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The 21st Century Systems: an updated vision of
Discrete-Time Fractional Models

Manuel D. Ortigueira and J. A. Tenreiro Machado

Abstract—Two different approaches for describing discrete-
time fractional linear systems are presented. The first is based
on the nabla and delta discrete-time derivatives. In this case
suitable exponentials are introduced and used to define discrete
Laplace transforms. The second approach is based on the bilinear
(Tustin) transformations. For both cases, appropriate algorithms
for obtaining the impulse, step, and frequency responses are
presented. The state-variable representation is also analysed.

Index Terms—Fractional system, Fractional derivative, Nabla
derivative, Nabla Laplace transform, Delta derivative, Delta
Laplace transform, Tustin transformation

I. INTRODUCTION

D iscrete-Time Fractional Models must be truly regarded
as representative of the 21st century systems. Indeed,

while the continuous-time fractional models exist since the
19th century, the discrete-time versions have only recently
been introduced. This state of affairs happens because it is
not easy to “fractionalize” discrete integer order systems
defined by difference equations. An attempt was rehearsed
in [1] where a model based on a fractional delay equation
was introduced. It was possible to define and compute the
traditional tools like, impulse response (IR) and transfer
function (TF). However, it could not be considered as a
fractional discrete-time system, in the sense followed in [2],
since the corresponding TF is not truly fraccional. This failure
showed that we had to give a deeper thought to the problem
and, the most natural way to do it, was to go back to the
origins.

Discrete-time systems began as a mere set of numerical tec-
niques to approximate and solve continuous-time differential
equations. Such procedure was based on the incremental ratia
used to aproximate the derivatives and is currently known
as Euler method [3]. This approach gave rise to the delta
systems [4], but, with a slight modification of the perspective,
originated the important class of the discrete-time systems
based on the difference equations [5], [6]. Nonetheless, the
original Euler procedure was not completely abandoned, even
if there was no formal introduction of such systems. Besides
remaining important as an intermediate step to obtain differ-
ence equations from continuous-time systems, they were used
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under the delta system format. Indeed, the procedure can be
applied when approximating continuous-time systems for filter
implementation and control [7], [8], [4], [9], [10], as well as
in modeling [11], [12], [13], [14].
More recently, the delta approach was revisited soaked in
the Hilger’s formulation for a continuous/discrete unification
[15], which is nowadays called calculus on time scales [16],
[17]. This formulation considers a general domain, called time
scale or more generally measure chain, that can be continuous,
discrete or mixed [17], [18], [16], [19]. In this domain, Hilger
defined two derivatives, named delta and nabla, that are the
incremental ratio or their limit to zero when calculated at a
non isolated point. With these derivatives we can devise the
corresponding differential equations representative of some
given systems. Using a current nomenclature we will call
them nabla and delta systems in agreement with the adopted
derivatives. The nabla derivative is causal, while the delta is
anti-causal. Based on this framework, suitable formulations for
fractional discrete-time system definitions had to be sought.
They are based on discrete nabla and delta derivatives so that
the resulting systems mimic the continuous-time that emerge
from the discrete-time as a limit when the sampling rate,
r = 1/h, increases without bound, meaning that the inter-
sample interval, h ∈ R+ (also called graininess) goes to
zero. In fact, it is like a return back to the origins when the
discrete were mere approximations to the CT systems [20],
[19], [21]. However, these approaches did not propose coherent
formulations of the nabla and delta system theory, that was
developed later in a more comprehensive way [22].

The above approach has two drawbacks.

• While in the traditional discrete-time systems the unit cir-
cle is the reference for stability, the nabla/delta approach
uses a circle with center +/− 1/h, passing at the origin
[22].

• In the traditional discrete-time signal processing the Z
transform (ZT) is the tool par excellence for working
with systems defined by difference equations. In the case
of nabla/delta systems, we need to define new transforms
[22].

As it is well known, the stability domain of causal continuous-
time system is the right half complex plane (HCP). We can
establish a one to one correspondence between the left
(right) HCP and the interior (exterior) of the unit disk. Such
relation can be expressed by a particular case of the bilinear
(or, Möbius) transformation that is commonly named the
Tustin map [23], used for the discrete-time approximation of
continuous-time linear systems [24], [5], [6], [25]. However,



CIRCUITS AND SYSTEMS MAGAZINE, VOL. 00, NO. 00, MONTH 2021 2

no discrete-time derivative was introduced. This idea was
explored in [26]. In fact, the bilinear transformation allows
us to formulate a general discrete-time fractional calculus
that mimics the corresponding continuous-time version,
while being fully autonomous. On the other hand, it leads
to tools and concepts similar to those of continuous-time
fractional signals and systems (see the companion paper [2]).
Another important characteristic of the proposed derivatives
and systems lies in the fact that the Z transform is the
most appropriate one in this framework. As the unit circle
recovers its traditional role, the usefulness of the Fast Fourier
Transform (FFT) becomes clear from the numerical and
calculation time perspectives.
These two formulations led to discrete-time differential
equations describing input-output relations in a similar way
to what occurs with the continuous-time fractional systems.
However, there is a generalized framework that can be used to
deal with continuous-time and discrete-time systems usually
called state space representation. While the first approaches
consider the system like a “black-box” relating merely the
input and output, this one allows us to “see” what is inside the
system, through the introduction of inner variables describing
the so-called state of the system. In this case, the model is
defined by two equations that aquire the same form for all
systems: the dynamic and observation equations. To solve the
dinamic equation we need to introduce the state transition
operator verifying the semi-group properties. We present this
general formulation together with a correct definition of state
transition operator.

The paper outlines as follows. In Section II the nabla and
delta linear time invariant systems (LTIS) are introduced and
studied. We focus our attention in the nabla versions, because
they correspond to the causal case. We introduce the nabla and
delta discrete-time derivatives (subsection II-A) and study their
eigenfunctions that will be called nabla and delta exponentials
(subsection II-B). From these concepts, we can define two
discrete Laplace transforms. We discuss the Nabla Laplace
transform only (subsection II-C), as well as its properties and
the backward compatibility with the continuous-time Laplace
transform. The nabla linear systems are introduced and stud-
ied in subsection II-E where the transient and steady-state
responses are obtained. The stability and initial-conditions are
also considered.
The linear systems based on the bilinear transformation are
studied in Section III. The formulation is essentially performed
in the Z transform domain which makes easier the introduction
and study of the forward/backward derivatives (subsection
III-A). The time formulation of the derivatives is presented
in subsection III-B. With these derivatives we define the
bilinear differential discrete-time linear systems (subsection
III-C). Some illustrative examples are presented. In Section
IV we introduce the state-variable formulation in a general
setup valid also for the continuous-time systems. Finally some
conclusions are drawn in Section V.

