework presented in this paper was externally 
validated using the data from two hospitals, namely the Republican Clinical Oncological Dispensary (RCOD), 
Kazan, and Republican Clinical Hospital (RCH), Kazan. In total, 91 chest X-rays from RCOD and 89 chest 
X-rays from RCH were analyzed. In terms of diagnoses, 110 chest X-rays had no lung abnormalities, while 80 
chest X-rays had at least one lung abnormality including pneumothorax, pneumonia, lung nodules, etc. The 
images were of different quality and scanned using different imaging equipment.

The framework validation on the two external databases was performed using the metrics specified by the 
experiment organizers. The framework results were 0.91, 0.74, 0.93, and 0.63 in terms of AUC, accuracy, speci-
ficity, and sensitivity, respectively. The average time spent on the analysis of one X-ray was around 15 s, which 
does not include the time needed for data transfer.

Second external validation.  The second external validation was conducted using PCCDTT data to con-
firm that the framework passes the experiment requirements in terms of accuracy and computation time and 
that the input and output formats are in agreement. Two tests were conducted each consisting of 100 unique 
X-rays with undisclosed reference diagnoses. The first test resulted in 0.74, 0.68, 0.96, and 0.4 in terms of AUC, 
accuracy, specificity, and sensitivity, respectively. The results were lower than the required minimal AUC of 0.81. 

https://clinicaltrials.gov/ct2/show/NCT04489992
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The computation time was of 30 ± 2 s in terms of the average ± standard deviation time needed to process one 
X-ray. To improve the framework performance, the RSNA database10 was added to the training collection of 
images. Second, the framework architecture was modified to predict not only the presence of an abnormality but 
also the patient’s gender and age (See “Methods” Section). This modification allowed more accurate analysis of 
patients with age-related lung changes and women with dense breast tissue or breast implants. The second round 
of validation using new 100 X-rays resulted in 0.86, 0.86, 0.88, and 0.83 in terms of AUC, accuracy, specificity, 
and sensitivity, respectively. The computation time was of 38 ± 7 s. The databases were sampled from the same 
hospitals where the experiment was conducted. The aim of this validation was not only to test the performance 
of the framework but mostly to be sure that the framework can correctly read and process the input X-rays 
within the required time limits, and that the framework output format is acceptable. The changes in computation 
time between the first and second external validations are due to the fact that the first validation run on a local 
machine and measured only the time needed to process an X-ray image, while the second validation measured 
the total time between sending images from Moscow servers and receiving the report with diagnostic heatmap. 
The heatmaps were required so that a committee of radiologists from the experiment organizers can perform 
in-depth inspections of the framework performance on randomly selected collections of X-rays.

Patient population.  In total, 17,888 out of 20,494 X-rays have been successfully analyzed by the frame-
work during the experiment month from 11.23.2020 to 12.25.2020. The 2,458 X-rays have not been analyzed 
due to technical issues with data transferring. The analysis of 148 X-rays was unsuccessful due to the execution 
time exceeding the permitted maximum of 6.5 min. The framework rejected 173 X-rays by considering them 
to either not represent a frontal chest X-ray or be corrupted or cropped. The participating hospitals provided 
diagnoses for 11,902 X-rays, which allows for the quantitative evaluation of the framework performance. The 
11,902 X-rays imaged 11,094 distinct patients, meaning that some patients were images multiple times during 
treatment. likely. The maximal number of X-rays for a patient was eight. For consistency, the secondary X-rays 
for such patients were in the database summary analysis. This annotated X-ray collection consisted of 6826 
females, 5068 males, and 8 with gender not reported. The patient’s ages ranged from 18 years old to 100 years 
old with a median age of 53 years old. Among all patients, 6818 were under inpatient care, whereas 5084 patients 
were under outpatient care. The NLP solution that parsed X-ray reports was trained to detect and extract 24 
labels of interest. These labels included 17 clinical findings potentially associated with thoracic diseases, namely 
pleural effusion, infiltrate, dissemination, cyst, calcification, pulmonary mass, focal pulmonary opacity, atelec-
tasis, pneumothorax, pneumonia pocket, tuberculosis, pneumoperitoneum, fibrosis, herniation, cardiomegaly, 
widened mediastinum, and hilar enlargement. Two labels indicated the presence of musculoskeletal diseases, 
namely rib fractures, and scoliosis. One label indicated if the imaged patient has a consolidated bone fracture. 
One label was used to record the cardiothoracic ratio for patients with cardiomegaly. One label indicated if the 
patient has lung aging changes, which are not associated with a particular disease. Finally, two labels were used to 
record if the attending radiologist suggests acquiring a new chest X-ray or CT image, respectively. The summary 
of the database is given in Table 1.

Experiment results.  The experiment performance was evaluated using AUC, accuracy, specificity, and sen-
sitivity measurements. The AUC value was 0.77, specificity—0.56, and sensitivity 0.84 for the optimally selected 
cutoff threshold. We also calculated AUC and sensitivity for individual diseases and against patient subcategories 
(Fig. 1, Table 2). The positive class was assigned to the patients with the diseases of interest, while the negative 
class was assigned to the patients without any lung abnormalities. The accuracy and specificity values for indi-
vidual diseases cannot be computed reliably, as the number of false-positive predictions for all diseases can be 
significantly higher than the number of positive samples for a particular disease. It is also important to mention 
that the use of binary prediction labels boosts the metric for individual diseases. Indeed, the framework does 
capture errors when an X-ray with one disease is automatically labeled to have another disease. The results were 
computed for patient subgroups to quantitatively estimate how the performance changes for patients under 
inpatient and outpatient care (Table 2) and patients with and without lung aging patterns (Table 3). From the 
overall results, 79% of cases with multiple abnormalities were correctly classified as abnormal by the framework. 
The correct classification accuracy drops to 46% for cases with a single abnormality. This accuracy difference is 
expected assuming that a case with multiple abnormalities is easier to be correctly classified as abnormal.

