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ABSTRACT 

Renewing health insurance contracts is, usually, an annual process, in the Tailor Made policies branch. 

At Multicare, this process starts three months before the end of the clients’ annuity, by estimating the 

costs of the last quarter using information from the first three. This estimation process is critical to the 

renewal of insurance contracts, since, if the estimation is too high, the client will overpay for their 

insurance and might seek more competitive alternatives. In contrast, if the predictions are too low, it 

will result in losses for the company. This part of the renewal process is currently performed by a time 

series algorithm, specifically an ARIMA model. 

This project aims to build a machine learning-based model that will provide more accurate estimations 

of the claims’ cost and frequency, in the Inpatient coverage, to Multicare. Several algorithms were 

tested: Linear and Logistic Regressions, Decision Trees, Random Forests, Gradient Boosting and 

XGBoost; and their results were then compared to the ones of the current ARIMA model. This study 

showed that a machine learning technique, the XGBoost, is more powerful than the ARIMA, as it 

projects 9% above the real costs, against the ARIMA’s global error of -25%. These conclusions can lead 

to changes in Multicare’s approach to predicting claim costs and, consequentially, its way of doing 

business. 
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1. INTRODUCTION 

This report was developed during a year-long internship at Multicare, from October 2020 to October 

2021. Multicare is a company that specializes in health insurance and belongs to the Fidelidade group, 

the oldest insurance company in Portugal, with its roots going back to the beginning of the XIX century. 

Fidelidade operates in Europe, Africa, Asia, and South America through the various companies that 

belong to the group. 

This internship was done in Multicare’s Actuarial Department, known as GAC (Gabinete de Actuariado 

e Controlo), specifically in the Corporate Actuarial Support team (SAC – Suporte Actuarial Corporate). 

The main function of this team is to develop tools that the pricing teams can use to give Tailor Made 

clients more adjusted rates, thus helping them to be more competitive in the health insurance market. 

Even though this project is only a pilot study, it is directly linked to the team’s objectives, as it is the 

beginning of the development of a new tool that will assist pricing teams in the contract renewal 

process. 

 

1.1.  PROBLEM STATEMENT 

The insurance business at Multicare is divided into two branches: Standard and Tailor Made. Standard 

policies are accessible to everyone. They can be acquired at any agency, by talking to a mediator, or 

even online. These policies have fixed prices and the different plans are already established. Tailor 

Made policies, as the name suggests, are the ones companies buy for their employees as well as their 

families: spouses and children. Unlike the Standard business, Tailor Made policies are customizable: 

their prices change, as well as the coverages included, according to the client’s choice. This 

customization gives clients more negotiation power, so it is crucial that Multicare presents an offer at 

an adequate rate for both the company and the client. It is on this type of policies that this report is 

focused. 

When someone uses their health insurance, it is done on one of two systems. The first one is the 

Healthcare Provider Network, which consists of hospitals, clinics and other providers that have a 

contract with Multicare, and the cost of the claims can either be fixed or have a discount. It requires 

that the client use their Multicare card, so it is immediately known when someone uses their insurance. 

The other way clients can use their insurance is through the Reimbursement system. This happens 

when customers use a healthcare provider that is outside Multicare’s network and then submit the 

claim to get a refund, usually an agreed-upon percentage of the claim’s cost. 

The claims that happened under the Reimbursement system are not immediately loaded in the 

company’s system, they are only known when the client submits them. The IBNR (Incurred But Not 

Reported) estimation is used to deal with this problem. The IBNR problem is complex and, at this point, 

is still under development and outside the scope of this project. Therefore, this report will only take 

into consideration claims that happened under the Healthcare Provider Network. 

There are two critical moments in which offers need to be presented: the signing moment, when the 

client purchases its first policy; and the renewal moment(s). This report is focused on the latter. 
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The renewal problem starts three months before the end of the client’s annuity. Based on the cost of 

the previous nine months, the costs of the last three are estimated. Based on these estimations, the 

company calculates the rates that are going to be applied to the client in the following year. 

Therefore, this estimation process is critical in the renewal process. If the estimation is too high, the 

client will have an over-expensive insurance and could be compelled to find cheaper alternatives. On 

the other hand, if the company underestimates the client’s costs, this will result in losses and the client 

might not be receptive the negotiate a new and, in their perspective, worse deal. 

The first part of the renewal process, the estimation of the claims’ costs in the last three months of the 

annuity, is currently done using an ARIMA model. This type of model is commonly used in time series 

problems but is blind to the variables the company has available. It was out of the necessity to 

understand whether having more information available would improve the cost and frequency 

estimations that the need for this project arose and it is on this part of the renewal process that the 

project is focused on. 

 

1.2.  GOAL DEFINITION 

The goal of this project is to build a model, using the clients’ data and Machine Learning algorithms, 

that will provide the company more accurate estimations of the frequency and cost of claims to, 

consequentially, be able to offer clients the best possible deal for both parties. These techniques can 

help the company make sense of the available data and use it to make more informed decisions. 

The renewals are evaluated on a coverage basis and a health insurance plan usually has multiple. Due 

to the complexity and specificity of each coverage, this report is focused on only one: Inpatient. Besides 

its complexity, the Inpatient coverage is the one that presents the biggest risk to the company and, 

alongside the Outpatient coverage, represents the biggest percentage of total costs. 

Therefore, to predict the cost and frequency of Inpatient claims, this project is based on two models: 

one that calculates the cost of the claims, the Cost Model, and the other which predicts how many 

claims each customer will have, the Frequency Model. These two events are estimated separately, as 

is common practice in insurance businesses, as they are dissimilar and are often explained by different 

variables. 