A. Abbreviations

The following abbreviations are used in this manuscript:
ARMA Autoregressive-Moving Average
CT Continuous-Time
DT Discrete-Time
FARMA Fractional Autoregressive-Moving Average
FD Fractional derivative
FIR Finite Impulse Response
FT Fourier transform
FFT Fast Fourier transform
FR Frequency response
IC Initial-conditions
IR Impulse Response
IIR Infinite Impulse Response
GL Grünwald-Letnikov
LTIS Linear time-invariant system
LS Linear system
LT Laplace transform
MLF Mittag-Leffler function
NLT Nabla Laplace transform
ROC Region of convergence
TF Transfer function
ZT Z transform

mds
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II. ON THE NABLA AND DELTA LINEAR TIME INVARIANT
SYSTEMS

A. Fractional nabla and delta derivatives

Consider that our working domain is the time scale

T = (hZ) = {. . . ,−3h,−2h,−h, 0, h, 2h, 3h, . . . } ,

with h ∈ R+. We can consider a slided time scale by a given
value, a < h, but it does not bring any new relevant notion
for this paper.
Set t = nh. We define the nabla derivative by:

f ′∇(t) =
f(t)− f(t− h)

h
(1)

and the delta derivative by

f ′∆(t) =
f(t+ h)− f(t)

h
. (2)

As it can be seen, the first derivative is causal, while the second
is anti-causal. The repeated application of these derivatives
allows us to obtain the N th, ( N ∈ N) order derivatives
and from them the general non integer order (i. e., α ∈ R)
formulations [22]:

f
(α)
∇ (t) =

∞∑
n=0

(−α)n
n! f(t− nh)

hα
(3)

and

f
(α)
∆ (t) = e−jαπ

∞∑
n=0

(−α)n
n! f(t+ nh)

hα
, (4)

obtained from the generalised Grünwald-Letnikov (GL)
derivative (see [2]). The symbol (−α)n stands for the
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Pochhamer representation of the raising factorial: (−α)0 = 1,

(−α)n =
∏n−1
k=0 (−α+ k) . We will call these derivatives

forward and backward respectively (this terminology is the
reverse of the one used in some mathematical literature). The
exponential factor in (4) is frequently removed, mainly when
the variable is not time. These formulations for the fractional
derivatives state different forms from those we find in some
current texts on discrete fractional calculus (see [17], [16]),
but are suitable for generalizing classic tools like the impulse
and frequency responses.

Example II.1. Consider the Heaviside unit step:

ε(nh) =

{
1, n ≥ 0
0, n < 0.

(5)

with n ∈ Z. It is straightforward to show that the nabla
derivative of the unit step is the discrete-time impulse

D∇ε(nh) =


1
h , n = 0

0, n 6= 0.
(6)

The anti-causal unit step is given by ε(−nh). Using (2) we
obtain

D∆ε(−nh) =

 −
1
h , n = 0

0, n 6= 0.
(7)

The above defined derivatives enjoy the same properties as
the continuous-time (CT) derivatives [22], namely
• Linearity
• Causality
• Time reversal

The substitution t ⇒ −t, converts the forward (nabla)
derivative into the backward (delta) and vice-versa.

• Additivity and Commutativity of the orders
Let α and β real numbers. Then,
Dα

[
Dβf(t)

]
= Dβ [Dαf(t)] = Dα+βf(t)

• Neutral element
The existence of neutral element is a consequence of
the previous property. Letting β = −α, then it results
Dα [D−αf(t)] = D0f(t) = f(t).

• Inverse element
From the last result we conclude that there is always an
anti-derivative.

Example II.2. Fractional derivatives of impulses
It is straightforward to show that the derivative of any order
of the impulse is essentially given by the binomial coefficients.
In fact, from (3) and (4) we get

Dα
∇δ(n) = h−α−1 (−α)n

n!
ε(nh) (8)

and
Dα

∆δ(n) = (−h)−α−1 (−α)−n
(−n)!

ε(−nh). (9)

According to the above properties, it is easy to obtain the
fractional derivative of the step functions. We only have to
substitute α− 1 for α and divide by h, so that:

Dα
∇ε(nh) = h−α

(−α+ 1)n
n!

ε(nh)

and
Dα

∆ε(nh) = (−h)−α
(−α+ 1)−n

(−n)!
ε(−nh).

Example II.3. Fractional derivatives of the discrete power
functions
For negative values of α these expressions can be considered
the definitions of fractional discrete “powers”. Their deriva-
tives are given by

Dβ
∇

[
(a)n
n!

ε(nh)

]
= h−β+1 (a− β)n

n!
ε(nh), (10)

which represents the analogue of the derivative of the power
function. Similarly we obtain for the delta derivative

Dβ
∆

[
(a)−n
(−n)!

ε(−nh)

]
= (−h)−β+1 (a− β)n

(−n)!
ε(−nh). (11)

Remark II.1. It can be shown that these “powers” tend to
the causal CT powers when h→ 0 [27].

Remark II.2. The theory described in this and in the following
sub-sections can be generalised for irregular time scales.
However, such study goes beyond the objectives of this work
[27].

B. The nabla and delta exponentials

As we discussed for the CT LS [2], the usual (eternal)
exponentials, est, t ∈ R and s ∈ C, are the eigenfunctions
of such systems. As it is well known, the discrete-time
exponentials, zn, n ∈ Z, are the eigenfunctions of the discrete
systems described by difference equations. Here, we introduce
the exponentials suitable for dealing with the systems defined
by the nabla and delta derivatives. These exponentials play a
similar role to those discussed in the study of CT LS.
The nabla exponential is defined by:

e∇(t, s) = [1− sh]
−t/h

, (12)

where s ∈ C. Similarly, the delta exponential is given by:

e∆(t, s) = [1 + sh]
t/h

. (13)

The corresponding complex sinusoids are obtained when s
is over the circles [1− sh] = 1 and [1 + sh] = 1, s ∈ C,
respectively. They are called right and left Hilger circles [15],
[16]. The main properties of the exponentials read [22]

1) Relation between the nabla and delta exponentials:

e∆(t, s) = 1/e∇(t,−s) = e∆(−t,−s). (14)

2) As h→ 0 both exponentials converge to est.

3) Eigenfunctions

Dα
∇e∇(t, s) = sαe∇(t, s) (15)

and
Dα

∆e∆(t, s) = sαe∆(t, s). (16)

4) Behaviour on C
The nabla exponential increases/decreases, as follows (for
the delta exponential the results are similar) [15], [16].
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• It is real for real s.
• It is positive for s = x < 1

h , x ∈ R.
• It oscillates for s = x > 1

h , x ∈ R.
• For values of s inside the right Hilger circle it is

bounded and goes to zero as s→ 1
h .

• On the Hilger circle it has absolute value equal to 1
and it degenerates into a sisoid.

