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ABSTRACT 

Recommender systems have improved users' online quality of life by helping them find interesting and 
valuable items within a large item set. Most recommender system validation research has focused on 
accuracy metrics, studying the differences between the predicted and actual user ratings. However, 
recent research has found accuracy to underperform when systems go live, mainly due to accuracy’s 
inability to validate recommendation lists as a single entity, and shifted to evaluating recommender 
systems using "beyond-accuracy" metrics, like novelty and diversity.  

In this dissertation, we summarize and organize the leading research regarding the definitions and 
objectives of the beyond-accuracy metrics. Such metrics include coverage, diversity, novelty, 
serendipity, unexpectedness, utility, and fairness. The behaviors and relationships of these metrics are 
analyzed using four different models, two concerning the items characteristics (item-based) and two 
regarding the user behaviors (user-based). Furthermore, a new metric is proposed that allows the 
comparison of different models considering their overall beyond-accuracy performance. Using this 
metric, a reraking approach is designed to improve the performance of a system, aiming to achieve 
better recommendations. The impact of the reranking technique on each metric and algorithm is 
studied, and the accuracy and non-accuracy performance of each system is compared. We realized 
that, although the reranking technique can increase most beyond-accuracy metrics, the accuracy of 
that system starts to worsen due to the negative correlation between these two dimensions. We also 
found that item-based models tend to achieve much lower values of coverage and diversity than user-
based models.  
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Recommendation System; Validation Metrics; Beyond-Accuracy; Offline Evaluation; Comparative 
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1. INTRODUCTION 

Since the first computer's appearance, their ability to perform recommendations based on 
probabilities was recognized, with one of the first known recommendation systems being the 
computer librarian Grundy (Rich, 1979). Nowadays, recommender systems are widely adopted and 
interact with people daily, influencing and advising them. Identifying the best algorithms for a given 
system has proven to be challenging. Properly evaluating the results is an even more significant 
challenge due to the existing disagreement between researchers on the best metrics and attributes to 
use.  

There are two main approaches to evaluating recommender systems: online validation, through A/B 
tests to compare different systems on online users, and offline validation, testing on the user's 
historical data under the assumption that the offline data is an appropriate proxy to the natural 
behavior of the users in the future. Online validation is the most reliable approach and can produce 
results closer to the system's actual performance without requiring many assumptions about the user's 
behaviors. Unfortunately, it is costly and time-consuming and requires a large user base. A good and 
reliable offline evaluation can mitigate this by indicating which models are more likely to perform well 
online (Gruson et al., 2019). 

Evaluating recommender systems offline is inherently complex and can be considered as much art as 
science. Algorithms designed for datasets with more users than items may be entirely inappropriate in 
a domain with many more items than users (McLaughlin & Herlocker, 2004). In the past, extensive 
research has been done regarding accuracy, precision, and error-based metrics to validate 
recommender systems. These metrics are still the most used today by researchers and developers. 
From 2006 to 2009, Netflix promoted a competition focused on improving the accuracy of its 
recommendation systems using the root-mean-square error (RMSE) (Bennett & Lanning, 2007). Since 
then, RMSE and the mean absolute error (MAE) have been the go-to metrics to validate recommender 
systems. Although, Netflix admitted to not using those metrics anymore as the systems were not 
producing the desired results. 

Recommender systems must be helpful to the users, providing them with valuable recommendations. 
An increasing number of researchers worry that predictive accuracy might not be enough to provide a 
valuable experience to the user. Accuracy metrics lack in considering essential features of a 
recommender system. Examples are whether an item is relevant, whether the system provides novel 
(Oh et al., 2011), diverse (Vargas & Castells, 2014), and serendipitous recommendations. This occurs 
due to accuracy only being able to analyze a single item and not a complete list of items. McNee et al. 
(2006) believe that a list of recommendations should be judged not as a collection of individual items 
but as a single entity, which accuracy cannot cope with. 

To tackle this weakness, several "beyond-accuracy" metrics were created to analyze a recommender 
system qualitatively, believing that a system must be accurate, helpful, and interesting (Kaminskas & 
Bridge, 2017). A system might achieve high accuracy but only recommend easy-to-predict or popular 
items, which may not benefit the user (Herlocker et al., 2004). 
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In this research, we examine previous works addressing distinct concepts proposed for 
recommendation system validation, focusing on metrics other than predictive accuracy, also called 
“Beyond-Accuracy” Metrics. The concepts investigated are coverage, diversity, novelty, serendipity, 
unexpectedness, utility, and fairness. We discuss the various definitions and review each metric. 
Furthermore, we believe a metric should enable the compression of a system's beyond-accuracy 
performance into a single value, much like countries are compared using the Human Development 
Index (HDI)1. This will enable a more straightforward and concise comparison between the 
performances of each system and allow the optimization of a system to achieve higher beyond-
accuracy performance. Thus, our work objectives are: 

1) To present a detailed survey and review of the most prominent beyond-accuracy metrics, 
conceptually analyzing their strengths and weaknesses. 

2) To conduct a set of offline experiments providing insights from the metrics’ behaviors in item-
based and user-based algorithms, as well as the relationships between those metrics. 

3) To propose a new metric to validate the beyond-accuracy performance of a system. 
4) To propose an optimization framework that utilizes the created validation metric to reorganize 

the recommended items and increase the system's performance. 
5) Finally, compare the beyond-accuracy performance of each model with their respective hit 

rate to further understand the relationship between accuracy and non-accuracy systems. 

The remainder of this document is structured as follows: In section 2 we will review the beyond-
accuracy metrics available in the recommender systems literature, referring to their concepts, 
strengths, and weaknesses. In Section 3 we formulate the metrics for evaluating the beyond-accuracy 
quality of a system and describe the reranking optimization process using those metrics. Section 4 
describes the dataset, algorithms and performance metrics used in the experimental setup. On section 
5 we present and discuss the results. And on section 6 a conclusion is made, exposing the limitations 
of this work as well as suggesting future work. 

 

 
1 https://hdr.undp.org/data-center/human-development-index#/indicies/HDI 
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2. BEYOND ACCURACY METRICS 

2.1.  COVERAGE 

Coverage is a system-level metric that measures the proportion of items the system can recommend 
or users the system can perform recommendations. By definition, accuracy and coverage can collide, 
as enforcing a higher precision threshold on the recommendations might improve accuracy at the 
expense of coverage. Herlocker et al.(2004)  believed in the importance of coverage, theorizing that a 
system with lower coverage will provide limited choices to the user, thereby being less valuable. 
Adomavicius and Kwon stand that high coverage can benefit not only the users, as an increased item 
catalog can lead to higher satisfaction (Adomavicius & Kwon, 2012) but also benefit the business 
owners. This would allow them to increase product sales, especially from long-tail items (Armstrong, 
2008). High coverage can create in the user's mind a perception that the system was designed with 
care and detail. By suggesting more products, the users will perceive a higher sensation of quality in 
the system (Ge et al., 2010). 

There are two approaches to measuring recommendation coverage, one focused on the users and the 
other on the items. The "user coverage" is the proportion of users that can receive recommendations 
from the system (Shani & Gunawardana, 2011). It might happen that the system is not confident 
enough in the predictions calculated for a particular user or that the user is recent in the system and 
does not yet have a purchase history. In those situations, it can be difficult for the recommendation 
system to suggest items for that user, possibly making the system ignore the user entirely and not 
recommend anything. The "item coverage" is the one we will focus on in this work because it is the 
most common formulation in the recommender system literature. It measures the proportion of items 
that are or can be recommended. 

Shani and Gunawardana (2011) believe that recommendation systems should be evaluated 
considering a trade-off between accuracy and coverage, choosing systems with a higher coverage 
ratio. Herlocker et al. (2004) defines three types of coverage – prediction coverage, catalog coverage, 
and interest coverage.  

 

2.1.1. Prediction Coverage 

Prediction Coverage corresponds to the number of items the system can recommend (𝐼!) compared 
with the total number of items in the catalog (𝐼). As Herlocker et al. (2004) suggests, prediction 
coverage answers the question: "What percentage of items can this recommender form predictions 
for?". 

A simple way to measure prediction coverage is given by: 

 

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 	
|𝐼!|
|𝐼|

 (1) 
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There are various methods to obtain 𝐼!, depending on the technology used to collect the data and 
build the system. The technique used to filter the item set is highly dependent on the goal and domain 
of the system. For example, if we consider a recommender system that relies on item ratings to make 
its predictions, the value of 𝐼!  will be the number of items with enough ratings for the algorithm to 
form predictions. All items that do not meet that rating threshold are not recommended. 