Additionally, and as was mentioned in the previous section, it is important to note that this project will 

only answer the first part of the renewal process: the estimation of the last quarter’s costs of each 

client’s annuity. To complete the renewal process, the costs of the next annuity need to be calculated 

afterwards, but this step is outside the scope of this project. 
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2. LITERATURE REVIEW 

In this chapter, some techniques that are currently being used to predict claim frequency and severity 

are explored. It is important to note that there is little literature regarding health insurance, hence the 

majority of works explored in this section regard auto insurance. Nonetheless, the problem in hand is 

the same: how to correctly estimate claims to better price insurance policies. 

Traditionally, actuaries have been using simple supervised learning statistical models, such as 

Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs), to deal with the problems 

of claim estimation and loss reserving (Albrecher et al., 2019). However, with the increasing amount 

of data available and a number of more sophisticated algorithms appearing, the paradigm has been 

changing in favour of machine learning techniques. 

The work of Guelman (2012) compared the performance of GLMs with Gradient Boosting Trees when 

used for auto insurance claim prediction. The author decided to explore Gradient Boosting (GB) due 

to its uniqueness in the sense of achieving both predictive accuracy and allowing for model 

interpretation, as this last feature is considered to be of high importance in a business environment 

where models are often approved by non-statistically trained decision makers who need to understand 

the models’ outputs. In this paper, the author decided to split the frequency and severity problems, as 

is common practice, since some factors affect them differently, and the response variable of the 

frequency problem was coded as binary, given that only a few records had more than one claim. To 

guarantee that the model performance is an accurate approximation of the expected performance in 

future cases, the test set records’ policy dates are posterior to the ones in the train dataset. Finally, 

the author used an undersampling technique to deal with the fact that the actual claim frequency is 

only 3.51%. The variables used in this study were divided into four categories: Driver characteristics, 

Policy characteristics, Accident/conviction history and Vehicle characteristics. The results showed the 

most important variable for the frequency model is related to the driver characteristics: the years 

licensed. As for the severity model, the most important variable is associated with vehicle 

characteristics: the vehicle age. To compare the performance of the two algorithms, the author used 

a ratio of the rate that would be charged based on the GB model to the rate that would be charged 

based on the GLM. Afterwards, the observations were grouped into five similarly sized buckets ranked 

by the ratio. Finally, for each bucket, the GLM-loss ratio was calculated. Based on the results shown in 

Figure 2.1, the author concluded that the upward trend in the GLM-loss ratio curve indicates the higher 

predictive performance of GB relative to GLM. 
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Pesantez-Narvaez, Guillen, and Alcañiz (2019) used Logistic Regression and Extreme Gradient Boosting 

(XGBoost), with both tree and linear boosters, to predict the occurrence of accident claims in motor 

insurance. They used a database from a Spanish insurance company which comprised information 

regarding the driver, the vehicle characteristics and driving patterns and habits. The authors’ goal is to 

predict whether or not each driver will file accident claim with fault, during the observation period, so 

the response variable was coded as binary. Using sensitivity, specificity, accuracy and the root mean 

square error (RMSE), the authors evaluated the performance of the three approaches. It was possible 

to conclude that the Logistic Regression and the XGBoost with the linear booster provided similar 

results, and the XGBoost with the tree booster overfitted the data. To correct the overfitting problem, 

so that it can be possible to determine if the XGBoost with the tree booster outperforms the Linear 

Regression, the authors decided to apply a regularization technique, first the L2 (Ridge) and then L1 

(Lasso). The L1 regularization method was considered to be the best solution for this problem, as the 

L2 did not improve the evaluation metrics whatsoever. After applying the regularization, the authors 

concluded that the XGBoost predictive performance was still very similar to the Logistic Regression. 

However, they do not claim that the XGBoost is not an improvement on traditional, simpler algorithms, 

given that parameter tuning was not implemented, and the authors suggest that applying these 

procedures might improve the model’s predictive capacity. 

Hanafy and Ming (2021) conducted a similar study to Pesantez-Narvaez et. al (2019): the goal is also 

to predict whether a driver will file an accident claim, yet the database used in this study belongs to a 

Brazilian insurance company and, in addition to the Logistic Regression and XGBoost, the authors also 

evaluated the performance of a Random Forest, Decision Trees, Naive Bayes and K-Nearest 

Neighbours, using accuracy, error rate, kappa statistic, sensitivity, specificity, precision, F1-score and 

the Area Under the ROC Curve (AUC). Before testing the proposed machine learning algorithms, the 

authors proceeded to treat the data for it to be ready for the modelling stage. The first step of the pre-

processing stage was to oversample the minority class records, as there are only 3.7% instances of this 

class. Afterwards, missing values were dealt by deleting two variables, which had around 70% of 

missing values, and imputing the mode, for categorical variables, and the mean, for continuous 

variables. Using the Pearson Correlation, a set of variables was removed due to not being at all 

correlated with the target variable. Finally, the authors optimized some hyperparameters of the 

different models, using a grid search. After performing all transformations deemed necessary to the 

data, the different algorithms were evaluated according to the aforementioned metrics. The results 

Figure 2.1 - Prediction accuracy of GB relative to GLM from Guelman (2012) 
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showed that the random forest outperformed all the other models in every metric with the exception 

of the error rate, specificity and recall. Regarding the error rate, the model struggled, but in the last 

two metrics, the random forest was the second-best algorithm (see Figure 2.2). 

