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Abstract

Robust machine learning models based on radiomic features might allow for accu-

rate diagnosis, prognosis, and medical decision-making. Unfortunately, the lack of

standardized radiomic feature extraction has hampered their clinical use. Since the

radiomic features tend to be affected by low voxel statistics in regions of interest, in-

creasing the sample size would improve their robustness in clinical studies. Therefore,

we propose a Generative Adversarial Network (GAN)-based lesion-focused framework

for Computed Tomography (CT) image Super-Resolution (SR); for the lesion (i.e., can-

cer) patch-focused training, we incorporate Spatial Pyramid Pooling (SPP) into GAN-

Constrained by the Identical, Residual, and Cycle Learning Ensemble (GAN-CIRCLE).

At 2× SR, the proposed model achieved better perceptual quality with less blurring

than the other considered state-of-the-art SR methods, while producing comparable

results at 4× SR. We also evaluated the robustness of our model’s radiomic feature in

terms of quantization on a different lung cancer CT dataset using Principal Compo-

nent Analysis (PCA). Intriguingly, the most important radiomic features in our PCA-

based analysis were the most robust features extracted on the GAN-super-resolved

images. These achievements pave the way for the application of GAN-based image

Super-Resolution techniques for studies of radiomics for robust biomarker discovery.

Keywords: radiomics, super-resolution, gan, deep-learning
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Resumo

Modelos de machine learning robustos baseados em atributos radiômicos possibilitam

diagnósticos e decisões médicas mais precisas. Infelizmente, por causa da falta de pa-

dronização na extração de atributos radiômicos, sua utilização em contextos clínicos

tem sido restrita. Considerando que atributos radiômics tendem a ser afetados pelas es-

tatítiscas de voxels de baixo volume nas regiões de interesse, o aumento to tamanho da

amostra tem o potencial de melhorar a robustez desses atributos em estudos clínicos.

Portanto, esse trabalho propões um framework baseado numa rede neural generativa

(GAN) focada na região de interesse para a super-resolução de imagens de Tomografia

Computadorizada (CT). Para treinar a rede de forma concentrada na lesão (i.e. cancer),

incorporamos a tecnica de Spatial Pyramid Pooling no framework da GAN-CIRCLE.

Nos experimentos de super-resolução 2×, o modelo proposto alcançou melhor qua-

lidade perceptual com menos embaçamento do que outros métodos estado-da-arte

considerados. A robustez dos atributos radiômics das imagens super-resolvidas gera-

das pelo modelo também foram analizadas em termos de quantização em um banco

de imagens diferente, contendo imagens de tomografia computadorizada de câncer

de pulmão, usando anaálise de componentes principaiss (PCA). Intrigantemente, os

atributos radiômicos mais importantes nessa análise foram também os atributos mais

robustos extraídos das imagens super-resolvidas pelo método proposto. Esses resulta-

dos abrem caminho para a aplicação de técnicas de super-resolução baseadas em redes

neurais generativas aplicadas a estudos de radômica para a descoberta de biomarcado-

res robustos.

Palavras-chave: radiômica, super-resolução, redes generativas, apredizado de má-

quina, apredizagem profunda,
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Chapter

1
Introduction

Recent years have witnessed an increasing interest in the area of medical image anal-

ysis. This growth was driven by the availability of datasets with a vast number of

images and by the development of appropriate (statistical and artificial intelligence-

based) tools for analyzing these large-scale datasets.

In particular, instead of focusing on the visual interpretation of an image, it is

nowadays common to extract quantitative features from the images and, subsequently,

to apply machine learning techniques for obtaining meaningful insights into the clini-

cal problem at hand. This process is known as radiomics(1). Robust machine learning

models based on large-scale radiomic features might allow for accurate diagnosis,

prognosis, and medical decision-making; of course, thoroughly considering the whole

radiomic processes is essential to obtain these reliable models.

Despite the potential of radiomics, high quantitative feature variability across dif-

ferent software implementations has hampered its clinical use(2, 3).

This phenomenon derives from the lack of standardized definitions and extraction

of radiomic features with validated reference values. To tackle this limitation and

facilitate clinical interpretation, the Image Biomarker Standardization Initiative(2)

produced and validated the reference values for commonly-used radiomic features.

However, as the paper’s authors highlighted, image features still need to be robust

against differences in acquisition, reconstruction, and segmentation to ensure repro-

ducibility. For this reason, recent studies have investigated the robustness of radiomic

features in several scenarios and applications using heterogeneous datasets. Several

sources of variability have been assessed, such as image and region of interest (ROI) per-

turbations(4, 5), slice thickness variations(6, 7), and different resampling strategies(8).

Since the radiomic features might tend to be affected by low statistics in ROI voxels,

we hypothesize that increasing such a sample size would increase the robustness of ra-

diomic features in clinical studies. Therefore, we aim to apply image Super-Resolution
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CHAPTER 1. INTRODUCTION

(SR) to increase the number of voxels used in the computation of radiomic features.

The availability of a vast amount of images may contribute to achieving reference

values for radiomic features, thus improving their robustness. Unfortunately, in some

clinical settings, labeled data is scarce and expensive to create. To overcome this

limitation, recent contributions proposed the use of data augmentation techniques

based on GANs. Sandfort et al.(9) used CycleGAN(10)-based DA for Computed Tomog-

raphy (CT) segmentation by translating contrast images into synthetic non-contrast

ones. Experimental results showed that, in several segmentation tasks, performance

improved significantly. Thus, CycleGANs represent a viable method to reduce manual

segmentation effort and cost in computed tomography imaging and improve feature

robustness.

To maximize the data augmentation effect with the GAN combinations, Han and

coauthors(11) proposed a two-step GAN-based data augmentation that generates and

refines brain magnetic resonance images with/without tumors separately. To assess

the performance of their method, authors investigated convolutional neural network

(CNN)-based tumor classification results. Experimental results show that, when com-

bined with classic data augmentation, the proposed two-step GAN-based data augmen-

tation technique outperforms the classic data augmentation alone in tumor detection

and other medical imaging tasks.

The most prominent work on CT image SR is GAN Constrained by the Identical,

Residual, and Cycle Learning Ensemble (GAN-CIRCLE)(12), outperforming previous

works(13–16). GAN-CIRCLE can preserve anatomical information and suppress noise,

leading to excellent diagnostic performance in terms of traditional image quality met-

rics(12, 17).

For example, Guha et al.(17) exploited GAN-CIRCLE to super-resolve trabecular

bone microstructures and improved the structural similarity index. Meanwhile, GAN-

based lesion-focused medical image SR can improve SR performance around lesions,

especially for downstream radiomic analyses(18). Along with GAN-based medical

image SR, novel approaches based on progressive GANs(19) and attention mecha-

nisms(20) have been recently applied to video SR.

For the first time, in this paper, we evaluate the robustness of radiomic features

extracted from super-resolved images by GAN-SR and bicubic interpolation. The au-

thors incorporated Spatial Pyramid Pooling (SPP)(21) into the discriminator of GAN-

CIRCLE(12) to handle different input CT image sizes for patch-focused training in

lesions; we cropped the input CT images to their lesion bounding boxes to reduce

training costs and improve image quality (e.g., fewer artifacts)(18). Along with per-

ceptual quality evaluation, we also assessed the robustness of radiomics, in terms of

quantization, for our model against a bicubic interpolation baseline on a separate lung

cancer CT dataset. We found that the most important radiomic features in our Prin-

cipal Component Analysis (PCA)-based examination were the most robust features

extracted on the GAN-super-resolved images.
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To summarize, this work provides the following contributions:

• definition of the first GAN-based, lesion-focused, SR framework for CT images;

• comparison with state-of-the-art SR techniques highlighting the suitability of

the proposed framework;

• at 2× SR, the images are characterized by better perceptual quality, as suggested

by the peak signal-to-noise ratio and structural similarity index measures, on a

large-scale dataset;

• at 4× SR, the proposed GAN-based model achieves comparable results to the

ones obtained by state-of-the-art SR techniques;

• the proposed GAN-SR framework improves the robustness of the most important

radiomic features in an independent lung CT dataset.
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Chapter

2
Theoretical Framework

2.1 Image super-resolution

Digital images are composed of pixels, and the term image spatial resolution refers to

the number of pixels per unit distance. Higher resolution images contain more detail

than lower resolution images.

High-resolution images play a critical role in many areas, like astronomic image pro-

cessing, microscopic image processing, medical image processing, and the media in-

dustry. However, obtaining these high-resolution images frequently depends on better-

quality image sensors at a high cost. Obtaining a high-resolution (HR) image from a

low-resolution (LR) image through the signal processing and computational enhance-

ment of the resolution in order to overcome these limitations is the main objective of

the image super-resolution (SR) task (22, 23).

One of the main challenges of the SR task is the reconstruction of the actual HR

image represented by the LR counterpart, as the SR problem is ill-posed: there are

virtually an infinite number of HR images that can be reconstructed from a given LR

image. The ill-posedness of the SR problem is caused by the aliasing effect of the down-

sampling process(22). Aliasing occurs when the sampling rate of a signal is lower than

twice its highest frequency component, causing a false representation of the signal.