 

2.1.2. Catalog Coverage 

Contrary to the prediction coverage, the catalog coverage measures the percentage of items that 
effectively are recommended, answering the question: "What percentage of available items does this 
recommender ever recommend to users?" (Herlocker et al., 2004). This metric is not as popular as 
prediction coverage. However, it is advantageous for measuring coverage in a system that produces 
Top-N lists (Ge et al., 2010). It is essential to consider that catalog coverage represents a specific period 
in time, meaning that recommendations given in one recommendation session might produce a 
different coverage than in the previous or following sessions. This time sensitivity also helps distinguish 
catalog coverage from prediction coverage, the latter being less time-sensitive, depending on the 
technique applied to filter the items. 

Catalog coverage can be calculated through the union of all items in the Top-N lists recommended at 
a given time, compared with the entirety of items in the item catalog. Kaminskas and Bridge (2017) 
proposed the following formula for measuring catalog coverage: 

 

 𝐶𝑎𝑡𝑎𝑙𝑜𝑔	𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 	
| ∪"∈$ 𝑅"|

|𝐼|
 (2) 

 

Where ∪ represents all users in the system, 𝑅" all recommendations made to user 𝑢 and 𝐼 all items in 
the catalog.  

In most cases, it is not adequate to increase the coverage if it would result in recommendations that 
are not interesting to the user. Herlocker et al. (2004) proposed calculating coverage by considering 
user interests. 

 

2.1.3. Interest Coverage 

The main difference between interest coverage and the coverage measures mentioned earlier is 
regarding the item catalog. Interest coverage does not consider the entirety of the item set, only the 
items a user is or might be interested in. In other words, this metric considers the item's usefulness for 
a user. However, usefulness is a concept with a comprehensive meaning and susceptible to various 
interpretations, although many researchers believe accuracy to be a good proxy for the usefulness of 
an item. Ge et al. (2010) believe that item novelty is also a good indicator of usefulness, assuming that 
a novel item has the potential to be attractive to a user unaware of the item's existence. Utility and 
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serendipity can also be indicative of an item's usefulness. All these metrics will be discussed forward in 
this work. Nonetheless, the best and most precise method to measure the usefulness of an item is by 
directly asking and studying the response of users in an online setting. 

Ge et al. (2010) proposed an interest coverage formula, which they called weighted catalog coverage. 
This formula is an adaptation from equation (2), where the intersection between the set of 
recommendations and the collection of useful items (𝐵) is considered: 

 

 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡	𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 	
| ∪"∈$ 𝑅" ∩ 𝐵|

|𝐵|
 (3) 

 

Although this metric will, by definition, have a lower value than other coverage metrics, the loss in 
coverage is balanced by the worthiness of the items recommended. This metric can validate systems 
that better correspond to the user's needs since the system will not waste resources suggesting items 
the user is not interested in (Herlocker et al., 2004). 

Common to all these coverage metrics is the aggregation of all items into a single value regardless of 
the number of recommendations an item gets. An item recommended to all users or an item 
recommended to a single user will have the same weight on coverage. This means that if a system is 
prone to popularity bias, measuring coverage will not be enough to notice this fault in the system. 
Coverage should be measured alongside other metrics to obtain the most trustworthy validation of 
the system. 

 

2.2. DIVERSITY 

The essence of a recommender system should be linked to a feeling of discovery, which, driven by 
diversity, helps users find items they would not have found by themselves. A system with high accuracy 
might not be able to generate this sense of discovery because it is more prone to suggest obvious items 
(Vargas & Castells, 2011).  

The notion of diversity is highly consensual among researchers, and it is defined as the amplitude of 
variation within the characteristics of the items in a recommendation list. If a recommendation list 
contains all Harry Potter books, the diversity of that list is low due to the high similarity between those 
books. Hence Ricci et al. (2011) defined diversity as being the opposite of similarity. However, the 
similarity between items can be wildly subjective. For example, recommending a Harry Potter book 
and a Lord of the Rings book can be considered a diverse recommendation, even though both books 
have the same category (i.e., fantasy) and be considered similar by unfamiliar users.   

Some recommendation systems are built using algorithms based on similarity, for instance, 
recommending items according to trends and item features, i.e., content or item-based algorithms. 
Consequently, Zhou et al. (2010) believe a popularity bias is created where only the most popular items 
are recommended, and the niche products, which can arguably be more interesting for the user, are 
overlooked. Furthermore, as Herlocker et al. (2004) identified, a paradox is created where the most 
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accurate systems are based on similarity. Still, the most valuable recommendations are of diverse and 
niche products that the users would hardly find alone. A close parallel can be analyzed in how often 
the most helpful advice does not come from close friends (similar items) but from people with whom 
we have limited connections ("weak ties") (diverse items) that open our horizons for possibilities 
outside our everyday experience (Granovetter, 1973).  

The concept of diversity was first introduced in Information Retrieval literature, namely regarding the 
diversification of results in search engines and similarity in user queries (Carbonell & Goldstein, 1998). 
When a user searches for something, it usually uses small and not very specific queries, which can 
originate ambiguous results due to the different interpretations the system can make. If a user utilizes 
words with various meanings, the system will not know which topic the user is interested in. Thus, to 
help decrease ambiguity, diversity was introduced in search engines allowing the system to retrieve 
various documents that encompass the highest number of possible interpretations for that query, 
increasing the probability of satisfying the user's needs.  

Ziegler et al. (2005) proposed a formula for measuring diversity in recommendation systems. They 
defined a diversity metric called intra-list similarity (ILS), representing the aggregate sum of the 
similarity between items in a recommendation list. Their formula is presented as shown below, with	
𝑅"	representing	a	user's	recommendation	list: 

 

 𝐼𝐿𝑆(𝑅") = 	M M 𝑑(𝑖, 𝑗)
%∈&!\{)})∈&!

 (4) 

 

An older version of this formula was proposed by Smyth and Mclave (2001), the difference being 
instead of considering the aggregated sum, they would consider the mean of the pairwise distances 
within a recommendation list: 

 

 
𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑅") = 	

∑ ∑ 𝑑(𝑖, 𝑗)%∈{)})∈&

|𝑅"|(|𝑅"| − 1)
 (5) 

 

Where 𝑑(𝑖, 𝑗) represents the distance function between items i and j. The lower the value of this 
metric, the higher the similarity between the products. 

The calculation of the distance function 𝑑(𝑖, 𝑗) differs from author to author and depends on the type 
of feature representing the item, resulting in numerous approaches to calculating diversity. If the 
feature is a descriptor of the item - e.g., the name, category, or description - the distance function can 
be computed using a taxonomy-based metric (Ziegler et al., 2005) or the complement of Jaccard 
Similarity (Vargas et al., 2011). Furthermore, if the items are being represented numerically, e.g., using 
ratings, Ribeiro et al. (2012) and Zhang et al. (2012) prefer the Cosine similarity as the distance 
function, whereas Kelly and Bridge (2006) favor the Hamming Distance and Vargas and Castells (2011) 
the Pearson Correlation.   
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Vargas and Castells (2011) criticized the current metrics for not considering the item's relevance or 
position in the recommendation list, believing items that appear first should be the most relevant ones. 
They created a new metric that considers both these aspects, assigning a discount depending on the 
position of each item in the list, with 𝑑𝑖𝑠𝑐(𝑘) and 𝑑𝑖𝑠𝑐(𝑘|𝑙) representing the relative rank discount of 
an item at position 𝑙 knowing position 𝑘 has been taken: 

 

 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑅|𝑢) = M 𝑑𝑖𝑠𝑐(𝑘)𝑑𝑖𝑠𝑐(𝑙|𝑘)𝑑V𝑖+,𝑖-W, ∀𝑖+, ≠ 𝑖- 	
)+∈&
)-∈&
-.+

 
(6) 

 

However, Vargas et al. (2014) believe metrics based on item-to-item distance like the ones mentioned 
above might not be able to create a sense of variety in the user perception, despite influencing the 
inherent diversity of a recommendation. To achieve this, the item genres should be used to calculate 
diversity, assuming if the recommendation span across various genres (e.g., action, comedy, drama), 
the user will perceive the recommendations as more diverse. A recommendation list should 
encompass the user's genres of interest and avoid the existence of genre redundancies. Namely, if a 
list contains three movies that span six different genres (e.g., Western, Space), but all are Comedy 
movies, the list will have some diversity but is redundant. 