 

Fauzan and Murfi (2018) proposed using XGBoost to predict auto insurance claims and compared its 

performance to other ensemble learning algorithms, such as AdaBoost, Stochastic Gradient Boosting 

and Random Forest, and a Neural Network, using the normalized Gini Coefficient as the comparison 

metric. This study is a classification problem as its goal is to predict whether the policyholders file an 

insurance claim or not. In this paper, the authors reinforce the importance of claim prediction in 

insurance personalization. If the claims are correctly predicted, the insurance company can prepare 

the right type of policy for each potential client. As is customary with claim prediction problems, the 

dataset is imbalanced, with only 6% of clients filing accident claims. The dataset also has a significant 

number of missing values, however, the authors decided not to address these problems. After 

performing feature selection, reducing the number of variables from fifty-seven to twenty-four, the 

authors proceeded to tune the hyperparameters of the XGBoost algorithm using a six-stage grid 

search, where different parameters were optimized at each stage, updating the classifier with the 

result of the previous one. To compare the results of the XGBoost model with the previously 

mentioned ones, some changes needed to be made to the data, as those models are not prepared to 

deal with missing values: missing values in binary variables were filled with the median of the variable; 

missing values in integer features were filled by the rounded value of their mean; and the missing 

values in float features were filled with the value of their mean. Additionally, a similar grid search as 

the one used for the XGBoost was implemented, suited to the hyperparameters of each model. After 

comparing the performance of all models, the authors concluded that the Stochastic GB gave similar 

scores as the XGBoost. This is explained by the fact that Stochastic GB has the same underlying 

methods as the XGBoost. Also, Stochastic GB was trained using the imputed data whereas the data 

Figure 2.2 - Model Comparison from Hanafy and Ming (2021) 
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used to train the XGBoost model had missing values. This suggests that the imputing strategy worked 

well and could be used in the XGBoost as well. Nevertheless, XGBoost still outperforms the other 

algorithms and is the authors’ choice to answer the problem of claim prediction. 

Abdelhadi, Elbahnasy, and Abdelsalam (2020) evaluated how Artificial Neural Networks, Decision 

Trees, Naive Bayes classifiers and XGBoost perform when predicting auto insurance claims. The 

authors used the mentioned algorithms to predict if the policyholder will file a claim during the 

observation period, using a dataset comprising 30.240 observations and twelve variables, including 

drivers’ information, vehicle data and previous claim history. After dealing with the missing values 

problem, using a multiple imputation process, the authors decided to discretize some variables using 

the 25, 50 and 75 percentiles, binning the observations. Additionally, categorical data, such as gender 

or marital status, was encoded and, due to the different nature and scales of the features, the data 

was standardized. After fitting the treated data to the models in study, the authors concluded that the 

XGBoost and the Decision Tree performed significantly better than the Neural Network and Naïve 

Bayes classifier, in both accuracy and AUC, with the XGBoost being the best one. 

As mentioned before, literature about the use of machine learning techniques to predict health 

insurance claims is scarce. However, this scenario changes if other types of insurance are considered, 

especially regarding motor insurance, where many studies have been conducted, as this section shows. 

The rationale behind predicting claims is the same, or at least similar, for all branches of insurance and 

that is the reason why this section is focused, almost exclusively, on motor insurance and the 

prediction of this type of claims. All the authors of the studies in analysis used at least one tree-based 

algorithm and compared them to other machine learning algorithms. In every case, one of the tree-

based techniques was deemed as the most accurate model and, therefore, the best solution for the 

problem in study. The tree algorithms that were chosen the most were either Gradient Boosting 

(Guelman, 2012) or XGBoost (Abdelhadi et al, 2020; Fauzan & Murfi, 2018). The problem was divided 

into two parts: frequency and severity, also known as cost (Guelman, 2012), and the need for a 

resampling technique, due to the low claim frequency, emerged (Hanafy & Ming, 2021). The 

importance of proper data preparation (Abdelhadi et al, 2020), variable selection (Hanafy & Ming, 

2021) and tuning of the models’ hyperparameters (Fauzan & Murfi, 2018; Pesantez-Narvaez et al, 

2019) was also highlighted. Learning from the authors of the aforementioned studies, their 

assumptions and conclusions were used and served as the basis for this project. 
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3. METHODOLOGY 

As mentioned previously, the goal of this report is to build models that use the company’s data on 

clients to predict claims and their costs more accurately, and to assist the subscribers during the policy 

renovation process. As is common in the insurance business, two main components need to be 

considered to estimate the clients’ costs: the number of claims and the cost of those claims or, in other 

words, the frequency and the costs. These two events are estimated separately, as they are dissimilar 

and are often explained by different variables, thus there is a need to have two different data frames: 

the Cost Dataset and the Frequency Dataset. 

This data-driven renovation process is still in its first stages in the company, so this report is detailing 

a pilot project which comprises only a few selected clients (companies) and the data spans over the 

course of three years, from 2017 to 2019. 

Both datasets were extracted from the company servers, using SAS Enterprise Guide, by merging a 

panoply of different tables containing the information deemed necessary to build the proposed 

models, for example, customers’ gender, age, area of residence, claim and diagnosis history, among 

others. 

The data was properly handled, treated, and anonymised to protect the clients’ identity and to comply 

with data protection rules. 

The pre-processing and modelling stages of this project were performed using Python, namely the 

following packages: pandas, NumPy, csv, matplotlib, seaborn, plotly, category_encoders, scikit-learn, 

optuna, imblearn, collinearity and xgboost. 

 

3.1. FREQUENCY DATASET 

This dataset was used to build the frequency model and it has every information that is associated with 

each pilot client. It is composed of 106,609 insured people, however, given that the goal of this project 

is to calculate the cost of the last three months, the information needs to be displayed in a monthly 

view, so each person is going to be represented twelve times, one for every month of the annuity, 

resulting in a dataset with 1,279,308 observations. 

Since the goal of this study is to estimate the frequency of inpatient claims, the target variable is the 

number of claims each client is going to file in that specific month. As there are almost no clients who 

file more than one claim in a month, it was decided to code the target variable as binary, indicating if 

the client filed an inpatient claim or not. 

