
i

Master Degree Program in

Data Science and Advanced Analytics

PREDICTION OF HIGH-PERFORMANCE CONCRETE COMPRESSIVE

STRENGTH THROUGH A COMPARISON OF MACHINE LEARNING

TECHNIQUES

Miguel Santos Reis Mateus

Dissertation

 presented as partial requirement for obtaining the Master Degree Program in Data Science and Advanced Analytics

NOVA Information Management School

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

MDSAA

i

NOVA Information Management School

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

PREDICTION OF HIGH-PERFORMANCE CONCRETE COMPRESSIVE

STRENGTH THROUGH A COMPARISON OF MACHINE LEARNING

TECHNIQUES

by

Miguel Santos Reis Mateus

Dissertation presented as partial requirement for obtaining the Master’s degree in Advanced

Analytics, with a Specialization in Data Science

Supervisor: Leonardo Vanneschi

 November 2022

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading

to its elaboration. I further declare that I have fully acknowledge the Rules of Conduct and Code of

Honor from the NOVA Information Management School.

Lisbon, 29 November 2022

iii

ABSTRACT

High-performance concrete (HPC) is a highly complex composite material whose characteristics are

extremely difficult to model. One of those characteristics is the concrete compressive strength, a

nonlinear function of the same ingredients that compose HPC: cement, fly ash, blast furnace slag,

water, superplasticizer, age, and coarse and fine aggregates. Research has shown time and time again

that concrete strength is not determined just by the water-to-cement ratio, which was for years the

go to metric. In addition, traditional methods that attempt to model HPC, such as regression analysis,

do not provide sufficient prediction power due to nonlinear proprieties of the mixture. Therefore, this

study attempts to optimize the prediction and modeling of the compressive strength of HPC by

analyzing seven different machine learning (ML) algorithms: three regularization algorithms (Lasso,

Ridge and Elastic Net), three ensemble algorithms (Random Forest, Gradient Boost and AdaBoost), and

Artificial Neural Networks. All techniques were built and tested with a dataset composed of data from

17 different concrete strength test laboratories, under the same experimental conditions, which

enabled a fair comparison amongst them and between different previous studies in the field. Feature

importance analysis and outlier analysis were also performed, and all models were subject to a

Wilcoxon Signed-Ranks Test to ensure statistically significant results. The final results show that the

more complex ML algorithms provided greater accuracy than the regularization techniques, with

Gradient Boost being the superior model amongst them, providing more accurate predictions than the

sate-of-the-art. Better results were achieved using all variables and without removing outlier

observations.

KEYWORDS

Machine Learning; High-performance concrete; Compressive strength; Gradient Boost; Modeling

iv

INDEX

1. Introduction ... 1

2. Theoretical Background ... 3

2.1. Machine Learning.. 3

2.1.1. Supervised Learning ... 4

2.1.2. Regularization Algorithms .. 5

2.1.3. Ensemble Models ... 6

2.1.4. Artificial Neural Networks .. 11

3. Literature review ... 15

3.1. High-Performance Concrete .. 15

3.2. Related Work .. 15

4. Methodology ... 18

4.1. Tools ... 18

4.2. Design ... 18

4.3. Procedures .. 22

4.3.1. Model Validation .. 22

4.3.2. Data Standardization .. 22

4.3.3. Feature Importance .. 23

4.3.4. Model Exploration .. 24

4.3.5. Feature Exploration .. 25

4.3.6. Outlier Removal ... 27

4.3.7. Wilcoxon Signed-Ranks Test ... 27

5. Results and discussion ... 29

5.1. Identifying the best model .. 38

6. Conclusion ... 41

7. Limitations and recommendations for future works .. 44

8. References ... 45

v

LIST OF FIGURES

Figure 1 – Number of research articles containing “high-performance concrete” and “machine

learning” in their title and/ or keywords, published in ScienceDirect over the last ten

years. Data retrieved from ScienceDirect on the 23rd of November of 20221

Figure 2 – Relationship between AI, ML and Learning ...4

Figure 3 - Comparison of bagging and boosting ensembles. Adapted from: López, F. (2021,

January 18). Ensemble Learning: Bagging & Boosting. Medium.

https://towardsdatascience.com/ensemble-learning-bagging-boosting-3098079e5422 .7

Figure 4 - Comparison of a single DT and a RF. Adapted from: Silipo, R. (2019, October 8). From

a Single Decision Tree to a Random Forest. Medium.

https://towardsdatascience.com/from-a-single-decision-tree-to-a-random-forest-

b9523be65147 ..8

Figure 5 - Depiction of a DT with one root node and two leaves, also known as a stump.

Adapted from: Curry, R. (2022, January 2). AdaBoost: Explained! Medium.

https://medium.com/@curryrowan/adaboost-explained-92408a6713da.......................9

Figure 6 - Relationship between total error (x axis) and amount of say (y axis) in AdaBoost.

Adapted from: Curry, R. (2022, January 2). AdaBoost: Explained! Medium.

https://medium.com/@curryrowan/adaboost-explained-92408a6713da.....................10

Figure 7 - Comparison between a DT, a GBM model and a RF. Adapted from: Silipo, R. (2020,

March 19). Ensemble Models: Bagging & Boosting. Analytics Vidhya.

https://medium.com/analytics-vidhya/ensemble-models-bagging-boosting-

c33706db0b0b ..11

Figure 8 - General architecture of an ANN. Adapted from: What is a Neural Network? (n.d.).

TIBCO Software. Retrieved 16 November 2022, from https://www.tibco.com/reference-

center/what-is-a-neural-network ..12

Figure 9 - Sigmoid activation function. Adapted from: ANN (Artificial Neural Network) Models

in R: Code & Examples on How to Build Your NN. (n.d.). Retrieved 16 November 2022,

from https://www.datacamp.com/tutorial/neural-network-models-r13

Figure 10 - Tanh activation function. Adapted from: ANN (Artificial Neural Network) Models in

R: Code & Examples on How to Build Your NN. (n.d.). Retrieved 16 November 2022, from

https://www.datacamp.com/tutorial/neural-network-models-r13

Figure 11 - ReLU activation function. Adapted from: ANN (Artificial Neural Network) Models in

R: Code & Examples on How to Build Your NN. (n.d.). Retrieved 16 November 2022, from

https://www.datacamp.com/tutorial/neural-network-models-r13

vi

Figure 12 - Backpropagation algorithm. Adapted from: Gad, A. (2021, March 27). A

Comprehensive Guide to the Backpropagation Algorithm in Neural Networks. Neptune.Ai.

https://neptune.ai/blog/backpropagation-algorithm-in-neural-networks-guide14

Figure 13 - Correlation Matrix of all variables ...20

Figure 14 – Scatterplot and distributions of all variables ...21

Figure 15 – “Finding outliers using IQR”. Adapted from: Finding outliers using IQR | R. (n.d.).

Retrieved 17 November 2022, from

https://campus.datacamp.com/courses/introduction-to-statistics-in-r/summary-

statistics?ex=10 ..27

Figure 16- Boxplots of all the models trained with all variables...30

Figure 17 – Boxplots of the RMSE across the 30 runs ..32

Figure 18 - Feature Importance according to a DT, a RF and a Lasso Regression35

Figure 19 – Boxplots of all the original variables standardized with the MinMax scaler37

vii

LIST OF TABLES

Table 1 - Descriptive statistics of each variable ...19

Table 2 - Hyperparameter settings explored through grid search ...24

Table 3 - Model configurations used for feature exploration ..26

Table 4 - Results of the best models found in this study ...31

Table 5 - P-values returned by the Wilcoxon Signed Rank Test for the results achieved in the

training set ...33

Table 6 - P-values returned by the Wilcoxon Signed Rank Test for the results achieved in the

test set ..33

Table 7 - Feature Importance Results ...35

Table 8 - Results of the best models with feature exploration ..35

Table 9 – Results of the best models with and without outliers ..38

viii

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

ANN Artificial Neural Network

DT Decision Tree

EN Elastic Net

FFX Fast Function Extraction

GA Genetic Algorithm

GBM Gradient Boosting

GOT Genetic Operation Tree

GSGP Geometric Semantic Genetic Programming

HPC High-performance Concrete

IQR Interquartile Range

M3GP Multidimensional Multiclass Genetic Programming with Multidimensional Populations

ML Machine Learning

MLP Multi-Layer Perceptron

NAGP Nested Align Genetic Programming

OP Operation Tree

RF Random Forest

RMSE Root Mean Squared Error

ReLU Rectified Linear Unit

STD Standard Deviation

Tanh Hyperbolic Tangent

1

1. INTRODUCTION

HPC has been used in the construction industry for a number of years (Yeh & Lien, 2009), due to the

added benefits it has over traditional concrete. Besides the four main ingredients in conventional

concrete, water, fine and coarse aggregates and Portland cement, HPC incorporates in its composition

supplementary cementitious materials, such as fly ash and blast furnace slag, and chemical admixture,

such as superplasticizer (Yeh, 1998). With its more complex combination of ingredients, HPC has

increased durability against both different physical and chemical conditions, can reduce the time

needed to finalize the construction of a building, and allows for the reduction of other materials in the

construction of tall structures, such as steel reinforcements (Leung, 2001). HPC is therefore used in

structures subject to extreme conditions, such as highway bridges and pavements, marine and nuclear

structures, tunnels and precast units (Chou et al., 2011).

Being such a complex material, it is very difficult to model the behaviour of HPC and researchers have

been improving the techniques used for it for many years. Traditionally, statistical methods, such as

regression analysis, are used to model HPC. However, in some cases, regression analysis does not

provide the adequate prediction power needed, such as in the modelling of the compressive strength

of HPC (Yeh & Lien, 2009). With the rapid advancements in Artificial Intelligence (AI) and ML and their

adoption in our everyday lives, it is no surprise that various other ML techniques and algorithms have

been applied to HPC. Not exclusively in the modelling of its compressive strength, but also in the

forecasting of possible cracks in the final product, in optimizing the appropriate mixture of HPC and

optimizing the design of the final concrete structure in order to reduce costs and materials. The ever

growing popularity of applying ML to HPC in academia can be seen in Figure X, with the increase of

research papers published on the topic over the last ten years.

Figure 1 – Number of research articles containing “high-performance concrete” and “machine
learning” in their title and/ or keywords, published in ScienceDirect over the last ten years. Data

retrieved from ScienceDirect on the 23rd of November of 2022

2

The objective of this work is to continue the advancements made in the prediction of the compressive

strength of HPC in (Castelli et al., 2013; Muñoz et al., 2019; Vanneschi et al., 2018). All mentioned

studies lead to the discovery of the state-of-the-art for this specific task. A particular algorithm called

Fast Function Extraction, that outperformed the previous state-of-the-art and several other ML

algorithms. However, the authors and, to the best of our knowledge, no other researcher have

compared yet the algorithm to ensemble models. Something that we are particularly excited to

experiment. To achieve this we will, through the combination and comparison of various data mining

techniques, develop a ML algorithm with improved performance. Always using a comparable

experimental setting that allows for direct comparisons with the previously mentioned studies.

To develop such task, we will use the exact same data, provided by (Yeh, 1998) and divided in the exact

same 30 data training (70%) and testing (30%) partitions, to train, test and validate various algorithms.

This study will experiment with three different regularization algorithms: Lasso, Ridge and Elastic Net,

three ensemble algorithms: Random Forest, Gradient Boost and AdaBoost, and Artificial Neural

Networks. All models will be trained and tested independently 30 times, on different train and test

data partitions. For each 30 runs, we will analyse the Median Train and Test Root Mean Squared Error

(RMSE), the same metric used in (Castelli et al., 2013; Muñoz et al., 2019; Vanneschi et al., 2018), to

measure the prediction power. We will also analyse the Standard Deviation (STD) of both the train and

test partitions, to measure the consistency and robustness of each model. Feature Importance will also

be measured, through the combination of three distinct techniques: Decision Tree, Random Forest and

Lasso regression, and the best models will be retrained, without some of the less important variables,

to see if there are any noticeable differences. The best models will also be retrained without outliers,

identified through the Interquartile Range (IQR) method. A Wilcoxon test will be performed between

all models to verify whether the differences obtained by the various studied methods are statistically

significant. The results between all the models will finally be compared to see which one has the best

performance, this final model will then be compared with the state-of-the-art.

This study is organized as follows: Section 2 presents the theoretical background necessary to

understand this work, describing concepts such as AI, ML and all of the used algorithms; Section 3 gives

an overview of what is HPC and reviews the previous and related work done on the application of ML

to HPC; Section 4 presents the methodology used, as such, presents all of the procedures, techniques

and decisions made to ensure the correct use of the algorithms and interpretation of the results;

Section 5 presents the results and discussion; Section 6 presents the conclusions; and finally, Section

7 describes the limitations of this study and recommendations for future work.