• Outside the Hilger circle its absolute value increases
as |s| increases and goes to infinite as |s| → ∞.

5) Delayed exponentials
Let n0 ∈ Z+. The delayed exponentials verify the
following relations

e∇(t∓ n0h, s) = e∇(t, s) · e∆(±n0h,−s) (17)

and

e∆(t∓ n0h, s) = e∆(t, s) · e∇(±n0h,−s). (18)

6) Product of exponentials

• Different types at the same time

e∇(t, s) · e∆(t, v) = e∇(t, s+v1+vh ) = e∆(t, s+v1−sh ),
(19)

with v ∈ C
• Different types at distincts times

e∇(t, s) · e∆(τ,−s) = e∇(t− τ, s)
e∇(t,−s) · e∆(τ, s) = e∆(τ − t, s), (20)

with τ ∈ T.
• Same type

e∇(t, s) · e∇(t, v) = e∇(t, s+ v − svh)

and

e∆(t, s) · e∆(t, v) = e∆(t, s+ v + svh).

7) Cross derivatives

D∆e∇(t, s) = sh · e∇(t+ h, s)

D∇e∆(t, s) = sh · e∆(t− h, s)

C. Nabla Laplace transform

The nabla and delta exponentials allow us to define two
transforms [22]. Let f(nh) be a signal and assume that it
has a Nabla Laplace transform (NLT), F∇(s). The analysis
equation for the NLT is given by

N [f(nh)] = F∇(s) = h

+∞∑
n=−∞

f(nh)e∆ (nh,−s) . (21)

Its inverse transform (synthesis equation) is given by

f(nh) = N−1 [F∇(s)] = − 1

2πj

∮
γ

F∇(s)e∇ ((n+ 1)h, s) ds,

(22)
where the integration path, γ, is any simple closed contour in
a region of analyticity of the integrand that includes the point
s = 1

h . The simplest path is a circle with centre at s = 1
h .

Attending to the properties of the exponential that we listed

before, the limit as h→ 0 in (21) leads to the usual two-sided
LT.
We assume that s is inside the ROC of the transform. The
NLT enjoys the following properties
• Linearity
• Transform of the derivative

N
[
f

(α)
∇ (nh)

]
= sαF∇(s), (23)

reproducing a well known property of the CT Laplace
transform. The ROC is the disk inside the Hilger circle.

• Time shift
The NLT of f(nh− n0h), with n0 ∈ Z, is given by:

N [f(nh− n0h)] = e∆(n0h,−s)F∇(s). (24)

• Convolution in time

N

[
h

+∞∑
k=−∞

f(kh)g(nh− kh)

]
= F∇(s) ·G∇(s). (25)

From (8) we obtain immediately the impulse response
(IR) of the “differintegrator” sα. In particular, when α =
−1, we get N−1s−1 = ε(n), which leads to a classic
result: the step response is the accumulation (“integral”)
of the IR

rε(nh) = h

n∑
k=0

f(kh).

Remark II.3. As it can be verified by computation, the NLT
of the correlation requires the introduction of the Delta LT
that is defined by [22]

F∆(s) = h

+∞∑
n=−∞

f(nh)e∇(nh,−s). (26)

The corresponding inverse is given by

f(nh) =
1

2πj

∮
F∆(s)e∆((n− 1)h, s)ds. (27)

Example II.4 (Causal and anti-causal exponentials). A nabla
causal exponential is defined by

ec∇(t, p) = e∇(t+ h, p) · ε(t).

for any p ∈ C. Its NLT reads [22]:

N [e∇(t+ h, p) · ε(t)] =
1

s− p
. (28)

The ROC is defined by all points distancing from 1/h less
than

∣∣p− 1
h

∣∣. A simple criterion imposes that
∣∣s− 1

h

∣∣ < 1 and∣∣p− 1
h

∣∣ > 1. The pole must stay outside the Hilger circle.
The anti-causal exponential is defined by

ea∇(t, p) = −e∇(t+ h, p) · ε(−t− h)

NLT [−e∇(t+ h, p) · ε(−t− h)] =
1

s− p
. (29)

The ROC of (29) is the inverse of the one for the causal: the
pole must be inside the Hilger circle.
We can generalise the above results for multiple poles by



CIRCUITS AND SYSTEMS MAGAZINE, VOL. 00, NO. 00, MONTH 2021 5

considering 1
s−p as a function of p and computing sucessive

integer order derivatives.
Letting p = 0 in the expressions (28) and (29) we obtain

immediately the NLT of the unit step and powers. For the
causal case, we obtain

N
[
hα

(α+ 1)n
n!

ε(nh)

]
=

1

sα+1
. (30)

The ROC is the disk inside the Hilger circle.

D. The Discrete-Time Fourier transform

Similarly to the CT case, the exponential degenerates into
a sisoid when its absolute value is equal to 1. From (12),
|1− sh| = 1 defines a circle centred at 1/h and has radius
equal to 1/h (right hand Hilger circle). Similarly, the left
Hilger circle comes from |1 + sh| = 1 (13). With the change
of variable s = 1−e−jωh

h in (12), (21), and (22), we obtain

e∇(nh, ω) = ejωhn, n ∈ Z,

F (ejω) = h

∞∑
−∞

f(nh)e−jωhn,

f(nh) =
1

2π

π/h∫
−π/h

F (ejω)ejωhndω.

With the substitution ωh = Ω we obtain expressions that are
independent of the sampling interval (graininess) h

e∇(n,Ω) = ejΩn,

F (ejΩ) = h

∞∑
−∞

f(nh)e−jΩn (31)

and

f(nh) =
1

2π

π∫
−π

F (ejΩ)ejΩndΩ. (32)

Expressions (31) and (32), define the discrete-time Fourier
transform pair (DTFT), namely the direct and inverse
transforms, respectively [28], [24]. The presence of the factor
h in (31) ensures a back compatibility with the CT Fourier
transform.

E. The nabla linear systems

1) Steady-state response: We define a nabla linear system
through the following differential equation [22]

N∑
k=0

akD
αk
∇ y(t) =

M∑
k=0

bkD
βk
∇ x(t) (33)

where ak and bk (k = 0, 1, · · · ,) with aN = 1 are real
numbers. The operator D∇ is the nabla derivative defined
previously. The orders N and M are any positive integers.
The positive real numbers αk and βk with k = 0, 1, · · · ,
form strictly increasing sequences. It is interesting to remark
that when αk = k, relation (33) can be transformed into

a difference equation, by using (1) and the the binomial
decomposition.

Let g(t) be the IR of the system defined by (33) with x(t) =
δ(nh). The output is the convolution (25) of the input and the
IR

y(t) = g(t) ∗ x(t). (34)

If x(t) = e∇(nh, s), then the output is given by:

y(t) = e∇(nh, s)

[
h

∞∑
n=−∞

g(nh)e∆(nh,−s)

]
.