The remaining features can be divided into two main groups: the ones that are at the insured person 

level and characterize them individually; and others regarding social-economic and demographic 

indicators. This last group of variables was extracted from external sources such as the Portuguese 

National Statistics Institute, INE (Instituto Nacional de Estatística), or the Portuguese National Health 

Service, SNS (Serviço Nacional de Saúde).  
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The first group of variables features the target variable; clients’ personal information, like age, gender 

and area of residence; and details about the client’s plan, such as spending limits, co-pays and 

deductibles. Additionally, information regarding the clients’ Inpatient claims in the previous six months 

was included, as well as a binary variable indicating if there is any history of oncologic diagnosis for 

each person in the database. Finally, information concerning the outpatient claims of the previous 

three months was included, as most, if not all, inpatient claims are scheduled and are, therefore, 

preceded by outpatient claims, mainly clinical analysis and medical appointments. Thus, it is expected 

that the increase in these claims can help predict the inpatient ones. This information is shown in Table 

3.1. 

 

Variable Type 

Claim Binary 

Age Numerical 

Gender Categorical 

Spending Limit Numerical 

Copay Numerical 

Deductibles Numerical 

Oncologic Diagnosis Binary 

Amount of Previous Inpatient Claims Numerical 

Cost of Previous Inpatient Claims Numerical 

Amount of Previous Outpatient Claims Numerical 

Cost of Previous Outpatient Claims Numerical 

Days since last Outpatient Claim Numerical 

District Categorical 

Health Region Categorical 

Table 3.1 – Frequency Database Internal Variables 

 

The second group of variables, shown in Table 3.2, includes some social-economic and demographic 

indicators, extracted from external sources, as mentioned previously. These features include 

information about medical indicators, such as vaccination rates, medical screenings, or hospital 

admission rates; demographic indicators of the clients’ area of residence; and, lastly, road networks 

information used to calculate the distance between the clients’ residence and the closest healthcare 

providers, as well as the travel time. In this table, it is possible to see the description of the variables, 

their type, and sources. 

The data extracted from INE is associated to each client through their statistical subsection, which 

corresponds to their block, in urban areas, the place or part of the place, in rural areas, or residual 

areas that may or may not contain statistical units. 



9 
 

The data retrieved from the SNS Transparency Portal is linked to the insured person by the closest 

public Hospital influence area or, in most cases, by their ACES (Agrupamento de Centros de Saúde) 

influence area. The ACES is how the SNS divides the country in terms of influence areas of the primary 

healthcare providers, the Health Centres. 

 

Variables Type Source 

Residents by Education Level Numerical INE 

Residents by Job Sector Numerical INE 

Retired Residents Numerical INE 

Responsiveness of Public 
Health Providers 

Numerical SNS Transparency Portal 

Oncological Screenings Numerical SNS Transparency Portal 

Number of Appointments Numerical SNS Transparency Portal 

Number of Surgeries Numerical SNS Transparency Portal 

Vaccination Rates Numerical SNS Transparency Portal 

Responsiveness of Private 
Health Providers 

Numerical Private Entities 

Distance to closest Public 
Hospital 

Numerical Road Network 

Travel Time to closest Public 
Hospital 

Numerical Road Network 

Distance to closest Private 
Hospital 

Numerical Road Network 

Travel Time to closest Private 
Hospital 

Numerical Road Network 

Table 3.2 – Frequency and Cost Databases External Variables 

 

3.1.1. Exploratory Data Analysis 

By exploring the datasets, it is possible to gain a better sense of the data available for the project and 

to understand what adjustments are going to necessarily be done. This section is focused on 

performing an exploratory analysis of the data, to gain insights into the frequency dataset. 

In Table 3.3, it is possible to see that Inpatient claims are not very common, and the dataset reflects it, 

with over 99% of records filing no claims at all, in the observed month. Additionally, only 0.01% of 

observations file two or more claims in a month, so the number of claims can be seen as a binary 

variable. This results in 99.7% of observations not filing claims and, oppositely, 0.3% file inpatient 

claims in that month, as is shown in Table 3.4. 

As this is a rare event, the dataset is naturally imbalanced. Using the dataset in this condition to make 

predictions can lead to biased conclusions, thus this issue will need to be addressed. 
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Number of Claims Count Frequency (%) 

0 1,275,745 99.7215 

1 3,445 0.2693 

2 114 0.0089 

3 3 0.002 

4 1 0.001 

Table 3.3 – Claim Distribution by Number of Claims 

 

Has Claim Count Frequency (%) 

No 1,275,745 99.7 

Yes 3,563 0.3 

Table 3.4 – Claim Distribution by Binary Response 

 

In terms of gender distribution, as Figure 3.1 displays, the dataset is relatively balanced with 55% of 

insured people being females. Figure 3.2 shows that the distribution is very similar for the number of 

claims, with 53% of claims associated to females. Given that both distributions are similar, this could 

mean that gender is possibly not an important variable to estimate claim frequency. 

 

 

In Figure 3.3, information regarding age distribution is on display. The median age is 35 years old and 

most insured people are between the ages of 20 and 60, which was expected given that this sample is 

based on the insurance plans companies purchase for their workers. The under 18-year-olds 

Figure 3.1 - Insured People by Gender Figure 3.2 - Claims by Gender 
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correspond to the workers’ children and the spike in the age 0 shows that there is a significant number 

of new-borns. Additionally, it is possible to see there are some insured people over the age of 65, 

mostly due to some insurance plans for retired people. 

 

 

Moreover, it is even easier to see the distribution mentioned above by looking at Figure 3.4, the 

insured people by age group. The predominance of individuals between the ages of 20 and 60 is 

evident and this can be explained, as well as the reduced number of people with later ages, by the fact 

that most individuals in this sample belong to the working population. 

 

 

Figure 3.4 - Insured People by Age Group 

Figure 3.3 - Insured People by Age 



12 
 

Nevertheless, the scenario changes slightly when analysing the number of claims by age. The median 

age of the insured people who actually file inpatient claims is 42 years old and it is possible to see, in 

Figure 3.5 and Figure 3.6, that the most represented age group is 40-49, whereas the age group with 

most people is 30-39. Furthermore, the age groups 20-29 and 60-69 have roughly the same amount of 

claims, even though the first group has, more than six times, more people than the second. 