3

2. THEORETICAL BACKGROUND

2.1. MACHINE LEARNING

AI is a concept that has been popular for decades, and many of us engage with the technology on a

routine basis. No longer the domain of only futurologists, AI technology is now a crucial part of many

organizations' business models and a crucial strategic component of plans for many international

sectors of business, medicine, and governments (Reel et al., 2021). Broadly defined by (Sabharwal &

Selman, 2011), AI comprises:

“Any technique that enables computers to mimic human behaviour and reproduce

or excel over human decision-making to solve complex tasks independently or

with minimal human intervention”

The impact of AI in today’s world economy is undeniable, with a market that was valued at USD$20.67

billions in 2018 and is projected to reach USD$202.57 billions by 2026, showing a Compound annual

growth rate of 33.1%. (Artificial Intelligence [AI] Market Growth, Trends | Forecast, 2029, n.d.). The

European Parliament decided to set up a special committee on AI in a digital age on 18 June 2020

(Texts Adopted - Setting up a Special Committee on Artificial Intelligence in a Digital Age, and Defining

Its Responsibilities, Numerical Strength and Term of Office - Thursday, 18 June 2020, n.d.) that works

on analysing the impact of AI in the most diverse fields, such as in Transportation, Financial Services,

Agriculture, Democracy, Manufacturing, Education, Labour Market, etc. (Publications | Home | AIDA |

Committees | European Parliament, n.d.)

ML is a subset of AI that studies how to take advantage of computers to simulate and improve human

learning activities, by making use of and identifying existing knowledge and continuously improving

the achievement of acquiring new knowledge (H. Wang et al., 2009). Learning as a general procedure

consists of acquiring new, or altering existing, behaviors, values, knowledge, skills or preferences

(Alzubi et al., 2018). Humans, usually, rely on experience to learn, while machines rely on data. ML, at

its core, enables computers to learn, think and act on their own, providing them with learning

capability, without explicitly programming it (Samuel, 1959). Compared to humans, computers or

machines are able to learn at much faster rates, accumulate a wider range of knowledge and act and

make faster decisions.

Considering the presented issue and the data at hand, usually we can have three types of ML:

Reinforcement learning, Unsupervised learning and Supervised learning (Janiesch et al., 2021),

shown in Figure 2.

4

Figure 2 – Relationship between AI, ML and Learning

Reinforcement learning is learning through interaction with an environment by taking different

actions and experiencing many failures and successes while trying to maximize the received rewards

(Hammoudeh, 2018). The agent is not told which action to take. Reinforcement learning is similar to

natural learning processes where a teacher or a supervisor is not available and learning process evolves

with trial and error, different from supervised learning, in which an agent needs to be told what the

correct action is for every position it encounters (Sabharwal & Selman, 2011).

Unsupervised learning (or knowledge discovery) uses unlabelled, unclassified, and categorized

training data. The main goal of unsupervised learning is to discover hidden and interesting patterns in

unlabelled data. Common algorithms used in unsupervised learning include clustering, anomaly

detection, neural networks, and approaches for learning latent variable models (El Bouchefry & de

Souza, 2020).

In the following chapter, we will be analysing the supervised learning algorithms, the type of

algorithms used during this research, as well as the different models used to run the experiments.

2.1.1. Supervised Learning

Supervised Learning is a type of ML, where in order to train different models and algorithms, these are

supplied with training data containing both the current state of each observation, the different

variables, and its label, the correct desired outcome, also known as “ground truth”. Both the input and

the output of each variable is known. During the training phase of the ML algorithm, it learns to

respond more accurately by comparing its output with the desired and correct one (Alzubi et al., 2018).

Tasks of this nature can be further split into two categories, classification tasks where the output labels

are discrete, and regression tasks where the output labels are continuous.

5

2.1.2. Regularization Algorithms

Regularization is any supplementary technique that aims at making the model generalize better, i.e.

produce better results on the test set (Kukačka et al., 2017). Regularization is one of the key elements

of ML, (Heaton, 2017), granting good generalization to unknown data even when trained on a small

training set or using a shoddy optimization method.

Simply put, this technique shrinks the coefficients and reduces the computational cost by simplifying

a complex model in order to reduce the risk of overfitting. In this paper, we will also use regularization

algorithms to assess feature importance of our data. The regularization algorithms used in this study

were the following: Ridge Regression, Lasso (Least Absolute Shrinkage and Selection Operator)

Regression and Elastic-Net Regression.

Lasso

Similar to a linear regression, Lasso’s main objective is to fit a line that best describes the data, by

minimizing the error between the predicted values and the true output values. According to (S. Wang

et al., 2018) and originally presented by (Tibshirani, 1996), Lasso regression can also be described as

an innovative variable selection method for regression by minimizing the residual sum of squares,

subject to the sum of the absolute value of the coefficients being less than a constant.

Lasso includes a penalty term, referred to as the L1 regularization. This penalty term has the ability to

completely exclude some variables from the model, by making their coefficient equal to zero. L1

regularization enforces the L1-norm of the fitted weight coefficients to be low. It is targeted to the

independent variables that have little influence or contribution in the output variable. Lasso can

therefore train the parameters of some features with small functions to zero and obtain sparse

solutions, achieving some dimensionality reduction while training the model (R. Wang et al., 2021).

Lasso utilizes shrinkage, as such, data values shrink towards a middle value, for example the mean.

Simple, sparse models are encouraged by this approach, meaning models with fewer parameters, and

so it is often used when models exhibit significant levels of multicollinearity or when it is needed or

preferred to automate some steps in the model selection process, such as variable selection and

parameter elimination.

One of the main advantages of Lasso over the linear regression is the increased robustness against

overfitting, due to the reduction of features in the model. The cost function of Lasso is shown in

Formula (1).

𝐽(𝜃) = 𝐽0 + 𝜆 ∑ |𝜃𝑗|

𝑛

𝑗=1

(1)

6

Ridge

Ridge regression is very similar to Lasso. Instead of the L1 regularization it utilizes the L2 regularization,

which also induces penalties on the coefficients. It was introduced in 1970 by Hoerl and Kennard as a

technique to address multicollinearity, when one or more independent variables can be linearly

predicted from other variables, in the field of Linear Modeling.

This technique helps mitigate overfitting by making the weights of the higher order term close to zero

(R. Wang et al., 2021; Yao et al., 2021). The irrelevant features coefficients never get equal to zero, as

such, Ridge regression is not able to remove entirely some variables from the model, just greatly

reduce the impact they have on the final output. Ridge is often used when the data suffers from

multicollinearity, is linearly dependent and the polynomial or linear regression does not fit well to the

data, requiring some regularization (R. Wang et al., 2021). The cost function of Ridge is found in

Formula (2).

𝐽(𝜃) = 𝐽0 + 𝜆 ∑ 𝜃𝑗
2

𝑛

𝑗=1

(2)

Elastic Net

When Lasso and Ridge do not give appropriate results, Elastic Net (EN) is commonly the following

regularization algorithm to try. It is used when to many features sparse to zero and Ridge

regularization is not regularized, or the regression coefficient attenuation is slow (R. Wang et al.,

2021).

EN incorporates both the L1 regularization found in Lasso and the L2 regularization found in Ridge, as

shown in Formula (3).

𝐽(𝜃) = 𝐽0 + 𝛾𝜆 ∑|𝜃𝑗| +
1 − 𝑟

2

𝑛

𝑗=1

𝜆 ∑ 𝜃𝑗
2

𝑛

𝑗=1

(3)

2.1.3. Ensemble Models

Ensemble models are a type of ML technique that combines different, usually weak, classifiers or

algorithms in order to improve the prediction capabilities and overall performance of the final model

(Han et al., 2022). Ensembles help in mitigating the bias, variance and noise frequently found in

independent algorithms, enabling the training and use of overall better models.

There are two main types of ensemble models: Bagging and Boosting. Bagging, also known as

Bootstrap Aggregating, first and foremost has the advantage of mitigating model variance and bringing

7

diversity to the final algorithm (Flach, 2012). For each independent learner used in the bagging

ensemble, we take a sample of the training data with replacement and equal size (bootstrap samples),

giving every observation the same probability of being chosen. We train every model with the

respective sample, and so they will be trained with a different combination of observations and

independently of each other, allowing for parallel training (training every model at the same time).

When we want to make a prediction, every model makes one and their output is combined into a final

output value. Usually, a majority vote is used in classification problems and in the case of regression,

a weighted or normal average is used (Aggarwal, 2015). It is more common to use weak learners, such

as Decision Trees (DT), for the base models in bagging ensembles, but virtually every ML algorithm can

be used. Traditionally, in both bagging and boosting, all of the base learners used have the same

algorithm.

Boosting has a similar approach to the aforementioned technique but differs in some respects. The

base estimators are not made independently, but sequentially in an adaptive manner (Aggarwal,

2015). The base premise being that each model learns from the mistakes of the previous one, allowing

for an improvement in the final prediction as more models are added. In this manner, it is not possible

to train the individual learners in boosting ensembles in a parallel fashion, since during the training of

an individual model, we need to have the previous one already trained. The way in which the different

samples for each base learner are selected is also different and can be considered more sophisticated.

Each sample is selected in a way that gives more prominence to samples that were misclassified by

previous learners (Bühlmann, 2012). This technique gives an initial weight to each training sample and

after an individual learner has finished training, these weights are modified. The weights of the samples

that had wrong predictions is increased and the weight of the ones with correct predictions is

decreased, in order to emphasize the harder observations. In this way the new classifiers compensate

for the errors of the previous ones and correct the bias of the model in these specific observations

(Aggarwal, 2015), hopefully increasing the accuracy of the final algorithm. Like the bagging approach,

boosting is also usually done with weak learners that have high bias (Aggarwal, 2015).

The differences between the parallel nature of bagging and the sequential nature of boosting can be

visually analyzed in Figure 3.

Figure 3 - Comparison of bagging and boosting ensembles. Adapted from: López, F. (2021, January
18). Ensemble Learning: Bagging & Boosting. Medium. https://towardsdatascience.com/ensemble-

learning-bagging-boosting-3098079e5422

8

Random Forest

Random Forests (RF) are a type of ensemble, used in both classification and regression, that differs

from both traditional bagging and boosting, however it is quite similar to bagging differing only in some

key respects. RF’s work by combining different DT’s, in an independent and parallel fashion, like

bagging, in order to create a better and more robust final model (Breiman, 2001). It is an extension or

a more complex version of a regression or classification tree allowing for a faster and more flexible

way of extracting high-dimensional data (Ziegler & König, 2014).

This algorithm has a good performance when confronted with many variables but not so many

observations, but it has also shown good results with datasets with different characteristics. Differing

from traditional bagging, when selecting the random data samples for each DT, instead of using all of

the features in each sample, RF’s also select them randomly. So every DT is trained with a random

combination of observations and features, ensuring an even lower correlation between the different

trees (Han et al., 2022). Like the other bagging algorithms, RF’s allow for parallel training as each

individual tree can be trained independently from the others.

Some of the other advantages RF‘s bring are their natural mitigation of overfitting, due to combining

the output of many individual learners, their robustness, accuracy, and the fact that it handless high-

dimensional data well (Han et al., 2022).

Being used in both classification and regression, the final output is the combination of the outputs of

the base learners, once again, usually the majority vote for a classification problem and the average

for regression.

A visual representation of the differences between a DT and a RF is shown in Figure 4.

Figure 4 - Comparison of a single DT and a RF. Adapted from: Silipo, R. (2019, October 8). From a

Single Decision Tree to a Random Forest. Medium. https://towardsdatascience.com/from-a-single-

decision-tree-to-a-random-forest-b9523be65147

9

AdaBoost

AdaBoost, first proposed in (Freund & Schapire, 1997), is the first and one of the most well-known

boosting algorithms and it can be used for both classification and regression (Schapire, 2013). It uses

DT’s as the base learners. As explained before in the boosting section, it associates each training

sample with a weight that is updated at each iteration, depending on the prediction of the previous

iteration (Aggarwal, 2015; Han et al., 2022). As such, observations that were misclassified are given

larger weights in successive iterations. The weights can change either by direct modification of the

training models, or by biased bootstrap sampling, where we give an observation that was previously

wrongly classified a higher probability of being selected for the sample of the next learner. This

approach intentionally increases the bias of the model for the “global” training data, but decreases the

bias in the “local” areas of the data that are deemed the most difficult to predict (Aggarwal, 2015).