All metrics mentioned are measured on recommendation lists generated by the algorithms and are 
evaluated in a post-modeling stage. The advantage of this method is reproducibility on any system 
independently of the algorithm chosen to create the lists, explicitly controlling the level of 
diversification. However, a strand of research refers to creating recommendation algorithms that 
automatically incorporate diversity during their modeling process (Kaminskas & Bridge, 2017). 

 

2.3. NOVELTY 

A recommender system aims to show the user something new and exciting (Vargas & Castells, 2011). 
Thus, apparent recommendations or recommendations of trendy items, although they have high levels 
of accuracy, will be of little value to the user, who might already know about those items. Herlocker et 
al. (2004) found two problems with recommending obvious items. Firstly, suggesting popular items is 
counter-productive since the users that want the item would probably already have bought it, and the 
ones that do not like the product already decided not to buy it and will ignore the recommendation. 
Secondly, the business owners know their most popular items and how to promote them. A 
recommendation system does not have to suggest such items to a user. In a movie recommendation 
system, the user might consider it more valuable to receive recommendations for new or less-known 
films aligned with his/her preferences instead of an Oscar-nominated movie. However, the system 
cannot only rely on new and obscure recommendations. Allowing suggestions of items familiar to the 
user would increase their confidence in the system, as they believe the system can provide 
recommendations suited to their preferences. This creates a complex task of conciliating familiarity 
with novelty and relevance. Celma (2008) believed that if a user is in a laid-back state of mind, the 
system should suggest more comfortable and familiar items. However, if they are curious, the 
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recommendations should be novel and allow the user to explore new items. The challenge is the 
system’s ability to recognize the user's state. Random or popular recommendations are beneficial 
when the system does not have enough information about a user. 

Similarly to the other validation metrics, the novelty concept originated from information retrieval 
literature, with Baeza-Yates and Ribeiro-Neto (1999) defining novelty in a set of documents as the 
proportion of unknown documents to the user. Later, Zhang et al. (2019) considered novelty as the 
opposite of redundancy, with a document being redundant if containing information from previously 
seen documents. They treated novelty as a boolean metric, with a document either being novel or 
redundant. 

In recommender systems literature, novelty primarily focuses on two aspects, the item is unknown to 
the user, and the item is different from what the user has seen before (Kaminskas & Bridge, 2017). 
According to Zhang (2013), a novel item has three characteristics: it needs to be unknown to the user, 
must be relevant, and must be dissimilar from all other items in the user profile. In 2015 Kapoor et al. 
(2015) extended the definition of novelty by also considering novel the items a user knows but has 
long forgotten or stopped interacting with. Recommending a song that a user has not listened to in a 
long time, but was once a highly reproduced song, will create a positive emotional response associated 
with that recommendation. However, the definition proposed by Kapoor et al. (2015) can only be 
applied to recommender systems of recurrent consumption, like a music or grocery shop 
recommender.   

To better organize the different notions and definitions of novelty, Silveira et al. (2019) proposed three 
levels of novelty: 

1. Life Level Novelty: when an item is an absolute novelty for the user, i.e., the user never knew 
about the item's existence. 

2. System Level Novelty: the item is unknown to a user just considering the user profile and 
history of consumption. The user might know the item, yet there is no way for the system to 
confirm it due to the user having never interacted with it. 

3. Recommendation List Level Novelty: this happens when a recommendation list is devoid of 
redundant items. 

 

Celma (2008) proposed a Life Level Novelty formula, where novelty is calculated through the ratio of 
the unknown items in a Top-N list: 

 
𝑁𝑜𝑣𝑒𝑙𝑡𝑦(𝑢) = 	

∑ (1 − 𝐾𝑛𝑜𝑤𝑠(𝑢, 𝑖)))∈&

|𝑅|
 (7) 

 

Where 𝑅 represents the Top-N list and 𝐾𝑛𝑜𝑤𝑠(𝑢, 𝑖) is a binary function returning 1 if the user 𝑢 knows 
item 𝑖, or 0 otherwise. It is not a trivial task to calculate	𝐾𝑛𝑜𝑤𝑠(𝑢, 𝑖) in an offline validation context.  
This is because the system cannot easily understand whether or not the user knows an item. We could 
consider that if an item is not present on a user profile or the user did not review or rate it, it must 
mean the user is unaware of such an item (system-level novelty). Still, the user may be familiar with 
the item but did not interact with it in the system or did not feel like rating it. The only way to precisely 
understand whether a user is familiar with an item is by asking the user directly, for instance, by 
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creating a field on the item page asking, "Did you know about this product before?". However, 
interacting with the user through the system might create a problem of cognitive load and harm the 
user experience (Kaminskas & Bridge, 2017). A recommender system has a high user interaction where 
all features and gimmicks must be carefully considered. Sometimes elements that help the developers 
and business owners do not always provide a good experience to the user. 

Therefore, the most popular and accepted method to measure novelty is through the popularity of an 
item, assuming that the more popular an item is, the more significant the probability of it being well-
known. The method to measure popularity is highly dependent on the domain. In some instances, it 
might be the number of views and, in others, the number of times the item was bought. The number 
of ratings is the most used method when measuring popularity. 

Lu et al. (2012) understood that regarding novelty, popular items have a higher rate of true positives 
than the items in the long-tail. If a user does not rate or consume a popular item, it probably means 
they are familiar with the product but not interested in it. Contrarily, if a user does not rate a long-tail 
item, there is a high probability of that item being genuinely unknown to the user.  

However, some researchers are against the use of popularity. Celma (2008) believes that if a user is 
familiar with a rare item (long-tail), the probability of being knowledgeable about other rare items is 
increased, making popularity a poor method to know if a user is familiar with an item or not. 

The user interacting with an item belonging to the long-tail is an infrequent event that can be measured 
using the self-information of the item, a concept introduced by Zhou et al.(2010) that gives more 
importance to less known items. An item's self-information (𝐼) represents the chance of a random user 
observing an item (i). Self-information can be characterized by the following equation, where 𝑝(𝑖) 
represents the popularity of the item 𝑖: 

 

 𝐼) =	 log/(𝑝(𝑖)) (8) 

 

If we average the inverse of the self-information of all items in a recommendation list, we arrive at a 
formula of novelty (Kaminskas & Bridge, 2017): 

 

 𝑁𝑜𝑣𝑒𝑙𝑡𝑦(𝑅) =
1
|𝑅|

M− log/(𝑝(𝑖))
)∈&

 (9) 

 

Closely associated with the concept of novelty is serendipity. 
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2.4. SERENDIPITY 

Serendipity is concerned not only with an item's novelty but also with how surprising the item is. As 
Herlocker (2004) stated, all serendipitous recommendations are novel, yet not all novel 
recommendations are serendipitous. An example can be given using a music recommender to 
understand the difference better. If the system recommends a song from the user's favorite band that 
he has not yet listened to, that is a novel recommendation. Still, hardly a surprising one as, eventually, 
the user would come to know that song. However, if the system recommends a piece from an unknown 
band to the user and he likes the song, the recommendation is novel and serendipitous. Hereupon, 
Iaquinta (2008) realized that the lower the probability of an item being known by a user, the higher 
the chance of that item becoming a serendipitous recommendation. 

It is important to note that a serendipitous recommendation must be of an item relevant to the user 
and considered a pleasant surprise. Otherwise, the system would recommend items irrelevant to the 
user just for the sake of them being surprising, hurting the user experience and confidence in the 
system. Ge et al. (2010) ultimately defined serendipity as pleasant surprises with two essential 
characteristics: the item must be unknown and unexpected by the user, and the item has to be 
attractive to the user. 

Calculating serendipity is a challenging process, given the intricacy of its definition. In an offline context, 
it is complicated for a system to accurately measure the "level of surprise" or the utility an item has 
for a user. Considering that the core components of serendipity are surprise and utility, we must 
formulate unexpectedness and utility before formulating serendipity. 