Every week of the experiment month, 20 random X-rays with the framework results have been manually 
inspected by a committee of physicians from PCCDTT in order to quantitatively assess the performance. This 
assessment first checked the completeness of the framework reports by ensuring that they include the original 
image with the abnormality heatmap and whether the framework correctly labeled the X-ray as pathological or 
normal. This visual inspection also checked if the abnormality heatmaps are in agreement with the actual pathol-
ogy manifestation. Finally, the inspection can resolve other uncertainties. Out of 100 X-rays with framework 
results manually inspected by the committee, 83 were considered acceptable by the committee.

Experiment result statistics.  The experiment was public with monetary awards for the successful par-
ticipants and therefore attracted attention from companies focused on the use of AI in medicine. In total, 16 
commercial companies and one non-commercial research institution participated. It was not required for 
the participants to reveal their algorithms and publicly share their results due to potential commercial inter-
ests. Considering these restrictions, we decided to summarize the statistics of the participants’ performance 
to assess the experiment challenges. All successful participants passed the external validations (see “Second 
external validation” section). The AUC for the external validations ranged from 0.5 to 0.94, while the average 
AUC was 0.88 ± 0.05. At the end of the experiment, the average AUC, sensitivity, and specificity were 0.75 ± 0.02, 
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0.65 ± 0.11, and 0.74 ± 0.09. The execution time ranged from 12 to 1138 s with a median time of 22 s. In total, the 
analysis of 21.3% of X-rays exceeded the permitted maximum of 6.5 min. It must be noted that the presented 
accuracy metrics do not include cases when an algorithm fails to generate a report for an X-ray due to technical 
errors. For all participating algorithms, the average rate of technical errors was around 5% with a 95% confidence 
interval of [3.4; 6.6].

Discussion
The advances of AI in the last ten years have revolutionized many scientific areas, where large quantities of data 
need to be analyzed. Computer vision and medical image analysis are the fields that benefited significantly from 
the AI revolution, and human-level performance is commonly reported for various tasks in these fields. One 
of the problems of such studies is that algorithms are often tested on the internal datasets sampled from the 
same source as training images, which makes the results subjected to dataset bias, potential data contamination, 
and low data representativeness. To mitigate these issues, large-scale multicenter studies have been conducted 
allowing the researchers to better estimate the prospects of AI for, for example, eye disease diagnosis11,12. Such 
studies are, however, expensive and lengthy. As an alternative to multicenter studies, public medical imaging 
competitions are commonly accepted as one of the most reliable ways for AI algorithm validation in CAD13,14. 
In this paper, we reported the public megapolis-level experiment testing the performance of AI for chest X-ray 
analysis in 178 clinical centers.

In the following subsections, we summarized the existing work and the reported results for different abnor-
malities and present them in comparison to our performance. For the framework deployment, we had to define 
the decision boundary threshold of the diagnostic neural network. The threshold changes will increase the 
framework sensitivity at the cost of reduced specificity and vice versa. We aimed at increasing sensitivity as 

Table 1.   The summary of the experiment database with the reference abnormality reports.

Characteristic Value

Chest X-ray 11,902

Unique patients 11,096

Care type

Inpatient 5084

Outpatient 6818

Demographics

Gender, female 6826

Age, median and range 53 [18–100]

Chest abnormalities

Effusion 365

Infiltrate 2477

Pleural dissemination 8

Cyst 10

Pulmonary mass 2086

Opacity 2304

Atelectasis 64

Pneumothorax 95

Pneumonia 873

Tuberculosis 108

Pneumoperitoneum 2

Fibrosis 711

Hernia 23

Cardiomegaly 1919

Widened mediastinum 42

Hilar enlargement 38

Other abnormalities

Scoliosis 180

Bone fracture 78

Consolidated bone fracture 104

Patients with no abnormalities 7872

Patients with multiple abnormalities 3078

Patients with lung aging changes 1523

X-ray retake recommended 12

CT recommended 6
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higher sensitivity will result in fewer sick patients being labeled as healthy. Simultaneously, more healthy patients 
were labeled as sick potentially increasing the radiologists’ workload. Favoring sensitivity seems a reasonable 
decision as the framework was deployed for both inpatient and outpatient clinical centers. When deploying the 
framework at different centers, the decision boundary threshold can be adjusted depending on the expected 
proportion of sick and healthy patients. Due to the experiment execution protocol and testing data restriction, 

Figure 1.   The results of proposed framework on the experiment database. The results are presented in terms 
of the sensitivity and area under the receiving operator curve (AUC) with 95% confidence intervals. The 
abnormalities are sorted according to the average value of the AUC. The recognition of consolidated bone 
fractures has not been counted towards the overall algorithm performance.

Table 2.   The results of proposed framework presented in terms of the area under the receiving operator curve 
and sensitivity against patients under inpatient and outpatient care. The higher number for each abnormality is 
highlighted in bold.