Traditionally, the DT’s used in AdaBoost are comprised of just one root node and, usually two, leaf

nodes, as such, they are referred to as “stumps”, which can be seen in Figure 5.

Figure 5 - Depiction of a DT with one root node and two leaves, also known as a stump. Adapted
from: Curry, R. (2022, January 2). AdaBoost: Explained! Medium.

https://medium.com/@curryrowan/adaboost-explained-92408a6713da

Not all stumps in the final AdaBoost model have the same weight in the final prediction. Like RF’s, the

final output of a test observation is the combination of the different outputs of the base learners.

However, in a RF every DT has the same weight in the vote, for classification, or in the average, for

regression. In AdaBoost the “amount of say” of each stump in the final prediction is inversely

proportional to the sum of the weights associated with the incorrectly classified samples (Total Error)

produced by that stump (Freund & Schapire, 1997). This relationship between the total error and the

amount of say can be seen in Figure 6.

10

Figure 6 - Relationship between total error (x axis) and amount of say (y axis) in AdaBoost. Adapted
from: Curry, R. (2022, January 2). AdaBoost: Explained! Medium.

https://medium.com/@curryrowan/adaboost-explained-92408a6713da

This creates an interesting characteristic of AdaBoost, if a stump performs just like random guessing,

or flipping a coin, then it has zero say in the final prediction and, in the case of binary classification, if

a stump performs much worse than random guessing, than, in practice, its final classification is flipped.

Gradient Boosting

Gradient Boosting (GBM), as the name suggests is another ensemble algorithm that belongs to the

boosting family and follows its characteristics. GBM models were originally developed for

classifications problems, with the same core concept of other similar algorithms, iteratively combining

weak learners, usually DT’s, into a stronger model with increased prediction accuracy (Touzani et al.,

2018). Gradient Boosting was then extended for regression problems with the combination of boosting

and the concept of loss functions (J. Friedman et al., 2000; J. H. Friedman, 2001). GBM models,

iteratively add weak learners that try to compensate for the inaccuracies of the previous learner. In

the case of regression problems, at each step in the training process, a new tree is added that best

reduces the loss function (mean squared error), as such, Gradient Boosting can be seen as a numerical

optimization algorithm that minimizes the loss function (Touzani et al., 2018).

The first weak learner in a GBM model is fitted on the training data as usual, however, unlike other

algorithms, such as AdaBoost, the next learners to be added are fitted on the residuals of the previous

one. By fitting the DT’s to the residuals of the previous ones, the final model improves its capacity to

predict the harder datapoints (Natekin & Knoll, 2013). Another difference from AdaBoost is that in

GBM we usually do not create stumps, but instead choose DT’s with a higher depth.

When the GBM model is trained and we want to make a prediction on a new sample, unlike RF’s and

AdaBoost where the final output is a combination of the outputs of the different weak learners, each

11

DT output functions as the input for the next tree, in an iterative fashion, as such, the final prediction

of the model is the output of the last tree in the sequence.

A comparison between a DT, a GBM model and a RF can be seen in Figure 7.

Figure 7 - Comparison between a DT, a GBM model and a RF. Adapted from: Silipo, R. (2020, March
19). Ensemble Models: Bagging & Boosting. Analytics Vidhya. https://medium.com/analytics-

vidhya/ensemble-models-bagging-boosting-c33706db0b0b

2.1.4. Artificial Neural Networks

According to (Liu et al., 2021), Artificial Neural Networks (ANN) are one of the most popular ML models

found in literature due to their outstanding performance with the ever growing data, ability to

approximate complex nonlinear relations, and ease of use with the various python open-source

libraries available. They are complex models that can be used for both regression and classification. As

the name suggests, ANN’s are heavily inspired by the way the human brain works and try to mimic it,

more specifically, they try to artificially replicate the way our brain learns and makes decisions. The

first mention of neural networks in literature dates back to 1943, in (McCulloch & Pitts, 1943), but

research in understanding neural interactions dates even the previous century.

Nowadays, there are innumerous architectures of ANN’s, each one trying to fill a specific niche or fulfill

a specific task in ML. As an example, Convolutional Neural Networks are used in computer vision (Bhatt

et al., 2021), Long Short-Term Memory Networks are used in speech recognition tasks (Graves et al.,

2013) and Radial Basis Networks can be used in power restoration systems (Sadeghkhani et al., 2012).

Due to the characteristics of this study and the task at hand, the neural network architecture that was

chosen was a Multi-Layer Perceptron (MLP). As such that will be the one that detailed in the following

paragraphs, and in this document Neural Network, ANN and MLP are all terms that will be used

interchangeably.

The study of MLP’s started in 1962, when Rosenblatt developed the Single-Layer Perceptron, the

simplest form of a neural network. After this algorithm was extended to be able to support multiple

layers another major breakthrough in science occurred in 1975, where the backpropagation concept

was introduced by Werbos. These are the two main core elements in an ANN.

12

The principal unit or processing element in an MLP is the neuron, which represents and is inspired by

the neuron in our biological brain. An MLP consists of various neurons, also known as nodes, which are

distributed in several layers. The general architecture of an ANN can be described as an input layer,

with as many neurons as there are variables, one or more hidden layers with as many neurons in each

as the user decides, and an output layer, with the same number of neurons as the number of output

variables (Aggarwal, 2015). This general architecture can be seen in Figure 8.

Figure 8 - General architecture of an ANN. Adapted from: What is a Neural Network? (n.d.). TIBCO
Software. Retrieved 16 November 2022, from https://www.tibco.com/reference-center/what-is-a-

neural-network

Each node in one layer is connected to every node in the following layer, as such, once the user

specifies the number of hidden layers and the number of neurons in each layer, the topology of a MLP

is automatically determined. Every node has a weight associated to it and functions in a similar fashion

(Guresen & Kayakutlu, 2011). Each neuron takes the sum-product of input (the original data for the

input layer or the output of the previous layer for the hidden layers) and weight for the specific input,

often in addition to this a bias constant is added to give more flexibility to the model to adapt and fit

to new data. After, an activation function is applied to this sum-product. The activation function is a

mathematical equation that standardizes the final value into a specific range of values, before sending

the output of the neuron to the next layer. The activation function also adds non-linearity to the

network, one of the main advantages of ANN, which bypasses some of the restrictions of linear

functions and allows for the mapping of complex and non-linear problems. There are several activation

functions that can be used, but the most common are: Sigmoid, Hyperbolic Tangent (Tanh) and

Rectified Linear Unit (ReLU).

The Sigmoid activation function, also known as the Logistic function, compresses the output values

into an interval ranging from 0 to 1. It is widely used in the node of the output layer for binary

classification problems.

13

Figure 9 - Sigmoid activation function. Adapted from: ANN (Artificial Neural Network) Models in R:
Code & Examples on How to Build Your NN. (n.d.). Retrieved 16 November 2022, from

https://www.datacamp.com/tutorial/neural-network-models-r

The Tanh function transforms each value into the interval ranging from -1 to 1. It is most commonly

used in classification problems with more than two classes.

Figure 10 - Tanh activation function. Adapted from: ANN (Artificial Neural Network) Models in R:
Code & Examples on How to Build Your NN. (n.d.). Retrieved 16 November 2022, from

https://www.datacamp.com/tutorial/neural-network-models-r

The ReLU function simply turns every negative value into 0. It is the most used activation function

due to the added increase in speed it brings in the training of a network, especially when considering

very large ANN’s.

Figure 11 - ReLU activation function. Adapted from: ANN (Artificial Neural Network) Models in R:
Code & Examples on How to Build Your NN. (n.d.). Retrieved 16 November 2022, from

https://www.datacamp.com/tutorial/neural-network-models-r

14

As mentioned previously, all nodes in a network are connected to the neurons in the following layer,

as such the weights associated to each neuron directly influence the networks final prediction and

performance. During the training process of a network the weights are adjusted, usually trough

backpropagation (Aggarwal, 2015). Backpropagation is comprised of two main phases: the forward

phase and the backward phase. In the first phase the inputs of a training observation are fed into the

network, resulting in a cascade of computations across the layers. In the end, the final output of the

network is compared to the real output of the observation, to see if the prediction was correct or not.

In the backward phase the weights of each node are updated, by estimating the error of each nodes’

output in the previous layers from errors in the later layers.

Figure 12 - Backpropagation algorithm. Adapted from: Gad, A. (2021, March 27). A Comprehensive
Guide to the Backpropagation Algorithm in Neural Networks. Neptune.Ai.

https://neptune.ai/blog/backpropagation-algorithm-in-neural-networks-guide

15

3. LITERATURE REVIEW

3.1. HIGH-PERFORMANCE CONCRETE

HPC incorporates in its composition other materials, such as fly ash and blast furnace slag, and

chemical admixture, such as superplasticizer (Yeh, 1998), in addition to the four basic ingredients in

conventional concrete, Portland cement, fine and coarse aggregates and water. As such, HPC may be

defined as concrete with much greater strength and durability than those obtained through normal

means (Leung, 2001). Due to the added components used to produce HPC and the need for more strict

quality-control in its production, the unit cost of producing such a material can exceed in 30% to 100%

when compared with the cost of producing normal concrete. However, its wide usage, among other

factors, comes from the fact that, when used in the construction of tall buildings or other structures of

substantial size it comes out as more economical due to the reduction of steel reinforcements used

(Leung, 2001). HPC is also widely used due to its increased durability against different types of physical

and chemical attacks.

HPC is not a term that specifies one single type of concrete, nor does it have a specific niche use. As

the name suggests, any concrete that is specifically produced to improve the performance of

conventional concrete in a specific area may be called HPC. It can improve the durability of the

structure, its resistance to environmental influences or significantly reduce the construction time of a

building without compromising long-term serviceability (Jianxia, 2012). As such, a single unique

definition of HPC does not exist.

3.2. RELATED WORK

HPC has been the subject matter of scientific studies for many years. Researchers have studied

different ways of predicting its compressive strength, optimizing the mixtures of different components

to enhance the final concrete product, forecasting the likelihood of cracks appearing in the concrete

and optimizing the design of different concrete structures in order to reduce costs during production.

Being such a complex material, it is very difficult to model the behaviour of HPC. For many years, the

Abrams’ water-to-cement ratio (w/c) pronouncement of 1918 had been described as the single most

significant advancement in the history of concrete technology (Yeh, 1998). It implies a direct inverse

proportionality between the strength of concrete and the w/c ratio. In broad terms, it implies that as

the w/c ratio increases, the concrete strength decreases, on the other hand as the w/c ratio decreases,

concrete strength increases. As such, an assumption is made such that as long as the w/c ratios of

various but comparable concrete mixtures are the same, their respective concrete strength will be the

same, regardless of the differences in composition (Oluokun, 1994). The w/c ratio law has been the

topic of much debate and discussion, when it was proposed it was practically unknown to use fly ash

and other materials as replacements for part of the cement. As such their effects were not considered

when developing this law. It also suggests that the quality of the cement paste is the only factor

controlling the strength of comparable concrete, paying no attention to the paste quantity. However,

some studies on the matter have shown otherwise.

16

(Popovics, 1990) showed, through analysis of experimental data, that the strength of the concrete with

the higher cement content is lower between two concrete mixtures with the same w/c ratio. Several

other studies have also shown that the w/c ratio is not the only factor in determining concrete

strength, but that other ingredients also play a major role. Practically speaking, experimental data have

shown the acceptability of this rule, within wide limits, but some deviations have been reported. The

empirical equations currently being used as the standard for estimating compressive strength were

tested on concrete mixtures that did not contain supplementary cementitious materials. Therefore,

their applicability in concrete mixtures containing supplementary cementitious materials is dubious.

The importance of the study of the relationship between different mixtures of HPC and its compressive

strength, and the need for reliable and accurate techniques to model such relationship remains a

relevant topic and has been addressed by authors (Vanneschi et al., 2018).

(Yeh, 1998) was one of the first studies to test the use of ANN’s to predict the compressive strength of

HPC, using data collected for that purpose. That same data would later on be used in numerous other

studies including (Castelli et al., 2013; Muñoz et al., 2019; Vanneschi et al., 2018). The use of ANN’s

provided satisfactory results and the study further concluded that they provided better results than

models based on regression analysis. (Akkurt et al., 2003) used, what they referred to as, a Genetic

Algorithm – Artificial Neural Network to predict the strength of cement mortar, with plant data

collected for half a year, with chemical and physical properties of cement. In this paper, the Genetic

Algorithm (GA) was used to split the data between training and testing in a balanced manner, so that

both sets had the same average strength values, ensuring robust modelling, and the ANN was used to

provide the actual final prediction, yielding once again, satisfactory and promising results. As

previously stated, academia is not only concerned with predicting the strength of concrete. (Hadi,

2003) used ANN’s to reduce the amount of resources, time and cost of designing concrete structures,

specifically concrete beams. The final model produced superior results to those achieved by

conventional methods and reduced the overall time required for implementation. In (Fairbairn et al.,

2004), GA’s were used to optimize the composition and cost of mass concrete structures. When the

final procedure was applied to optimize the hypothetical construction of a small concrete dam,

promising results were achieved, indicating substantial cost reductions.