The summation expression is the transfer function as usually.
We have

G∇(s) = h

∞∑
n=−∞

g(nh)e∆(nh,−s), (35)

showing that the TF is the NLT of the IR [22]. With these
results we can write the TF as

G∇(s) =

M∑
k=0

bks
βk

N∑
k=0

aksαk
. (36)

As in the CT case, we conclude that:
• The exponentials are the eigenfunctions of the linear

systems (33)
• The eigenvalues are the transfer function values.
Let us analyse the following example.

Example II.5. Let h = 1 and consider the differential
equation

y′′′(t) + y′′(t)− 4y′(t) + 2y(t) = x(t).

If x(n) = 2−n, that corresponds to set s = −1 in (12), then
the solution is given by:

y(n) =
1

(−1)3 + (−1)2 + 4 + 2
2−n =

1

6
2−n.

Now we are in conditions of defining the frequency re-
sponse (FR) of the system (33). We only need to make the
substitution of variable s = 1−e−jωh

h in (36). This involves the
transformation of the parameters of the TF using the binomial
coefficients. We conclude that the TF (36) gives rise to the
following FR

G(ejω) =

M0∑
k=0

Bke
−jωk

N0∑
k=0

Ake−jωk
, (37)

where the coefficients Bk are given by

Bk =

M∑
l=1

blh
−αl−1 (−αl)k

k!
, (38)

for k = 0, 1, 2, . . . , M0. For the Ak coefficients, the
computation is similar.
Computing the inverse FT of G(ejω) we obtain a difference
equation equivalent to the differential equation (33). As
observed, for practical purposes, we have to truncate the
sequence.
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2) Transient responses: In general, the systems described
by (33) or (36) are IIR systems, difficult to study due to the
problems in computing the poles and zeros. We only have FIR
systems when N = 0 and all the derivative orders are positive
integers.
As for the CT we will consider the commensurate case. The
TF assumes the form

G∇(s) =

M∑
k=0

bks
αk

N∑
k=0

aksαk
. (39)

The fraction in (39) can be decomposed into a sum of a
polynomial (only zeros) and a proper fraction (pole-zero). We
are going to study the two cases separately.

1) Polynomial case
Let us consider a transfer function with the form

G∇(s) =

M∑
k=0

bks
αk. (40)

To invert this expression, we recall the previous statement
regarding sα that is the TF of the differentiator. This is
a system with IR given by the binomial coefficients in
agreement with (8). The IR corresponding to (40) is

g(nh) = b0δ(nh) +

M∑
k=1

bkh
−kα−1 (−αk)n

n!
ε(nh). (41)

Theoretically they are IIR systems, but the IR may go to
zero sufficiently fast to exhibit an FIR behaviour.

2) Proper fraction case

Herein, we consider that we have M zeroes and N poles
in (39) with N > M . For the sake of simplicity we
assume that the poles have multiplicity one. In this case
we can write G∇(s) as

G∇(s) =

N∑
k=1

Ak
sα − pk

, (42)

where Ak and pk, k = 1, 2, . . . , N, are the residues
and poles obtained by substituting w for sα in (39),
respectively. The IR can be obtained by inverting a
combination of partial fractions such:

F∇(s) =
A

sα − p
. (43)

To invert (43) we can insert it into the inversion integral,
(22). The residue theorem tells us that the inversion is
obtained by computing the (n + 1)th derivative of F (s)
and substituting 1/h for s. A simpler alternative is to
use the properties of the geometric series. We have two
possibilities corresponding to the regions:

a) Intersection of the Hilger circle with the disk |s| < |p| 1α
In this case we have

F∇(s) = −A
p

1

1− sα

p

= −A
p

[
1 +

∞∑
k=1

p−ksαk

]
.

(44)

From the above expression it results that the IR f(nh),
corresponding to a partial fraction of order one, is given
by

f(nh) = −A

[ ∞∑
k=0

p−k−1h−αk−1 (−αk)n
n!

ε(nh)

]
.

(45)
However, it will not be an interesting system in appli-
cations, since the values of p must be large for small
values of h.

b) Intersection of the Hilger circle with the disk |s| > |p| 1α
For this case, we can write

F∇(s) = A
s−α

1− ps−α
= A

[ ∞∑
k=1

pk−1s−αk

]
. (46)

The corresponding IR, f(nh), is given by

f(nh) = A

[ ∞∑
k=1

pk−1hαk−1 (αk)n
n!

ε(nh)

]
. (47)

This expression is the discrete-time version of the
α-exponential [29] that we find in CT systems and
that is related to the Mittag-Leffler function (MLF).
Therefore, this case is interesting in practice, since it
allows approaching CT systems closely using small
values of h.
For a complex conjugate pair we obtain:

v(nh) = 2

∞∑
k=1

Re
{
Apk−1

}
hαk−1 (αk)n

n!
ε(nh).

(48)
The properties of the nabla exponential and the sequence
of operations that we followed to compute the NLT of
the causal transform showed that if the poles are outside
the right Hilger circle then the system is stable. In par-
allel, the partial fraction inversions computed previously
showed that the series defining the time functions are
convergent if |p|hα > 1, and |p|hα < 1, in the first
(44) and second (46) cases, respectively. This means
that if p is outside the Hilger circle, then the system is
stable. Moreover, the system can be stable even if the
pole is located inside the Hilger circle provided that it is
outside the circle |s| = |p| 1α . This represents the discrete
counterpart of the stability criterion for CT systems [30].
For the integer order systems we can study the pole
distribution by a Routh-Hurwitz like criterion [31]. It is
important to remark again that the exterior (interior) of
the right Hilger circle degenerates in the left (right) half
complex plane when h→ 0.

F. On the initial conditions

The initial condition problem was discussed in the com-
panion paper [2]. Therefore, everything argued in that paper
remains valid here as long as we consider the required adap-
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tation. For the commensurate case, this can be found in [22]
and reads

N
[
g

(Nα)
∇ (t)ε(t)

]
= sNαN [f(t)ε(t)]−

N−1∑
k=0

g
(kα)
∇ (−h)s(N−k)α−1

(49)
With this expression we can insert the initial conditions in any
system as proposed in [32] and [33].