Outpatient Inpatient

Abnormality AUC​ Sensitivity Abnormality AUC​ Sensitivity

Effusion 0.81 [0.74–0.89] 0.90 [0.78–0.96] Effusion 0.87 [0.84–0.90] 0.98 [0.96–0.99]

Infiltrates 0.66 [0.64–0.68] 0.81 [0.78–0.84] Infiltrates 0.69 [0.68–0.71] 0.89 [0.88–0.91]

Cyst 0.69 [0.35–0.99] 0.67 [0.21–0.94] Cyst 0.89 [0.74–0.99] 1.00 [0.65–1.00]

Pulmonary mass 0.65 [0.62–0.67] 0.81 [0.78–0.84] Pulmonary mass 0.68 [0.66–0.70] 0.89 [0.88–0.91]

Opacity 0.76 [0.74–0.79] 1.00 [0.99–0.99] Opacity 0.74 [0.72–0.76] 1.00 [0.99–1.00]

Atelectasis 0.86 [0.72–0.99] 1.00 [0.76–1.00] Atelectasis 0.83 [0.77–0.90] 0.98 [0.90–1.00]

Pneumothorax 0.80 [0.59–0.99] 1.00 [0.61–1.00] Pneumothorax 0.89 [0.85–0.93] 0.98 [0.92–0.99]

Pneumonia 0.78 [0.75–0.81] 0.88 [0.85–0.91] Pneumonia 0.90 [0.88–0.91] 0.98 [0.97–0.99]

Tuberculosis 0.77 [0.64–0.90] 0.88 [0.66–0.97] Tuberculosis 0.77 [0.71–0.82] 0.93 [0.86–0.97]

Fibrosis 0.65 [0.62–0.69] 0.82 [0.77–0.86] Fibrosis 0.66 [0.63–0.69] 0.86 [0.82–0.89]

Hernia 0.55 [0.37–0.74] 0.70 [0.40–0.89] Hernia 0.55 [0.39–0.71] 0.85 [0.58–0.96]

Cardiomegaly 0.64 [0.61–0.66] 0.81 [0.78–0.85] Cardiomegaly 0.66 [0.65–0.68] 0.89 [0.87–0.90]

Wid. mediastinum 0.67 [0.47–0.86] 0.78 [0.45–0.94] Wid. mediastinum 0.59 [0.49–0.69] 0.85 [0.69–0.94]

Hilar enlargement 0.67 [0.45–0.89] 0.71 [0.36–0.92] Hilar enlargement 0.82 [0.73–0.91] 0.97 [0.84–0.99]

Scoliosis 0.65 [0.60–0.71] 0.83 [0.74–0.89] Scoliosis 0.63 [0.57–0.70] 0.86 [0.77–0.92]

Bone fracture 0.79 [0.65–0.93] 1.00 [0.80–1.00] Bone fracture 0.73 [0.66–0.80] 0.92 [0.83–0.97]

Consolidate fracture 0.67 [0.57–0.78] 0.81 [0.65–0.91] Consolidate fracture 0.69 [0.62–0.76] 0.93 [0.85–0.97]
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only an approximate performance comparison against existing solutions is possible. We must acknowledge that 
the results in terms of correctly labeled pathological X-rays are an overestimation of the true positive rate. At the 
same time, our results have been obtained in the most challenging close-to-real-life settings when the algorithm 
development team had no access to testing X-rays, and the list of potential abnormalities of interest (Fig. 2). As 
it was reported by Cohen et al.6, using testing data from a different hospital than training data can result in more 
than 50% reduction of the automated diagnosis accuracy.

Pulmonary infiltrates.  Pulmonary infiltration is the most prevalent abnormality diagnosed by the physi-
cians on the X-rays of the experiment. The infiltrate is a broad and often non-specific term that encompasses 
visual abnormalities in chest X-rays that edema, blood, exudate, and cancerous tissues15. Due to its broad defini-
tion, infiltration is the most prevalent class in one of the most popular public lung X-ray databases – ChestX-ray8 
from the National Institutes of Health (NIH)16. The availability of public data has summoned significant atten-
tion from the data science community to the automated infiltrate detection problem6,17–34. Most of the authors 
addressed the problem using classification neural networks usually with ResNet16,29,31,33,34 and DenseNet6,20,28,32,34 
backbones. The performance of the published solutions tested on the NIH database mostly lies in a narrow 
interval from 0.689 to 0.727 AUC​17,20,21,23–26,28,30,31,34,35. Augmenting a classification network with lung field 
segmentation28 or abnormality region enhancement22,23 resulted in a 1–2% of accuracy improvement. Baltrusch 
et al.30 have not observed a significant improvement in the infiltration detection accuracy from the automated rib 
suppression. To the best of our knowledge, Cohen et al.6 was the only group to use different external testing data-
bases for the infiltration detection evaluation and observed that the accuracy drops to 0.51 AUC in comparison 
to 0.75 AUC achieved when the testing database is sampled from the same source as the training database. Our 
framework achieved the AUC of 0.691 and correctly labeled as pathological 87% of X-rays containing infiltra-
tions.