 

 

 

Combining the information about both the number of people and the number of claims, it is possible 

to obtain the ratio of claims by insured person. Figure 3.7 evidences that this ratio goes up with the 

age of the insured person, therefore this information suggests that age can be an important factor to 

estimate the frequency of inpatient claims. 

Figure 3.5 - Number of Claims by Age 

Figure 3.6 - Number of Claims by Age Group 
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Figure 3.8 shows the distribution of insured people by district. When looking at it, three of them stand 

out as the most common: Lisbon, Porto and Setúbal. These three districts are the residence of roughly 

75% of the insured people in this study and this distribution is similar for the number of claims, shown 

in Figure 3.9, with 83% of them being associated to clients from Lisbon, Porto or Setúbal. 

 

 

 

 

 

Figure 3.7 - Claims per Insured Person by Age Group 

Figure 3.8 - Insured People by District 
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Given the overwhelming amount of people living in the districts mentioned previously, it was expected 

that the majority of claims were associated to insured people from those districts. For that reason, it 

can also be interesting to analyse the ratio of claims per insured person by district. Figure 3.10 shows 

that Lisbon, Porto and Setúbal still stand out, but are now accompanied by Évora and the Azores. 

However, it is important to remember that these districts have significantly fewer people living there. 

 

Another variable that can also be important to the process of estimating the frequency of inpatient 

claims is the spending limit of this coverage, as it dictates how much a person can spend. Additionally, 

it is important to note that the 500,000€ spending limit is fictitious and represents the unlimited 

spending limits, as it will be explained further ahead. 

Figure 3.9 - Number of Claims by District 

Figure 3.10 - Claims per Insured People by District 
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Figure 3.11 demonstrates that the majority of insured people have a spending limit of either 15,000€ 

or 17,500€, accounting for around 50% of the sample. There is also a significant number of people with 

an unlimited spending limit and 50,000€ is the fourth most common spending limit. 

 

 

The distribution of the claims by spending limit is similar to the one mentioned above, with the four 

most common spending limits being the same. However, the people with the most common spending 

limit, 17,500€, are only the third biggest spenders, as Figure 3.12 shows. Because of this unexpected 

behaviour, the ratio of claims per insured person by spending limit was also analysed. 

 

 

As it is possible to see in Figure 3.13, the pattern of the ratio of claims per insured person is rather 

irregular. In other coverages, there is usually an ascending trend between this ratio and the spending 

Figure 3.11 - Insured People by Spending Limit 

Figure 3.12 - Number of Claims by Spending Limit 
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limits. In the case of the Inpatient coverage, this does not apply, most likely due to it not being a 

consumption coverage, unlike Outpatient, for example. 

 

 

Having an oncological diagnosis is considered to be something that can lead to more and more 

frequent inpatient claims. Figure 3.14 shows that the number of insured people who have an 

oncological diagnosis is reduced, amounting to only 0.2% of observations, and that is reflected in the 

number of claims, with 96% of claims being filed by people without an oncological diagnosis. However, 

when analysing the ratio of claims by insured person, it is possible to conclude that the oncological 

diagnosis has a big influence on the number of inpatient claims, as is reflected in Figure 3.15.  

 

 

Figure 3.13 - Claims per Insured People by Spending Limit 

Figure 3.14 - Claims by Oncological Diagnosis Figure 3.15 - Claims per Insured Person by Oncological 
Diagnosis 
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The amount of money spent on Outpatient claims can also be a factor that might affect Inpatient claims 

and it could be interesting to check the relation between them, as it is very rare to have an Inpatient 

claim without any medical appointment or auxiliary exams. With this goal in mind, the expenditure in 

Outpatient claims in the previous three months was plotted, in Figure 3.16, to see if there is a 

relationship between Inpatient and Outpatient claims. 

 

 

In the figure above, it is clear that the Claims per Insured Person ratio, the division between the number 

of Inpatient claims by the number of insured people, increases with the cost of the Outpatient claims. 

Therefore, it is possible to conclude that there is a relation between the expenditure on Outpatient 

claims and the number of Inpatient claims. 

 

3.2. COST DATASET 

This dataset was used to build the cost model and it has information regarding every claim belonging 

to the pilot clients, during the study period. It is composed by 3.686 claims. 

Just like in the frequency problem, the variables present in this dataset can be divided into two groups: 

the ones at the insured person level and the others regarding social-economic and demographic 

indicators. The description of the first set of variables, as well as their types, can be seen in Table 3.4. 

Regarding the second group of features, it is the same as the one present in the frequency dataset and 

its information is presented in Table 3.2. 

 

 

Figure 3.16 - Claims per Insured Person by Cost of Outpatient Claims 
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Variables Type 

Claim Cost Numerical 

Age Numerical 

Gender Categorical 

Spending Limit Numerical 

Copay Numerical 

Deductibles Numerical 

Oncologic Diagnosis Binary 

Amount of Previous Inpatient Claims Numerical 

Cost of Previous Inpatient Claims Numerical 

District Categorical 

Health Region Categorical 

Table 3.5 – Cost Database Internal Variables 

 

3.2.1. Exploratory Data Analysis 

Just like it was done for the frequency dataset, in this section, the cost dataset was explored to 

understand the data and what adjustments are going to have to be done. 

The cost dataset is composed of every claim that each insured person filed in the period in study. This 

value amounts to 3,686 claims and the average value of a claim is around 3,000€. 

As it was mentioned in section 3.1.1, 53% of claims are associated with female clients. In terms of cost, 

the distribution is almost identical: 54% of the total cost concerns females, as Figure 3.17 shows. 

 

Figure 3.17 - Claim Cost by Gender 
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The median age of the people who file inpatient claims is 42 years old. However, the distribution of 

costs is not symmetrical, which indicates that older people tend to have more expensive claims. 