(Yeh & Lien, 2009) introduced Genetic Operation Tree (GOT) – a novel knowledge discovery method –

in the concrete academia to predict the compressive strength of HPC. GOT is, as the name indicates, a

combination of Operation Trees (OT) and GA, where the OT is the architecture that represents an

explicit formula and the GA optimizes such formula, to fit the respective experimental data. GOT

outperformed nonlinear regressions, however, ANN models still produced better results. The authors

argued that although not having the best results, GOT had the advantage of producing interpretable

formulas, in contrast with the black box nature of ANN’s, which provides a great advantage in practical

applications. Two years later, (Chou et al., 2011) produced a study comparing five different data mining

techniques predicting the compressive strength of HPC. Unlike previous studies, ANN’s didn’t produce

the best results. Multiple Additive Regression Trees were superior to the other tested methods in all

aspects, training time, prediction accuracy and aversion to overfitting. That same year, (Atici, 2011)

compared the performance of multiple regression analysis models and ANN’s in predicting

compressive strength. Following the trend, once again it was pointed out that regression analysis has

the advantage of interpretability, but ANN’s produce better results in this particular task.

17

The following year, (Alexandridis et al., 2012) tackled the problem in a slightly different manner,

particularly in the way data are usually collected. To record the compressive strength of an

observation, the concrete is cured for a particular amount of time, after which compressive load is

applied in a gradually increasing manner, until the observation falls apart, that being its compressive

strength. This method has the downside of raw materials in the creation of the required datasets.

Several non-destructive methods to measure compressive strength have been proposed however. The

authors presented a new method of measuring and predicting compressive strength, by studying weak

electric signals of observations that are under mechanical stress. The study showed, using a neural

network, that it is possible to successfully predict the compressive strength of concrete without having

to destroy any observations.

In (Castelli et al., 2013), a new system was proposed, Geometric Semantic Genetic Programming

(GSGP), based on geometric semantic genetic operators for Genetic Programming, to predict the

compressive strength of HPC. This system was compared not only with standard Genetic Programming

but also with several other usual ML methods, outperforming them all. The authors further improved

this work in (Vanneschi et al., 2018). Here, another novel system was proposed and tested on the same

task, Nested Align Genetic Programming (NAGP). Like GSGP, NAGP takes into consideration semantic

awareness in the Genetic Programming evolutionary process, however, it also exploits a new promising

concept of alignment in the error space. Instead of evolving a single expression, like GSGP, NAGP

evolves a set of expressions. The results showed that it improved the ones of GSGP in two main ways,

firstly it produced much better results, secondly, it generates much smaller predictive models, those

being more interpretable and readable than the ones of GSGP. NAGP also outperformed several typical

ML algorithms. The authors argue that, at the time of release of the study, NAGP became the new

state-of-the-art for HPC prediction, with computational intelligence. This system however was never

compared with ensemble models.

The following year, a study extending Multidimensional Multiclass Genetic Programming with

Multidimensional Populations (M3GP), a wrapper approach for supervised classification, to symbolic

regression problems was published. In (Muñoz et al., 2019), the new proposed M3GP algorithm was

compared with other genetic programming inspired algorithms in several real world problems and it

showed very promising results. One of them, and the one we are going to focus on, was the prediction

of compressive strength of HPC. On this particular task and using the exact same data we are using in

our study, Fast Function Extraction (FFX) algorithm provided the best results, particularly on the test

partition of the 30 runs performed. FFX achieved a Median Training RMSE of 5.333 and a Median Test

RMSE of 5.9557, providing better results than even NAGP. Although the comparison of results across

different studies, using different data, or even different partitions of the same data, is a sensitive

matter, we believe that, with NAGP cementing itself as the state-of-the-art for HPC prediction and FFX

providing better results using the exact same data and experimental setting, the previously presented

results are the best ones found yet on this problem. As such, we will compare our results with these

ones in order to determine the success of the models developed in this study.

18

4. METHODOLOGY

4.1. TOOLS

All of the analysis was done using Jupyter Notebooks on the Anaconda Navigator, a Python distribution,

using Python 3.9.12. To build and test all the models used in this project the chosen Python library was

Scikit-learn, a free software ML library featuring various tools for the development of ML projects. To

perform the Wilcoxon Signed-Rank Test we used SciPy, another free and open-source Python library

for scientific and technical computing. Four other free libraries were used, Pandas and NumPy, to

perform all of the necessary data transformations and analysis and Matplotlib and Seaborn to perform

all of the necessary data visualizations.

4.2. DESIGN

The data used in this project contains 1030 observations of HPC. Each observation is characterized by

9 features, 1 dependent variable (Concrete Compressive Strength) and the following 8 independent

variables:

1. Cement (kg/m3) – binding material used in building and civil engineering

2. Fly ash (kg/m3) – “residue of coal combustion collected by electrostatic or cyclone

separator” (Temuujin et al., 2019)

3. Blast furnace slag (kg/m3) – “by-product obtained in the manufacture of pig iron in the

blast furnace” (Pal et al., 2003)

4. Water (kg/m3)

5. Superplasticizer (kg/m3) – chemical compound that reduces the amount of water

needed to produce concrete

6. Coarse aggregate (kg/m3) – irregular and granular materials such as sand, gravel or

crushed stone

7. Fine aggregate (kg/m3) – similar to coarse aggregate, but smaller in size

8. Age of testing (days)

As explained in (Yeh, 1998), 17 different sources were used to collect these data, with the

determination that the mixture of concrete containing cement plus, fly ash, blast furnace and

superplasticizer were a reasonably representative group of all the major parameters influencing the

strength of HPC, presenting all of the information needed to evaluate and predict such strength. Table

1 shows some descriptive statistics regarding each variable.

19

Table 1 - Descriptive statistics of each variable

Variable Count Mean STD Min Max

Cement 1030 281.66 104.507 102 540

Blast Furnace
Slag

1030 73.895 86.279 0 359.4

Fly Ash 1030 54.187 63.996 0 200.1

Water 1030 181.566 21.356 121.75 247

Superplasticizer 1030 6.203 5.973 0 32.2

Coarse
Aggregate

1030 972.919 77.754 801 1145

Fine Aggregate 1030 773.579 80.175 594 992.6

Age of Testing 1030 45.662 63.170 1 365

Concrete
Compressive

Strength

1030 35.818 16.706 2.331 82.599

As seen in Figure 13 and following the widely used correlation coefficient interpretation, most

variables are not correlated. “Seven pairs” of variables have a low correlation, those pairs being

Cement and Fly ash, Cement and Concrete compressive strength, Blast furnace slag and Fly ash, Fly

ash and Water, Water and Fine aggregate, Superplasticizer and Concrete compressive strength, Age of

testing and Concrete compressive strength. Two variables show a moderate correlation coefficient,

Water and Superplasticizer, with a coefficient of -0.657. The authors believe that this value is nowhere

high enough to justify immediately removing one of these variables due to redundant information.

20

Figure 13 - Correlation Matrix of all variables

Analyzing the scatterplots shown in Figure 14 we can have a better view of the lack of high correlations

between any of the variables. Specifically having a closer look of the plots showing the dependent

variable we can see that no independent variable, by itself, has the ability to sufficiently predict

Concrete Compressive Strength.

21

Figure 14 – Scatterplot and distributions of all variables

Analyzing the distributions of the variables shown in Figure 14 we can see that Water, Coarse

aggregate, Fine Aggregate and Concrete Compressive Strength show a fairly normal distribution, while

the other variables do not. Blast Furnace Slag, Fly Ash, Superplasticizer and Age of Testing show

particularly high spikes in the lowest values of their distributions, indicating low variances in the data.

22

4.3. PROCEDURES

4.3.1. Model Validation

To ensure the proper validation and comparison of each tested model, 30 independent runs were

performed with each configuration of a model. For each run, a new dataset partition was used

containing 70% of the data for training, selected at random with uniform distribution, and the

remaining 30% for testing. These were the exact same partitions used in the studies that yielded the

best results, (Vanneschi et al., 2018) and (Muñoz et al., 2019), ensuring direct comparisons between

the results shown in this study and those papers.

For each 30 independent runs of a model configuration, the Median RMSE and STD of the RMSE of

both the training and testing partitions of the data were analysed.

𝑅𝑀𝑆𝐸 = √∑
(�̂�𝑖 − 𝑦𝑖)2

𝑛

𝑛

𝑖=1

(4)

𝑆𝐷 = √
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1

(𝑛 − 1)

(5)

Specifically, the Median RMSE was chosen instead of the Average RMSE due to two main reasons.

Firstly, because it is more consistent when outlier results are present and secondly because, as stated

before as very important for this study, allows a direct comparison with the results found in (Vanneschi

et al., 2018) and (Muñoz et al., 2019) that also used Median RMSE. The STD of the RMSE was taken

into account to study the variability of the results for each independent run, in other words, the

robustness of each model.

4.3.2. Data Standardization

In this project, every time data needed to be standardized, Min Max standardization was used,

shown in Formula (6). Min Max was preferred over the Standard Scalar, Formula (7), as not all the

variables follow a normal distribution.

𝑥′ =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)

(6)

23

𝑧 =
𝑥 − 𝜇

𝛿

(7)

Standardization of the data was done in different parts of the project for a variety of reasons. During

the Feature Importance, standardization was performed on the original 1030 observations prior to

fitting a Lasso regression, not only to avoid collinearity but also to ensure that the final coefficients for

each variable remain in the same scale and therefore allow for a direct comparison in magnitude.

During the Model Exploration, standardization of the data was used in the models that directly require

it to function properly: Lasso, Ridge and EN regressions, for the same reasons explained prior for the

Lasso regression, and also on ANN’s. Although producing valid results without it, due to the random

initialization into values of small magnitudes (very close to zero) of its parameters and the small

adjustments made during the training process, they can produce a faster and more optimized training

process with standardization of the data. During the Model Exploration phase, standardization was

performed by, in every independent run of the algorithm, standardizing the training partition of the

data and then the testing partition using the same formula, meaning standardizing the testing partition

using the minimum and maximum value in the training one. This process has to be followed to ensure

that the scaling of each training partition in different runs is independent from each other and to

ensure that the testing partition of the data has the scale of the training partition of the same run.

During this phase only the independent variables were standardized, to ensure that the final Training

and Testing Median RMSE was of the same scale and allowed for a direct comparison with the other

models that did not require such standardization of the data.

4.3.3. Feature Importance

In ML sometimes it is only not only useful to build and study an algorithm capable of providing correct

predictions, but is also interesting to estimate the influence that each variable has on the final

prediction (Hooker et al., 2019). By understanding which are the most important features in a model

we can improve their prediction accuracy, decrease the time needed for training, isolate or remove

undesirable behaviors and achieve more robust predictions. Therefore, Feature Importance refers to

any method or technique whose final objective is to attribute a score of importance to each

independent variable.

Feature importance analysis was done using three different techniques on the original 1030 data

observations. Firstly, we checked the feature importance of each variable when used inside a simple

DT algorithm and a RF algorithm, both using all of the default parameters set in the

DecisionTreeRegressor and RandomForestRegressor objects of the sklearn package. Here the feature

importance of each variable is measured by the Gini importance, meaning by the normalized total

reduction of the criterion brought by that feature. Lastly, the feature importance of each variable was

tested with the help of a Lasso regression with all the default parameters of the Lasso object of the

sklearn package, except for the alpha. The alpha used was found by means of a grid search, through

the minimization of the following function:

24

(1 / (2 ∗ n_samples)) ∗ ||y – Xw||^2_2 + α ∗ ||w||_1

(8)

Here the importance of each variable was measured by the magnitude of its coefficient in the final

regression and all of the input variables were previously standardized through Min Max

Standardization, since the scales of the variables are not all the same, meaning without this step it

would be impossible to associate a smaller coefficient directly pointing to a less important variable.

Figure 18 shows the feature importance of each variable measured by each of these techniques. As we

can see by analysing it, not all variables seem to have the same impact on predicting the strength of

concrete and, across the different feature importance techniques used, there is some homogeneity in

regard to which variables are most important.