Pulmonary opacities.  Pulmonary opacities were the second-largest abnormality class in the experiment 
accounting for 2304 abnormality labels. Similar to pulmonary infiltrates, pulmonary opacity is a relatively gen-
eral term that encompasses various diseases including pulmonary infections, edemas, and cancer. The lung 
opacities are included in the public Stanford CheXpert database, which significantly stimulates the research of 
automated opacity diagnosis36. The reported results on opacity detection range from 0.90 to 0.94 AUC when 
training and testing X-rays were sampled from the same public or private databases6,37–43. DenseNet6,37–39, 
ResNet37,39,40 and Xception37,39,43 are the main network architectures used for opacity detection. Considering 
that opacity is strongly connected with other lung abnormalities, Chakravarty et al.37 have demonstrated that 
graph-based networks that capture inter-disease relationships can slightly improve opacity detection. Testing on 
external databases dramatically reduced the AUC from 0.93 to 0.74 for the same DenseNet-based model6. Lenga 
et al.38 demonstrated that the inclusion of 5% of the external database for training will increase the AUC to 0.77 
AUC. The proposed framework achieved the AUC of 0.760 and correctly labeled as pathological 86% of X-rays 
containing opacities.

Table 3.   The results of proposed framework presented in terms of the area under the receiving operator curve 
and sensitivity against patients with and without sings of lung aging marked by the attending radiologists. The 
higher number for each abnormality is highlighted in bold.

No visual signs of lung aging Lung aging

Abnormality AUC​ Sensitivity Abnormality AUC​ Sensitivity

Effusion 0.88 [0.85–0.90] 0.96 [0.93–0.98] Effusion 0.82 [0.77–0.87] 0.98 [0.94–1.00]

Infiltrates 0.71 [0.69–0.72] 0.85 [0.83–0.87] Infiltrates 0.54 [0.51–0.58] 0.89 [0.87–0.90]

Cyst 0.80 [0.62–0.99] 0.88 [0.53–0.98] Cyst 0.96 [0.76–1.00] 1.00 [0.34–1.00]

Pulmonary mass 0.69 [0.67–0.71] 0.84 [0.82–0.87] Pulmonary mass 0.54 [0.50–0.57] 0.89 [0.87–0.91]

Opacity 0.78 [0.76–0.80] 1.00 [1.00–1.00] Opacity 0.60 [0.57–0.64] 1.00 [1.00–1.00]

Atelectasis 0.87 [0.80–0.94] 0.98 [0.87–1.00] Atelectasis 0.74 [0.62–0.85] 1.00 [0.86–1.00]

Pneumothorax 0.90 [0.85–0.94] 0.98 [0.92–0.99] Pneumothorax 0.90 [0.78–1.00] 1.00 [0.70–1.00]

Pneumonia 0.84 [0.82–0.86] 0.94 [0.92–0.96] Pneumonia 0.79 [0.74–0.84] 0.96 [0.92–0.98]

Tuberculosis 0.79 [0.73–0.84] 0.91 [0.83–0.96] Tuberculosis 0.70 [0.58–0.82] 0.96 [0.81–0.99]

Fibrosis 0.64 [0.61–0.67] 0.81 [0.77–0.84] Fibrosis 0.56 [0.50–0.61] 0.90 [0.85–0.93]

Hernia 0.53 [0.39–0.67] 0.75 [0.51–0.90] Hernia 0.48 [0.27–0.69] 0.86 [0.49–0.97]

Cardiomegaly 0.67 [0.65–0.69] 0.84 [0.82–0.87] Cardiomegaly 0.51 [0.47–0.56] 0.89 [0.87–0.90]

Wid. mediastinum 0.72 [0.39–1.00] 1.00 [0.44–1.00] Wid. mediastinum 0.48 [0.39–0.58] 0.82 [0.67–0.91]

Hilar enlargement 0.81 [0.71–0.91] 0.96 [0.81–0.99] Hilar enlargement 0.74 [0.57–0.90] 0.83 [0.55–0.95]

Scoliosis 0.62 [0.56–0.67] 0.82 [0.74–0.87] Scoliosis 0.58 [0.49–0.68] 0.93 [0.82–0.98]

Bone fracture 0.76 [0.68–0.83] 0.93 [0.83–0.97] Bone fracture 0.67 [0.54–0.79] 0.96 [0.79–0.99]

Consolidate fracture 0.65 [0.57–0.72] 0.83 [0.73–0.90] Consolidate fracture 0.68 [0.59–0.78] 1.00 [0.91–1.00]
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Pulmonary mass.  Pulmonary masses, defined as pulmonary opacities larger than 30 mm, are present in 
2086 X-rays in the experiment database. Lung masses are included in the NIH database and their automated 
detection accuracy is currently estimated to be from 0.79 to 0.87 AUC​6,17–21,23–29,31,33,35. Two studies used private 
X-ray datasets and were able to demonstrate the performance way above the results of other groups on the public 
NIH database with the AUC of 0.95–0.9722,41. Both papers stated that their neural networks surpassed the inter-
observer performance by a significant margin. It is, however, important to indicate that these two databases have 
a relatively low number of pulmonary mass cases with as low as 70 X-rays with masses in the testing dataset41. In 
contrast, the Google investigation obtained a significantly worse performance of 0.72 AUC on a private database 
of around 650 k X-rays, which was inferior to the performance on the NIH database43. External validation com-
parison has resulted in a drop from 0.94 AUC, when testing X-rays are sampled from the same database, to 0.638 
AUC when testing X-rays are obtained from separate data sources6. The DenseNet has been selected by a major-
ity of papers that relied on the existing neural network architectures6,18–20,26,28,32,44. The proposed framework 
achieved the AUC of 0.678 and correctly labeled as pathological 87% of X-rays containing pulmonary masses.