Given a high-resolution image IHR, its low-resolution counterpart ILR is generally

defined through the relationship f (IHR) = ILR, where the mapping f : IHR → ILR is

an unknown degradation process composed of geometric transformations, blurring,

down-sampling and noise addition. The single image super-resolution (SISR) problem

has been conventionally formulated as follows:

x =D ×B×M × y +n (2.1)

where x denotes the HR image, y denotes the LR image, D is the down-sampling
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filter, B is the blurring filter, M is the warping filter, and n n represents additive white

Gaussian noise (AWGN). Our goal is to learn the mapping g : ILR→ IHR , which is the

approximation of f −1 (24)).

The super-resolution task is essential for medical image processing, as medical

images often contain a high pixel density, which can offer more detail and be critical

for applications in medical imaging. The improvement of such images is pivotal to

many diagnostic and prognostic processes, as the enhanced images are expected to

unveil important information that would not be identifiable in the raw image. For

instance, Computerized Tomography (CT) scan images have their image resolution

restrained by the scanning technology, which makes it challenging to observe the

details of the images, and even with advanced visualization software, the resolution is

still lower than the ideal for crucial tasks such as early tumor detection (12). Obtaining

CT images with better resolution is associated with high hardware costs and elevated

radiation dose in patients, which could generate genetic damages and other diseases.

The SISR for medical images is still challenging since medical images have lower

signal-to-noise ratios than natural images. Additionally, Deep Learning based models

pre-trained on natural images may synthesize unrealistic patterns in medical images,

which could affect the clinical interpretation and diagnosis.

SR techniques are conventionally divided into three broad categories: interpolation-

based, learning-based, and model-based:

Interpolation-based methods Many researchers in the past have addressed the

SISR problem, and many methods have been proposed to solve it. The first methods

proposed to solve the SISR problem were based on interpolation. Interpolation ap-

proaches are based on interpolating the LR image to obtain an HR image with higher

resolution (22, 25), such as bilinear interpolation, bicubic and nearest-neighbor inter-

polation (22). They are simple, fast, and frequently used as a baseline for many SR

studies. However, these methods tend to generate exceedingly smooth images with

rough artifacts, which worsens with larger scales. It is important to note, though, that

interpolation methods cannot recover components lost or degraded during the down-

sampling process, and in some sources, they are not even considered SR techniques

(22). The most common interpolation methods are the nearest-neighbor, bilinear, and

bicubic(25):

Nearest-neighbor interpolation is a simple technique that generates HR images

by repeating the pixels of the LR image. This technique is the most used to enlarge

images in common digital image software because it does not change the color infor-

mation. It is a fast approach that does not require any training, but it is also the most

straightforward interpolation technique, and for this reason, it generates images with

rough artifacts (22).

Bilinear interpolation is a weighted average of the values at the four corners of

the rectangle. For an (x,y) position inside the rectangle, the weights are determined by

6
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the distance between the point and the corners. This method produces few artifacts,

as it has an anti-aliasing effect.

Bicubic interpolation works by using a weighted average of the pixels in the 4x4

neighborhood surrounding the target pixel. The weighting is based on a cubic func-

tion, which gives more weight to the pixels closest to the target pixel and results in a

smoother image with less aliasing than other methods, such as bilinear interpolation.

Model-based methods: Model-based methods are based on modeling the degrada-

tion process and finding a solution to a specific objective function that best describes

the relationship between the HR and LR images. These objective functions are based

on the natural image statistics, such as the image gradient, coherence, and sparsity.

Learning-based methods: In learning-based methods, the basic idea is to find

a mapping between the low-resolution image and the high-resolution image. This

mapping can be learned by training on a known LR-HR pair of images. Once the

mapping is learned, the LR image can be enhanced by reconstructing it through this

mapping. Jiang (26), for instance, proposed a dictionary learning and sparse represen-

tation approach, which presented strong robustness in preserving image features and

outperformed interpolation methods.

With the advancement of machine learning, the usage of deep learning received

attention in SR research, and many deep-learning architectures have been proposed to

solve SR problems. The first deep learning-based method proposed to solve the SISR

problem was SRCNN (27). The authors proposed a deep convolutional neural network

(CNN) composed of three convolutional layers. The first layer extracts features from

the LR image; the second is used to learn a non-linear mapping between features and

HR images, and the third is used to reconstruct the HR image from features. The

authors trained their network using a large dataset of images and obtained state-of-

the-art results. SRCNN paved the way for a myriad of architectures that would be

investigated to improve the SR task performance (28–30).

2.1.1 Evaluation metrics

In this section, the definition of the traditional metrics that have been widely used to

compare the performance of SR task performance(31) are presented: the Peak Signal-

to-Noise Ratio (PSNR) and the Structural Similarity Index Measure (SSIM).

2.1.1.1 PSNR

PSNR measures the signal intensity ratio to the noise intensity, expressed in the log-

arithmetic Decibel scale. It is a prevalent metric to evaluate image quality as it is

simple to calculate, have precise physical meanings, and is mathematically convenient

in the context of optimization (32, 33).
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The following formulation defines it:

PSNR = 20log10
x

√
MSE

(2.2)

where x is the maximum pixel value and MSE is the mean squared error:

MSE =
1
mn

m∑
i=1

n∑
j=1

(ŷi,j − yi,j )2 (2.3)

Where m and n are the height and width of the image, respectively. ŷi,j is the value

of the i-j pixel of the enhanced image, and fi,j is the value of the original image.

PSNR values approach ∞ as MSE gets closer to zero, showing that higher PSNR

values are associated with higher image quality. However, PSNR has some limitations

as an evaluation metric. First, it is not a perceptual metric, meaning it does not cor-

relate well with the subjective quality of an image. Second, it is not robust to typical

image processing operations, such as sharpening and noise reduction. Finally, PSNR

is sensitive to the bit depth of the images being compared, so it is not always directly

comparable between different image formats (33).

2.1.1.2 SSIM

The SSIM metric is an improvement over PSNR, as it is more robust to typical image

processing operations and a more reliable measure of the perception of the human

visual system (34). However, it is also not a perfect metric, as it is not a complete

model of the human visual system, and it can be biased by the bit depth of the images

being compared (33).

SSIM combines three relatively independent terms: luminance, contrast, and struc-

ture. The luminance term is a measure of the mean intensity of the image, and the

contrast term is a measure of the contrast in the image. The structure term measures

how similar the two images are and is defined as the product of the luminance and

contrast terms. The structure term is defined as:

S(x,y) =
2µxµy +C1

µ2
x +µ2

y +C1
(2.4)

Where µx and µy are the means of the two images, and C1 is a constant.

The contrast term is defined as:

C(x,y) =
2σxσy +C2

σ2
x + σ2

y +C2
(2.5)

Where σx and σy are the standard deviations of the two images, andC2 is a constant.

The luminance term is defined as:

L(x,y) =
µx′µy′ +C3

µ2
x′ +µ

2
y′ +C3

(2.6)
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Where µx′ and µy′ are the means of the two images after they have been normalized

by their standard deviations, and C3 is a constant. The constants C1, C2, and C3 are

used to stabilize the division with weak denominator values.

The SSIM index is then defined as:

SSIM(x,y) = (L(x,y))α · (C(x,y))β · (S(x,y))γ = L(x,y)αC(x,y)βS(x,y)γ (2.7)

The SSIM index is a value between 0 and 1, where values close to 1 represent

similar images and values close to -1 represent very dissimilar images.

2.2 Deep learning

Deep learning is a branch of machine learning techniques used to learn high-level

abstractions from data using Artificial Neural Networks (ANNs). Its history can be

traced back to 1943 when Pitts and McCulloch created an algorithm inspired by the

human brain’s neural structure. However, it was only after 2006, when Geoffrey Hin-

ton introduced the concept, that it became a prominent research topic (35). Since then,

it has dragged much attention from researchers and practitioners alike.

Part of its popularity is because it is a powerful class of computational algorithms.

The Universal Approximation Theorem (36) implies that ANNs can approximate any

continuous function by applying a single hidden layer of neurons with increased pre-

cision as more neurons are added.

Artificial Neural Networks can be defined as a set of interconnected processing nodes,

where each node performs a simple mathematical operation on its input. The output

of each node is then passed to the next node, and the final output is the result of the

computation performed by the entire network.

The nodes in an Artificial Neural Network are typically arranged in layers of neu-

rons. The first layer is the input layer, which receives the input data. The last layer

is the output layer, which produces the network’s output. The layers in between are

called hidden layers.

Neurons are the basic processing units in an Artificial Neural Network. They are

connected in a directed graph, where the edges represent the connections between the

neurons. The simplest example of a neuron is called a Perceptron and is generally

defined as:

f (x) = h(W · x+ e) (2.8)

Where x is the input data, g is the activation function,W is the weight vector, and e

is the error. The Perceptron algorithm is limited because its solution space is restricted

to those that present linear separability. Thus, more complex deep learning algorithms

have been designed to extend the solution space, such as Multi-Layer Perceptrons

9
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(MLPs), Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs),

and Generative Adversarial Networks (GANs), to name a few.

All deep learning algorithms have in common that they learn the weights of the

connections between the neurons in the network using a training data set. The training

set is a set of examples used to refine the network, adjusting the weights so the network

can learn to map the inputs to the correct outputs.