In Figure 3.5 - Number of Claims by Age, it is possible to see that the number of claims is concentrated 

around the age of 40 and that there are not many claims of people above 60. Plus, there is a small 

spike of claims at the age of 0. Looking at Figure 3.18, it is visible that there are high costs associated 

with people between 60 and 65 years old, nevertheless the costs now tend to focus between the ages 

of 40 and 50. Also, even though newborns have a significant number of claims, their costs are not that 

high. 

 

In Figure 3.19, the cost per claim by age is displayed. It confirms the trend shown in the previous figure, 

as the cost per claim increases with age, although at a smaller pace. It shows a steady growth until the 

age of 65, where some spikes start to appear. Figure 3.7 - Claims per Insured Person by Age Group, 

had already shown that the older age groups have a higher claim by insured person ratio, however this 

can be explained by these age groups not having many people (see Figure 3.4) or many claims (see 

Figure 3.6). 

 

Figure 3.18 - Claim Cost by Age 

Figure 3.19 - Cost per Claim by Age 
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As it was mentioned previously, 83% of claims concern insured people who reside in either Lisbon, 

Porto or Setúbal. Thus, it is no surprise to see, in Figure 3.20, that 84% of the total costs are associated 

to these districts. 

 

 

However, the scenario changes when the cost per claim is the metric in evaluation. As Figure 3.21 

shows, there is not a significant pattern in the distribution of costs. Castelo Branco is the district with 

the highest cost per claim, and the only one above 4,000€, with a cost per claim of 4,971€. The 

remaining fluctuate between 2,162€ and 3,927€, the lowest and second highest cost per claim, 

respectively. 

 

 

Figure 3.20 - Claim Cost by District 

Figure 3.21 - Cost per Claim by District 
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The distribution of costs by spending limit, in Figure 3.22, is as expected, almost identical to the one 

shown in Figure 3.12 - Number of Claims by Spending Limit, given that more claims usually mean higher 

costs. For this reason, it can be more useful to look at the cost per claim, instead of the total costs. 

 

 

The spending limits 30,000€ and 60,000€ have a cost per claim of 6,033€ and 4,010€, respectively, and 

these values are higher than the aforementioned average of 3,000€. While the spending limit 75,000€ 

has the lowest cost per claim, amounting to 1,995€ per claim, the remaining ones are very close to the 

average cost, as Figure 3.23 displays. 

 

 

As it was mentioned previously, only 0.2% of insured people have an oncological diagnosis. This 

translates into having more claims associated with non-oncological patients and, consequently, the 

majority of costs, totalling around 95% of the total costs. 

Figure 3.22 - Claim Cost by Spending Limit 

Figure 3.23 - Cost per Claim by Spending Limit 
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However, as is shown in Figure 3.15 - Claims per Insured Person by Oncological Diagnosis the number 

of claims per insured person is higher for oncological patients. The same analysis was done for the 

costs, in Figure 3.24, and is possible to conclude that the oncological diagnosis leads to bigger 

spendings, as these people have an average cost of 4,331€ per claim versus the 2,905€ per claim of 

non-oncological patients. 

 

3.3. PRE-PROCESSING 

Data is rarely prepared to be immediately used in modelling processes. There is a need to treat it, to 

be able to draw acceptable and valid conclusions. Pre-processing is a set of processes that are used to 

clean data and make it model-ready. 

 

3.3.1. Missing Values 

When an observation does not have a record for a given variable, it is called a missing value. Some 

models do not accept missing values as input, but even if they did, it is good practice to try and fill the 

missing values with their real value or a proxy. There are several methods to achieve this goal and 

some of them will be discussed, and used, further on. 

After analysing the missing values of both the Cost and Frequency datasets, it is possible to see that 

there are some variables with an absurd amount of missing values. When a variable has this amount 

of missing information, it is not helpful and it is more useful if it is just dropped. For this reason, all 

variables with over 30% of missing values, except the deductibles on both dataframes and the variables 

related to outpatient claims on the frequency one, were removed from the datasets. 

After removing these variables, the remaining needed to be analysed to determine how to correct the 

missing values problem: whether by a simple imputation or if there is the possibility of getting the 

correct value. 

Figure 3.24 - Cost per Claim by Oncological Diagnosis 
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3.3.1.1. Deductibles 

First of all, the different types of deductibles need to be explained. There is the Minimum, the 

Maximum and the Normal Deductible.  Not all health insurance plans have these types of deductibles 

but, in the ones that do, the customer pays an amount between the Minimum and the Maximum 

Deductible. 

The Minimum and Maximum Deductibles are monetary variables and represent the boundaries for 

what the client has to pay, unlike the Normal Deductible, which is a percentage and, as such, ranges 

between zero and one hundred. It represents the share of the claim cost that the customer has to bear 

if that value is between the Minimum and Maximum Deductibles. 

The first step to calculate the amount of money the client will have to pay is to multiply the cost of the 

claim by the Normal Deductible. If this value is between the Minimum and Maximum Deductible, that 

is the amount the customer will pay. In case this value is under the Minimum or over the Maximum 

Deductible, the client will pay the Minimum Deductible or Maximum Deductible, respectively. 

Therefore, if a customer has a normal deductible of 10%, and a minimum and maximum deductible of 

200€ and 500€, respectively, it means that the client has to pay 10% of the claim cost if that value is 

between 200 and 500 euros. Imagining that this client has a claim of 3,000€, they will have to pay 10% 

of the claim, as 300€ is comprised between 200 and 500 euros. If the amount the client has to pay is 

inferior to 200€, for example in a claim worth 1,500€, they pay the minimum deductible. Similarly, if 

the amount to pay exceeds 500€, for instance in a 6,000€ claim, the customer will pay the maximum 

deductible, considering that this client does not exceed their spending limit. 

Some observations did not have information regarding the maximum deductible but, even if it is not 

specified in the plan, there is always a maximum amount of money that the insurance will afford. This 

value can be calculated by multiplying the spending limit by the co-pay. This procedure was performed 

in both cost and frequency datasets. 