Cardiomegaly.  Heart enlargement, i.e. cardiomegaly, has been present on 1919 X-rays in the experiment 
database. In contrast to many other lung abnormalities manifested on X-rays, cardiomegaly is formally diag-
nosed through morphometric analysis of the heart and lung fields, which potentially leaves less room for subjec-
tive decisions and human errors. Moreover, machine learning algorithms can be trained to segment lungs and 
heart from X-rays and then derive the cardiac measurements from the resulting segmentation. The existing 
papers that follow the diagnosis-from-segmentation approach have demonstrated a very high performance with 
AUC from 0.935 to 0.977 using internal validation45–48. In all these papers, the UNet network was used for heart 
and lung segmentation. The standard end-to-end solutions, where networks are asked to predict the disease by 
directly analyzing the raw X-ray, resulted in AUC from 0.60 to 0.89 tested on the NIH database17,18,20,23–29,31,33,34. 
The results on alternative public databases such as CheXpert, MIMIC, OpenI, and PadChest, and their combi-
nation with private databases can reach 0.945 AUC​19,21,22,30,32,35–37,39,42,44,49–51. There is no agreement on whether 
the richness and representativeness of public databases are sufficient to develop cardiomegaly detection algo-
rithms with comparable performance on internal and external data sources. Three studies have demonstrated 
the external and internal validation resulting in similar AUC values from 0.800 to 0.82838,52,53, while Cohen 
et al.6 observed a drastic drop from 0.945 AUC to 0.721 AUC. Rajpurkar et al.32 observed that cardiomegaly is 
one of the lung abnormalities where automated detection results are significantly lower than the inter-observer 
variability. The proposed framework achieved the AUC of 0.671 and correctly labeled as pathological a 73% of 

Figure 2.   A physician has visually reviewed cases with the framework results. This Figure presents some 
potentially challenging examples of chest X-rays labeled as abnormal by the framework with the corresponding 
abnormality heatmaps. (a) This case has been manually labeled as pathological requiring a CT image for specific 
abnormality confirmation. (b) An X-ray with no visual abnormalities. According to the physician’s opinion, 
the framework mis-labeled this X-ray as abnormal due to a wrong patient position so that his shoulder blades 
overlapped with the lung tissue. (c) The physician confirmed the presence of infiltration in the location marked 
by the framework. (d) The algorithm correctly labeled the X-ray by capturing fibrosis but did not highlight 
pleural effusion and broken ribs.
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X-rays with cardiomegaly, which is lower than the detection rate of other abnormalities. Considering the pro-
portion of positive and negative predictions of the presented framework, the results for cardiomegaly are not 
significantly better than random guessing.

Pneumonia.  Pneumonia accounts for 873 X-rays in the experiment database. In 2018, the Radiologi-
cal Society of North America organized a public competition on automated pneumonia diagnosis from chest 
X-rays with monetary awards, which considerably stimulated the interest in the topic from the research society 
and allows us to objectively estimate the performance of the algorithms when the testing data is sampled from 
the same source as training but not available to the algorithm developers. The Dice coefficient for pneumonia 
pockets localization was 0.29 for one of the top-performing teams who published their results54. During the later 
reuse of the training part of the database, the researchers reported an AUC of 0.74–0.85 and intersection-over-
union of 0.54 for pocket localization55,56. The AUC values of 0.69–0.74 are obtained on other public databases 
such as NIH and CheXpert20,23,24,37–39. In contrast to the agreement observed on public databases, the results on 
private databases vary significantly and can reach 0.95 AUC​57. Two studies that compared internal and external 
validation of automated pneumonia detection have reported a significant performance reduction for the exter-
nal validation with the accuracy dropping from 0.68 to 0.4758, and AUC from 0.90 to 0.596. The recent outbreak 
of COVID-19 disease has given an additional impetus to automated pneumonia diagnosis, especially to the 
recognition of various pneumonia types. The accuracy of COVID-19 diagnosis against healthy X-rays is around 
0.76–0.90 AUC​57,59–62, whereas the differentiation between COVID-19 and non-COVID-19 pneumonia reaches 
the accuracy of 0.92 AUC​63,64. The proposed framework achieved the AUC of 0.842 and correctly labeled as 
pathological a 95% of X-rays with pneumonia. Hu et al. have observed that the use of dual-energy X-ray images 
with ribs suppressed does not significantly improve pneumonia detection accuracy60.

Pneumothorax.  Pneumothorax has been reported for 95 X-rays in the experiment database. Although 
pneumothorax is not as common as the previously discussed lung diseases, it could be life-threatening without 
urgent attention and therefore receives considerable attention from the medical imaging research community. 
The Society for Imaging Informatics in Medicine (SIIM), the American College of Radiology (ACR), and the 
Society of Thoracic Radiology (STR) jointly organized a public competition on automated pneumothorax diag-
nosis from X-rays. The best submitted AI solution segmented pneumothorax pockets with 0.87 Dice65. It is 
important to note that the Dice values were slightly biased by the fact that the number of healthy X-rays in the 
SIIM competition database is relatively high, and the correct recognition of healthy X-rays results in Dice of 1.0, 
which boosts the average Dice score. The comparison of AI to three radiologists on challenging-to-analyze cases 
from SIIM has demonstrated that AI can segment pneumothorax pockets more accurately than the radiologists, 
while the radiologists were more accurate in pneumothorax/no pneumothorax classification66. The results on the 
NIH database are around 0.80–0.98 AUC​17,19,20,23. The superior results on the SIIM challenge, where the testing 
labels are not available to the algorithm developers, in contrast to the result on the NIH database suggest that 
binary pneumothorax diagnosis could be simpler than pneumothorax diagnosis as a part of a multi-disease anal-
ysis. Existing reports on external validation of pneumothorax diagnosis have demonstrated a drop in accuracy 
from 0.92 to 0.4636, and from 0.90 to 0.597. The proposed framework achieved the AUC of 0.898 and correctly 
labeled as pathological a 98% of X-rays with pneumothorax pockets.