 

2.4.1. Unexpectedness 

Unexpectedness is highly connected with surprise (Ge et al., 2010) and is defined as a divergence from 
expected recommendations. A user has certain expectations about what items are recommended to 
him, and all suggestions deviating from those expectations will be regarded as unexpected 
(Adamopoulos & Tuzhilin, 2014). Adamopoulos (2014) defined unexpectedness as the distance 
between an item and the set of expected items. However, if an item reaches a certain distance from 
the set, it might become irrelevant to the user due to its significant dissimilarity from the expected 
items. The set of expected items is commonly composed of the items in the user's profile and purchase 
history or frequently bought items. However, items with high similarity to those in the group of 
expected items can also be considered expected items. Adamopoulos presented the following formula, 
representing the distance between item 𝑖 and the set of expected items 𝐸" of user 𝑢: 

 

 𝑈𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠",) = 𝑑(𝑖; 𝐸") (10) 

 

Ge et al. (2010) suggest creating two systems. The first system, which he called the "primitive system" 
(𝑃𝑀), is built to target the highest accuracy possible, producing the most expected recommendations. 
The second system is the system being validated. In this case, the unexpectedness will be the number 
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of items in the system that are missing in the primitive system. The unexpectedness of the system can 
be given by: 

 

 𝑈𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠(𝑅) = 	𝑅	 − 	𝑃𝑀	 (11) 

 

Adamopoulos (2014) transformed this formula into the ratio of items in a recommendation list (𝑅") 
that don't belong to the set of expected items	(𝐸"): 

 

 𝑈𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠(𝑅") = 	
𝑅" 	− 	𝐸"	
|𝑅"|

 (12) 

 

However, a disadvantage exists in using a primitive system as the set of expected items. The 
unexpectedness might vary depending on the algorithm used to build the primitive system. 
Furthermore, due to the focus of the primitive system on the accuracy, most recommendations are of 
popular items, creating the assumption that unpopular items will be unexpected, which is not always 
true (Silveira et al., 2019).  

Kaminskas and Bridge (2014) measure unexpectedness through the probability of an item being rated. 
To do so, they calculated the point-wise mutual information (PMI) of two items being rated by the 
same user: 

 

𝑃𝑀𝐼(𝑖, 𝑗) = 	
log/

𝑝(𝑖, 𝑗)
𝑝(𝑖)𝑝(𝑗)	

− log/ 𝑝(𝑖, 𝑗)
 (13) 

 

Where 𝑝(𝑖) and 𝑝(𝑗) represent the individual probabilities of items 𝑖 and 𝑗 being rated, and 𝑝(𝑖, 𝑗) the 
probability of both items being rated by the same user. This metric ranges from -1 to 1, with -1 meaning 
the items are never rated together and 1 total co-occurrence between the items. If a user has item 𝑗 
in their profile and receives a recommendation of item 𝑖, higher values of PMI between the two items 
result in a lower level of surprise because that would mean those items are commonly consumed 
together. 

Kaminskas and Bridge (2014) then defined unexpectedness as the average PMI between the 
recommended items and the items in the user profile (𝑃"): 

 

 
𝑈𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠(𝑅") = 	

∑ ∑ 𝑃𝑀𝐼(𝑖, 𝑗)%∈0!)∈&!
|𝑃"|

 (14) 
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Serendipity and unexpectedness are often confused due to their similar definition. However, 
serendipity measures novel, useful and surprising items, whereas unexpectedness is only concerned 
with surprise. 

 

2.4.2. Utility 

Shani and Gunawardana (2011) defined utility as the value a particular recommendation provides to 
the system, user, or business owner. The more valuable a recommendation, the more useful it is. For 
a business owner, the value of a recommendation can be directly linked with the monetary gain that 
the recommendation provides. However, for the user, the most common way to measure utility is 
using the ratings of an item, assuming that items with higher ratings have more usefulness to the user 
than items with low ratings. 

Adamopoulos et al. (2014) defined a utility function in terms of the perceived quality and 
unexpectedness of an item: 

 

 𝑈𝑡𝑖𝑙𝑖𝑡𝑦",) =	𝑞" ∗ 	𝑟",) −	𝜆" ∗ |	𝛿",) − 𝛿"∗| (15) 

 

Where they assume that a user values the quality of an item by a constant 𝑞" and the quality of the 
item for the user is 𝑟",). In their work, they measure 𝑟",)  by using the predicted ratings given by their 
model. 𝜆" represents the assumed tolerance a user has for redundant recommendations. There is also 
a presumption of the ideal level of unexpectedness, given by 𝛿"∗ , which is compared with the actual 
unexpectedness 𝛿",)  of the item. One way to calculate the ideal level of unexpectedness for a user is 
by averaging the distance of the rated items to the ones on the set of expected items.  

Furthermore, an additional method to measure utility can be performed by tracking the item after the 
user consumes it. If a product is returned after purchase or a movie is not watched until the end, those 
might indicate a lack of utility to the user. 

 

2.4.3. Formulating Serendipity 

The difference between unexpectedness and serendipity is the necessity for serendipity to consider 
utility. Much like unexpectedness, a standard method to measure serendipity is by building a primitive 
recommender under the premise that the primitive system will recommend items easy to predict, and 
the serendipitous system will recommend items hard to predict or unanticipated items. 
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Get et al.(2010), and Adamopoulos et al.(2014) measure serendipity by a similar formula, only having 
terminology discrepancies (Ge et al. use 𝑃𝑀" and Adamopoulos et al. 𝐸"), with both procedures being 
an adaption from equation (12): 

 

 𝑆𝑒𝑟𝑒𝑛𝑑𝑖𝑝𝑖𝑡𝑦(𝑅") = 	M
|(𝑅" 	− 	𝑃𝑀") 	∩ 𝑈𝑡𝑖𝑙𝑖𝑡𝑦"|	

|𝑅"|"

 (16) 

 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦" can be obtained using the utility function in equation (15) or, as Ge et al. (2010) proposed, 
using a binary process returning 0 if not useful. This concept deviates from the serendipity notion 
introduced by Herlocker (Herlocker et al., 2004), where he believes a serendipitous item has to be 
novel. 

Zhang et al.(2012) measured serendipity through a clustering method. They built a music 
recommendation system where users were clustered according to their taste in musical artists. This 
enabled them to calculate the distances between an artist vector and the artists in a user profile. If an 
artist is outside a user's cluster of liked artists, that might mean that artist is a serendipitous 
recommendation. However, this concept is more related to unexpectedness rather than serendipity. 

 

2.5. FAIRNESS 

Our society is replete with algorithmic systems that help people and organizations make decisions and 
form opinions. However, several systems encapsulate various biases, some coming from the 
developers and some that the system creates according to given data (Chouldechova & Roth, 2020). 
Due to those biases, some minority groups can be affected, namely women (vs. men) and seniors (vs. 
youth), receiving weak or biased recommendations that make those minorities lose their trust in the 
system. Because fairness does not increase the monetary value or help create useful suggestions, 
sometimes even having the opposite effect of usefulness, it is not given as much attention in the 
recommender systems literature as other non-accuracy metrics (Bobadilla et al., 2020). A study 
conducted by Ferraro et al. (2021) concluded that gender fairness is one of the female artists' most 
significant concerns in a music recommender system since most systems do not give them the same 
exposure as male artists. The study analyzed 300.000 users and their music recommendations and 
concluded that songs from female artists only represented 25% of the songs recommended to users. 
The system made recommendations based on previously listened songs, amplifying the existing biases 
and reducing diversity.  

Pitoura et al. (2021) define fairness as the absence of discrimination in a system, i.e., a system devoid 
of bias that does not favor any group based on its inherent characteristics (Mehrabi et al., 2019). 
Unfairness is usually influenced by sensitive attributes, which generally include age, race, religion, 
gender, sexual orientation, etc. These sensitive attributes, also called protected attributes, describe 
the users and can be allocated to certain representative minorities. Hiding these attributes from the 
model might help prevent unfairness. However, if the other features in the model are somewhat 
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correlated with the protected attributes, the model will discover that connection and possibly maintain 
the bias (Yao & Huang, 2017), keeping being unfair. 

A well-known way of reducing unfairness is through demographic parity (Zemel & Swersky, 2013), 
where classes and attributes have equal proportions in the model. However, in recommendation 
systems, demographic parity is not always desired. For a recommendation system to be effective, it 
needs to study user preferences and behaviors. Behaviors that are most likely influenced by the 
gender, race, or age of the user (Chausson, 2010), forcing parity in these attributes would probably 
hurt the quality and usefulness of the recommendations. 

Yao et al. (2017) conceptualized three categories of unfairness: 

• Value unfairness – Occurs when one class of users consistently receives predictions contrary 
to their tastes just because they belong to that class. For example, male users receive 
recommendations for action movies even if they are not interested in them, while female users 
do not receive recommendations for action movies even if they are interested in such genres. 