For the current work, it is crucial to highlight deep learning’s contribution to the

achievement of state-of-the-art performance in different tasks in the medical imaging

field, like segmentation and registration, automatic labeling, and lesion detection and

diagnosis. For instance, Shin (37) achieved state-of-the-art performance on the medi-

astinal lymph node detection by applying deep convolutional neural networks; Han

(38) demonstrated that Alzheimer’s Disease could be reliably detected at a very early

stage with the application of an unsupervised method based on a Deep Generative Ad-

versarial Network. You . (12) proposed a GAN-based image-super resolution method

that quantitative and qualitatively outperformed conventional state-of-the-art image

enhancement techniques; Miao (39) proposed an approach based on Convolutional

Neural Networks to register 2D and 3D medical images in real-time 2D/3D with a

demonstrated high accuracy.

In the next section, Generative Neural Networks will be described in deeper detail,

along with the main architectures applied for single image super-resolution.

2.2.1 Generative Adversarial Networks

Imagine a currency counterfeiter trying to forge fake currency and using it without

being detected, whereas the police try to discriminate which currency is real or counter-

feit. The constant competition makes the parties level their game until the counterfeit

currency is indistinguishable from the real ones. Goodfellow (40) compared the frame-

work of Generative Adversarial Networks (GAN) to this competition.

The vanilla GAN implementation consists of two models trained simultaneously:

G, the generator (the counterfeiter in the example), and D, the discriminator (the

police). The role of G is to construct samples that are the most similar to the training

data distribution; D, however, must estimate the probability of a sample coming from

the training sample rather than the model G. We can generically express the objective

function of the minimax game played by G and D as:

min
G

max
D

V(G,D) = L(G) +L(D) (2.9)

A diagram of this model is shown in Fig. 2.1. In this vanilla implementation, the

generator is a differentiable function represented by a Multi-Layer Perceptron with pa-

rameters and noise as input; the discriminator is a second Multi-Layer Perceptron with

10
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Figure 2.1: Vanilla GAN diagram

parameters and the data sample as input. In this implementation, the optimization

function is the Log-likelihood. Thus we can replace L(G) and L(D):

min
G

max
D

V(G,D) = Ex∼Px [log1−D(G(z))] +Ex∼Px [logD(x)] (2.10)

Since its debut, GANs have been applied to a wide range of domains, with promis-

ing results in many different applications, like the text to image synthesis, data com-

pression, super-resolution of images, image enhancement, style transfer, image-to-

image translation, video generation, and more. However, despite the increasing atten-

tion it has received in the last years, a few challenges in training GAN models are still

remarkable.

In the following sub-sections, relevant GAN models to substantiate the theoretical

framework in the methodology presented in Chapter 3 are expanded upon.

2.2.2 WGAN andWGAN-GP

As G and D play a minimax game, its optimal solution is found when both the generator

and the discriminator cannot unilaterally improve their losses. This state is called a

Nash equilibrium. However, gradient descent may fail to converge because it is a local

optimization method, leading only to a local Nash equilibrium (41). GANs have also

been criticized for their inability to learn the whole data distribution, which leads

to a scenario called mode collapse, or Helvetica. Mode collapse happens when the

generator gets stuck mapping different inputs to the same output, resulting in a lack

of diversity and poor generalization (42). Besides, there is also no consensus as to

which measure should be used for a fair model comparison (43). Several GAN variants

have been proposed to deal with these problems. For instance, in WGAN paper (44)

proposed solving the mode collapse problem by using the Wasserstein-1 distance to

optimize the network and clipping the discriminator’s weights to enforce a Lipschitz

constraint on the discriminator gradient. Thus, the discriminator is forced to have a

maximum gradient, which results in a more stable optimization process and an overall

loss correlated with the convergence of the generator.
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The WGAN objective function can be expressed as:

min
G

max
D∈D

V(G,D) = E[D(x)]−E[D(G(z))] (2.11)

Where D is the set of functions that satisfy the Lipschitz constraint. Weight clip-

ping, however, may bias the discriminator towards simple functions, causing it to

become too weak, leading to undesired behaviors of the networks, like overfitting the

generator. In the WGAN-GP paper, to solve this problem, (45) proposed penalizing

the norm of the discriminator’s gradient with respect to its input, which forces the

generator to spread out its support, avoiding mode collapse.

The WGAN-GP objective function can be expressed as:

min
G

max
D∈D

V(G,D) = E[D(x)]−E[D(G(z))] +λE[(||∇x̂D(x̂)||2 − 1)2] (2.12)

where λ is the penalty coefficient, and ||∇x̂D(x̂)||2 is the l2 norm of the gradient of

x̂, the interpolation between the real input x and the generated input G(z).

2.2.3 Pix2pixGAN

Isola (46) demonstrated that Generative Adversarial Networks are also a promising

approach to solving image-to-image translation problems. Pix2pix GAN, presented in

the paper, is a GAN trained with paired images, which conditions the generator output

on an input image. This conditional GAN learns a mapping from image X to image Y

by training a generatorG to translateX to Y conditioned onX, simultaneously training

an adversary D to distinguish between translated images G(X) and actual images Y .

Its objective function in this method is given by:

LcGAN (G,D) = E[logD(x,y)] +E[log(1−D(G(x,z)))] (2.13)

These changes in the loss function encourage the generator to learn a mapping

from image x and noise vector z to y, i.e., G : x,z→ y. The noise vector z is inserted

because the generator could fail to converge and get stuck in a deterministic mapping

function without it. Besides, the authors also proposed the addition of an L1 distance

to the total loss in order to task the generator to be closer to the ground truth in the L1

sense, encouraging solutions with less blur:

LL1 = E[||y −G(x,z)||1] (2.14)

Thus the final objective function of pix2pix GAN is given by:

Lpix2pix = LcGAN (G,D) +λLL1 (2.15)

Where λ is the penalty coefficient, regulating the importance of λLL1. The game

between the generator and the discriminator is played until the discriminator can no

12



2.2. DEEP LEARNING

Figure 2.2: Pix2pix GAN diagram

longer distinguish between actual and translated images. A diagram of this model is

shown in Fig. 2.2.

2.2.4 CycleGAN

Only the adversarial loss, as seen in pix2pix GAN, cannot ensure that learned functions

will map a given input to a desired output in the target domain. Thus, Zhu et al.

proposed (10) adding a Cycle Consistency Loss to the objective function to enable the

model to translate images from different domains without paired training examples,

which can also prevent degeneracy in the learning process.

The cycle consistency property assumes that if we have a translator F that maps

elements from domain X to Y , i.e., F : X→ Y , and we have another translator G that

maps elements from domain Y to X, i.e., G : Y → X, then F and G should be inverses

of one another, i.e., F(G(x)) ≈ x (forward cycle consistency) and G(F(y)) ≈ y (backward

cycle consistency). Thus, the following loss function is defined to encourage this

behavior:

LCyc(F,G) = Ex∼px [||F(G(x))− x||1] +Ey∼py [||G(F(y))− y||1] (2.16)

The l1 −norm is chosen because, in experiments, it demonstrated to foster less blur

in images generated. This cycle consistency loss is combined with the adversarial loss,

applied to each of the generators:

LGAN (G,D,X,Y ) = Ey∼py [logD(y)] +Ex∼px [log(1−D(G(x))] (2.17)
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Figure 2.3: CycleGAN diagram

Thus we have the final objective function for the CycleGAN:

LCycle(G,F,DX ,DY ) = LGAN (G,DY ,X,Y ) +LGAN (F,DX ,Y ,X) +LCyc(F,G) (2.18)

A diagram of this model is shown in Fig. 2.3.

2.2.5 CinCGAN

Expanding the framework of CycleGAN (10), Yuan (47) proposed a Cycle-in-Cycle

GAN, named CinCGAN, to approach the super-resolution task as an image-to-image

translation problem.

One of the limitations in super-resolution tasks with Deep Learning algorithms is

the dependence on low and high-resolution paired images. In CycleGAN, images are

translated from different domains with unpaired training data. However, one of the

limitations in using this model to solve a super-resolution problem is the assumption

that the input and output image has the same size. In super-resolution problems,

however, the output can be much larger than the input.

In CinCGAN, (47) approaches this problem by combining two CycleGANs: the

first maps the low-resolution image to a bicubic-downsampled low-resolution image.

This module has denoising and deblurring role in the architecture. The output is

then up-sampled and fed into the second one, encapsulating the first one. Thus, the

solution is presented in three steps: first, the low-resolution image is mapped to a

bicubic-downsampled image (X → Y ); second, the bicubic-downsampled image is

14
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mapped to a high-resolution one through an existent super-resolution model (Y → Z);

and third, both models are combined to get the final output. Thus, mapping images

from the low-resolution (LR) domain to the high-resolution (HR) domain can be done

with unpaired training data and without the same shape assumptions.

The key idea is to allow the two mappers to share information. The first mapper

learns the low-level image structure, while the second mapper learns the high-level

image structure. By sharing information, the two mappers can learn a complete image

representation, which is then used to generate the final high-resolution image.