Additionally, some records have all three deductibles as missing values, because this information is not 

specified in the insurance plan. To correct this situation, those variables were imputed with the value 

zero, as there is no deductible. 

3.3.1.2. Health Region 

In both datasets, there is a variable regarding the health region in which the customer is located. This 

region is associated, by the SNS, to a person depending on the district they live in, thus the District 

variable was used to correct these missing values, in the following way: 

If a customer lives in: 

• Braga, Bragança, Porto, Viana do Castelo or Vila Real, they are assigned to the Região de Saúde 

do Norte (North Health Region); 

• Aveiro, Castelo Branco, Coimbra, Guarda, Leiria or Viseu, they are assigned to the Região de 

Saúde do Centro (Centre Health Region); 

• Lisbon, Santarém or Setúbal, they are assigned to the Região de Saúde de Lisboa e Vale do Tejo 

(Lisbon and Tagus Valley Health Region); 
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• Beja, Évora or Portalegre, they are assigned to the Região de Saúde do Alentejo (Alentejo 

Health Region); 

• Faro, they are assigned to the Região de Saúde do Algarve (Algarve Health Region). 

There is not an official health region for the Madeira and Azores archipelagos, nonetheless, the 

customers who live there were assigned to a fictional Islands Health Region. 

3.3.1.3. Outpatient Claims Variables 

Except in cases of emergency, the Inpatient claims are usually preceded by some form of medical 

follow-up, usually in the form of consultations, blood tests, etc. For this reason, it was decided to 

include this information in the models, in the form of Outpatient claims, divided by its subcategories, 

in the previous three months. Three variables were created for each subcategory: the total cost of the 

claims, the total amount of claims and the number of days since the last claim. 

The customers that did not have any claims in the previous three months had missing values in all 

three variables, so an imputation of zero was applied to these features. 

3.3.1.4. Other Variables 

When analysing the rest of the variables, it was discovered that two of them had incoherent scales and 

were, therefore, removed. Both variables had been extracted from the SNS Transparency Portal. 

The remaining features that still had some missing values, but less than thirty per cent, were corrected 

by imputing the median of each variable, respectively. The median was chosen over the mean because 

it is less susceptible to outliers. 

3.3.2. District 

The original District variable holds the client’s district of residence, if said client lives in mainland 

Portugal. If a customer lives in either of the archipelagos, the island of residence is shown in the District 

variable. Ultimately, this means the District variable has twenty-nine different categories. 

To reduce this variable’s cardinality, it was decided to group the islands in their respective archipelago, 

so instead of having eleven islands on the district variable, two from Madeira and nine from the Azores, 

there will only be two categories, named after each archipelago. 

Instead of the twenty-nine original categories, there are now twenty. Nevertheless, there was still the 

need to reduce this variable’s cardinality, as twenty categories are too many. For that reason, it was 

decided to group the least frequent districts in a single category called Other. 

After investigating which districts appear more frequently in the dataset, it was possible to conclude 

that seventy-five per cent of the clients live in three districts, as Table 3.6 shows. Hence, it was decided 

to keep those three and merge the remaining. In the end, the District variable was reduced to four 

categories: Lisbon, Porto, Setúbal and Other. 
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District Clients (Total) Clients (%) 

Lisbon 43,734 41.0 

Porto 25,059 23.5 

Setúbal 11,628 10.9 

Braga 4,695 4.4 

Santarém 3,660 3.4 

Aveiro 3,510 3.3 

Faro 2,539 2.4 

Leiria 1,945 1.8 

Coimbra 1,764 1.7 

Madeira 1,490 1.4 

Viseu 1,481 1.4 

Viana do Castelo 1,126 1.1 

Évora 867 0.8 

Vila Real 669 0.6 

Castelo Branco 634 0.6 

Portalegre 505 0.5 

Beja 458 0.4 

Guarda 319 0.3 

Azores 283 0.3 

Bragança 242 0.2 

Table 3.6 – Client Distribution by District 

 

3.3.3. Unlimited Spending Limits 

Some insurance plans have unlimited spending limits, but they still need to be inserted into the 

company’s system. To illustrate this situation, these spending limits are usually represented by a series 

of nines. In these datasets, the unlimited spending limits are shown as 9,999,999€, 99,999,999€ and 

9,999,999,999€. 

The highest real spending limit in the dataset is 200,000€, so it is possible to see that the unlimited 

limits are clear outliers. To correct this situation, but still acknowledging that the customers who have 

these spending limits can spend much more than the remaining ones, it was decided to change the 

unlimited spending limits to a dummy value of 500,000€. 

 

3.3.4. Inflation 

As it is known, money does not have the same value over time and this study spans over the course of 

three years, from 2017 to 2019. So, to be able to compare the monetary variables between the 

different years, it was necessary to adjust them to the inflation of the respective year. 
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Given that the topic of this study is health insurance, the inflation on health services was used, instead 

of the general inflation.  

 

3.3.5. Correlation 

Analysing the correlation between variables is a crucial part of the pre-processing stage, since highly 

correlated features provide us the same information. Having correlated variables in the dataset can 

produce biased results as well as increasing computational time, making the modelling process 

significantly more inefficient.  

In both cost and frequency datasets, the large amount of variables complicates the manual analysis of 

which of the correlated variables should be kept and which should be discarded. Thus, to simplify this 

process, the python package collinearity, and its function SelectNonCollinear, were used. 

The collinearity package calculates the Pearson’s correlation coefficient between the variables and 

identifies the pairs above a user-defined threshold, which in this case was 0.7. Simultaneously, the 

algorithm computes the importance of each feature concerning the target variable, using a univariate 

approach. After performing both processes, the algorithm selects the most important variable from 

each set of correlated variables. 