• Absolute unfairness – Unlike value fairness, it does not consider the error's direction, just the 
error's distance. If recommendations for females and males have errors in the same 
proportion, there is no absolute unfairness. However, if female ratings are off by 1 point and 
males by 2 points, absolute unfairness is prominent. 

• Underestimation/overestimation unfairness happens when a type of user is missing 
recommendations (underestimation) or, conversely, when a user is overwhelmed with 
suggestions (overestimation). Varying amounts of either can cost one type of user more than 
the other. If a user needs to spend considerable time analyzing each recommendation, being 
overwhelmed with recommendations could hurt the experience. 
 

Pitoura et al. (2021) suggest using fairness-aware programming to control fairness. The 
programmers and developers of a system should, a priori, set their fairness goals and expectations, 
and the system should alert them in case of violation of those expectations. Additionally, they 
propose three methods to reach fairness. The first method happens in a pre-processing phase, 
transforming the data and ensuring no biases leak into the model. Secondly, creating new models 
or modifying existing ones so they output unbiased recommendations, called in-processing 
methods, where fairness-aware programming is included. Lastly, there are post-processing 
methods that aim to rearrange the final outputs of a model. However, this method interferes with 
the model's accuracy, considering that the algorithm was built to achieve the best results, and we 
would be changing those outputs. 

Unfairness is a highly mutable concept with different levels of importance according to the 
system's domain. When building a system, a developer should weigh the importance of each 
attribute and the impact that unfairness could have on the user experience. Fairness is imperative 
in a system that recommends candidates for a university program, as the system should not 
discriminate on sensitive attributes like gender and race. However, in a book recommendation 
system forcing gender fairness might produce negative results and hurt the user's confidence in 
the system.  
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3. BEYOND ACCURACY QUALITY 

All metrics in section 2 are considered beyond-accuracy metrics in the recommendation system 
literature because, as the name implies, they evaluate a system without considering the algorithmic 
precision or error.  

We propose using a summary measure that encapsulates the beyond-accuracy metrics and allows the 
validation of a system using a single value representative of its beyond-accuracy performance. This 
metric can be denominated as beyond-accuracy quality and is formulated in equation (17) in the 
section below.  

In the literature, there are several methods to optimize a recommender system for accuracy to 
recommend the most accurate items possible. By having a beyond-accuracy quality measure, we can 
rerank the recommendations of a system to retrieve the items that have the most significant influence 
on this quality metric. However, to optimize and rerank the recommendations of a system, the beyond-
accuracy quality measure must be adapted into two variations due to the reranking technique only 
working at an item level. The first variation will measure the beyond-accuracy quality of a single item, 
and the other will validate the overall beyond-accuracy quality of a system. An item does not have the 
same proprieties as a system, making specific metrics impossible to be calculated at an item level.  

In the forward sections, we will formulate the two variations of the beyond-accuracy quality, referred 
to as quality for simplicity. We will also provide a framework to optimize a system for quality by using 
a reranking approach (section 3.3). 

 

3.1. QUALITY MEASURES – ITEM QUALITY 

We propose the quality of an item 𝑖 to be represented by the geometric mean of the beyond-accuracy 
elements of that item: 

 

𝑖𝑡𝑒𝑚_𝑞𝑢𝑎𝑙𝑖𝑡𝑦(𝑖) = 

.𝑖_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑖) ∗ 𝑖_𝑛𝑜𝑣𝑒𝑙𝑡𝑦(𝑖) ∗ 𝑖_𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠(𝑖) ∗ 𝑖_𝑟𝑎𝑡𝑖𝑛𝑔(𝑖)!  
(17) 

 

The diversity, novelty, and unexpectedness are calculated for each item in a recommendation set, as 
well as the rating of that item. The 𝑖_𝑟𝑎𝑡𝑖𝑛𝑔(𝑖) is the predicted rating calculated by a model. Specific 
algorithms cannot predict ratings. In such cases, the 𝑖_𝑟𝑎𝑡𝑖𝑛𝑔(𝑖) is the average rating given by the users 
for that item. The assumption is that items with higher ratings will be considered to have more quality. 

Metrics like coverage and fairness are system-level metrics, which means they can only operate at a 
level where all recommendations are already made. One singular item does not have a coverage value; 
only the aggregation of all items can allow coverage measurement. Therefore, both those metrics are 
excluded in the computation of a single item’s quality. 
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Although each element can be weighted differently in different domains when measuring quality, all 
should be considered, and none should be zero. According to this definition, an item will have no 
quality when one element is zero. If the item has a diversity value of 0, meaning it is highly similar to 
other items in the user profile, it cannot be considered an item of quality.  

A final consideration about item_quality is that each user's quality is unique, and the same item might 
have different quality values depending on the user. To measure a system's overall quality, we propose 
the calculation of system_quality. 

 

3.2. QUALITY MEASURES – SYSTEM QUALITY 

We propose the following metric to evaluate the quality of a system: 

 

 𝑠𝑦𝑠𝑡𝑒𝑚_𝑞𝑢𝑎𝑙𝑖𝑡𝑦(𝑅) = 

.𝑠_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑅) ∗ 𝑠_𝑛𝑜𝑣𝑒𝑙𝑡𝑦(𝑅) ∗ 𝑠_𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠(𝑅) ∗ 𝑠_𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠(𝑅) ∗ 𝑠_𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑅)"  
(18) 

 

System_quality is the metric that most closely follows the concept of the beyond-accuracy quality of a 
system. The result of this metric will enable the ranking and comparison of the algorithms according 
to their performance in beyond-accuracy metrics, as higher values of diversity, novelty, 
unexpectedness, fairness, and coverage will correspond to a system with higher quality. 

The formulas of each metric included in these equations are illustrated in section 4.3.  

 

3.3. RERANKING APPROACH  

We propose a methodology that aims to generate recommendations with the highest beyond-accuracy 
quality by reranking the outputs of a given algorithm. This approach allows the usage of any 
recommendation algorithm, as this method only takes place in a post-modeling stage and only alters 
the final outputs of a model. 



17 
 

 

 

As standard practice, a model is optimized to achieve the highest accuracy possible. Therefore, the 
outputs of a recommendation algorithm would be the Top-N most accurate items, even if they are not 
the most adequate regarding the beyond-accuracy metrics. Those models select the top-N items with 
the highest predicted rating for a particular user. However, an item with a high predicted rating does 
not necessarily mean it is a good recommendation for that user. Another factor that should be 
considered when raking an item is the beyond-accuracy quality. 

We propose using each item's quality (equation 17) criterion for rearranging the model's outputs. A 
model suggests a certain number of candidate items to be recommended to a user, and the quality of 
those items is calculated. Depending on the values of quality, each item is rearranged, and the Top-N 
best items are retrieved. Using an illustrative example of a recommendation system aiming to 
recommend ten books to each user. If the algorithm is built to output the top 20 most accurate books, 
we could rearrange them according to their quality and retrieve the ten books with the highest value. 
Those ten books would be the ones recommended to the user. This method enables the 
recommendation of the best ten books, among the twenty most accurate, with the highest quality. 

Kaminskas and Bridge (2017)  also optimized the recommendations of a system by using a reranking 
technique. Their approach is reranking an item by greedily maximizing a metric using a function 
proposed by Smyth and Mclave (Smyth & McClave, 2001). However, their approach only allows the 
maximization of one beyond-accuracy metric, e.g., optimizing the system for diversity. Our approach 
aims to optimize and validate a system across several beyond-accuracy metrics, allowing for an 
assessment of the overall quality of that system. Kaminskas and Bridge's (Kaminskas & Bridge, 2017) 
technique should be applied when a system developer intends to improve the recommendations 
according to one specific metric. 

 

 Figure 1- Setps for the reranking technique. After retrieving the model 
outputs, they are reranked and the top-N items are recommended 
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4. EXPERIMENTAL SETUP 

 

4.1. DATASETS 

The Goodbooks-10K2 dataset, retrieved from Amazon's Goodreads platform, was utilized to study the 
relationships between the metrics and test the reranking approach. 

The dataset contains approximately ten thousand books and fifty-four thousand users that gave close 
to six million ratings, measured from 1 to 5. All users made at least two ratings, with the median 
number of ratings per user being eight. There is also information regarding each user's books on their 
"to_read" list.  

Each book is represented by eleven features, including genre, number of pages, author, and book 
description. An additional feature representative of the author's gender was created to enable the 
measurement of fairness, resulting in 2678 male and 1882 female authors.  