The framework diagram of this model is shown in 2.4

In this model, negative log-likelihood loss calculated in the Adversarial Loss of

CycleGAN is replaced by a least square loss. Thus, Adversarial Loss can be defined as

follows for the first network and the second, respectively:

L1
GAN = Ex∼px [||D1(G(x))− 1||2] (2.19)

L2
GAN = Ex∼px [||D2(SR(G(x)))− 1||2] (2.20)

The Cycle Consistent Loss is similar to the formulation in (10), except that (47)

chose the l2 − norm over the l1 − norm, defined for the first network and the second,

respectively:

L1
Cyc = Ex∼px [||F(G(x))− x||2] (2.21)

L2
Cyc = Ex∼px [||H(SR(G(x)))− x||2] (2.22)

In order to avoid color variation in the first network, CinCGAN also adds an Iden-

tity Loss to the objective function, which is defined as:

L1
Idt = Ex∼px [||G(y))− y||1] (2.23)

For the second network it is slightly different, as instead of encouraging color

consistency, Identity Loss encourages super-resolution consistency:

L2
Idt = Ex∼px [||SR(z′))− z||1] (2.24)

Where z′ is the high-resolution image downsampled with a bicubic kernel. In order

to avoid artifacts insertion in the output image, CinCGAN also adds a Total Variation

Loss, encouraging spatial smoothness in the generated images:

LTV(G) =
∑
i

∑
j∈{1,2}

(∣∣∣∣∣∣ ∂G∂xi,j
∣∣∣∣∣∣+

∣∣∣∣∣∣ ∂G∂yi,j
∣∣∣∣∣∣
)
, (2.25)

In which xi,j and yi,j are the spatial coordinates of the generated image, and G is

replaced by SR(G) for the second network.
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Figure 2.4: Cycle-in-Cycle GAN diagram

Thus we have the final objective function, defined for the first network and the

second, respectively:

LCinC−1 = L1
GAN +λ1L

1
Cyc +λ2L

1
Idt +λ3L

1
TV (2.26)

LCinC−2 = L2
GAN +λ1L

2
Cyc +λ2L

2
Idt +λ3L

2
TV (2.27)

Where λ is a weighting parameter chosen to balance the different losses. Then, the

first CycleGAN network is pre-trained to learn the X→ Y mapping. After it converges,

the second CycleGAN network is fine-tuned, training jointly to learn the mapping

X→ Z.

2.2.6 GAN-CIRCLE

Generative Adversarial Networks (GANs) have also been increasingly exploited for

medical image super-resolution (12, 13, 18, 48–52).

The most prominent work on CT image SR is GAN Constrained by the Identical,

Residual, and Cycle Learning Ensemble (GAN-CIRCLE)(12), outperforming previous

works(13–16). GAN-CIRCLE can preserve anatomical information and suppress noise,

leading to an excellent diagnostic performance in terms of traditional image quality

metrics(12, 17). For example, Guha (17) exploited GAN-CIRCLE to super-resolve

trabecular bone micro-structures and improved the structural similarity index (SSIM).
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Expanding the CycleGAN framework, GAN-CIRCLE proposes a method to en-

force the cycle consistency in terms of the Wasserstein distance. Thus, the negative

log-likelihood in the Adversarial Loss is replaced by the Wasserstein distance and is

defined as follows, in both directions:

LGAN(DY ,G = −Ey[D(y)] +Ex[D(G(x)] +λEŷ[(||∇ŷD(ŷ)||2 − 1)2] (2.28)

LGAN(DX ,F = −Ex[D(x)] +Ey[D(F(y)] +λEx̂[(||∇x̂D(x̂)||2 − 1)2] (2.29)

Where, similar to Eq. 2.12, the first two terms define the loss in terms of the

Wasserstein distance, and the third one is the l2norm of the gradient, added to enforce

the Lipschitz continuity property, and ŷ is the interpolation between the actual HR

image y and the generated output G(x).

GAN-CIRCLE also adds an Identity Loss term to the model objective function,

similar to the Eq. 2.23:

LIdt(G,F) = Ey[||G(x))− x||1] +Ex[||G(x))− x||1] (2.30)

In order to promote image sparsity and reduced noise, GAN-CIRCLE also imple-

ments a Joint Sparsifying Transform Loss term, based on the Total Variation Loss,

adding a second component in a non-linear combination in order to encourage the

minimization of the difference image y −G(x) and thus preserving anatomical charac-

teristics:

LJST(G) = τLTV(G(x)) + (1− τ)LTV(y −G(x)) (2.31)

where τ is a scaling factor and LTV is the same as Eq. 2.25.

Thus, the GAN-CIRCLE loss function combines four different loss terms to regu-

larize the training procedure by enforcing the desired mappings:

• an adversarial loss term (LAdv) to enforce the matching of empirical distributions

in the source and target domains;

• a cycle-consistency loss term (LCyc) to prevent degeneracy in the adversarial learn-

ing and promote forward and backward cycle consistency, defined as G(F(Ihr) ≈
Ihr and F(G(Ilr)) ≈ Ilr;

• an identity loss term (LIDT) to regularize the training process and promote the

relationships G(Ihr) ≈ Ihr and F(Ilr) ≈ Ilr;

• a joint sparsifying loss term (LJST) to promote image sparsity and reduced noise.
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Figure 2.5: GAN-CIRCLE framework diagram

The overall loss function used for training is defined as:

LCIRCLE = LAdv(DHR,G) +LAdv(DLR,F) +λ1LCyc(G,F) +λ2LIDT(G,F) +λ3LJST(G),

(2.32)

where λ1, λ2 and λ3 are weighting parameters to balance the different loss terms,

respectively. The framework diagram of this model is shown in 2.4
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2.3 Radiomics

Gillies (1) described radiomics as “the process of extracting a large number of features

from medical images, to provide quantitative descriptions of the image content, to be

used as inputs to computational models or as biomarkers“. These features are subse-

quently stored, and the data is mined to generate research hypotheses and develop

tools to support medical decisions.

Typically, radiomics feature extraction involves three main steps: image prepro-

cessing, segmentation, and feature extraction.

• The preprocessing step is optional and may be used to improve the segmentation

performance or standardize features.

• In the segmentation step, the Region of Interest (ROI) extraction is performed.

The voxels of a tumor, for instance.

• Then, the features are extracted from the ROI, thus translating the image into

semantic and agnostic features of the region of interest. Thus enabling the quan-

titative measurement of intra and intertumoral heterogeneity, for example.

According to Lambin (53), the radiomic hypothesis is that genomic and proteomic

patterns can be expressed in terms of image characteristics. This hypothesis is sup-

ported by image-guided biopsies, which demonstrated that protein expression patterns

within a tumor are associated with spatial differences.

For example, a study conducted in 2017 by Vargas (54) identified the clinical and bi-

ological validity of several preoperative radiomic features significantly associated with

time-to-disease progression (TTP) and classification of ovarian cancer (CLOVAR) gene

expression profile. Another interesting finding reported in the literature demonstrates

that more tumors with more genomic heterogeneity are more likely to develop a resis-

tance to treatment and metastasize. Considering the Radiomics hypothesis described

above, this heterogeneity could be assessed through the spatial differences in medical

imaging. Segal (55) showed that the combination of 28 imaging traits would suffice to

reconstruct the variation of 116 gene expressions in hepatocellular carcinomas.

Radiomics features can be classified into semantic and agnostic features.

Semantic features are features that have a known, specific meaning in the field of

medicine and usually describe the ROI — for example, the average tumor diameter, the

maximum tumor diameter, or the tumor volume. The main advantage of these features

is that radiologists can easily understand them. Agnostic features, on the other hand,

are not guaranteed to be clinically relevant. The main advantages of agnostic features

are that they are more robust because they do not depend on the tumor’s specific char-

acteristics and may be more efficient in predicting clinical outcomes. They describe the

region of interest heterogeneity through quantitative descriptors commonly divided
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into first, second, and higher-order statistical outputs. Some examples are the entropy,

the inverse difference moment, and the variance.

First-order statistics describe the distribution of values of individual voxels without

caring for spatial relationships, like histogram-based methods (mean, median, max,

min).

Second-order statistics, or texture features, describe statistical relationships be-

tween voxels according to their similarity of values. These measurements were first

introduced by Haralick in 1973 (56). Second-order statistics, also referred to as texture

features, provide both intensity and spatial information. They describe the distribution

of voxel intensity values between neighboring voxels along with different directions

and distances and are derived from so-called gray-tone-spatial-dependence matrices.

Finally, higher-order statistics apply filter grids on the image to extract repetitive

or unique patterns. These features include fractal analyses, Minkowski functionals,

wavelets, Laplacian transformations, and Gaussian bandpass filters.

Despite its great potential to enhance precision medicine, Radiomics has not been

fully integrated into clinical practice for several reasons. In the first place, radiomics is

a complex process that requires a high level of expertise in image processing and anal-

ysis. In addition, radiomics features do not directly translate into clinical outcomes,

but need to be integrated into a model to be interpretable. There is also the question

of standardization, the process of feature extraction and evaluation, and comparing

results from different studies. Finally, the lack of hardware and software integrations

hampers the clinical adoption of radiomics.

2.3.1 Feature robustness analysis

Though there is no straightforward definition of radiomic feature robustness, Jha et al.
(57) proposed a feature to be classified as robust when it is stable (has low variability)

under changing conditions. This is stability is define in terms of two concepts: repeata-

bility and reproducibility of radiomic features. Repeatability refers to features that

remain the same when imaged multiple times in the same subject, using the same im-

age acquisition methods. Reproducibility refers to features that remain the same when

extracted using different equipment, different software, different image acquisition

settings, or different operators.