4.3.4. Model Exploration

To optimize all the models a grid search, where every combination of a set of parameters in a model

is tested, of various hyperparameters was performed for each model, with the objective of minimizing

the Median RMSE of the test partitions of the different runs. Initially using the data without any

alterations, except for standardization when needed. The models tested in this project were: RF’s,

AdaBoosts, GBM’s, Lasso Regression, Ridge Regression, EN Regression and ANN’s. Over 10.500

different models were tested. For each model type, the hyperparameter settings that were tested can

be seen in Table 2:

Table 2 - Hyperparameter settings explored through grid search

Model Parameter Name Values Tested

RF number of estimators [20,25,50,100,150,200,
250,300,350,500,1000]

 criterion [Squared Error, Absolute
Error, Poisson]

 maximum depth of a tree [None,5,7,9,10,11,15,20]

 number of features to consider
when choosing a split

[All, Square Root]

 minimum number of samples to
split

[2,10,25,65,105,145,185,
225]

 minimum number of samples in
a leaf

[1,5,10,25,50,100]

GBM number of estimators [20,40,50,60,80,100,150,
200]

 learning rate [1,0.1,0.01,0.001,0.0001]

 maximum depth [2,3,4,6,8,10,12,14]

25

 minimum number of samples to
split

[4,10,15,25,50]

AdaBoost base estimator [DT (max depth = 1), DT
(max depth = 2), DT (max

depth = 5)]

 number of estimators [10,50,150,500,1000,
15000,2000,2500,3000,
3500,4000,4500,4500]

 learning rate [1,0.1,0.01,0.001,0.0001]

ANN hidden layer configuration [(1,),(2,),(3,),(4,),(5,),(6,),
(7,),(8,),(25,)

(50,),(100,),(50,10),(100,
50),(150,50),(100,100)]

 activation function [Identity, Logistic, Tanh,
Relu]

 solver for weight optimization [lbfgs, adam]

 alpha [0.00001,0.0001,0.001,
0.01,0.1]

Lasso alpha [0.95,0.9,0.8,0.7,0.6,0.4,
0.3,0.2,0.05]

Ridge alpha [0.95,0.9,0.8,0.7,0.6,0.4,
0.3,0.2,0.05]

EN alpha [0.95,0.9,0.8,0.7,0.6,0.4,
0.3,0.2,0.05]

 l1_ratio [0.95,0.9,0.8,0.7,0.6,0.4,
0.3,0.2,0.05]

All other hyperparameters were kept with their respective default sklearn settings. The reader can

notice that some “model families” had more extensive grid searches than others. This is because the

hyperparameters tested were changed through the development of the project. As the first grid

searches were analyzed, more and more hyperparameters were experimented, especially on the

models that gave the best results, to see if these could be improved. As such, not all possible

combinations of the hyperparameters presented on Table 2 were tested.

4.3.5. Feature Exploration

After a very extensive grid search for every model with all the variables was complete, we started

looking at the possibility of improving the results by removing some of the variables. Due to the time

constraints of this project and the computational costs of testing every single model configuration

again with less variables, we opted to select a few of the best models, but perform a more extensive

26

analysis of the results. The three best configurations, taking into account Median Test RMSE, of all of

the models were chosen.

Table 3 - Model configurations used for feature exploration

Model Parameter Name Configuration
1

Configuration
2

Configuration
3

RF number of estimators 200 250 300

 criterion Squared Error Squared Error Squared Error

 maximum depth of a
tree

None None None

 number of features to
consider when
choosing a split

All All All

 minimum number of
samples to split

2 2 2

 minimum number of
samples in a leaf

1 1 1

GBM number of estimators 200 150 200

 learning rate 0.1 0.1 0.1

 maximum depth 14 14 12

 minimum number of
samples to split

50 50 50

AdaBoost base estimator DT with a
maximum
depth of 5

DT with a
maximum
depth of 5

DT with a
maximum
depth of 5

 number of estimators 4500 5000 500

 learning rate 0.01 0.01 0.1

ANN hidden layer
configuration

(100,) (100,) (100,)

 activation function tanh logistic tanh

 solver for weight
optimization

lbfgs lbfgs lbfgs

 alpha 0.0001 0.1 0.1

Lasso alpha 0.05 0.1 0.2

Ridge alpha 0.05 0.1 0.2

EN alpha 0.05 0.05 0.1

 l1_ratio 0.95 0.9 0.95

27

Again, to optimize the process of finding the best possible combination of variables given the

computational resources available for the project, instead of testing every possible combination of

independent variables, the models were tested using the top 2 variables with the highest importance

ranking, the top 4 variables and the top 6 variables.

4.3.6. Outlier Removal

The removal of outliers often allows for a faster optimization of the algorithms and provides better

results, as such we were keen on seeing the effects of it in this project. Due to the relatively small

number of observations we had to work with, we were however worried that, if many outliers were

identified in the data, removing them might eliminate from the analysis to many observations and

compromise the robustness of the models. To avoid any personal bias in the identification of what is

and isn’t an outlier, boxplots were used to detect them, instead of a visual interpretation of the

distributions or scatterplots of each variable. The IQR method of identifying outliers is described in

Figure 15.

Figure 15 – “Finding outliers using IQR”. Adapted from: Finding outliers using IQR | R. (n.d.).
Retrieved 17 November 2022, from https://campus.datacamp.com/courses/introduction-to-

statistics-in-r/summary-statistics?ex=10

To produce the boxplots and the respective value thresholds all original 1030 observations were used.

Due to computational constraints regarding the time needed to train the models, instead of testing all

the model configurations present in this project, the same ensemble models and ANN’s used in the

Feature Exploration phase were tested with all 8 independent variables, due to them providing the

best results. To provide robust and consistent results and to see how the model is able to correctly

predict in the presence of outlier observations, outliers were only removed in the training partition of

each of the 30 runs.

4.3.7. Wilcoxon Signed-Ranks Test

To check whether the differences between two models are real and not random, a two-tailed test with

95% of confidence was used. The non-parametric Wilcoxon Signed-Ranks Test was chosen. Other

options exist, such as the widely used t-test, however, the t-test assumes that the data follows a normal

28

distribution which we cannot know “apriori” and is more volatile when in the presence of outliers,

therefore according to (Demšar, 2006) it should be used with caution as it is usually “conceptually

inappropriate and statistically unsafe”.

When using the Wilcoxon Signed-Ranks Test between two models we are trying to reject the null-

hypothesis that both algorithms perform equally well and therefore their differences are statistically

significant. As such, the hypothesis are:

𝐻0: 𝐴 = 𝐵 𝑣𝑠 𝐻1: 𝐴 ≠ 𝐵

To see if model A and B perform equally well, we take the Test Root Mean Squared of model A in each

of the 30 runs and perform the Wilcoxon Signed-Ranks Test against the Test RMSE of the 30 runs of

model B. An alpha of 0.05 was always used as such, if the p-value of the test is smaller than 0.05 than

we can reject the null hypothesis.

The reader will notice in the results section that some p-values reported by the test are the same

amongst different pairs of models. This could mean that there was some error in our computations or

that we were in the presence of a very rare occurrence. Where some p-values repeat themselves,

which, although very unlikely, is not theoretically impossible for non-parametric tests. To be sure that

this was indeed a rare occurrence and not a mistake, we ran all of the tests again with a different

Wilcoxon implementation and we also performed tests using the Mann-Whitney U test and the

Kruskal-Wallis test, other non-parametric tests similar to Wilcoxon. All tests gave similar results with

the same behaviour, as such we are confident that this was no mistake, and we are in fact dealing with

a very rare occurrence.

29

5. RESULTS AND DISCUSSION

Grid Search Results

Figure 16 shows the Median Train and Test RMSE, across 30 runs, of all the models trained with all

variables, in the form of boxplots divided by type of model. Looking at the boxplot of RF’s we can see

that the results vary a lot depending on its configuration. The best RF’s achieved Median Train and Test

RMSE’s close to the 2.5 mark, however more than 50% of the RF’s built achieved values over 10.

Achieving very good results using RF’s was also something that was not common, as the best model

results, using the boxplot method for identifying outliers, are flagged as “outliers”. The second best

results achieved in this study were achieved by a RF.

GBM models show the second widest spread results, out of all the models tested, showing that their

performance with this data is very dependent on their configuration. They present Median Train and

Test Results spreading across a wide range of values, but no “outlier” results were found, showing,

overall, some consistency in improvements in the results when the parameters were changed and no

huge spikes in performance. Although some of the worst results were achieved by a GBM model, the

best results in this study were achieved with one.

AdaBoost models show a similar behaviour to GBM, just on a smaller scale. They also show some

variety in their results, but the interval of Median Train and Test RMSE’s is smaller, with the best

models achieving values of just over 5 and the worst just under 15, for the test partition of the data.

ANN’s show an interesting behaviour. Their boxplot presents overall a larger interval of results than

AdaBoost models, but that increase is only seen in the higher part of the results achieved by ANN’s,

specifically the worst 25% of models. Whereas the best 75% achieve similar results to AdaBoost, albeit

overall slightly worst, as we can see the median of results achieved by AdaBoost models is lower than

the one of ANN’s, both for train and test. But the best ANN’s achieved better results than the best

AdaBoost models. The worst results achieved in this study were with some ANN configurations.

When compared with the other model types, few Lasso Ridge and EN configurations were trained.

Both Lasso and EN regressions show very consistent results across the different configurations, having

boxplots with small intervals, although never achieving better results than 10 for the Median Train and

Test RMSE. All Ridge regressions, no matter the change in parameters, showed practically identical

results, between 10 and 11 for both the train and test Median RMSE.

30

Figure 16- Boxplots of all the models trained with all variables

All the results for the best models, when considering Median Test RMSE, can be seen in Table 4. They

were achieved following these specific configurations:

▪ RF – number of estimators: 200, criterion: Squared Error, maximum depth of a tree:

None, number of features to consider when choosing a split: All, minimum number of

samples to split: 2, minimum number of samples in a leaf: 1

▪ AdaBoost – base estimator: DT with a maximum depth of 5, number of estimators: 4500,

learning rate: 0.01

▪ GBM – number of estimators: 200, learning rate: 0.1, maximum depth: 14, minimum

number of samples to split: 50

▪ ANN – hidden layer configuration: (100,), activation function: tanh, solver for weight

optimization: ‘lbfgs’, alpha: 0.0001

31

▪ Lasso – alpha: 0.05

▪ Ridge – alpha: 0.05

▪ EN – alpha: 0.05, l1_ratio: 0.95

There is quite a difference between the results found when using regressions and when using more

“sophisticated” models, as pointed out in previous studies (Atici, 2011; Chou et al., 2011; Yeh, 1998).

All the regressions achieved Median RMSE’s above 10, while the other models all achieved results

below 5.5. However, both Lasso, Ridge and the EN models showed much smaller differences between

the train and test results, when compared with the other models. All models, as expected in most ML

models, present smaller Median RMSE’s in the train partitions than in the test, one of which, the GBM

model, has a Median Test RMSE that is more than double its train counterpart. Meaning we must be

very careful and analyse with some detail whether we are or not in the presence of overfitting, which

will be further talked about in the section of this study: Identifying the Best Model. All models present

small Train and Test STD’s across the 30 training runs, whose boxplots can be seen in Figure 17. The

GBM model presented the best results found, with a Median Train RMSE of 1.17 and a Median Test

RMSE of 2.656. Discarding GBM models (there were more than 10 other GBM configurations that

achieved, although slightly worse to the best configuration, better results than the next best model),

the best RF models follows with the best results. Achieving a Median Train RMSE of 2.044 and a Median

Test RMSE of 3.31. When comparing the best RF with the best GBM, the RF, although showing worst

Median RMSE’s, presents better STD’s across the 30 runs for both the train and test partitions.

AdaBoost achieved the worst Median Train and Test RMSE results out of the more “sophisticated

models”, with values of 4.638 and 5.205 respectively. The ANN achieved similar results to the RF,

although slightly worst, with a Median Test RMSE of 3.579, however it was also the model that

presented the highest STD’s both for the 30 training partitions and for the test ones. Meaning, out of

these models, it was the less consistent across the 30 training runs, particularly on the training partition

where it was the only model presenting a STD higher than 0.4. Lasso, Ridge and EN show practically no

differences in results between themselves, across all metrics, with the Ridge Regression coming slightly

on top, between these three models, with a Median Train RMSE and a Median Test RMSE of 10.292

and 10.370 respectively.

Discarding the regressions, all models show already better results than the state-of-the-art, which is,

once again, the FFX algorithm, which achieved a Train and Test Median RMSE of 5.333 and 5.9557

respectively, with the same data and experimental setting.