Furthermore, another feature was added, compressing the number of pages into four groups: 

• Group A - Less than 252 pages 
• Group B - Between 252 and 336 
• Group C - Between 336 and 422 
• Group D – More than 422 

 

Table 1 below lists the features available in each dataset table. 

Books Ratings To read 

book_id 
title 
author 
author_gender 
pages 
pages_group 
description 
genres 
release_year 
average_rating 
ratings_count 

user_id 
book_id 
rating 

user_id 
book_id 

Table 1 – GoodReads dataset features 

 

 

 
2 https://github.com/zygmuntz/goodbooks-10k 
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4.2. ALGORITHMS  

Four algorithms commonly found in the recommendation systems literature were used to perform this 
study. A content-based algorithm (CB) implemented using a vectorizer and cosine similarity (Salton & 
Buckley, 1987)  to measure the distance between the vectors. Each book is represented by a vector 
containg that book’s characteristcs (name, description, author, etc.), and the CB algorithm evaluates 
the similarity between the vectors of each book. Two k-nearest-neighbor(KNN) algorithms – a user-
based (KNN_UB) and an item-based (KNN_IB) (Desrosiers & Karypis, 2011). And an iterative algorithm 
- alternating least squares (ALS) (Y. Zhou et al., 2008). A grid-search technique was used on the ALS 
algorithm, achieving an RMSE of 0.811. No further accuracy optimization was performed on any 
algorithm. The purpose of this work is not to achieve the highest possible accuracy in 
recommendations but rather to study the behavior of the metrics and compare the system's quality. 

The KNN_IB and CB are two item-based algorithms, so they could only make suggestions specific to 
each book, resulting in each book instead of each user having a set of ten recommendations. To solve 
this issue, we looked at all books a user has read and retrieved the top 10 recommendations for each 
of those books given by the algorithms. Then, we count the number of times a book appears among 
all those sets, and the ten books with the highest frequencies are the ten books recommended to the 
user. 

Furthermore, all algorithms were reranked according to the methodology described in section 3.3, 
forward identified as CB_quality, KNN_IB_quality, KNN_UB_quality, and ALS_quality. 

 

4.3. PERFORMANCE METRICS 

In section 2, several metrics were introduced alongside their advantages and use cases. In this section, 
we will specify the metrics used in our experiment. 

Because utility and interest inherently require the developer to make significant assumptions about 
the user, we opted not to use metrics that need those elements. In an online validation setting, or in 
cases where a user specifies the usefulness of a particular item, metrics using utility or interest should 
be analyzed, as the assumptions made are minimal. However, in an offline validation setting, the 
evaluation of a system should be impartial and not allow many assumptions that can influence the 
results. Therefore, metrics like serendipity are not considered going forward.  

As mentioned above, the reranking approach will need to calculate an item's_quality (equation (17)), 
which requires slight variations on the beyond-accuracy metrics for them to make measurements at 
an item level. Therefore, when relevant, each metric will have two versions, one to measure at an item 
level and the other at a system level. 

On all metrics 𝑅" represents the set of recommendations for user 𝑢, and 𝑅 the total amount of 
recommendations in the system. 
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4.3.1. Coverage 

In the chosen dataset, all books have many reviews, and all users read and rated several books, making 
it unnecessary to calculate prediction coverage. We opted to compute the catalog coverage (equation 
(2)), as it is also the most appropriate when validating top-N lists.  

 

4.3.2. Diversity 

To measure the diversity value of an item, the average distance of that item with all other items in a 
user's recommendation list is calculated: 

 
𝑖𝑡𝑒𝑚_𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑖) = 	

∑ 𝑑%∈&!\{)} (𝑖, 𝑗)
𝑅"

 (20) 

 

The diversity metric proposed by Smyth and Mclave (2001)  was computed to measure diversity across 
the system: 

 
𝑠𝑦𝑠𝑡𝑒𝑚_𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑅) = 	

∑ 𝐼𝐿𝑆(𝑅")"∈$

𝑅
 (21) 

 

To calculate the similarity between books, each book was represented by a vector containing the 
following characteristics: author, average rating, the author's gender, page group, and the top 5 genres 
associated with the book. The Jaccard Similarity was chosen has the function to measure the item's 
distance. 

 

4.3.3. Fairness 

As previously mentioned in Section 2.5, fairness is a concept with a definition highly dependent on the 
domain and system objective. In this research, we evaluate fairness by comparing the number of 
recommended books written by a female author with the ones written by a male author. We can 
compute fairness with the equation below: 

  

 
𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠(𝑅) = 	1 − |

∑ 𝑚𝑎𝑙𝑒) − 𝑓𝑒𝑚𝑎𝑙𝑒))∈&

𝑅
| (22) 

 

Where R represents the total amount of recommendations, 𝑚𝑎𝑙𝑒)  defines the list of recommended 
male-written books and 𝑓𝑒𝑚𝑎𝑙𝑒)  the list of recommended female-written books. 

The output of this equation ranges between 0 and 1, with 1 representing complete fairness. In this 
case, it would mean that the number of recommended books written by male authors is the same as 
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the number of recommended books written by female authors. Complete unfairness is achieved if no 
male-written or female-written book is ever recommended. 

 

4.3.4. Novelty 

To measure an item's novelty, the inverse of that item's self-information is calculated: 

 

 𝑖_𝑛𝑜𝑣𝑒𝑙𝑡𝑦(𝑖) = − log/(𝑝(𝑖)) (23) 

 

Regarding each user value of novelty, two different metrics were computed.  

The first metric, inspired by equation (7), calculates the ratio of unknown items in the recommendation 
list. An assumption is made, and a book is considered unknown if it is not present in the user profile or 
in the set of "to read" books of the user:  

 

 
𝑁𝑜𝑣𝑒𝑙𝑡𝑦(𝑢)2)34!5 =	

∑ (1 − 𝐾𝑛𝑜𝑤𝑠(𝑢, 𝑖)))∈&!
|𝑅"|

 (24) 

   

The second metric is based on equation (9) and considers each book's self-information. Where 𝑝(𝑖) is 
obtained from the number of ratings a book has. A book with a higher number of ratings is considered 
to be more popular. 

 𝑁𝑜𝑣𝑒𝑙𝑡𝑦(𝑢)67-896)38: =
1
|𝑅"|

M − log/(𝑝(𝑖))
)∈&!

 (25) 

   

In both cases, the overall system novelty is given by the average novelty of all user recommendations, 
as presented below: 

 
𝑠_𝑛𝑜𝑣𝑒𝑙𝑡𝑦2)34!5/67-89)38:(𝑅) = 	

∑ 𝑁𝑜𝑣𝑒𝑙𝑡𝑦(𝑢)2)34!5/67-89)38:"∈$

|𝑅|
 (26) 

 

4.3.5. Unexpectedness 

The unexpectedness of an item is given by the maximum PMI value that item achieves in a user's 
recommendation set: 

 𝑖_𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠(𝑖) = 𝑚𝑎𝑥(	𝑃𝑀𝐼(𝑖, 𝑗))	,			𝑗 ∈ 𝑅"\{𝑖} (27) 
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To measure the system's overall unexpectedness, we first had to calculate the 𝑃𝑀𝐼(𝑅") of each user, 
as shown in equation (13). For each user, the 𝑃𝑀𝐼(𝑢) is estimated between all recommended items 
and all items in that user profile. Because the higher the 𝑃𝑀𝐼(𝑢) the lower the surprise, the maximum 
value of 𝑃𝑀𝐼(𝑢)	in each user is stored and is representative of that user. Therefore, we are assessing 
the lowest possible value of surprise each system is achieving.  

The PMI value of the system is the mean value of the 𝑃𝑀𝐼(𝑢) in all users, and unexpectedness will be 
the inverse of that: 

 

 
𝑠_𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠(𝑅) = 1 −	

∑ 𝑃𝑀𝐼(𝑅")"∈$

|𝑅|
 (28) 

   

4.3.6. Hit rate 

The hit rate, a measure proposed by Deshpande et al. (2004) and highly similar to the concept of recall, 
is considered an accuracy measure that is a good representative of the accuracy quality of a system.  

For this research, we will consider a "hit" when a book recommended to a user is also present in that 
user's "to read" set of books. The hit rate will be the number of users with hits compared to the total 
number of users. 