One of the most challenging problems for radiomic models to be implemented in a

clinical setting is related to the robustness of these models when different datasets are

used. Patient position in the image acquisition process, imaging parameters, and ROI

segmentation have different impacts on the radiomic features. Using features that are

not robustly stable against the perturbations will cause a radiomic model to perform

poorly when used to generate predictions on unseen data, making them impracticable

to be applied in a clinical setting. Thus, assessing feature robustness is essential to

improve model generalisability and clinical application.
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Shafiq Ul Hassam and coauthors(6) studied the impact of slice thickness and pixel

spacing on radiomic features extracted from computed tomography phantom images

acquired with different scanners as well as different acquisition and reconstruction

parameters. Experimental results demonstrated that voxel size resampling is an ap-

propriate preprocessing step for image data sets acquired with variable voxel sizes, and

it allows for obtaining more reproducible features. Additionally, while some radiomic

features were voxel size and gray-level discretization dependent, the use of normal-

izing factors in their definitions may reduce or remove such dependencies. These

findings were validated in a subsequent work(58), where the voxel size and gray levels

in phantom normalizations are applied in lung tumors images. Based on the results

obtained by considering eighteen patients with non-small cell lung cancer of varying

tumor volumes, the authors concluded that voxel size and gray-levels normalizations

improve the robustness of radiomic features for lung tumor images.

More recently, Sanchez (7) investigated the robustness of radiomic features in com-

puted tomography images with different slice thicknesses for liver tumors and muscle.

After addressing the dependencies of texture radiomic features by choosing the op-

timal number of gray levels, features were compared across thicknesses to identify

reproducible features. The study considered a computed tomography dataset of 43

patients with hepatocellular carcinoma, and the analysis showed consistent results

for both tumor and muscle tissue. In particular, high robustness of a large fraction

of features (75 − 90%) was found, thus allowing the authors to define guidelines for

radiomic studies using variable slice thickness.

Le (8) investigated how image resampling (involving interpolation) and pertur-

bations on the regions of interest (ROIs) affect the robustness of the features. They

extracted 93 radiomic features from carotid artery CT angiograms of 41 patients with

cerebrovascular events. Radiomic feature robustness was assessed against region-of-

interest perturbations, image preprocessing settings, and quantization methods using

single- and multi-slice approaches. The analysis showed that, by proving in input to

machine learning algorithms the most robust features, it is possible to identify the cul-

prit and non-culprit arteries. Multi-slice features were superior to single for producing

robust radiomic features, and the optimal image quantization method used bin widths

of 25 or 30. The results suggest introducing carotid computed tomography radiomics

into clinical practice to improve stroke prediction and target therapies for those at the

highest risk. In the same vein, Mottola (5) investigated feature reproducibility against

noise, varying resolutions, and segmentations in a computed tomography dataset of 98

renal cell carcinomas and 93 contralateral normal kidneys. Experimental results high-

lighted the importance of the interpolation method, with the Lanczos interpolation

being the most effective at preserving original information in resampling.

Zwanenburg (4) considered 18 methods to determine feature robustness based

on image perturbations. Experimental results, considering 4032 features, showed

that a perturbation chain consisting of noise addition, affine translation, volume
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growth/shrinkage, and contour randomization identified the fewest false-positive ro-

bust features. Thus, this perturbation chain may represent a viable option to evaluate

feature robustness.

In order to measure the feature robustness, two statistical measures are commonly

used: the spearman rank coefficient and the Intraclass Correlation.

2.3.1.1 Spearman Rank Coefficient

The Spearman rank correlation coefficient measures the strength and direction of the

relationship between two variables. The value of ρ can range from -1 to 1, where -1

indicates a perfect negative monotonic relationship and 1 indicates a perfect positive

monotonic relationship. The value of ρ is 0 if there is no monotonic relationship

between the two variables.

The Spearman rank correlation coefficient is a non-parametric measure of associa-

tion, as it does not assume that the variables are normally distributed. The Spearman

rank correlation coefficient is also sensitive to outliers, so it is essential to be aware of

them when interpreting the results.

The formula for the Spearman rank correlation coefficient is:

ρ =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ)
(sx)(sy)

(2.33)

Where ρ is the Spearman rank correlation coefficient, n is the number of pairs of

data, xi is the rank of the i − th data point in the x variable, x̄ is the mean rank of the

x variable, yi is the rank of the ith data point in the y variable, ȳ is the mean rank of

the y variable, sx is the standard deviation of the ranks of the x variable, and sy is the

standard deviation of the ranks of the y variable.

Traverso (59) reports in a systematic review of the usage of Spearman Rank Coeffi-

cient as one of the primary metrics used to measure feature robustness.

2.3.1.2 Intraclass Correlation (ICC)

The ICC is a statistical measure describing the correlation and agreement between

measurements and is especially adequate when a high correlation is expected within a

specific class. This metric is the most commonly reported in robustness studies (59).

The ICC calculations are performed separately for each feature and perturbation

studied. Zwanenburg (60) classifies features with ICC 0.90 as robust, which keeps the

error below 0.05 even for a small patient cohort (61).

The ICC is generically calculated as:

ICC =
SSbetween − SSwithin
SSbetween + SSwithin

, (2.34)

where SSbetween is the sum of squares between groups, SSwithin is the sum of squares

within groups, and SStotal is the total sum of squares. The interpretation of the ICC
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metric depends on the type of study. There are ten versions of the ICC with differ-

ent assumptions and interpretations, four of which are the most commonly used in

robustness studies: ICC(1,1) for single-measurement agreements, ICC(2,1) for two-

measurement agreements, ICC(3,1) for three-measurement agreement, and ICC(3,k)

for k-measurement agreement. The ICC(1,1) is the simplest and most suitable for the

first two cases. The ICC(3,1) is the most suitable for the last two cases (62).
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Chapter

3
Materials and Methods

3.1 Datasets and Preprocessing

DeepLesion dataset

The DeepLesion dataset(63) contains 32,120 CT images of different types of lesions in

different parts of the body from 4,427 unique patients, along with accompanying 2D

diameter measurements and bounding-boxes of lesions and semantic labels.

This dataset was used specifically for training and evaluating the GAN-CIRCLE

network used for the Super-Resolution task. For training, 10,000 randomly selected

CT images with an image size of 512× 512 pixels and in-plane pixel spacing between

0.18 and 0.98 mm (median: 0.82 mm) were selected from the available images. Out

of these, 1,000 CT images were randomly held-out in order to assess further model

performance.

NSCLC-Radiomics dataset

The Non-Small Cell Lung Cancer-Radiomics (NSCLC-Radiomics) dataset(64) is a well-

established publicly available dataset that contains CT slices from 422 NSCLC patients.

This dataset is available via The Cancer Imaging Archive (TCIA)(65). For careful and

reliable radiomic analyses, our study uses a highly homogeneous subset composed of

142 CT scans, accounting for 17,938 CT slices with an image size of 512×512 pixels, in-

plane pixel spacing of 0.98 mm, and slice thickness of 3.00 mm. The B19f convolution

kernel was applied on all the scans for CT image reconstruction.

The dataset provides annotated 3D tumor segmentation masks and clinical out-

come data. The images are used to assess our proposed lesion-focused CIRCLE-GAN

framework in terms of radiomic feature robustness.
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Data preprocessing

For all the implemented SR approaches, the range of intensity for raw CT volumes

was clipped to [−100,400] Hounsfield Units (HU), and then normalized to [0,1]. We

generated the Low-Resolution CT (LRCT) counterparts from the High-Resolution CT

(HRCT) images by degrading them through a Gaussian white noise process with a

standard deviation of 0.25 and a Gaussian blur, with a kernel size of 8× 8 pixels and

a bandwidth of 1.6. Afterwards, the images were downsampled with a scale of 2 and

upsampled using the nearest neighbor interpolation, according to You et al.(12). The

upsampling step improves feature extraction by enforcing the same image size for

LRCT and HRCT(66).

Image patches were then cropped based on the lesion bounding box annotations

in the metadata—the cropping process leads to avoiding artifact generation out of the

lesion area(18). The preprocessing pipeline is displayed in Fig. 3.1. The bounding box

cropping was performed on the image before the degradation process to obtain the

patch that was treated as the ground-truth HRCT image and also after the degradation

process, to obtain its LRCT patch counterpart. This step was performed to constrain

the network to focus on the regions of interest (ROI), thus reducing the synthetization

of artifacts from regions beyond the lesion area(18)

By applying this procedure only on the Deeplesion dataset, we generated 10,000

LRCT/HRCT patches with similar image sizes for training a CIRCLE-GAN-based SR

model. The TCIA NSCLC CT dataset was used solely for radiomic feature robustness

assessment.

3.2 Lesion focused GAN-CIRCLE-based image

Super-Resolution

3.2.1 Network architecture

A modified version of GAN-CIRCLE(12) was implemented to tackle the SR problem.

The GAN-CIRCLE is a cycle-consistent adversarial model consisting of two non-linear

generative mappings and their respective discriminators that are trained jointly for

optimal convergence, as described in Ch.2.

The generator networks G and F share the same architecture, which is composed of

a feature extraction and a reconstruction network. The feature extraction network con-

sists of twelve layers (i.e., feature blocks) of 3× 3 convolution kernels, bias, Leaky Rec-

tified Linear Unit (ReLU) activation, and dropout. Each block output is concatenated

through skip connections before the reconstruction network to capture local/global im-

age features. The number of output filters in each convolutional layer is set according

to You (12). In the reconstruction network, two branches are stacked in a network-

in-network fashion to increase non-linearity and potentially reduce the filter space
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Figure 3.1: CT image preprocessing pipeline for GAN training The HU values of in-
put CT images (a) were clipped to the range [−100,400] HU and normalized to the unit
range [0,1] (b). To generate the low resolution CT image counterpart, the image was
perturbed by noise addition (c) and Gaussian blurring (d), downsampled by a factor
of 2× (e) and then upsampled to the original dimension (f) using a nearest neighbor
interpolation method. Finally, the HRCT patch and LRCT patch were extracted from
the lesion bounding box crops (g).

dimension for faster computation. A transposed convolutional layer is adopted for

up-sampling and the last convolutional layer combines all feature maps to produce

the SR output.