III. THE BILINEAR TRANSFORMATION BASED LINEAR
SYSTEMS

The systems described in the previous section are useful
for introducing the discrete-time systems defined by fractional
discrete-differential equations. We could define the standard
tools, such us the IR and TF. However, these systems are
somehow different from the standard discrete-time descrip-
tions, since they have stability domains that are defined by the
Hilger circles, instead of the unit circle that is the reference
in the theory of classic discrete-time systems. On the other
hand, they require new LT instead of the ZT. This observation
motivated the search for an alternative for defining fractional
linear systems.
In the DT approximation of CT systems, the Tustin (bilinear)
transformation [23] is of current use. In fact, the definition of
DT LS having as base such transformation was proposed just
recently [26]. The Tustin transformation is a particular case of
the conformal Möbius mapping. As it is well-known, it estab-
lishes a bijection between the left (right) half complex plane
and the interior (exterior) of the unit disk. This property allows
us to consider such transformation as the base for defining
alternative discrete-time derivatives and the fractional systems
that mimic the analogous CT versions. Such strategy enable us
to adopt the tools and the results available in the DT domain
for the CT fractional systems introduced in the companion
paper [2]. Moreover, the proposed derivatives and systems
have the important feature of being suitable to be implemented
through the FFT with the corresponding advantages, from the
numerical and calculation time perspectives.

A. Forward and backward derivatives based on the bilinear
transformation

The Tustin transformation is usually expressed by [6], [5]

s =
2

h

1− z−1

1 + z−1
, (50)

where h is the sampling interval, s is the derivative operator
associated with the (continuous-time) LT and z−1 the delay
operator tied with the Z transform.

Let x(nh) be a discrete-time function, we define the order 1
forward bilinear derivative Dx(nh) of x(nh) as the solution
of the difference equation

Dx(nh) +Dx(nh− h) =
2

h
[x(nh)− x(nh− h)] . (51)

Similarly, we define the order 1 backward bilinear derivative
Dx(nh) of x(nh) as the solution of

Dx(nh+ h) +Dx(nh) =
2

h
[x(nh+ h)− x(nh)] . (52)

The bilinear exponential es(nh) is the eigenfunction of the
equations (51) or (52). If we set x(nh) = es(nh), y(nh) =
ses(nh), s ∈ C, with es(0) = 1, then

es(nh) =

(
2 + hs

2− hs

)n
, n ∈ Z, s ∈ C. (53)

The properties of the bilinear exponential es(nh) are
• When n→∞, this exponential

– Increases, if Re(s) > 0,
– Decreases, if Re(s) < 0,
– Is sinusoidal, if Re(s) = 0, with s 6= 0,
– Is constant equal to 1, if s = 0,

• It is real for real s,
• It is positive for s = |x| < 2

h , x ∈ R,
• It oscillates for s = |x| > 2

h , x ∈ R.
Following the procedure in the previous section, we could

use this exponential to construct a bilinear discrete-time LT.
However, formula (53) suggests that z = 2+hs

2−hs leads to the
ZT, since such transformation sets the unit circle |z| = 1 as
the image of the imaginary axis in s, independently of the
value of h. Accordingly, the bilinear exponential has the usual
properties:
• When n→∞, this exponential

– Increases, if |z| > 1,
– Decreases, if |z| < 1,
– Is sinusoidal, if |z| = 1, with z 6= 1,
– Is constant equal to 1, if z = 1,

• It is real for real z,
• It is positive for z = x > 0, x ∈ R,
• It oscillates for z 6= R+

0 .

Therefore, we do not need to introduce a new transform, since
the ZT is suitable.

In what concerns derivative definitions, instead of consider-
ing (51) or (52), we start from the ZT formulations. Let z ∈ C
and h ∈ R+. Consider the discrete-time exponential function,
zn, n ∈ Z. We define the forward bilinear derivative (Df ) as
an elemental DT system such that

Dfz
n =

2

h

1− z−1

1 + z−1
zn. (54)

The forward TF of such derivative, Hf (z), is defined by

Hf (z) =
2

h

1− z−1

1 + z−1
, |z| > 1. (55)

The backward bilinear derivative (Db) is defined as the
system verifying

Dbz
n =

2

h

z − 1

z + 1
zn, (56)

with backward TF, Hb(z), given by

Hb(z) =
2

h

z − 1

z + 1
, |z| < 1. (57)

The repeated application of the above operators lead to
the forward and backward derivatives for any positive integer
order that can be generalized for any real order. Let α ∈ R.
The α−order forward bilinear FD is a DT LS with TF

Hf (z) =

(
2

h

1− z−1

1 + z−1

)α
, |z| > 1, (58)
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such that

Dα
f z

n =

(
2

h

1− z−1

1 + z−1

)α
zn, |z| > 1. (59)

Identically, the backward bilinear FD has TF

Hb(z) =

(
2

h

z − 1

z + 1

)α
, |z| < 1, (60)

such that

Dα
b z

n =

(
2

h

z − 1

z + 1

)α
zn, |z| < 1. (61)

Once we defined the derivative of an exponential we are in
conditions of obtaining the derivative of any signal having ZT.
We only have to use the inversion integral of the ZT

x(n) =
1

2πj

∮
γ

X(z)zn−1dz. (62)

From (62) and (59) we conclude that, if x(n) is a function
with ZT X(z), analytic in the ROC defined by z ∈ C : |z| >
a, a < 1, then

Dα
f x(n) =

1

2πij

∮
γ

(
2

h

1− z−1

1 + z−1

)α
X(z)zn−1dz, (63)

with the integration path outside the unit disk. This implies
that

Z
[
Dα
f x(n)

]
=

(
2

h

1− z−1

1 + z−1

)α
X(z), |z| > 1. (64)

Let x(n) be a function with ZT X(z), analytic in the ROC
defined by z ∈ C : |z| < a, a > 1. We define

Dα
b x(n) =

1

2πj

∮
γ

(
2

h

z − 1

z + 1

)α
X(z)zn−1dz, (65)

with the integration path inside the unit disk and the branchcut
line is a segment joining the points z = ±1. This implies that

Z [Dα
b x(n)] =

(
2

h

z − 1

z + 1

)α
X(z), |z| < 1. (66)

Remark III.1. We must note that:
1) In (58) and (59) we have two branchcut points at z = ±1.

The corresponding branchcut line is any line connecting
these values and being located in the unit disk. The
simplest is a straight line segment (see figure 1).

2) In (60) and (61) we have the same branchcut points, but
with branchcut line(s) lying outside the unit disk. For
simplifying, we can use two half-straight lines starting
at z = ±1 on the real negative and positive half lines,
respectively (see figure 1).

3) In both of the previous cases, we can extend the do-
main of validity to include the unit circumference, z =
ejωn, |ω| ∈ (0, π), with exception of the points z = ±1.
In these cases, the integration path in (63) must be
deformed around such points. This deformation is very
important when using the FFT. In such situation, a
small numerical trick can be used: push the branchcut
points slightly inside (outside) the unit circle, that is, to
z = −1 + ε and z = 1− ε (−1− ε, 1 + ε), with ε being
a small positive real number.

Fig. 1. ROC for causal and anti-causal derivatives and branchcut points and
lines.