Binary classification.  Although most of the existing papers perform multi-disease analysis due to the avail-
ability of public annotated databases, some recent papers focused on binary lung disease classification. One of 
the key ideas investigated was increasing the number of true negative predictions while keeping the number of 
false negatives as low as possible, i.e. focusing on the recognition of healthy cases. Dyer et al.67 tested how well 
DenseNet can recognize X-rays from healthy subjects, and observed that it mislabels 4% of abnormalities for 
20% of X-rays labeled with the highest probability of healthiness. Wong et al.68 separated X-rays into easy, where 
three radiologists gave the same diagnosis, and challenging, where only two radiologists agreed on the diagnosis. 
Using easy cases, their algorithm recognized 33% of healthy X-rays without missing an abnormality. This num-
ber dropped to 23% for challenging cases. In the proposed study, the framework mislabels 4% of abnormalities 
against a 16.5% true negative rate for 13% of X-rays labeled with the highest probability of healthiness.

The chest X-rays were acquired for patients both under inpatient and outpatient, i.e. ambulatory, care. As 
ambulatory patients include a large number of patients that underwent routine or pre-employment X-ray screen-
ing, a framework that can handle ambulatory X-rays can potentially benefit more patients. Moreover, early signs 
of diseases are more likely to be missed during the screening of ambulatory patients, where healthy X-rays sig-
nificantly prevail over pathological X-rays. The X-rays from inpatient care centers are from patients who cannot 
be treated at home and require hospitalization, so we can expect a higher prevalence of lung abnormalities in 
such chest X-rays. An expected proportion of healthy vs. abnormal cases for the analysis will affect the optimal 
framework parameters such as the classification boundary. The training databases included both inpatient and 
ambulatory care cases. The X-rays from City Hospital #7, and City Hospital #18 were mainly from routine scan-
ning with 97% and 98% healthy subject prevalence, respectively. The X-rays from Republic TB Dispensary were 
composed of inpatient and outpatient care patients with 78% healthy subject prevalence. The public database 
used for training did not provide information on the type of care for their patients except for CheXpert, where the 
authors mentioned that X-rays from both inpatient and outpatient centers were used. We could, however, assume 
that other databases also had X-rays from inpatient centers as some patients are imaged in the horizontal position 
using portable X-ray machines. The testing database had 57% and 43% of outpatient and inpatient cases, respec-
tively. For most of the abnormalities, the framework performance was superior for outpatient cases (Table 2). We 
asked radiologists with 3-year and 30-year experience in chest X-ray image analysis to retrospectively inspect 
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some of the outpatient and inpatient X-rays and comment on the network performance and visual diagnostic 
uncertainties. They observed that the nodules and potential tuberculosis cavities in the ambulatory are relatively 
small and are likely to be missed by the framework and even by some radiologists. The infiltrates in lung basal 
segments are likely to be missed in ambulatory patients with unspecific clinical presentations. Pneumothorax 
accompanies various lung diseases or could be the result of lung tissue biopsy, which considerably increases the 
occurrence of pneumothorax for patients under inpatient care. Outpatient patients with compensated heart 
failure may have small pleural effusion pockets, which are more difficult to automatically detect in contrast to 
ambulatory patients with decompensated heart failure, where lungs pleural effusion pockets are larger and better 
visible. Both radiologists agreed that improving the framework performance will require the use of additional 
data sources such as clinical reports and patient disease history.

The patient’s age is usually of diagnostic importance, and therefore several attempts for its automated estima-
tion with AI have been performed69,70. Aging significantly affects human lungs and their appearance in X-ray 
images. Certain visual patterns manifested in young patients are more likely to be associated with lung diseases 
than the same patterns manifested in elderly patients. One of the reasons is that the accumulated risks of hav-
ing lung diseases grow with time so elderly patients are more likely to have signs of previously experienced 
diseases in their lung fields. For example, visual consolidations in lung basal segments are often associated with 
congestive heart failure in elderly patients. Osteoarthritis of the sternoclavicular joint could obstruct potential 
abnormalities in X-rays or be identified as a false positive abnormality. The attending physicians indicated which 
patients had visual signs of lung aging in their reports. The framework was trained to predict the age from X-ray. 
To understand if lung aging perfectly correlates with age on the experiment database, a logistic regressor was 
trained on age features to predict lung aging labels. The regressor performance was 0.79 and 0.70 in terms of AUC 
and prediction accuracy, respectively. The optimal cut-off threshold was 60.1 years which qualified all patients 
with lung aging signs into the correctly classified patient category. The experiment cases were subdivided into 
patients with/without lung aging, and patients, for whom the logistic regressor correctly/incorrectly predicted 
lung aging. The results for the two subdivisions are presented in Tables 3 and 4. There was no significant differ-
ence between the framework results computed for patients without lung aging and patients whose lung aging 
is in agreement with their age according to the logistic regressor. Similarly, there was no significant difference 
between the framework results computed for patients with lung aging and patients whose lung aging was not in 
agreement with their age according to the logistic regressor. This observation leads to a non-obvious conclusion 
on the efficient analysis of age-related information. It seems to be insufficient to simply use the age feature or 
train the framework to recognize age-related changes in X-rays. The framework needs to be trained to recognize 
cases where the patient’s age is not in agreement with age-related lung changes. To the best of our knowledge, 
there is only one paper that estimated the age from chest X-rays, which observed an average error of 4.7 and 
4.9 years using DenseNet121 and ResNet50 networks, respectively71.