One of the GAN-CIRCLE framework limitations, however, is the input scale con-

straint. GAN-CIRCLE (12) was trained with 32×32 low-resolution patches and 64×64

high-resolution patches, which restrains the network to be trained with ROIs, that

have multi-scales. The fixed input-scale restrains the possibility to train or fine-tune

the network with lesion (ROI) patches, which are varying in scale by nature. Training

a network only with ROI images could be significant in cases where lesion-focused

applications are in mind. For instance, Zhu et al. (67) proposed a lesion focused

super-resolution architecture, imitating the clinicians’ scrutinization procedure, i.e.

focused on the ROI. The proposed network was composed by a lesion detection mod-

ule, that received a MRI image and resulted in the predicted ROI, and then passed

this predicted ROI as an input to the super-resolution GAN module. According to

their findings, this architecture reduces significantly the cost of training the GAN for

super-resolution, results in better perceptual qualities of the generated images, with

less artifacts sythesised, as regions excluded from the ROI are not considered in the

training process.

Inspired by Zhu et al. (67), and He et al.(68), we included a SPP layer in order

to extract the features from multi-sized LRCT/HRCT input patches, allowing for the
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...

Figure 3.2: The discriminator and generator architectures devised for GAN-SR of
medical images.

training of a lesion patch-focused network.The SPP layer consists of two parts: one is

the max-pooling layer and the other is the mapping layer. The max-pooling layer is

used to extract the features from the input patches, and the mapping layer is used to

make the extracted features fit the layers of the discriminator.

Thus, the discriminators DHR and DLR also share the same network architecture,

which is composed of four blocks of 4×4 convolution kernel, bias, instance normaliza-

tion, and Leaky ReLU activation followed by an SPP layer and then two dense layers.

Fig. 3.2 displays the discriminator and generator architectures used in our work.

Similar to GAN-CIRCLE(12), the loss function also combines four different loss

terms to regularize the training procedure by enforcing the desired mappings:

• an adversarial loss term (LAdv) to enforce the matching of empirical distributions

in the source and target domains;

• a cycle-consistency loss term (LCyc) to prevent degeneracy in the adversarial learn-

ing and promote forward and backward cycle consistency, defined as G(F(Ihr) ≈
Ihr and F(G(Ilr)) ≈ Ilr;

• an identity loss term (LIDT) to regularize the training process and promote the

relationships G(Ihr) ≈ Ihr and F(Ilr) ≈ Ilr;

• a joint sparsifying loss term (LJST) to promote image sparsity and reduced noise.
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Thus, the overall loss function used for training is defined as:

LCIRCLE = LAdv(DHR,G) +LAdv(DLR,F) +λ1LCyc(G,F) +λ2LIDT(G,F) +λ3LJST(G),

(3.1)

where λ1, λ2 and λ3 are weighting parameters to balance the different loss terms,

respectively.

3.2.2 Implementation details

The proposed network was trained in an end-to-end fashion to optimize the loss func-

tion; the convolution layers’ weights were initialized with a zero-mean Gaussian distri-

bution, with a standard deviation of 2/m, where m = f 2×nf , f is a filter size, and nf is

the number of filters; this initialization can relieve diminishing gradients and improve

deeper network architectures’ convergence(69).

The discriminators’ learning rate γD was set to 10−5 equally forDHR andDLR, while

the learning rate for the generators G and F was set to γG = γD /2, following the Two

Times Update Rule (TTUR)(41), to improve GAN convergence under mild assumptions.

Dropout regularization layers, applied in the generators, were initialized with the rate

pDropout = 0.8. Leaky ReLU layers were initialized with the negative slope coefficient

α = 0.1. The loss weights λ1, λ2, and λ3 were set to 1, 0.5 and 0.00001, respectively.

The training used the Adam optimizer with exponential decay rates β1 = 0.5 and

β2 = 0.9 during 100 epochs with batches of 16 images. On average, the training took

9-11 hours per iteration, using TensorFlow (version 2.3.0) on a shared HPC workspace

with an Nvidia Tesla P100 Graphics Processing Unit (GPU). The implemtned code is

available under the GNU license on https://github.com/erickcfarias/SR-CIRCLE-GAN.

Model evaluation and comparisons

In order to evaluate the trained model, conventional quantitative metrics—namely,

Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM)—

were calculated on 1,000 CT images held out for performance evaluation. As a baseline

for comparison, we also resampled the images using a Bicubic interpolation method.
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3.2.3 Benchmarks

Aiming to test the effectiveness of the proposed framework, comparisons were per-

formed against the bicubic interpolation, presented in chapter 2, which is the most

used interpolation method in SR studies, and state-of-the-art methods for single image

super-resolution, namely:

3.2.3.1 Image Super-Resolution Network with an Expectation-Maximization

Attention Mechanism (EMASR)

EMASRN is a CNN-based model proposed to reduce model complexity by decreasing

the parameter search space, while maintaining state-of-the-art performance. In order

to achieve this, Zhu et al. (20) implemented an intricate architecture composed of five

foundational blocks:

The Initial Feature Extraction Block (IFE) consists of two convolutional layers

with a 3 × 3 kernel used to extract shallow features, which are passed as input to a

Deep Feature Extraction Block (DFEB). This block consists of three other modules:

a Deep Projection Block (DPB), a Progressive Multi-Scale Feature Extraction Block

(PMSFE) and the Expectation-Maximization Attention Block (EMAB).

In order to perform back projection, the DPB applies three iterations of upsampling

and downsampling, connected by a convolution with 1× 1 kernel.

The PMSFE is implemented to improve the model’s performance by extracting

multi-scale features. This block performs dillated convolutions with different rates

(6, 12 and 18) to the input, in order to obtain different scale features. The output of

each dillated convolution is then concatenated with the lower adjacent scale feature

and passed to a convolution with a 1 × 1 kernel and then a batch normalization and

rectified linear unit activation are performed. In parallel, a pooling operation followed

by a upsampling is also performed on the input, and the output is concatenated with

the different scale features. Finally, a convolution is performed in order to obtain the

PMSFE output.

The EMAB implements an expectation-maximization attention mechanism, which

captures long range pixel dependencies on the feature map, reflecting the image’s

internal information with more integrity. In this block, the input is upsampled and

the Expecation-Maximization is performed T times. The output is then downsampled,

a rectified linear unit activation is performed and a convolution operation with a 1× 1

kernel is applied.

In the reconstruction block, the output of the DFEB is subjected to a deconvolution

and convolution operation and added to the upsampled low-resolution input in order

to obtain the final super-resolved image.

In order to train this model as a benchmark for this research, we relied on the

implementation available at https://github.com/xyzhu1/EMASRN. The network was
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optimized for `1-norm loss during 1000 epochs with T = 4, a batch size of 16, and a

learning rate of 10−5 halved every 200 epochs.

3.2.3.2 Enhanced Deep Super-Resolution

EDSR was proposed by Lim et al. (70) as an enhanced version of the SRResNet (29)

with demonstrated state-of-the-art performance and lower computational complexity.

This was achieved by simply removing the batch normalization step from the residual

block architecture. The batch normalization step is responsible for normalizing the

feature map, which also reduces the network range flexbility and results in more blurry

images. This adjustment, compared to the original version, enable to reduce memory

usage in 40%, which allowed the authors to build a larger model, with 32 residual

blocks.

For the EDSR model training, we relied on the SRResNet implementation available

at https://github.com/twtygqyy/pytorch-SRResNet. The adjustments decribed in

the EDSR paper were applied in this implementation and the network was trained

with the Adam optimizer with β1 = 0.9, β2 = 0.999, optimizing for `1-norm loss during

500 epochs, a batch size of 16, and a learning rate of 10−5 halved every 100 epochs.

3.2.3.3 Cascading Residual Network

Ahn et al. (71) proposed the implementation of a cascading mechanism upon a resid-

ual network. In comparison to the SRResNet (29), residual blocks are replaced by

cascading blocks. Each cascading block is composed of three efficient residual blocks

(71) followed by a 1× 1 convolution. The output of the cascading block’s intermediate

layers are cascaded in to further layers: the cascading block input and the output of

each efficient residual block are cascaded into further 1×1 convolutional layers within

the block. So, for instance, the input for the last convolutional layer in the cascading

block would be a concatenation of: (1) the cascading block input, (2) the output of the

previous convolutional layer (local cascading connection) and (3) the outputs of the

first and second efficient residual blocks (global cascading connection). The authors

demonstrated that this architecture was able to achieve superior performance with

lower computational complexity.