Table 4 - Results of the best models found in this study

Model Median
Train
RMSE

Median
Test

RMSE

Train STD Test STD

RF 2.044 3.310 0.128 0.330

GBM 1.170 2.656 0.258 0.381

AdaBoost 4.638 5.205 0.159 0.281

32

ANN 1.877 3.579 0.414 0.383

Lasso 10.360 10.426 0.161 0.340

Ridge 10.292 10.370 0.163 0.353

EN 10.485 10.596 0.156 0.331

Figure 17 – Boxplots of the RMSE across the 30 runs

Table 5 reports the p-values returned by the Wilcoxon Signed Rank Test, with respect to the results

achieved in the training partition of the results, for the seven models presented previously. Results

reported in italic represent instances where the null hypothesis cannot be rejected, considering an 𝛼 =

0.05, i.e. results that are not statistically significant. Given these results, the RF model gives

comparable results to the ANN.

33

Table 5 - P-values returned by the Wilcoxon Signed Rank Test for the results achieved in the training
set

Model RF GBM AdaBoost ANN Lasso Ridge EN

RF - 1.73E-06 1.73E-06 9.42E-
01

1.73E-
06

1.73E-
06

1.73E-
06

GBM - 1.73E-06 1.73E-
06

1.73E-
06

1.73E-
06

1.73E-
06

AdaBoost - 1.73E-
06

1.73E-
06

1.73E-
06

1.73E-
06

ANN - 1.73E-
06

1.73E-
06

1.73E-
06

Lasso - 1.73E-
06

1.73E-
06

Ridge - 1.73E-
06

EN -

Table 6 reports the p-values returned by the Wilcoxon Signed Rank Test, with respect to the results

achieved in the testing partition of the results, for the seven models presented previously. By analysing

the p-value we can see that the null hypothesis is always rejected, as such, when the time comes to

select a final model, we can safely name one of these models as outperforming the other six in a

statistically significant way.

Table 6 - P-values returned by the Wilcoxon Signed Rank Test for the results achieved in the test set

Model RF GBM AdaBoost ANN Lasso Ridge EN

RF - 1.73E-06 1.73E-06 8.92E-
05

1.73E-
06

1,73E-
06

1.73E-
06

GBM - 1.73E-06 1.73E-
06

1.73E-
06

1.73E-
06

1.73E-
06

AdaBoost - 1.73E-
06

1.73E-
06

1.73E-
06

1.73E-
06

ANN - 1.73E-
06

1.73E-
06

1.73E-
06

Lasso - 1.74E-
04

1.92E-
06

Ridge - 2.35E-
06

EN -

34

Feature Exploration

To combine the methods used for feature importance and be able to rank all of the independent

variables, we assigned a score of one to eight to every variable for each of the used methods, where

the variable with the most importance would have a score of one and the one with the least

importance a score of eight. Then we summed all of the scores and the variable with the smallest

overall score would be the most important and the one with the highest the least important. Figure 18

shows the importance given to each variable by method used and Table 7 shows the scores and overall

scores according to method. According to the feature importance done in this study and the method

of comparison used, the independent variables ordered by importance are Cement, Age of Testing,

Blast Furnace Slag, Water, Superplasticizer, Coarse Aggregate and Fly Ash/ Fine Aggregate.

To see whether we could improve our results we trained the best three model configurations of each

model with 75% percent of the independent variables, 50% and 25%, according to the rank defined

earlier.

The results of each of the best, previously found, model configuration for each of the variable

combinations can be found in Table 8. Not all model configurations were shown due to the high

number of values and the fact that the best configuration of each model didn’t change when reducing

the number of variables. All models show a similar behavior when being trained with less and less

variables. Their performance on all metrics decreases the more variables we take away from training,

however, that decrease in performance is not that big when comparing training with 8 variables vs 6

or 6 variables vs 4, never exceeding one unit in performance decrease of Median Train or test RMSE.

There is however a very big performance decrease when comparing training with 4 variables and just

2, and that difference just gets larger when comparing 8 variables and 2. Meaning, if we would like to

decrease the complexity of our model by removing two or even four variables, decreasing the number

of variables to half, we would actually not lose a lot in performance, but if we take that to the extreme

and only use two variables, then we will take a big hit in performance. The worst results achieved with

just two variables were around 13.65 Median Train and Test RMSE, with some of the regressions. As

shown before in this study, even with some RF and GBM configurations, much worse results were

achieved with all eight variables. Which just shows the importance of correct model finetuning and

proper attention to detail in the modeling phase of a project, as much better results can be achieved

with a very small number of variables but adequate parameters settings than using all of the data but

taking no care in the setting of the models. Interestingly RF, GBM, AdaBoost and ANN show better

Train and Test RMSE’s than the state-of-the-art using only four independent variables. GBM continues

to display slightly better values with just two variables, however, it also has a higher STD on the test

set, meaning it lacks in robustness, which could indicate signs of overfitting.

35

Figure 18 - Feature Importance according to a DT, a RF and a Lasso Regression

Table 7 - Feature Importance Results

Feature DT RF Lasso Overall Score

Cement 1 2 1 4

Blast Furnace
Slag

3 4 3 10

Fly Ash 8 8 5 21

Water 4 3 4 11

Superplasticizer 6 5 6 17

Coarse
Aggregate

5 7 8 20

Fine Aggregate 7 6 8 21

Age of Testing 2 1 2 5

Table 8 - Results of the best models with feature exploration

Model Number
of Input

Variables

Median
Train
RMSE

Median
Test

RMSE

Train STD Test STD

RF 8 2.044 3.309 0.128 0.330

RF_6 6 2.068 3.458 0.127 0.330

RF_4 4 2.267 3.590 0.1222 0.308

RF_2 2 4.528 6.513 0.160 0.403

GBM 8 1.170 2.656 0.258 0.381

36

GBM_6 6 1.233 2.681 0.240 0.361

GBM_4 4 1.611 2.974 0.174 0.329

GBM_2 2 3.945 5.696 0.190 0.506

AdaBoost 8 4.638 5.205 0.159 0.281

AdaBoost_6 6 4.791 5.307 0.150 0.276

AdaBoost_4 4 5.131 5.588 0.136 0.254

AdaBoost_2 2 8.774 9.175 0.179 0.300

ANN 8 1.877 3.579 0.414 0.383

ANN_6 6 2.639 4.331 0.390 0.567

ANN_4 4 4.397 5.158 0.401 0.293

ANN_2 2 9.192 9.530 0.215 0.422

Lasso 8 10.360 10.426 0.161 0.340

Lasso_6 6 10.709 10.860 0.155 0.361

Lasso_4 4 11.081 11.187 0.157 0.339

Lasso_2 2 13.649 13.707 0.159 0.420

Ridge 8 10.292 10.370 0.163 0.353

Ridge_6 6 10.692 10.822 0.155 0.369

Ridge_4 4 11.064 11.191 0.157 0.346

Ridge_2 2 13.644 13.681 0.159 0.430

EN 8 10.485 10.596 0.156 0.331

EN_6 6 10.780 10.950 0.152 0.348

EN_4 4 11.164 11.241 0.153 0.328

EN_2 2 13.669 13.754 0.159 0.401

The p-values returned by the Wilcoxon Signed Rank Test, with respect to the results achieved in both

the training and testing partitions of the results, between all of the models in Table X (Table of feature

importance models) were analysed, taken once again into account an 𝛼 = 0.05. Regarding the training

partition of the results, only ANN with RF_6 failed to reject the null hypothesis, with a p-value of 0.893.

Given this value, ANN gives comparable results to the RF_6. Regarding the testing partition of the

results, the “pairs” of models AdaBoost with ANN_4, GBM_2 with AdaBoost_4, Lasso_2 with Ridge_2

and EN_2 with Ridge_2 failed to reject the null hypothesis, with p-values of 0.465, 0.544, 0.135 and

0.135 respectively. As such, regarding each of these “pairs” of models, we can say that they give

comparable results.

37

Outlier Removal

Some brief tests were done regarding removing outliers, to once again see if we could improve our

results, but as we will see, due to the absence of satisfactory results and the small number of

observations, no more tests were done in this regard. The regression models were not used in this

phase, as they were providing worst results. The tests without outliers were done using all of the

variables because the best results were achieved with them. Figure 19 shows the boxplots for all the

independent variables, standardized according to MinMax scaler to fit on the same scale, using the

original 1030 observations. We can see that according to the boxplot method of identifying outliers

that only three of the variables do not seem to show outliers. When scaled back to their original values,

Blast Furnace Slag presents 2 outliers with values above 350, Water presents 5 outliers with values

below 125 and 4 with values above 230, Superplasticizer shows 10 outliers with values above 25, Fine

Aggregate shows 5 outliers with values above 950 and Age of Testing presents 59 outliers with values

above 150. Removing all of the outliers leaves us with 945 observations.

Figure 19 – Boxplots of all the original variables standardized with the MinMax scaler

Looking at Table 9, we can see that no model improved without outliers. AdaBoost had a slight

improvement in Median Train Root Mean Square Error, however it had a decrease in performance in

the test partition of the data. Not all models reacted the same to having outliers removed, in the case

of the ANN the performance got much worse and the model became very unstable, showing strong

signs of overfitting. It has a Median Test Root Mean Square Error almost three times the value of its

train counterpart and the highest Test STD seen in this study, with a value of 1.039. Just like in the

feature exploration phase, there was one ANN configuration that, now when removing the outliers,

showed a better result than the one we are considering as the configuration. It achieved a Median Test

RMSE of 5.355. We choose to not include it in the analysis since again, besides from that, no further

improvements were found and it presented very similar results in the other metrics.

38

Table 9 – Results of the best models with and without outliers

Model Outliers
removed?

Median
Train
RMSE

Median
Test

RMSE

Train STD Test STD

RF No 2.044 3.309 0.128 0.330

RF_Out Yes 2.105 3.710 0.136 0.308

GBM No 1.170 2.656 0.258 0.381

GBM_Out Yes 1.223 3.120 0.280 0.373

AdaBoost No 4.638 5.205 0.159 0.281

AdaBoost_Out Yes 4.575 5.397 0.168 0.283

ANN No 1.877 3.579 0.414 0.383

ANN_Out Yes 2.086 6.119 0.343 1.039

The p-values returned by the Wilcoxon Signed Rank Test, with respect to the results achieved in both

the training and testing partitions of the results, between all of the models in Table X (Table of feature

importance models) and the models without outliers were analysed, taken once again into account an

𝛼 = 0.05. Regarding the training partition of the results, the “pairs” of models RF with ANN_Out,

RF_Out with ANN, ANN with ANN_Out, RF_6 with ANN_Out and RF_Out with ANN_Out, failed to reject

the null hypothesis, with p-values of 0.658, 0.544, 0.749, 0.416 and 0.236 respectively. All of these

“pairs” of models give comparable results. Regarding the testing partition of the results, the “pairs” of

models ANN with RF_Out and RF_2 with ANN_Out, failed to reject the null hypothesis, with p-values

of 0.271 and 0.115 respectively. As such, regarding each of these “pairs” of models, we can say that

they give comparable results.

5.1. IDENTIFYING THE BEST MODEL

After the modeling process is completed, having decided on all of the metrics required to evaluate and

compare the models and having all of the necessary results, all that is left is to decide on which is the

best model. As explained before, a good model must not only have a good Median RMSE on the test

partition of the data but also low STD’s across all of the 30 runs. If we were to only take into

consideration these criteria, clearly the “winner” would be the GBM model configuration, with all of

the variables, that achieved the lowest Median Test RMSE, since it not only had the lowest score for

this metric but it also showed low STD’s for both the training and testing runs, with values below 0.4.

The only thing keeping us from” blindly” accepting this as the best model is the difference between

the values achieved in the Train and Test Median RMSE’s, as it achieved 1.17 and 2.656 respectively.

At first glance these values might indicate that we are in the presence of overfitting, however, we do

not believe that to be the case. Overfitting generally refers to models that have good scores on the

training partition of the data but fit poorly in the test partition (Dietterich, 1995; Subramanian & Simon,

2013; Ying, 2019), and this is not the case. The model has the best Test RMSE we have seen in this

39

study, reducing this value from the state-of-the-art algorithm in this field by more than half. So, fitting

poorly on the test partition is not an issue. In addition, during the modeling process several steps were

taken to reduce and mitigate any possible overfitting and to ensure a robust model. Each model

configuration was trained and tested 30 times, with different partitions of the data selected at random

with uniform distribution. For each of the 30 runs, the model was tested with out-of-sample data,

meaning data that it had not seen during the training phase. Great care was given in ensuring that we

had a robust model, that behaved similarly across the 30 runs, displaying low STD’s, and finally, Feature

Importance Analysis was done to see if we could get better or similar results using less variables and

an ultimately simpler model. As such, with all these precautions and with the scores achieved by this

model we do not believe that we are in the presence of overfitting.