4) The ROC is independent on the scale graininess, h, and
consequently we can establish a one to one correspon-
dence between the unit disk, in z, and the left half-plane,
in s given by s = 2

h
1−z−1

1+z−1 .

According to what we just wrote, we can extend the above
definitions to include sinusoids. We define the derivative of
x(n) = ejωn, n ∈ Z, through

Df,b e
jωn =

[
2

h
tan

(ω
2

)]α
ejωn, |ω| < π, (67)

independently of considering the forward or backward deriva-
tives. With this result, we can obtain de derivative of any
function having discrete-time FT, that is expressed as:

Df,b x(n) =
1

2π

π∫
−π

X(ejω)

[
2

h
tan

(ω
2

)]α
ejωndω. (68)

In accordance with the existence conditions of the FT, we can
say that, if x(n) is absolutely summable, then the derivative
(68) exists.

These derivatives enjoy the same properties of the nabla and
delta derivatives [26].

B. Time formulations

In the previous subsection we introduced the derivatives
using a formulation based on the ZT. However, we can obtain
the corresponding time framework, getting formulae similar to
the GL derivatives [34]. From the binomial series [35]

(1± w)a =

∞∑
k=0

(∓1)k(−a)k
k!

wk, |w| < 1,

we conclude that the TF in (58) and (60) can be expressed as
power series,(

1− z−1

1 + z−1

)α
=

∞∑
k=0

ψαk z
−k, |z| > 1,

where ψαk , k = 0, 1, · · · , is the inverse ZT of
(

1−z−1

1+z−1

)α
and

represents the IR (see Appendix).
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In agreement with the meaning attributed to the sequence
ψαk , k = 0, 1, · · · , we define the α−order bilinear forward
and backward derivatives as

D
(α)
f x(n) =

(
2

h

)α ∞∑
k=0

ψαk x(n− k) (69)

and

D
(α)
b x(n) = eiαπ

(
2

h

)α ∞∑
k=0

ψαk x(n+ k). (70)

As before, we can remove the exponential factor, eiαπ , in
(70). In the following we consider the causal derivative (69)
represented by the simplified notation Dα and with ZT given
by (64).

Some interesting results are [26]
• The first is causal while the second is anti-causal.
• Fractional derivative of the impulse

Let us introduce the Kroneckker impulse, δ(n), n ∈ Z,
by

δ(n) =

{
1 n = 0

0 n 6= 0
.

The Heaviside discrete unit step is usually defined by

ε(n) =

{
1 n ≥ 0

0 n < 0

and its ZT is given by

Z [ε(n)] =
1

1− z−1
, |z| > 1.

As we can see, the derivative of any order of the Kro-
neckker impulse is essentially given by the coefficients
ψαn defined in the Appendix. In fact, from (69) we get

Dαδ(n) =

(
2

h

)α
ψαnε(n), (71)

where ε(n) is used to express the right behaviour of
the derivative of the delta, stating the causality of the
operator.

• Fractional derivative of the unit step
The function ψ−1

n , introduced in the example A.1, is a
modified version of the unit step. It is straightforward to
confirm that

ψ−1
n = 2ε(n)− δ(n),

with ZT given by Z
[
ψ−1
n

]
= h

2
1+z−1

1−z−1 , |z| > 1,
as expected. According to the above properties, we can
obtain the FD of the unit step function. We have

ε(n) =
1

2
ψ−1
n +

1

2
δ(n).

Consequently

Dαε(n) =
1

2

(
2

h

)α−1

ψα−1
n +

1

2

(
2

h

)α
ψαn .

• Fractional derivative of the ψ function
We are interested in computing the derivative of ψαn , for

any α with n ∈ Z. From (71) and the additivity property,
we can write

DβDαδ(n) = Dβ

[(
2

h

)α
ψαn

]
=

(
2

h

)α+β

ψα+β
n ε(n)

which leads to

Dβ [ψαn ] =

(
2

h

)β
ψα+β
n ε(n). (72)

1) Backward compatibility: Usually, DT systems are con-
sidered as mere approximations of their CT counterparts.
Nevertheless, and as shown above, the DT systems exist by
themselves and have properties that, although similar to, are
independent from the CT analogues. However, this observation
does not prevent us from establishing a continuous path from
each other. In fact, we can go from the discrete into the
continuous domain by reducing the graininess. To see it, let
us return to (69) and rewrite it as

D
(α)
f x(nh) =

(
2

h

)α ∞∑
k=0

ψαk x(nh− kh).

Assume that x(nh) resulted from a CT function x(t) and
define a new function, y(t), by

y(t) =

(
2

h

)α ∞∑
k=0

ψαk x(t− kh). (73)

The LT of expression (73) is

Y (s) =

(
2

h

)α ∞∑
k=0

ψαk e
−khsX(s) =

(
2

h

1− e−hs

1 + e−hs

)α
X(s),

(74)
where Y (s) = L [y(t)] and X(s) = L [x(t)] . Knowing that
lim
h→0

1−e−hs
h = s, we can write

Y (s) = sαX(s), Re(s) > 0,

meaning that Y (s) is the LT of the (continuous-time) deriva-
tive of x(t). This relation expresses the compatibility between
the new formulation described above and the well known
results from the continuous-time derivative formulation [34]
(see the companion paper [2]). With the backward formulation,
we would obtain the same result, but with a ROC valid for
Re(s) < 0. The above equations together with (69), lead to
the conclusion that, for t ∈ R, we can write:

D
(α)
f x(t) = lim

h→0

(
2

h

)α ∞∑
k=0

ψαk x(t− kh). (75)

Similarly, from the backward formulation, mainly (70), we
obtain

D
(α)
b x(t) = eiαπ lim

h→0

(
2

h

)α ∞∑
k=0

ψαk x(t+ kh). (76)

Relations (75) and (76) state two new ways of computing the
continuous-time FD that are similar to the Grünwald-Letnikov
derivatives. However, it may be interesting to remark that we
can compute derivatives with (73) instead of (65).
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C. The bilinear discrete-time linear systems

The above derivatives lead us to consider systems defined
by constant coefficient differential equations with the general
form (33), where the operator D∇ is substituted by the forward
(or backward) derivative previously defined.
Let g(n) be its IR. The output is y(n) = g(n) ∗ v(n). With
the definition of forward derivative and mainly formula (64)
we write the TF

G(z) =

M∑
k=0

bk

(
2
h

1−z−1

1+z−1

)βk
N∑
k=0

ak

(
2
h

1−z−1

1+z−1

)αk , |z| > 1, (77)

for the causal case, and

G(z) =

M∑
k=0

bk

(
2
h
z−1
z+1

)βk
N∑
k=0

ak

(
2
h
z−1
z+1

)αk , |z| < 1, (78)

for the anti-causal case. We can give to expressions (77)
and (78) a form that states their similarity with the clas-
sic fractional LS [33], [36]. For example, for the first, let
v =

(
2
h

1−z−1

1+z−1

)
. We have

G(v) =

M∑
k=0

bkv
βk

N∑
k=0

akvαk
. (79)

Remark III.2. It is important to note that the factors(
2
h

)αk , k = 1, 2, · · · , do not have any important role in
the computations. Therefore, they can be merged with the
coefficients ak and bk .