In order to train this model as a benchmark for this research, we relied on the

implementation available at https://github.com/nmhkahn/CARN-pytorch. The net-

work was optimized for `1-norm loss, trained with the Adam optimizer with β1 = 0.9,

β2 = 0.999, during 500 epochs, a batch size of 16, and a learning rate of 10−5 halved

every 100 epochs.
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3.2.3.4 Super-Resolution based on Dictionary Learning and Sparse

Representation

Jiang et al. (26)) proposed a super-resolution learning-based method to establish a

relationship between LR-HR patches through dictionary learning and sparse represen-

tation (DLSR), modelling the problem according to the following equation:

LR = S ×H ×HR (3.2)

where S is the sampling matrix and H is the sparse matrix. This method assumes

that the LR −HR pairs of images share sparse representation coefficients, as follows

(26):

x ≈Dhα for some α ∈RK with α0 << K (3.3)

The small patches x segmented from anHR image can be sparsely represented by a

dictionary and the sparse representation coefficient α that is obtained jointly for each

patch x for the input image LR in the training process.

For the DLSR model, we trained the Dl ,Dh dictionaries with a size of 2048 atoms,

using 100,000 randomly sampled patches, a sparsity regularization parameter λ = 0.4

and 5× 5-pixel patches with an overlap of 4 pixels between adjacent patches, as used

in the original work. We varied the upscale rate to generate the 2× and 4× versions for

all the tested models.

Besides these performance benchmarks, in order to further assess the performance

of the proposed GAN-CIRCLE-based SR method at 4× SR, we also compared the native

4× GAN-CIRCLE SR against the sequential application of two GAN-CIRCLE instances

at 2× SR, denoted as GAN-CIRCLEx.

3.3 Radiomic feature robustness analysis

The intraclass correlation coefficient (ICC) was computed to identify which features

are correlated with the number of bins used during the quantization step. Given k

multiple measurements to be compared (i.e., 6 different re-binnings), ICC(3,1)(62) for

a two-way random-effects (or mixed effects) model was used:

ICC(3,1) =
MSR −MSE

MSR + (k − 1)MSE
, (3.4)

where MSR and MSE are the mean square for rows and mean square for error, respec-

tively.

According to the ICC values(72), we divided the features into:

• Poor robustness: ICC ≤ 0.5;
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• Moderate robustness: 0.5 < ICC ≤ 0.75;

• Good robustness: 0.75 < ICC ≤ 0.9;

• Excellent robustness: ICC > 0.9.

We investigated how the robustness of the textural features (in terms of ICC) varies

according to the different groups of images. For each group, with the aim of identify-

ing the most robust features, the ICC was calculated by varying the number of bins

considered {8,16,32,64,128,256}. By doing so, we determined the number of robust

features by varying the number of bins in the quantization step. After determining the

features showing excellent robustness, we aimed to identify the most relevant features

for the analysis at hand; for this purpose, we used in an agnostic way the most best

known technique of dimensionality reduction: the PCA(73). For this purpose, we had

to select a specific quantization setting binning; therefore, the different number of bins

were perturbed, via mathematical morphology operations, to select the most robust

setting. With more details, the original ROIs were perturbed using morphological

operators (opening and closing with a 3D spherical structuring element of 1-pixel

radius). Accordingly, we produced three versions for each ROI (i.e., original, opening,

and closing). This procedure simulates ROI variations through consideration of intra-

/inter-reader dependence during manual contouring(74). The optimal number of bins

was selected after the ROI perturbation process, by considering the re-binning with

the highest number of robust features. It is worth noting that the optimal binning was

selected on the Original images and not on the super-resolved ones, thus adopting the

most conservative choice for fair comparisons.

With the goal of carefully analyzing these variations in terms of ICC, and after

the selection of the optimal re-binning setting, we assessed the importance of these

features by means of a ranking procedure: we performed a PCA and we calculated a

weighted average of the features extracted from the Original images, according to the

first three Principal Components (PCs), to assess their relative importance. In particu-

lar, we calculated the correlation matrix (as well as the eigenvectors and eigenvalues

of the correlation matrix) to identify the PCs. PCs represent the directions of the data

that explain a maximum amount of variance, i.e., the directions that capture most

of the relevant and non-redundant information in the data. Then, to determine the

relative importance of the features for the PCs considered, we used a quadrature sum

for the individual features related to the different PCs. In this way, we determined a

ranking of the features by the study of their relative weights in the main components

considered.

Radiomic feature extraction

The radiomic features considered in this study were computed using PyRadiomics

(version 2.2.0)(75), an open-source Python package widely used for this purpose. Since
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this software requires image input to be in the Neuroimaging Informatics Technology

Initiative (NIfTI) format(76), a preliminary step was performed to convert the original

Digital Imaging and Communications in Medicine (DICOM) scan and segmentation

files to this format using custom software written in MATLAB (The Mathworks Inc.,

Natick, MA, USA) version R2019b.

Excluding the shape-based features and first-order features (since they are indepen-

dent of the rebinning), 75 3D radiomic texture features were calculated without any im-

age filters applied from the following categories: Gray-Level Co-occurrence Matrix fea-

tures (GLCM)(56, 77, 78) (24), Gray-Level Dependence Matrix (GLDM)(79) (14), Gray-

Level Run Length Matrix (GLRLM)(80) (16), Gray-Level Size Zone Matrix (GLSZM)(81)

(16) and Neighboring Gray-Tone Difference Matrix Features (NGTDM)(82) (5).

The radiomic features were extracted from the NSCLC radiomics CT dataset by us-

ing different quantization configurations: the number of bins varied in {8,16,32,64,128,256}.
By relying upon the slice thickness, which is the same for all CT scans included in this

homogeneous subset of the whole NSCLC dataset, 3D feature computation without

any resampling was used to avoid interpolation artifacts.
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Chapter

4
Results and Discussion

4.1 Image super-resolution results

Fig. 4.2 shows an example of 4× super-resolved images by the GAN-SR and Bicubic

interpolation, along with their PSNR/SSIM; the sample slices are randomly selected

from the TCIA NSCLC CT dataset. The PSNR values were 20.99 ± 4.937 (mean ±
SD) for the Bicubic interpolation, and 21.118± 4.828 for the GAN-SR; no statistically

significant differences between the average values emerged from the one-sided Welch’s

adjusted test (p = 0.15). The SSIM values were 0.548 ± 0.234 (mean ± SD) for the

Bicubic interpolation and 0.572 ± 0.225 for the GAN-based SR. The average SSIM

was significantly higher for the GAN-based SR when compared through a one-sided

Welch’s adjusted test (p < 0.0001).

Although PSNR/SSIM are widely adopted evaluation metrics, some studies(18,

29) demonstrated their limitations on medical image SR tasks since images with low

perceptual quality could exhibit high PSNR/SSIM values. Whereas the CIRCLE-GAN

and Bicubic interpolation baseline did not show statistically different PSNR values,

the GAN-generated images were less blurry with better texture, sharper edges, and

visually more similar to the ground truth, as shown in Fig. 4.1.

Perceptual quality, however, does not necessarily in- crease with higher PSNR. As

such, different methods, and in particular, objective functions, have been developed

to in- crease perceptual quality. In particular, methods that yield high PSNR result in

blurring of details. More recently, some researchers have started to use the L1 norm

since models trained using L1 loss seem to perform better in PSNR evaluation. The L2

norm (as well as pixel-wise average distances in gen- eral) between SR and HR images

has been heavily criticized for not correlating well with human-observed image quality

[ (31)

Fig. ?? shows an example of both 2× and 4× super-resolved images obtained by

the considered methods. This example provides a qualitative visual assessment of
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Figure 4.1: Perceptual quality comparison on the DeepLesion test images 2× super-
resolved held out for performance evaluation, using the GAN-SR and the Bicubic
interpolation method. The PSNR and SSIM values are shown at the bottom of each
super-resolved image.

the super-resolved images. Fig. 4.2 reports the boxplots of the PSNR/SSIM metrics

for 1,000 CT images. From the analysis of Fig. 4.2, one can see that, at 2× SR, the

proposed GAN-CIRCLE-based method achieved higher median values than the other

competitors for both the considered metrics (i.e., PSNR and SSIM). On the other hand,

at 4× SR, the best SSIM and PSNR values were obtained with the EDSR and EMASRN

SR methods. To assess the statistical significance of these results, we performed a

Mann-Whitney test for pairwise comparisons (using α = 0.05). The p-values were

adjusted via the Benjamini-Hochberg method for multiple comparisons.

Based on the p-values yielded by the statistical test, at 2× SR, GAN-CIRCLE achieved

significantly higher PSNR and SSIM values than the other competitors. The only ex-

ception is represented by the Bicubic interpolation for which the differences of the

median SSIM and PSNR values were not statistically significant. At 4× SR, GAN-

CIRCLE showed statistically significant differences, in terms of SSIM and PSNR, when

compared against the Bicubic interpolation method and DLSR. The differences were

not statistically significant when we compared GAN-CIRCLE against EDSR, EMASRN,

and CARN. Finally, at 4× SR, GAN-CIRCLEx produced results comparable to the ones

achieved with GAN-CIRCLE.

Fig. 4.3 shows a randomly selected example from the Deeplesion dataset to en-

dorse the quality of the produced images and assess the generalization ability of the

investigated SR methods.

Although PSNR/SSIM are widely adopted evaluation metrics, some studies(18, 29)

have demonstrated their limitations on medical image SR tasks since images with low

perceptual quality could exhibit high PSNR/SSIM values. Overall, at both 2× and 4×
SR, the GAN-generated images were less blurry, with better texture, sharper edges,

and visually more similar to the ground truth, as shown in Figs. ?? and 4.3.