Table 4.   The age information is integrated into the proposed framework. A separate logistic regression model 
was implemented to predict visual lung aging from the age feature. The model performance was of 0.79 and 
0.70 AUC and accuracy. This table presents the framework results in terms of the area under the receiving 
operator curve and sensitivity against the patients whose visual lung aging was correctly/incorrectly predicted 
from their age. The higher number for each abnormality is highlighted in bold.

Visual lung aging match age Visual lung aging does not match age

Abnormality AUC​ Sensitivity Abnormality AUC​ Sensitivity

Effusion 0.89 [0.86–0.92] 0.97 [0.94–0.99] Effusion 0.84 [0.80–0.88] 0.97 [0.93–0.99]

Infiltrates 0.70 [0.68–0.71] 0.86 [0.84–0.88] Infiltrates 0.66 [0.64–0.68] 0.87 [0.85–0.89]

Cyst 0.87 [0.72–1.00] 0.88 [0.53–0.98] Cyst 0.64 [0.23–1.00] 1.00 [0.34–1.00]

Pulmonary mass 0.70 [0.68–0.71] 0.87 [0.85–0.89] Pulmonary mass 0.63 [0.60–0.65] 0.86 [0.83–0.88]

Opacity 0.77 [0.75–0.78] 1.00 [1.00–1.00] Opacity 0.72 [0.70–0.74] 1.00 [1.00–1.00]

Atelectasis 0.83 [0.74–0.93] 0.96 [0.82–0.99] Atelectasis 0.85 [0.77–0.93] 1.00 [0.91–1.00]

Pneumothorax 0.87 [0.81–0.93] 0.98 [0.92–0.99] Pneumothorax 0.93 [0.88–0.98] 0.98 [0.88–1.00]

Pneumonia 0.81 [0.79–0.84] 0.92 [0.89–0.94] Pneumonia 0.87 [0.85–0.89] 0.98 [0.96–0.99]

Tuberculosis 0.79 [0.73–0.85] 0.91 [0.83–0.96] Tuberculosis 0.77 [0.67–0.88] 0.96 [0.82–0.99]

Fibrosis 0.71 [0.68–0.74] 0.89 [0.85–0.91] Fibrosis 0.55 [0.51–0.58] 0.79 [0.74–0.83]

Hernia 0.58 [0.43–0.74] 0.79 [0.52–0.92] Hernia 0.46 [0.28–0.65] 0.78 [0.45–0.94]

Cardiomegaly 0.70 [0.68–0.72] 0.88 [0.86–0.90] Cardiomegaly 0.60 [0.57–0.62] 0.85 [0.82–0.90]

Wid. mediastinum 0.74 [0.64–0.85] 0.93 [0.77–0.98] Wid. mediastinum 0.35 [0.22–0.48] 0.64 [0.39–0.84]

Hilar enlargement 0.87 [0.76–0.97] 1.00 [0.83–1.00] Hilar enlargement 0.72 [0.58–0.85] 0.84 [0.62–0.94]

Scoliosis 0.65 [0.60–0.70] 0.83 [0.76–0.86] Scoliosis 0.60 [0.52–0.68] 0.88 [0.76–0.94]

Bone fracture 0.77 [0.70–0.85] 0.92 [0.82–0.97] Bone fracture 0.73 [0.62–0.84] 0.96 [0.81–0.99]

Consolidate fracture 0.66 [0.58–0.73] 0.83 [0.71–0.90] Consolidate fracture 0.74 [0.65–0.82] 1.00 [0.91–1.00]
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Methods
A framework for automated chest X-ray analysis has been developed. Considering that the framework was 
deployed for everyday clinical practice, it included components for input data validation and preprocessing. In 
particular, one module of the framework checked whether an input image represents a conventional chest X-ray 
without grayscale inversion. Another module was trained to detect lung fields in chest X-rays. Such a modular 
structure facilitates the upgrading of individual framework parts without the need for complete framework 
retraining and simplifies framework validation.

Training databases.  To facilitate the generalization capability of the proposed framework, it was trained 
on a rich collection of public and private X-ray images. Three public databases, namely ChestX-ray8 (NIH)16, 
CheXpert36, and RSNA10 databases were used for training. After combining these public databases, we formed 
a training database with 35,115 X-rays with atelectasis, 24,102 with cardiomegaly, 82,027 with pleural effusion, 
10,317 with infiltration, 6046 with pulmonary masses, 12,643 with nodules/lesions,13,910 with pneumonia, 
20,106 with pneumothorax, 92,669 with opacities, 48,905 with edema, 12,730 with consolidation and 7270 
with bone fractures. Note that one X-ray may have multiple abnormalities present. The private databases were 
obtained from City Hospital #7, City Hospital #18, and Tuberculosis Dispensary from the city of Kazan, Russia. 
The collection of 59,944 private X-rays included the same abnormalities as public databases plus tuberculosis. 
Prior to the framework training, the labels of the X-rays were converted to binary, i.e. all abnormality labels were 
united into a single class. In summary, the X-rays for training were collected from different sources, acquired 
using different imaging equipment, imaged patients in both vertical and horizontal positioning, and had differ-
ent spatial resolutions.