With 𝑈 as the total amount of users, the hit rate is computed as: 

 

 𝐻𝑖𝑡	𝑅𝑎𝑡𝑒(𝑅) = 	
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑢𝑠𝑒𝑟	𝑤𝑖𝑡ℎ	ℎ𝑖𝑡𝑠

𝑈
 

 

(29) 



23 
 

5. RESULTS AND DISCUSSION 

We performed two primary investigations. Firstly, we compared the results of the beyond-accuracy 
metrics displayed in section 4.3 across the different algorithms described in section 4.2. Then the 
results from the reranking approach were analyzed to understand if reranking the items would 
increase the quality of the recommendations. Furthermore, a comparison of the overall quality of the 
original and reranked algorithms is performed alongside the hit rate values of each algorithm. We will 
use the hit rate to understand the behavior between beyond-accuracy quality and accuracy quality. 

All models generated ten recommendations, resulting in 534 130 recommendations per model.  

Table 2 is representative of the recommendations distribution on each model and can be interpreted 
as follows (CB as an example): 

• In total, 2259 unique books were recommended 
• Each book was recommended to 236 users on average 
• 50% of the books were recommended at least 23 times 
• The most frequently recommended book was suggested to 12980 users 

 
 

Nº of 
recommended 
books 

Average nº of 
recommendations 

Median nº of 
recommendations 

Maximum 
recommendation 
frequency 

CB 2259 236 23 12980 

KNN_IB 3620 147 12 26027 

KNN_UB 8956 59 14 5798 

ALS 8020 66 9 13639 

Table 2 – Average, median, maximum and total number of recommendations per model 

 

The table below (table 3) represents the rating distributions of the recommended books of each model. 
It enables the assessment of the popularity bias in a model. It reads as follows (CB as an example): 

• On average, a recommended book was rated 130035 times 
• 50% of the books were rated at least 40523 times 
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Average nº of 
ratings 

Median nº of 
ratings 

CB 130035 40523 

KNN_IB 98660 34716 

KNN_UB 58585 23157 

ALS 60788 22500 

Table 3 – Average and median rating values per model 

 

The item-based algorithms (CB and KNN_IB) are the ones that have the lowest number of 
recommended books, with KNN_IB having the book with the highest recommendation frequency 
(table 2). As seen in table 3, item-based algorithms are also the ones recommending books with the 
highest ratings, in other words, more popular books. Joining both these phenomena, recommending 
fewer books and highly rated books, allows us to understand that item-based algorithms are more 
prone to popularity bias within this domain. Zhou et al.(2010) also achieved similar conclusions where 
content and item-based models create higher popularity bias. 

 

5.1. COMPARISON OF METRIC RESULTS 

Figure 2 shows the metrics results obtained for each model. 

 

Figure 2 - Comparison of metric results for each evaluated model 
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Because diversity is measuring similarity between the books in a set of recommendations by looking 
at features like the title and genres, it is understandable that item-based algorithms are also 
underperforming in this metric. In the Harry Potter example, it is not a very diverse set of 
recommendations if a user is receiving six recommendations of Harry Potter books. These results 
concord with the ones obtained by Kaminskas et al. (Kaminskas & Bridge, 2017), where their item-
based algorithms also achieved lower diversity. It is also observable that diversity has a high correlation 
with unexpectedness, and the more diverse an item, the higher the probability of that item being 
unexpected by the user. 

Regarding fairness, contrary to the previous metrics, the user-based algorithms, KNN_UB and ALS, 
underperform the item-based algorithms. It is essential to consider that the database has a higher 
number of male authors (59%) than female authors, achieving a base database fairness of 0.82. This 
does not necessarily mean that the user-based algorithms are intrinsically more biased towards one 
gender. These results are due to one of the features given to the item-based algorithms being the 
author_gender which makes those algorithms aware of the author’s gender. If a user has female-
written books on his profile, the probability of the recommended books containing female-written 
books is higher. The opposite happens in user-based algorithms. Because a bias already exists in the 
data, a user-based algorithm will only extrapolate that gap because it represents a user's behavior. 
This can be confirmed by observing that the item-based algorithms surpassed the database fairness 
value of 0.82 and reduced the bias. In contrast, the user-based algorithms failed to achieve the 
inherent database fairness, amplifying the bias effect.  

The ALS considerably outperformed the other models, providing the most novel and surprising 
recommendations. In both novelty metrics, the CB algorithm outperforms KNN_IB, almost equaling the 
KNN_UB, which may seem counterintuitive but can be explained by the intrinsic characteristics of the 
CB algorithm. CB has a high popularity bias and lower coverage, meaning a few popular books are 
being recommended with high frequency, with most books belonging to fictional and fantasy genres. 
Some readers might not usually read fictional books and tend to be more niche, so popular or fictional 
books can be scarce in their user profile and become novel when recommended. CB unexpectedness 
is lower, meaning the recommended items have a high general probability of being consumed, which, 
allied to the novelty value, further proves the system is suggesting popular books to readers that might 
not fit into those genres of books. Because KNN_IN is aware of what type of user reads a specific kind 
of book, it can produce more relatable recommendations at the expense of novelty. Our novelty results 
follow the work by Bellogín et al. (Belloǵin et al., 2013), where the user-based KNN also generated 
more novel recommendations than the item-based KNN.  

 

5.2. ENHANCING QUALITY 

All algorithms suggested twenty items to run the re-raking approach, and the best ten were selected 
after the reranking. The four algorithms were subject to the beyond-accuracy quality reranking 
approach and achieved the results displayed in table 4 below. The percentages inside the brackets 
represent the variation compared to before the reranking. 

 



26 
 

  CB_quality KNN_IB_quality KNN_UB_quality ALS_quality 

Coverage 0.287 (26%) 0.391 (7%) 0.944 (4%) 0.693 (-32%) 

Diversity 0.645 (13%) 0.730 (10%) 0.781 (7%) 0.857 (7%) 

Fairness 0.803 (-9%) 0.971 (-1%) 0.833 (0%) 0.81 (8%) 

Novelty_binary 0.767 (42%) 0.414 (48%) 0.752 (33%) 0.971 (41%) 

Novelty_self_info 0.562 (21%) 0.348 (4%) 0.524 (18%) 0.8 (24%) 

Unexpectedness 0.198 (64%) 0.199 (43%) 0.237 (55%) 0.355 (73%) 

Quality 0.439 (21%) 0.454 (12%) 0.598 (15%) 0.671 (14%) 

Table 4 – Metric and quality results for each reranked model.  

The percentages inside the brackets represent the variation compared to the value of that model before being 
optimized by the reranking. 

 

All reranked algorithms achieved a better quality value than before the reranking, with improvements 
across almost all metrics. The reranking approach significantly impacted unexpectedness and novelty 
across all models, producing more surprising recommendations of novel items. This means that the 
improvement in beyond-accuracy quality is mainly caused by the recommendations becoming more 
serendipitous, as per the definition given by Herlocker et al. (Herlocker et al., 2004).  

Fairness is the metric with the lowest variation after reranking because the reranking approach does 
not account for fairness in its formula (equation (22)). However, it is interesting to note that the item-
based algorithms decreased their fairness, and the user-based either maintained or improved it. The 
increase in unexpectedness and novelty can explain this. An item-based algorithm like CB tries to 
match the most similar books, considering the author’s gender. If the system increases the 
unexpectedness, it recommends books that are not usually read together. In other words, it suggests 
more dissimilar books (as the diversity also increased), and the author's gender is no longer a factor. 

Table 5 below represents the changes in popularity bias. As the quality increases, the average and the 
median number of ratings per recommended book decreases, meaning the systems become less 
popularity biased. The justification for this behavior is the increased diversity, novelty, and 
unexpectedness, as, after reranking, systems are more suited to suggest long-tail items. These long-tail 
items, by definition, have a lower number of ratings and can be perceived as novel or unexpected by 
most users. ALS_quality is the model with the highest quality and has the highest values across most 
metrics, especially novelty and unexpectedness. It is also the model recommending the less popular 
books, which allows the assumption that it is also the one suggesting the higher number of long-tail 
items. 
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Average nº of ratings Median nº of ratings 

CB_quality 117267 (-10%)  39925 (-1%) 

ALS_quality 47763 (-21%) 19555 (-13%) 

KNN_UB_quality 56754 (-3%) 22327 (-4%) 

KNN_IB_quality 97422 (-1%) 34390 (-1%) 

Table 5 - Average and median rating values per reranked model.  

The percentages inside the brackets represent the variation compared to the value of that model before being 
optimized by the reranking. 