The procedure to invert (79) is identical to the one we
followed in the nabla system (42). For simplicity we assume

that M < N and all the roots, pk, k = 1, 2, · · · , of
N∑
k=0

akz
k

are simple which allows us to write

G(v) =

N∑
k=1

Ak
vα − pk

, (80)

where the Ak and pk, k = 1, 2, . . . , N, are the residues and
pseudo-poles obtained by substituting w for sα in (39). The IR
results from the inversion of a combination of partial fractions
such as:

F∇(s) =
A

sα − p
. (81)

Example III.1. Consider the simple system with TF

G(v) =
1

vα + 2
. (82)

In figure 2 we represent the step responses for several values
of the order, α = 0.5k, k = 1, 2, 3, obtained with nabla and
bilinear formulations.

Fig. 2. Step responses of the system (82) for α = {0.5, 1, 1.5} . (from
below) for nabla (above) and bilinear (below) cases, with h = 0.1.

IV. STATE-VARIABLE REPRESENTATION

A. A brief introduction

Three equivalent representations of linear invariant systems
were studied in the previous sections: the differential equation,
IR, and TF. In the time-variant case, the differential equation
remains a valid representation and we can still introduce
the notion of IR, but we cannot define a TF. On the other
hand, these representations consider the system like a “black
box” relating an input with an output, while forgetting what
happens “inside” the system. This limitation can be avoided
by the representation in state variables, also called internal
representation. This approach has several advantages, namely,
a simple matrix formulation and the ability to formulate, in
an identical form, a large number of different cases, such as
non-linear, time-varying, or multivariate systems [37], [38],
[39], [40], [41], [30]. Besides the input and output signals,
this representation introduces another one, the state, that may
be vectorial or matricial. Here, we present such a description
valid for the fractional LS, not only DT, but also CT.

B. Standard form of the equations

Let v(t),y(t), and x(t) be the input, output, and state
of a system respectively described by the following set of
equations:

Dαx(t) = Φ[t,x(t),v(t)] (83)
y(t) = Ψ[t,x(t),v(t)], (84)

where α = [α1 α2 . . . αN ]T is a vector with (positive)
differentiation orders. Moreover, the derivative Dα of vectorial
order α is defined as

Dαx(t) = [Dα1x1(t) Dα2x2(t) . . . Dαnxn(t)]
T (85)

and represents any of the previously defined causal derivatives,
CT and DT. The expressions (83) and (84) are called state (or
dynamic), and output (or observation) equations, respectively.
We will assume that Φ and Ψ are linear functions, so that

Dαx(t) = A(t)x(t) + B(t)v(t), (86)
y(t) = C(t)x(t) + D(t)v(t), (87)
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where x(t) is a N × 1 vector and A(t) is an N ×N matrix.
The dimensions of the other matrices are chosen in agreement
with the type of system:
• SISO system:

Dαx(t) =

N × N matrix︷︸︸︷
A(t)

N × 1 vector︷︸︸︷
x(t) +

N × 1 vector︷︸︸︷
B(t)

scalar︷︸︸︷
v(t) (88)

y(t) = C(t)︸︷︷︸
1 × N vector

x(t)︸︷︷︸
N × 1 vector

+ D(t)︸︷︷︸
scalar

v(t)︸︷︷︸
scalar

(89)

• MIMO system with nv inputs and ny outputs:

Dαx(t) =

N × N matrix︷︸︸︷
A(t)

N × 1 vector︷︸︸︷
x(t) +

N × nv matrix︷︸︸︷
B(t)

nv × 1 vector︷︸︸︷
v(t) (90)

y(t) = C(t)︸︷︷︸
ny × N matrix

x(t)︸︷︷︸
N × 1 vector

+ D(t)︸︷︷︸
ny × nv matrix

v(t)︸︷︷︸
nv × 1 vector

(91)

The above equations represent the standard form of expressing
a linear system by means of state variables, which are the
elements of the state x(t). A system is time invariant if
matrices A,B,C, and D are constant. This is the situation
assumed in the following. Therefore, a given LTIS has a state-
space representation in the form

Dαx(t) = A x(t) + B v(t) (92)
y(t) = C x(t) + D v(t). (93)

Define the diagonal matrix diag (sα) with diagonal elements
sαk , k = 1, 2, · · · , N . The LT of (92)-(93) is

diag (sα) X(s) = AX(s) + BV(s) (94)
Y(s) = CX(s) + DV(s). (95)

From (94),

X(s) = (diag (sα)−A)−1BV(s) (96)

and replacing this in (95) yields

Y(s)

V(s)
= C [diag (sα)−A]

−1
B + D, (97)

which is the TF matrix. If the derivative orders are equal, αk =
α, k = 1, 2 . . . n, 0 < α ≤ 1, we obtain the commensurable
state-space representation in which

diag (sα) = sαI, (98)

where I is the identity matrix.

Remark IV.1. To simplify, we use the generic designation
LT, without making a clear distinction between the different
transforms, namely in the bilinear case, where s = 1−z−1

1+z−1 is
implicit.

C. State transition operator

Let us come back to the dynamic equation

Dαx(t) = Ax(t) + Bu(t) (99)

and assume that the input is null for t > 0. Using the results
introduced in (49), we can write

diag (sα) X(s)− diag
(
sα−1

)
x(0) = AX(s). (100)

Therefore, there exists a state transition operator, Φ(0, t),
verifying

x(t) = Φ(0, t) · x(0), (101)

that is expressed by the inverse LT

Φ(0, t) = L−1
{

[diag (sα)−A]
−1 · diag

(
sα−1

)}
. (102)

There is a closed form for such inverse, but we do not present
it, since it is a bit involved [42], [40] and it is not necessary
in the follow-up. In the commensurate case, we can write

Φ(0, t) = L−1
{

[sαI−A]
−1 · sα−1I

}
(103)

and

Φ(0, t) = L−1

{ ∞∑
0

Ans−nα−1

}
(104)

that assume different forms according to the used LT. In the
NLT case, we obtain from (30) the result

Φ(0, nh) =

∞∑
k=0

Akhkα
(kα+ 1)n

n!
ε(nh), (105)

while in the bilinear case, we get

Φ(0, nh) =

∞∑
k=0

Ak

(
h

2

)kα+1

ψ−kα−1
n ε(nh). (106)

If we use a causal CT system, the inverse LT is given by

Φ(0, t) =

∞∑
k=0

Ak tkα

Γ(kα+ 1)
ε(t), (107)

that is the multidimensional MLF [43]. This is the result we
obtain from (105) or (106) when h → 0. For the first, with
t = nh, we can write

hkα
(kα+ 1)n

n!
= hkα

Γ(kα+ 1 + n)

Γ(n+ 1)

=
Γ(kα+ 1 + t/h)hkα

Γ(kα+ 1)Γ(t/h+ 1)
≈ hkα

Γ(kα+ 1)

[
t

h

]kα
and

lim
h→0

hkα
(kα+ 1)n

n!
=

tkα

Γ(kα+ 1)
.