Training data augmentation.  To enrich the training databases, the X-rays were augmented with intensity 
and geometry transformations during training. The intensity augmentations included: brightness augmentation 
with the factor of 0.2; contrast augmentation of 0–5 percent magnitude; gamma augmentation of level [70; 130]. 
For each training image, a random intensity augmentation with random parameters was selected. With 0.5 prob-
ability, one additional intensity augmentation was selected between additive Gaussian noise with the variance 
[10; 50] or blur with the maximal standard deviation of 5. The geometry transformations included random X-ray 
rotations of up to 20 degrees and image scaling by the maximum factors of 0.15. A random combination of rota-
tion and scaling was applied to each training image. With 0.5 probability, a training image may be flipped in the 
horizontal direction. Such training data augmentation can improve diagnostic accuracy by 2–4%72.

Input image preprocessing.  Before being analyzed for chest abnormalities, an input image passed through 
several preprocessing steps. First, a neural network scanned the image to recognize if it represents a conventional 
or grayscale-inverted X-ray. An X-ray marked as grayscale-inverted was then converted to conventional. Second, 
a neural network scanned the image to recognize if it represents a frontal chest X-ray or lateral chest X-ray, or 
some other image. An input not labeled as a frontal chest X-ray is marked as defected and no further analysis is 
performed on it. The EfficientNet classification network architecture was used for both preprocessing steps. The 
networks were trained with a combination of binary cross-entropy and focal losses, Adam optimizer, and l2 reg-
ularization with a weighting factor of 0.0001. In the third preprocessing step the approximate location of the lung 
fields was estimated. The X-ray was converted into an integral image to compute Haar, a histogram of oriented 
gradients (HoG), and local binary pattern features73. These features were matched to the lung field descriptors to 
find the approximate locations of the lung fields in the X-ray. The lung fields are cropped from the input X-ray 
using the bounding box with safety margins. The lung field detection was needed to normalize the location of 
the target anatomy, remove unnecessary parts of the head and abdomen that could be present in the X-ray, and 
recognize defective X-rays where lung fields are cropped. The preprocessing of the input image was needed to 
automatically recognize if it actually represents a frontal lung X-ray of acceptable quality. It was required by the 
experiment organizers for frameworks to recognize and report defective inputs. It was considered an error if an 
automated report is generated for a non-lung X-ray or marked as defective a lung X-ray (Fig. 3b). The cropped 
lung field region was then rescaled to 512 × 512 size and the intensities were normalized to the [0; 1] range.

Multi‑head diagnostic network.  A deep multi-head neural network for the prediction of lung abnor-
malities from chest X-rays was developed (Fig. 4). The encoder part of the network was based on the DenseNet 
architecture pre-trained on existing chest X-rays databases such as NIH, RSNA, PadChest74, CheXpert, and 
MIMIC75 databases. The network was modified to generate multiple outputs of multiple types. A fully-connected 
layer block with 1024 features and two-value output was added to predict the presence/absence of chest abnor-
mality. A fully-connected layer block with 1024 features and three-value output was added to predict the gender 
of the patient, i.e. male, female, or other (Fig. 3a). A fully-connected layer block with 1024 features and 10-value 
output was added to predict the age of the imaged patient. The patient ages were aggregated into bins of 10-year 
duration, starting from [0; 10] to [90; 100] years. In the first training iteration, all existing network layers were 
frozen, while the new layers were trained on NIH, RSNA and CheXpert, and private X-rays. In the second train-
ing iteration, all network layers were unfrozen and training continued using only private X-rays. For both steps, 
the training continued until no performance improvement was achieved for 15 consecutive epochs. The training 
was performed using Adam optimizer with training X-ray separated into 12-image batches. The cross-entropy 
loss was used for all networks heads (Supplementary Information).

Before the two rounds of external validation, the framework passed several internal validations using 
randomly sampled parts of the City Hospital #7 and Tuberculosis Dispensary database for validation. Using 
City Hospital #7 data for validation, the framework performance was 0.84, 0.78, 0.78, and 0.78 in terms of 
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AUC, accuracy, specificity, and sensitivity, respectively. Using Tuberculosis Dispensary data for validation, the 
framework performance was 0.89, 0.76, 0.63, and 0.89 in terms of AUC, accuracy, specificity, and sensitivity, 
respectively.

Ethics.  The study has been approved by the institutional review board (IRB) of the Moscow Ministry of 
Health and Family Welfare Department.

Figure 3.   (a) A chest X-ray example, where the inclusion of gender prediction head of the framework corrected 
a false-positive disease prediction. (b) A chest X-ray example mis-classified as defected, i.e. not representing a 
fronal chest X-ray.
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Figure 4.   The schematic illustration of the proposed framework consisting of several components for (1) 
identification of grayscale inverted X-rays, (2) non-lung X-ray images, (3) lung region of interest selection, and 
automated diagnosis.
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Informed consent.  Informed consent was obtained from all participants. In particular, all the patients were 
informed that their clinical data will be used for research purposes. All patients were of age, i.e. ≥ 18 years old, so 
there was no need to get approval from their parents or legal guardians.

Accordance statement.  All methods were performed in accordance with the relevant guidelines and 
regulations.

Data availability
The data from the first or/and second external validation experiment will be made available upon acceptance 
of the manuscript.
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