 

The ALS and ALS_quality outperform the other models in most metrics and can be defined as the 
models with the highest quality. By looking at the results of table 6, both these models are the ones 
with the lowest hit rate. They could only "hit" 5% and 2%, respectively, of the books present in each 
user's" to_read" list. As perceived in most cases, a higher quality represents a lower hit rate. In other 
words, the quality and accuracy of a system are negatively correlated. This means that the ALS models 
are making recommendations of novel and unexpected books that might be of no interest to the users. 

It is also noticeable that the CB model was the only model that, after re-ranking, improved both the 
hit rate and the beyond-accuracy quality. By increasing diversity and coverage, the reranking approach 
removes some of the item similarity present in the CB model allowing for a vaster offer, indirectly 
increasing accuracy. 

The KNN_UB_quality is the most balanced model between both dimensions. It is the third-best model 
in beyond-accuracy quality and, coincidently, the third-best in hit rate values. In this case, the reranking 
approach improved the system's quality without heavily impacting its accuracy. 

As shown in previous works by Cremonesi et al. (Cremonesi et al., 2010), Jannach et al. (Jannach et al., 
2013), and Kaminskas et al.(Kaminskas & Bridge, 2017), the KNN algorithms are able to achieve higher 
values of hit rate ( in their works considered as recall) when validating the top-N recommendation list, 
which is also observable in our research. 
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Hit rate Quality 

ALS_quality 0.020 0.671 

ALS 0.050 0.613 

CB 0.118 0.365 

KNN_IB_quality 0.132 0.454 

CB_quality 0.132 0.439 

KNN_UB_quality 0.140 0.598 

KNN_UB 0.153 0.518 

KNN_IB 0.159 0.405 

Table 6 - Hit rate and beyond-accuracy quality results per evaluated model. 

 

Depending on the system's objective and the developer's goals, a decision must be made regarding 
which dimension is more important. In some cases, the developers might want to focus on providing 
the most diverse, fair, and novel recommendations. In this case, they should choose systems with a 
higher quality even if the accuracy will be lower. On the contrary, by choosing higher-accuracy systems, 
the developers and business owners must accept that they may compromise the system's quality.  

Chen and Pu (2010) performed an online study about the user's perceived usefulness of a system. They 
concluded that the users found more helpful systems focused on novelty and accuracy rather than 
diversity. Contrarily, Ekstrand et al. (2014) discovered that diversity provided more usefulness than 
novelty. The difference between these two studies is in the domains used. One author worked on an 
Amazon product recommender, and the other on a movie recommender. This further demonstrates 
that each metric's relevance depends on the domain chosen. 
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6. CONCLUSION 

As Herlocker et al. (2004) mentioned, making an effective and meaningful evaluation of a 
recommender system is challenging. This chapter will summarize our key research findings and expose 
their limitations and suggestions for future work. 

In this research, a survey of the state-of-the-art beyond-accuracy metrics was performed, namely on 
coverage, diversity, novelty, serendipity, utility, and fairness. For each, we exposed the relevant 
definitions and where their strengths lie. Each of these metrics measures a different aspect of a 
recommendation system that is not linked with accuracy. Coverage covers the number of items that 
are or can be recommended and the diversity of how different those items are from each other. 
Novelty and serendipity, although often confused, measure how novel (novelty) and how surprising, 
novel, and valuable (serendipity) a recommendation is. Utility, as the name implies, tries to understand 
how beneficial a recommendation is for a user. However, significant assumptions must be made to 
predict an item's utility without directly asking the user through an online survey or by adding a new 
feature in the system questioning users. Finally, fairness is an ever more relevant metric, measuring 
how biased a system is regarding a specific type of user or item. In certain domains, it is paramount 
that the recommendations are fair, especially if it is a domain where the gender or ethnicity of a user 
is an input feature. Furthermore, we proposed using a summary metric, called beyond-accuracy 
quality, that would enable the comparison of items and systems regarding their quality. This metric is 
then used on a suggested reranking approach to increase the beyond-accuracy performance of a 
system. 

An offline experimentation was performed to study the relationships between the beyond-accuracy 
metrics and to implement the beyond-accuracy quality reranking approach mentioned above. A 
comparison was made between all models, before and after the reranking, with the respective hit rates 
to understand the behaviors and potential impacts on accuracy.  Four algorithms were chosen for the 
experimentation. One content-based algorithm (CB), two memory-based algorithms (one item-based 
and one user-based) (KNN_IB and KNN_UB), and a matrix factorization algorithm (ALS). The reasoning 
behind using these algorithms is that they are very commonly used in the recommender system 
literature and represent different machine learning methods in recommendation systems modeling. 
The research was conducted in the domain of book sales, using a subset of Amazon's Goodreads 
dataset. As the dataset is not commonly found in the recommender system literature, we hope this 
research could provide a helpful reference regarding the beyond-accuracy performance in this domain. 
Each algorithm was modeled to retrieve the top 10 best items for each user as per that algorithm 
criterion, which for most algorithms, is the predicted rating for the item. 

We realized that, within the book domain, item-based algorithms tend to recommend fewer books 
that are amongst the most popular in terms of rating numbers. They were also the ones achieving 
higher levels of fairness, with fairness being regarded as the recommended proportion of male and 
female written books. The ALS algorithm was the one suggesting the most novel and unexpected items. 
Furthermore, the four algorithms were optimized for their beyond-accuracy quality. A slight change in 
the modeling was performed for the models to output twenty items instead of ten. All those twenty 
items were validated according to the item_quality metrics, and the best ten items were chosen. The 
reranking approach generally increased the beyond-accuracy metric values across all algorithms, 
especially their novelty and unexpectedness. All four achieved a higher beyond-accuracy quality and a 
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lower popularity bias than before the reranking. We believe this reranking approach, alongside the 
proposed beyond-accuracy quality, will help researchers and developers easily compare the quality of 
different algorithmic options and optimize their systems. By studying the beyond-accuracy 
performance of the models alongside their hit rate values, we realized that as the quality of the 
recommendations increases, the hit rate decreases. This helps demonstrating the negative correlation 
between accuracy and non-accuracy, as referenced in the literature.  

We believe the goal should not be creating a system with the highest value of neither dimension but a 
balanced system with minimal trade-offs between the dimensions. A system with very low accuracy 
will be no better than recommending random items, but a system with high accuracy will most likely 
only recommend obvious items and have no value to the users. Therefore, equilibrium is critical. The 
increase of beyond-accuracy metrics must be strategically done not to confuse the users and create 
distrust in the system. This research found that the KNN_UB model provides the most balanced 
recommendations within both dimensions. 

 

6.1. LIMITATIONS AND FUTURE WORK 

Our research is limited to only being deployed in an offline validation setting. This is due to the existing 
constraints on performing an online validation, namely the need for a dynamic database fed by a live 
recommendation system interacting with real users. However, for future work, we suggest testing the 
reranking approach and validation using the beyond-accuracy quality on a live system. It could be 
interesting to understand if the recommendations provided by this approach translate well in an online 
scenario and can provide users with a good experience with valuable recommendations. 

We only focused on four commonly used algorithms to perform our study, meaning we are bound to 
those algorithms' limitations. We incentivize testing on different types of algorithms, especially on 
deep learning models, and comparing the results with the ones present in this work. Furthermore, it 
could be interesting to test the beyond-accuracy quality reranking approach on other algorithmic 
models and observe if it can also improve the quality of recommendations. It is also worth studying if 
these results and the behaviors of the beyond-accuracy quality reranking approach translate well to 
other domains and systems. As stated before, the importance and behavior of a beyond-accuracy 
metric can be highly dependent on the system's domain. The reranking approach might need some 
adaptations to work appropriately in different domains. A book recommender and a music 
recommender behave differently, and the users have different needs. In the first, novelty and 
unexpectedness might be desired, while in the music recommender, users might prefer more familiar 
recommendations [Kapoor et al. 2015]. Furthermore, we believe more research should be done 
regarding the user perceptions of accuracy and non-accuracy metrics, specifically understanding which 
significantly impacts user satisfaction and provides a better experience using the system.  

A final limitation is regarding the temporal aspect of recommendations. In this research, we did not 
consider time as a dimension for analysis. However, user tastes and desires change over time, and a 
user might not like an author that was his favorite years ago. Research could be done regarding 
beyond-accuracy metrics that use time as a factor and try to understand the metric's influence as time 
advances. An item is not novel forever, so when validating a system, it is essential to note its ability to 
reshape recommendations as time progresses. 
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