The case of expression (106) is somehow more involved, but
yields an indentical result.
With Φ(0, t), we can define the general state transition oper-
ator, Φ(τ, t) relating the states at two instants τ and t:

x(t) = Φ(τ, t) · x(τ). (108)

The state transition operator is defined by

Φ(τ, t) = Φ(0, t) · Φ−1(0, τ), (109)

with Φ(0, 0) = I. It can be shown that this operator verifies the
usual properties, namely the semi-group property. In applica-
tions, we need to compute its inverse, Φ−1(0, τ). We compute
it for the nabla, bilinear and CT cases. To compute the inverse
of (105) we set

Φ−1(0, nh) =

∞∑
k=0

φkA
khkα

(kα+ 1)n
n!

ε(nh), (110)
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where the coefficients φk, k = 0, 1, 2 · · · , need to be deter-
mined. The product of (105) and (110) gives the indentity
matrix. With some manipulation, we obtain then φ0 = 1 and

φk = −α
n

n!

k−1∑
m=0

φm
(1/α−m)n(1/α− l +m)n

(1/α− l)n
, k = 1, 2, · · ·

Similarly, (106) suggests that we write

Φ−1(0, nh) =

∞∑
k=0

φkA
k

(
h

2

)kα+1

ψ−kα−1
n ε(nh). (111)

The values φk, k = 0, 1, · · · , are given by:

φk =

k−1∑
m=0

φm
ψ−mα−1
n ψ

−(k−m)α−1
n

ψ−kα−1
n ψ−1

n

, k = 1, 2, · · · ,

with φ0 = 1.
For the CT case, we proceed similarly. Letting

Φ−1(0, τ) =
∞∑
k=0

φkA
k τkα

Γ(kα+ 1)
ε(τ) (112)

we can show that φ0 = 1 and

φk = −
k−1∑
m=0

φm

(
kα

mα

)
, k = 1, 2, · · ·

With the state transition operator defined by (103) and (109)
we can obtain the output of the system using the standard
procedure [42], [40], [30].

V. CONCLUSIONS

In this paper we presented two different approaches for
describing discrete-time fractional linear systems. The first
is based on the nabla and delta discrete-time derivatives.
We found their eigenfunctions, nabla and delta exponentials,
that we used to define discrete LT. The second approach is
based on the bilinear (Tustin) transformations. For both cases,
appropriate algorithms for obtaining the impulse, step, and
frequency responses were presented. Finally, the state-variable
representation was also introduced. This one is very general
in the sense that it can be used for continuous-time systems
too.

APPENDIX
THE ψαk SEQUENCE

The sequence ψαk , k = 0, 1, · · · , is obtained as the discrete
convolution of two binomial sequences:

ψαk =
(−α)k
k!

∗ (−1)k(α)k
k!

k ∈ Z+
0 .

In previous works [44], [45], [46], ARMA approximations to
these sequences were also proposed.
Performing this discrete convolution we obtain the following
results [26]. If α ∈ R but α /∈ Z−, then

ψαk = (−1)k
(α)k
k!

k∑
m=0

(−α)m(−k)m
(−α− k + 1)m

(−1)m

m!
, k ∈ Z+

0

(113)

and

ψ−Nk =
(N)k
k!

min(k,N)∑
m=0

(−N)m(−k)m
(−N − k + 1)m

(−1)m

m!
, k ∈ Z+

0 .

(114)
when α = −N, N ∈ Z+. The sequence ψαk verifies the
properties:

1) The sequence ψαk , k = 0, 1, · · · , is causal and, therefore,
is null for k < 0.

2) For any α ∈ R, we have

ψ−αk = (−1)kψαk k ∈ Z+
0 (115)

3) Initial value
From the initial value theorem of the ZT, it is immediate
that ψα0 = 1, independently of the order.

4) Final value
Let α ≤ 0. From the final value of the ZT,

ψα∞ = lim
z→1

(z − 1)

(
1− z−1

1 + z−1

)α
,

then ψα∞ = 0, if −1 ≤ α ≤ 0, and ψα∞ = 2, if α = −1.
For α < −1 the sequence increases to ∞, otherwise, for
α > 0 we apply (115).

5) A recursion
The IR sequence verifies the recursion

ψαk = −2α

k
ψαk−1 +

(
1− 2

k

)
ψαk−2, k ≥ 2, (116)

with ψα0 = 1 and ψα1 = −2α.
This recursion shows that, if α < 0, then ψαk is a
positive sequence. As consequence, attending to (115),
the sequence corresponding to positive orders is always
oscillating: successive values have alternating sign.

6) Relation with the Hypergeometric function
The second factor in (113) is a sequence drawn from the
Gauss Hypergeometric function

k∑
m=0

(−α)m(−k)m
(−α− k + 1)m

(−1)m

m!
= 2F1(−α,−k; 1−k−α;−1),

(117)
for n ∈ Z+

0 .
7) For a fixed k ∈ Z, ψαk is a polynomial in α of degree

k with the coefficient of αk decreasing with increasing k.

Example A.1. We present ψ±Nk for some values of N ∈ Z+

and for any real order, obtained by recursive computation
1) N = 1

• ψ1
k =


0 k < 0

1 k = 0

2(−1)k k > 0

• ψ−1
k =


0 k < 0

1 k = 0

2 k > 0

2) N = 2
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• ψ2
k =


0 k < 0

1 k = 0

(−1)k4k k > 0

• ψ−2
k =


0 k < 0

1 k = 0

4k k > 0

3) For any negative order −α, with α > 0
Using the recursion (116) with ψ−α0 = 1 and ψ−α1 = 2α,
we obtain successively:

ψ−α2 = 2α2

ψ−α3 =
4

3
α3 +

2

3
α

ψ−α4 =
2

3
α4 +

4

3
α2

ψ−α5 =
4

15
α5 +

20

15
α3 +

6

15
α

ψ−α6 =
4

45
α6 +

40

45
α4 +

46

45
α2

ψ−α7 =
8

315
α7 +

140

315
α5 +

392

315
α3 +

90

315
α

ψ−α8 =
2

315
α8 +

56

315
α6 +

308

315
α4 +

264

315
α2

· · · · · ·

(118)
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