All that is left is to decide whether we choose this configuration trained with all the variables and/ or

with all of the observations. Regarding the tests done without outliers, the performance of the model

did not increase and so the choice is simple, we rather have the model trained with all of the

observations. Regarding the number of variables, although the model did not increase in performance,

it also did not decrease by a lot, and it showed marginally better STD’s in both the train and test

partitions. However, we do not believe that the tradeoff between a model with less prediction power

but displaying marginally more robust results and needing slightly less variables is worth it. There is

already a small number of original variables. Although small, there is a decrease in Median Test RMSE,

the main metric in evaluating the models, and both models are robust, i.e. present low STD’s. As such,

the GBM model, using all of the variables and having the following configuration: number of

estimators: 200, learning rate: 0.1, maximum depth: 14, minimum number of samples to split: 50, is

selected as the best model found in this study, as it has the best predicting power for the problem at

hand and will therefore lead to more satisfactory results. When analysing the p-values returned by the

Wilcoxon Signed Rank Test, with respect to the results achieved in both the training and testing

partitions of the results, between this GBM model and all of the other models studied in the results

section, taken into account an 𝛼 = 0.05, we saw that the null hypothesis was always rejected.

According to these p-values, we can state that the GBM model outperforms all the other models, in a

statistically significant way.

It was of great importance to this study to be able to compare our results with the ones achieved in

(Muñoz et al., 2019), as the state-of-the-art algorithm for this problem was presented in that study.

We used the exact same data, data partitions and metrics to train and evaluate our models, ensuring

a fair comparison of results. As explained before, the state-of-the-art algorithm for predicting the

compressive strength of HPC is the FFX algorithm, which achieved a Train and Test Median RMSE of

5.333 and 5.9557 respectively. In this study, with our best model, we were able to significantly increase

these results. Achieving, once again, values of 1.17 and 2.656. With our best model, we were able to

improve the Median Test RMSE by decreasing it to less than half, when comparing with the previous

state-of-the-art.

Regarding the other model results, their contributions were also analyzed. As shown in previous

studies and highlighted in the Literature Review, regressions provided, generally speaking, worse

results than the other tested models. Although they provide some advantages, particularly in the

interpretability of the results and importance of each variable for the final decision, when we are after

the highest prediction power, they do not suffice. Even though they provided lower STD’s than the

GBM models, particularly on the train partition of the data, where the best regressions displayed

40

values under 0.2, their Median RMSE’s never went into the single digits, with Lasso, Ridge and EN

having values of 10.426, 10.37 and 10.426 respectively, for the test partitions.

Of the ensemble models tested, AdaBoost proved to be the weakest in terms of Median RMSE,

although the best configuration still had better results than the previous state-of-the-art, with 4.638

and 5.205 for the train and test partitions respectively. It also achieved lower STD’s than the best GBM

model.

Both the best ensembles and the best ANN achieved better results than the previous state-of-the-art.

The ANN, provided very “competitive” results, achieving a Median Train and Test RMSE of 1.877 and

3.579, however, it proved also to be the most unstable model. Having the highest train and test STD’s,

with values of 0.414 and 0.383 for the best configuration, achieving a test STD lower than its train

counterpart, an uncommon behavior, when using all of the variables and also half, and being the only

model that, when tested without outliers, achieved a test STD of over 1.

Second only to GBM, RF’s were the best models, with the best configuration, using all of the variables,

achieving the lowest STD’s seen on this study, with values of 0.128 and 0.33 for the train and test

partitions. The best RF configuration had a Median Train and Test RMSE of 2.044 and 3.309

respectively.

41

6. CONCLUSION

AI and ML are now part of our everyday lives. Either through text recognition in our smartphones,

autofill recommendations in every search engine, recommended products in e-commerce, or even the

facial recognition we use to unlock our devices. Whether we realize it or not, most humans take

advantage of and come into contact with AI every day. With a market that was valued at USD$20.67

billions in 2018 and is projected to reach more than ten times that in the upcoming years, (Artificial

Intelligence [AI] Market Growth, Trends | Forecast, 2029, n.d.), AI is only going to get more prominent

and the more we take advantage of and get used to it, the better. ML algorithms and problems can be

divided into several categories. The two main ones being unsupervised learning and supervised

learning. The first one can be categorized as not having a dependent variable while the latter is

categorized by having one. So, when we are dealing with a supervised learning problem we have a set

of observations, for which we know the correct outcome, and we want to train a model capable of

predicting that outcome for new observations.

To accomplish that task, there are endless different models and algorithms that we can choose from,

each with its own characteristics. From Regularization algorithms, like Lasso, Ridge and EN regressions,

that try to simplify a more complex model by shrinking its coefficients, in order to, among other things,

reduce overfitting. Ensemble models, that combine several simpler algorithms into a “super learner”,

in order to mitigate the problems or the shortcomings of the weaker learners. Some examples of

ensembles are RF’s, GBM and AdaBoost. To the popular ANN, that tries to mimic the way the human

brain works and improve on it, through the faster rates at which computers learn and are able to make

decisions.

This study used all the previously mentioned algorithms to focus and improve on a popular topic in

literature, i.e., prediction of the compressive strength of HPC. HPC, as the name suggests, improves on

the main characteristics of regular concrete, its strength and durability. Due to the added components

in HPC it is more expensive than conventional concrete, when comparing unit cost. However, in the

end it usually comes out as more economical to use HPC due to the reduction in other materials needed

(Leung, 2001). Nonetheless, the popularity of HPC comes from the added benefits it has, when

compared with its predecessor. As such, and because of the difficulty in modelling HPC due to its

complex composition, the task of predicting the compressive strength of a specific mixture of HPC is

of great importance and researchers have spent many years experimenting with different techniques

and algorithms to accomplish such task. A great deal of research has been done in this field and the

latest advancement has been with the use of an algorithm called FFX (Muñoz et al., 2019), that

achieved great results and cemented itself as the state-of-the-art. This system has been compared

against several ML algorithms, but never against the ensemble models used in our study.

In this project a dataset containing 1030 observations of HPC was used to design, build and validate all

of the algorithms and techniques used. The data contains eight independent variables: cement, fly ash,

blast furnace slag, water, superplasticizer, coarse aggregate, fine aggregate and age of testing, and one

dependent variable: concrete compressive strength. This dataset was purposefully chosen as it is the

one used in (Vanneschi et al., 2018) and (Muñoz et al., 2019). All of the data treatment and

transformations, model validation metrics and experimental setting were also chosen to mimic and be

the exact ones present in those studies, allowing for direct comparison of the results. To train and

evaluate each model, each configuration was run 30 times. For each independent run, a new dataset

42

partition was selected, at random with uniform distribution, containing 70% of the data for training

and the remaining 30% exclusively for testing. Once again, these are the exact same data partitions

used in the studies that we will compare results with. For each experimental set of 30 runs, the Median

RMSE and the STD of the RMSE of each run was analysed, for both the training and testing partitions.

Wilcoxon tests were also performed on each “pair” of models to ensure that their differences are

statistically significant. When needed, the data was standardized through Min Max standardization.

When analysing the feature importance of each variable, standardization was applied to all of the

original 1030 observations. During the model exploration phase, standardization was applied,

independently on each run, in the training partition of the data and then on the testing partition using

the same formula, meaning standardizing the testing partition using the minimum and maximum value

in the training one. Ensuring that the scaling done on the test observations is the exact same one of

the training observations. Several hyperparameter settings of Lasso, Ridge, EN, RF, GBM, AdaBoost

and ANN’s were trained and tested through a grid search. In the end, more than 10.500 different

models were compared. As said prior, feature importance analysis was done in order to evaluate the

impact that each independent variable has on the output. Three techniques were used, a DT, a RF and

a Lasso Regression. After combining the output of the algorithms used to evaluate feature importance,

a hierarchy of the importance of each variables was established. Ordered by most important to least

important, the variables are Cement, Age of Testing, Blast Furnace Slag, Water, Superplasticizer,

Coarse Aggregate and Fly Ash/ Fine Aggregate. The best models, meaning the ones with the highest

Median Test RMSE, were then retrained with the top 75%, 50% and 25% important variables and the

results were compared and analyzed. To see if the results could be further improved, the best models

were retrained once again, now without outliers present in the training data. The outliers were

identified through the IQR method.

When looking at the results of all the models tested with all of the variables, we can see that they vary

greatly depending on the hyperparameter setting, with the exception of Ridge, which always gave very

similar results. Overall regressions had less variability in the results when the configuration was

changed, but significantly less regressions were tested than more sophisticated models. Analysing the

results of the best configuration for each model, one can immediately notice that regressions provided

worst performances than the other algorithms, never achieving a Median Root Mean Square Error

smaller than 10. This behaviour is however no surprise, as it is something that was already noticed by

other researchers. Among themselves the regressions presented very homogenous results. The GBM

model with the following configuration: number of estimators: 200, learning rate: 0.1, maximum

depth: 14, minimum number of samples to split: 50, had the best performance, showing the smallest

Median Test Rot Mean Squared Error seen on this Study, 2.656. The other algorithms, excluding the

regressions, didn’t come much further behind, all showing improved performances than the ones seen

with FFX in (Muñoz et al., 2019). AdaBoost had the worst Median Test Root Mean Square Error, 5.205,

followed by the ANN with 3.579 and in “second place” came the RF with 3.310. All of these models

were robust, showing small STD’s on both the training and testing partitions of the data. The three

best configurations of each model were retrained with less variables. Firstly, with six variables, then

four and finally just 2 independent variables. When comparing all of the results, the best configuration

of each model did not change, the best results were still found with the original top hyperparameter

setting. All of the algorithms decreased in performance with less variables and the trade-off between

model complexity and performance was not deemed enough to justify the removal of some variables.

The depreciation in model performance however is not the same as the number of variables removed

43

increases. All models showed a similar behaviour. When removing the first two variables, again the

ones of least importance, all of the metrics show slightly worst performances, and the same happens

when we remove another two. The difference between models trained with four variables and just

two however is much greater. Regarding the removal of outliers, no model showed improved results.

To select the best model, there was only on thing keeping us from choosing the one with the best

Median Test RMSE, the top GBM. This model showed a significant difference in results from the

training and testing partitions and so we were careful in analysing whether or not this was due to

overfitting. We do not believe that to be the case. As stated before, the model has a great performance

in the test set. We took every precaution in the modelling phase to ensure that any possible overfitting

would be mitigated. This model is also very robust, displaying small STD’s across the 30 runs, both for

the train and test sets. As such, the best model found in this study is the GBM. This model was able to

reject the null hypothesis of the two-sided Wilcoxon test with all of the other models, showing that it

provides statistically significant results. As such, with GBM we were able to improve on the state-of-

the-art algorithm by decreasing the Median Test RMSE to less than half.

44

7. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS

The main limitation of this work was the restricted and limited amount of resources and time to

explore all aspects and possibilities of the data exploration, and model training, testing and validation.

As such, some consideration and though had to be taken to know what we were and were not able to

experiment with and what would probably yield the best results in a reasonable amount of time. There

were for example some feature importance techniques that were left out, some models had greater

grid searches done than others, not all models were tested without outliers and not all combinations

of variables were experimented.

As such, one possible line of future work would be to expand the research done in the feature

importance. Experimenting with different and more complex or tailored techniques will for sure give

interesting results and provide greater insights on the data.

Another possibility is to increase the grid search performed and to experiment with different

algorithms. Lasso, Ridge and EN had considerable smaller grid searches than the other models. They

have less hyperparameters to test with, but the number of tested values could still be increased. It

would also be very interesting to see how other models behave, such as different regressions and

Support Vector Machines. Although some of these models were initially tested and gave promising

results, due to the time constraints specified earlier, their research had to be dropped. Further

research could also be done in the application of Deep Learning. The ANN implementation of sklearn,

the one used in this study, provides some features that help the user develop the models in a more

timely fashion, such as an automatic way of selecting the appropriate number of iterations. But in

doing so, some of the proper finetuning and personalization of the algorithm is lost. By using another

implementation, for example tensorflow, a greater level of detail could be given to this algorithm.

Two avenues that could further improve the results but were not explored were the use of data

transformation techniques and the use of data augmentation. All of the variables were kept as is,

excluding the standardization done, and no data transformation was applied. Perhaps there are some

features that could be combined in some fashion and would improve the results, or perhaps by using,

for example, Principal Component Analysis the same could be accomplished. One of the unfortunate

characteristics of the dataset used is that it has little more than one thousand observations, which is

not bad by any means, but it could be better. Experimenting with data augmentation would be

interesting not only to see if an increase in performance could be achieved, but also to compare and

analyse the differences that different techniques give. So, applying Synthetic Minority Oversampling

Technique (SMOTE), Adaptive Synthetic (ADASYN), or any other technique should be considered.