In the downstream radiomic analyses, we focused our attention on the Original
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Figure 4.2: Boxplots comparing PSNR and SSIM metrics for 1,000 CT images held
out for performance evaluation, super-resolved at 2× and 4× by using the investigated
SR methods. In the case of 4× SR, GAN-CIRCLEx denotes the sequential application
of two GAN-CIRCLE instances at 2× SR.

images, the super-resolved images via the proposed GAN-SR framework (based on SPP

and GAN-CIRCLE), and the Bicubic interpolation method. The Bicubic interpolation

method obtained, at 2× SR, the best performance (i.e., in terms of PSNR and SSIM)

among the considered SR techniques. Moreover, it is commonly available and used in

medical image processing.
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Figure 4.3: SR example (2× and 4× factor) using the investigated SR methods from
a sample slice randomly selected from the Deeplesion dataset (held-out set). In the
case of 4× SR, GAN-CIRCLEx denotes the sequential application of two GAN-CIRCLE
instances at 2× SR.

4.2 Robustness analysis results

In this section, we describe and discuss the results of the robustness analysis related

to the textural features (in terms of ICC) according to different image groups (i.e.,

Original, Bicubic, and GAN-SR). Table 4.1 reports the features with excellent robust-

ness for the considered methods. According to these values, one can observe that all

the techniques taken into account produced ten features with excellent robustness.

Interestingly, our GAN-SR method shows superior performance in terms of ICC for

four features. Moreover, the GAN-SR technique, as well as the Bicubic interpolation,

achieved moderate to good robustness for GLRLM LongRunLowGrayLevelEmphasis

and GLDM DependenceEntropy, while the features extracted from the Original im-

ages resulted in excellent robustness. Table 4.2 reports the most important features

according to the implemented PCA-based procedure. These four features are related

to the GLCM matrix (the GLCM characterizes the texture of an image by calculating

the occurrences of voxel pairs with specific values in a defined spatial relationship(78))

and, in particular, are the following: Correlation, IDMN, IDN, SumEntropy (Feature

IDs: #1, #3, #4, #6). Of particular interest is the SumEntropy feature, defined as the

sum of neighborhood intensity value differences, which showed excellent robustness

with the GAN-SR method, while it showed good robustness in Original and Bicubic.

Table 4.2 shows the relative difference (in terms of ICC) on the most important ra-

diomic features between GAN-SR and the Original/Bicubic versions. With reference

to the most important features, the GLCM Correlation denotes the linear dependency

of gray-level values to their respective voxels in the GLCM; the Inverse Difference

Moment Normalized (IDMN) is a measure of the local homogeneity of an image that

normalizes the square of the difference between neighboring intensity values by di-

viding over the square of the total number of discrete intensity values; the Inverse
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Difference Normalized (IDN) is another measure of the local homogeneity of an image

that normalizes the difference between the neighboring intensity values by dividing

over the total number of discrete intensity values.

Table 4.1: Features that obtained an excellent robustness for at least of the Origi-
nal, Cubic and GAN-SR image groups.

ID Feature name Original Bicubic GAN-SR

#1 GLCM Correlation 0.980 0.979 0.984
#2 GLCM DifferenceEntropy 0.846 0.911 0.910
#3 GLCM IDMN 0.996 0.996 0.997
#4 GLCM ID 0.997 0.995 0.998
#5 GLCM MCC 0.633 0.938 0.923
#6 GLCM SumEntropy 0.822 0.897 0.905
#7 GLRLM LongRunLowGrayLevelEmphasis 0.926 0.560 0.631
#8 GLRLM LowGrayLevelRunEmphasis 0.967 0.952 0.944
#9 GLRLM ShortRunLowGrayLevelEmphasis 0.97 0.973 0.925

#10 GLDM DependenceEntropy 0.910 0.870 0.895
#11 GLDM LargeDependenceLowGrayLevelEmphasis 0.985 0.976 0.890
#12 GLDM LowGrayLevelEmphasis 0.986 0.986 0.950
#13 GLDM SmallDependenceLowGrayLevelEmphasis 0.902 0.955 0.946

Table 4.2: Relative difference (in terms of ICC) of the GAN-SR against the Original
and Bicubic versions on the most important radiomic features according to PCA
analysis.

Feature Name Original Bicubic GAN-SR GAN-SR vs.Original GAN-SR vs. Bicubic

GLCM Correlation 0.980 0.979 0.984 0.41% 0.51%
GLCM IDMN 0.996 0.996 0.997 0.1% 0.1%

GLCM IDN 0.997 0.995 0.998 0.1% 0.3%
GLCM SumEntropy 0.822 0.897 0.905 10.1% 0.89%

According to the procedure designed for robustness in the radiomic feature, the

optimal binning was found with 64 bins after the perturbation process.

In Fig. 4.4, the plots in the left column justify the use of the first three PCs, as the

first three eigenvalues cover at least 85% of the trace of the covariance matrix in each

group. The plots in the second column show the weights of the original features on the

first three PCs, while the third column shows the relative importance of the features

in the first three PCs. The most important features (in descending order), for the three

groups of images, were as follows:

• Original: #1, #5, #6, #2, #10;
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Figure 4.4: PCA-based analysis of the importance of radiomic features for all image
types: (a) Original; (b) Cubic; (c) GAN-SR. The first column shows the line plots of
the values of the eigenvalues as a function of the number of eigenvalues. This is useful
for the evaluation of the PCs required. The second column shows the relative weights
of the original features on the first of three PCs, while the third column depicts the
relative importance of the features (according to the IDs defined in Table 4.1) in the
first three PCs.

• Bicubic: #1, #5, #6, #2, #11;

• GAN-SR: #1, #5, #2, #6, #4.

Intriguingly, the features with a lower ICC in the GAN-SR method were those

of less importance in terms of the PCA. Our GAN-SR method, therefore, increased

the robustness of the most important features, compared to the Original and Cubic

groups. These highly robust features are expected to generalize well on other and

unseen imaging datasets.
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4.3 Conclusion

The goal of this project was to present the first application of GAN-based image SR

to radiomic studies. As a proof-of-concept, CT images were considered. In particu-

lar, the DeepLesion(63) dataset was used for training and testing the GAN-SR perfor-

mance in terms of PSNR and SSIM. The performance of the proposed method was

compared against the Bicubic interpolation method. Concerning the perceptual qual-

ity, experimental results demonstrated the suitability of the proposed method. With

more details on the SR results obtained on the DeepLesion test images with 2× factor,

GAN-SR achieved a higher SSIM value than the Bicubic interpolation method. On the

other hand, while the two methods did not show statistically different PSNR values,

the GAN-generated images presented better texture, sharper edges, and they looked

visually more similar to the ground truth HRCT (Fig. 4.1).

In a second step, the resulting GAN-SR model was leveraged to assess the radiomic

feature robustness extracted from the images of the NSCLC dataset. This assessment

required the computation of the ICC to identify the most robust features against the

variations of the number of bins used in the quantization step. The ICC values, calcu-

lated for the different image groups (i.e., Original, Bicubic, and GAN-SR) taken into

account, showed that all the techniques obtained ten texture features with excellent

robustness. Still, the proposed GAN-SR method presented superior ICC values in four

of the ten features with excellent robustness. Finally, a PCA was performed to identify

the relative importance of the radiomic features in the proposed GAN-SR technique.

The results obtained from this analysis are particularly interesting as the features with

the lowest ICC values are the ones deemed as less relevant in terms of the PCA analy-

sis. On the contrary, GAN-SR increased the robustness of the most important features

compared to the Original and Bicubic groups. The result is relevant because the highly

robust features identified by GAN-SR might generalize well on other CT datasets. The

results of this study could pave the way for the application of GAN-based image SR

techniques for radiomics studies for robust biomarker discovery(83, 84).

Along with the novelties in lesion-focused GAN-based SR, this work belongs to the

research strand dedicated to the analysis of radiomic feature robustness, with partic-

ular interest in oncological imaging. As a matter of fact, the investigation techniques

used in our study were consistent with the state-of-the-art: the ICC was adopted in

radiomic feature robustness analyses that assessed the impact of different imaging

acquisition and reconstruction parameters(6, 7, 58), as well as image perturbations(4,

5, 8). Moreover, we identified the most important features in an agnostic manner,

which is independent on a particular classification/prediction task at hand, by using a

PCA-based investigation(73).

The main limitation of the proposed SR method is inherent to its lesion-focused

approach, that relies on a lesion detection step for ROI identification that limits the
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application of this method to datasets with a pre-existent mapping of ROIs. Regard-

ing this matter, our methodological approach could be extended to include a lesion

detection task as in (18), to allow for CT images without lesion annotations also in the

training process. Considering that our GAN-SR method currently performs only in-

plane 2D image SR, to avoid the effect of slice thickness variability(6, 7), GAN-based

SR along the z-axis (i.e., yielding thinner slices) might relieve the problem related to

highly anisotropic voxels(51, 52). Moreover, since our GAN-SR model does not re-

markably improve PSNR/SSIM values, we could conduct feature recalibration, such

as via self-attention mechanisms, to obtain features more similar to the original im-

ages’ ones(85–87). Concerning future radiomics applications, since we showed the

results on a homogeneous subset of the NSCLC-Radiomics dataset, we plan to test

the generalization ability of GAN-extracted radiomic features on the whole dataset,

considering variations on CT image acquisition and reconstruction parameters. In par-

ticular, a classification/prediction modeling task for NSCLC staging and type would

be beneficial(64).
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