The dataset used was carefully chosen so that the results could be compared to a specific set of key

studies in the field. However, it would also be interesting to apply the same methodology used in this

project to other datasets of the subject, compare results and see how well the experimental setting

chosen behaves with different sets of data.

45

8. REFERENCES

Aggarwal, C. C. (2015). Data Mining. Springer International Publishing. https://doi.org/10.1007/978-

3-319-14142-8

Akkurt, S., Ozdemir, S., Tayfur, G., & Akyol, B. (2003). The use of GA–ANNs in the modelling of

compressive strength of cement mortar. Cement and Concrete Research, 33(7), 973–979.

https://doi.org/10.1016/S0008-8846(03)00006-1

Alexandridis, A., Triantis, D., Stavrakas, I., & Stergiopoulos, C. (2012). A neural network approach for

compressive strength prediction in cement-based materials through the study of pressure-stimulated

electrical signals. Construction and Building Materials, 30, 294–300.

https://doi.org/10.1016/j.conbuildmat.2011.11.036

Alzubi, J., Nayyar, A., & Kumar, A. (2018). Machine Learning from Theory to Algorithms: An Overview.

Journal of Physics: Conference Series, 1142(1), 012012. https://doi.org/10.1088/1742-

6596/1142/1/012012

Artificial Intelligence [AI] Market Growth, Trends | Forecast, 2029. (n.d.). Retrieved 16 November

2022, from https://www.fortunebusinessinsights.com/industry-reports/artificial-intelligence-market-

100114

Atici, U. (2011). Prediction of the strength of mineral admixture concrete using multivariable

regression analysis and an artificial neural network. Expert Systems with Applications, 38(8), 9609–

9618. https://doi.org/10.1016/j.eswa.2011.01.156

Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., Modi, K., & Ghayvat, H. (2021). CNN

Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope.

Electronics, 10(20), Article 20. https://doi.org/10.3390/electronics10202470

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.

https://doi.org/10.1023/A:1010933404324

Bühlmann, P. (2012). Bagging, Boosting and Ensemble Methods. In J. E. Gentle, W. K. Härdle, & Y.

Mori (Eds.), Handbook of Computational Statistics: Concepts and Methods (pp. 985–1022). Springer.

https://doi.org/10.1007/978-3-642-21551-3_33

Castelli, M., Vanneschi, L., & Silva, S. (2013). Prediction of high performance concrete strength using

Genetic Programming with geometric semantic genetic operators. Expert Systems with Applications,

40(17), 6856–6862. https://doi.org/10.1016/j.eswa.2013.06.037

Chou, J.-S., Chiu, C.-K., Farfoura, M., & Al-Taharwa, I. (2011). Optimizing the Prediction Accuracy of

Concrete Compressive Strength Based on a Comparison of Data-Mining Techniques. Journal of

Computing in Civil Engineering, 25(3), 242.

Demšar, J. (2006). Statistical Comparisons of Classifiers over Multiple Data Sets. The Journal of

Machine Learning Research, 7, 1–30.

46

Dietterich, T. (1995). Overfitting and undercomputing in machine learning. ACM Computing Surveys,

27(3), 326–327. https://doi.org/10.1145/212094.212114

El Bouchefry, K., & de Souza, R. S. (2020). Chapter 12 - Learning in Big Data: Introduction to Machine

Learning. In P. Škoda & F. Adam (Eds.), Knowledge Discovery in Big Data from Astronomy and Earth

Observation (pp. 225–249). Elsevier. https://doi.org/10.1016/B978-0-12-819154-5.00023-0

Fairbairn, E. M. R., Silvoso, M. M., Toledo Filho, R. D., Alves, J. L. D., & Ebecken, N. F. F. (2004).

Optimization of mass concrete construction using genetic algorithms. Computers & Structures, 82(2),

281–299. https://doi.org/10.1016/j.compstruc.2003.08.008

Flach, P. (2012). Machine Learning: The Art and Science of Algorithms that Make Sense of Data.

Cambridge University Press.

Freund, Y., & Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line Learning and an

Application to Boosting. Journal of Computer and System Sciences, 55(1), 119–139.

https://doi.org/10.1006/jcss.1997.1504

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of

Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of

boosting. Annals of Statistics, 28(2), 337–407. Scopus. https://doi.org/10.1214/aos/1016218223

Graves, A., Jaitly, N., & Mohamed, A. (2013). Hybrid speech recognition with Deep Bidirectional

LSTM. 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, 273–278.

https://doi.org/10.1109/ASRU.2013.6707742

Guresen, E., & Kayakutlu, G. (2011). Definition of artificial neural networks with comparison to other

networks. Procedia Computer Science, 3, 426–433. https://doi.org/10.1016/j.procs.2010.12.071

Hadi, M. N. S. (2003). Neural networks applications in concrete structures. Computers & Structures,

81(6), 373–381. https://doi.org/10.1016/S0045-7949(02)00451-0

Hammoudeh, A. (2018). A Concise Introduction to Reinforcement Learning.

https://doi.org/10.13140/RG.2.2.31027.53285

Han, J., Pei, J., & Tong, H. (2022). Data Mining: Concepts and Techniques. Morgan Kaufmann.

Heaton, J. (2017). Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning: The MIT Press,

2016, 800 pp, ISBN: 0262035618. Genetic Programming and Evolvable Machines, 19.

https://doi.org/10.1007/s10710-017-9314-z

Hooker, S., Erhan, D., Kindermans, P.-J., & Kim, B. (2019). A Benchmark for Interpretability Methods in

Deep Neural Networks (arXiv:1806.10758). arXiv. http://arxiv.org/abs/1806.10758

Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic

Markets, 31(3), 685–695. https://doi.org/10.1007/s12525-021-00475-2

47

Jianxia, S. (2012). 6.14—Durability Design of Concrete Hydropower Structures. In A. Sayigh (Ed.),

Comprehensive Renewable Energy (pp. 377–403). Elsevier. https://doi.org/10.1016/B978-0-08-

087872-0.00619-3

Kukačka, J., Golkov, V., & Cremers, D. (2017). Regularization for Deep Learning: A Taxonomy

(arXiv:1710.10686). arXiv. https://doi.org/10.48550/arXiv.1710.10686

Leung, C. K. Y. (2001). Concrete as a Building Material. In K. H. J. Buschow, R. W. Cahn, M. C.

Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. Veyssière (Eds.), Encyclopedia of Materials:

Science and Technology (pp. 1471–1479). Elsevier. https://doi.org/10.1016/B0-08-043152-6/00267-9

Liu, X., Tian, S., Tao, F., & Yu, W. (2021). A review of artificial neural networks in the constitutive

modeling of composite materials. Composites Part B: Engineering, 224, 109152.

https://doi.org/10.1016/j.compositesb.2021.109152

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The

Bulletin of Mathematical Biophysics, 5(4), 115–133. https://doi.org/10.1007/BF02478259

Muñoz, L., Trujillo, L., Silva, S., Castelli, M., & Vanneschi, L. (2019). Evolving multidimensional

transformations for symbolic regression with M3GP. Memetic Computing, 11(2).

https://doi.org/10.1007/s12293-018-0274-5

Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 7.

https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021

Oluokun, F. A. (1994). Fly Ash Concrete Mix Design and the Water-Cement Ratio Law. Materials

Journal, 91(4), 362–371. https://doi.org/10.14359/4050

Pal, S. C., Mukherjee, A., & Pathak, S. R. (2003). Investigation of hydraulic activity of ground

granulated blast furnace slag in concrete. Cement and Concrete Research, 33(9), 1481–1486.

https://doi.org/10.1016/S0008-8846(03)00062-0

Popovics, S. (1990). Analysis of Concrete Strength Versus Water-Cement Ratio Relationship.

Materials Journal, 87(5), 517–529. https://doi.org/10.14359/1944

Publications | Home | AIDA | Committees | European Parliament. (n.d.). Retrieved 16 November

2022, from https://www.europarl.europa.eu/committees/en/aida/home/publications

Reel, P. S., Reel, S., Pearson, E., Trucco, E., & Jefferson, E. (2021). Using machine learning approaches

for multi-omics data analysis: A review. Biotechnology Advances, 49, 107739.

https://doi.org/10.1016/j.biotechadv.2021.107739

Sabharwal, A., & Selman, B. (2011). S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach,

Third Edition. Artif. Intell., 175, 935–937. https://doi.org/10.1016/j.artint.2011.01.005

Sadeghkhani, I., Ketabi, A., & Feuillet, R. (2012). Radial basis function neural network application to

power system restoration studies. Computational Intelligence and Neuroscience, 2012, 3:3.

https://doi.org/10.1155/2012/654895

48

Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of

Research and Development, 3(3), 210–229. https://doi.org/10.1147/rd.33.0210

Schapire, R. E. (2013). Explaining adaboost. Empirical Inference: Festschrift in Honor of Vladimir N.

Vapnik, 37–52. https://doi.org/10.1007/978-3-642-41136-6_5

Subramanian, J., & Simon, R. (2013). Overfitting in prediction models – Is it a problem only in high

dimensions? Contemporary Clinical Trials, 36(2), 636–641. https://doi.org/10.1016/j.cct.2013.06.011

Temuujin, J., Surenjav, E., Ruescher, C. H., & Vahlbruch, J. (2019). Processing and uses of fly ash

addressing radioactivity (critical review). Chemosphere, 216, 866–882.

https://doi.org/10.1016/j.chemosphere.2018.10.112

Texts adopted—Setting up a special committee on artificial intelligence in a digital age, and defining

its responsibilities, numerical strength and term of office—Thursday, 18 June 2020. (n.d.). Retrieved

16 November 2022, from https://www.europarl.europa.eu/doceo/document/TA-9-2020-

0162_EN.html

Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical

Society: Series B (Methodological), 58(1), 267–288. https://doi.org/10.1111/j.2517-

6161.1996.tb02080.x

Touzani, S., Granderson, J., & Fernandes, S. (2018). Gradient boosting machine for modeling the

energy consumption of commercial buildings. Energy and Buildings, 158, 1533–1543.

https://doi.org/10.1016/j.enbuild.2017.11.039

Vanneschi, L., Castelli, M., Scott, K., & Popovič, A. (2018). Accurate High Performance Concrete

Prediction with an Alignment-Based Genetic Programming System. International Journal of Concrete

Structures and Materials, 12(1). https://doi.org/10.1186/s40069-018-0300-5

Wang, H., Ma, C., & Zhou, L. (2009). A Brief Review of Machine Learning and Its Application. 2009

International Conference on Information Engineering and Computer Science, 1–4.

https://doi.org/10.1109/ICIECS.2009.5362936

Wang, R., Pan, Z., Chen, Y., Tan, Z., & Zhang, J. (2021). Influent Quality and Quantity Prediction in

Wastewater Treatment Plant: Model Construction and Evaluation. Polish Journal of Environmental

Studies, 30(5), 4267–4276. https://doi.org/10.15244/pjoes/132821

Wang, S., Ji, B., Zhao, J., Liu, W., & Xu, T. (2018). Predicting ship fuel consumption based on LASSO

regression. Transportation Research Part D: Transport and Environment, 65, 817–824.

https://doi.org/10.1016/j.trd.2017.09.014

Yao, T., LeJeune, D., Javadi, H., Baraniuk, R. G., & Allen, G. I. (2021). Minipatch Learning as Implicit

Ridge-Like Regularization. 2021 IEEE International Conference on Big Data and Smart Computing

(BigComp), 65–68. https://doi.org/10.1109/BigComp51126.2021.00021

Yeh, I.-C. (1998). Modeling of Strength of High-Performance Concrete Using Artificial Neural

Networks.” Cement and Concrete research, 28(12), 1797-1808. Cement and Concrete Research, 28,

1797–1808. https://doi.org/10.1016/S0008-8846(98)00165-3

49

Yeh, I.-C., & Lien, L.-C. (2009). Knowledge discovery of concrete material using Genetic Operation

Trees. Expert Systems with Applications, 36(3, Part 2), 5807–5812.

https://doi.org/10.1016/j.eswa.2008.07.004

Ying, X. (2019). An Overview of Overfitting and its Solutions. Journal of Physics: Conference Series,

1168(2), 022022. https://doi.org/10.1088/1742-6596/1168/2/022022

Ziegler, A., & König, I. R. (2014). Mining data with random forests: Current options for real-world

applications. WIREs Data Mining and Knowledge Discovery, 4(1), 55–63.

https://doi.org/10.1002/widm.1114

1