After performing this procedure in both datasets, cleansing them of correlated features, the cost 

dataset ended with thirty-nine variables, out of the original seventy-four, and the frequency dataset 

went from one hundred and seven features to fifty-nine. 

 

3.3.6. Outliers 

Outliers or extreme values are observations that, on one or multiple variables, are very distant from 

the remaining ones. Having these observations in the datasets can skew the results of some models, 

as they can drastically change the variables’ mean and, as such, is best to remove them from the 

datasets. 

To perform this task, the boxplot of each variable was visually analysed and, based on these graphs, 

the outlier observations were identified. 

After pinpointing the outliers on the cost and frequency datasets, they were removed from both data 

frames. Additionally, it was decided to remove from the frequency dataset all clients whose claims 

were classified as cost outliers, given that said claims were not considered for the cost model, and 

could bias the frequency estimations. 
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3.4. MODELLING 

3.4.1. Train Test Split 

When developing a model, the dataset used for the study needs to be split into the train and test 

datasets. The first one is used to build and train the model that is going to be used to answer the 

problem. The second one is utilized to test the quality of the model’s predictions. The partition in train 

and test datasets can be made randomly or can be manually defined. 

As mentioned previously, this project is focused on the period between 2017 and 2019 and its goal is 

to use client history to predict the last trimester of their annuity, so as to complete the year and assist 

in the policy renovation process. 

With this goal in mind, the train and test datasets were defined in the following way: 

• Train Dataset: every month that the customer stayed in the company, apart from the last 

three. 

• Test Dataset: the last trimester of the client in the company, within the study period. 

After defining the train and test datasets for both studies, Cost and Frequency, it became possible to 

proceed to the modelling stage of the project. 

 

3.4.2. Models 

The goal of the cost model is to calculate the cost of a claim based on previous claims and the variables 

mentioned before. The object of this study is money, which is a continuous variable, thus we are before 

a regression problem. 

Several algorithms were tested, and the results they produced will be discussed further on, namely: 

Linear Regression, Decision Tree Regressor, Random Forest Regressor, Gradient Boosting Regressor 

and Extreme Gradient Boosting (XGBoost) Regressor. 

On the other hand, the main objective of the frequency model is to estimate whether a client will or 

will not file Inpatient claims and it uses a set of social, economic, and demographic variables related to 

each customer as input. The output is binary, one if the customer is estimated to file a claim in that 

month, otherwise zero. Hence, the frequency problem can be categorised as a classification.  

The algorithms that were evaluated to estimate the frequency were almost the same as in the study 

of the cost, but applied to classification problems, instead of regression: Logistic Regression, Decision 

Tree Classifier, Random Forest Classifier, Gradient Boosting Classifier and Extreme Gradient Boosting 

(XGBoost) Classifier. 

3.4.2.1. Linear and Logistic Regression 

Linear Regression is a simple and traditional form of analysing problems where it is assumed that there 

is a linear relation between the dependent variable, which must be represented on a continuous scale, 

and the independent variables. The Linear Regression produces a mathematical equation that best 
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describes the relationship between the variables and also provides estimates of regression variables 

and a test of significance for each variable (Worster et al., 2007). 

When the target variable is on a categorical scale, the Logistic Regression is best suited. The rationale 

behind the logistic regression is similar to the linear regression in the sense that it creates a model to 

describe the impact of multiple predictors on a single response variable. But unlike the linear 

regression, the independent variables in a logistic regression do not need to be linearly related or 

normally distributed. Since the relation between the predictor and outcome variables is not assumed 

to be a linear function, the measure of association between the dependent and independent variables 

is represented by an odds ratio instead of a multiplicative factor. By comparing the odds ratios 

between the predictor variables, it is possible to determine which factors are of greatest importance, 

while their statistical significance is indicated by their confidence intervals. 

3.4.2.2. Decision Tree 

Rokach and Maimon (2005) define a decision tree as an algorithm built through a recursive partition 

of the instance space, which is an iterative process where the data is split successively into the several 

branches that the tree creates and consists of three types of nodes: the first one is called root and does 

not have incoming edges; the rest of the nodes have exactly one incoming edge and are divided in: 

internal nodes, if they have outgoing edges; and finally there are terminal nodes, more commonly 

known as leaves.  

In a decision tree, the root node is calculated by evaluating which variable provides the best partition 

of the data, based on a measure that quantifies the improvement of the estimation based on that 

partition, usually the Gini index or information gain. This process is repeated and at each stage, the 

splits are evaluated using the previously mentioned metric and the tree chooses the partition that 

maximizes it. The iterations stop when a node cannot be split any further: when a partition that can 

change the value of that node’s output does not exist, or when splitting the data does not add value 

to the predictions. 

Ultimately, the output for each observation can be calculated by navigating from the root of the tree 

down to the leaves, according to the outcome of each individual split. 

3.4.2.3. Random Forest 

A Random Forest, as the name suggests, is a tree-based algorithm that consists of an ensemble of 

several individual learners, specifically decision trees. The decision tree algorithm can be seen as a 

weak learner, but by combining several weak learners it is possible to build a strong learner, which has 

its outputs calculated through a majority vote. 

The individual learners are trained using a bootstrapping technique that forms a dataset, by sampling 

with replacement instances of the original training set, which is called in-bag. The number of examples 

in this new dataset is the same as the ones on the training dataset, thus it may contain duplicate 

examples. When using the bootstrapping technique, a part of the training data is kept out of the in-

bag sample, usually one-third. This left-over data is known as the out-of-bag data and it is used to 

obtain an unbiased estimate of the error as trees are added to the forest. It is also used to get estimates 

of each variable importance (Livingston, 2005). 
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Afterwards, a random subset of features is chosen for each tree, the random subspace, and they form 

the nodes and leaves of the individual learners using standard tree-building algorithms. Each tree is 

grown to the fullest extent possible without pruning. 

3.4.2.4. Gradient Boosting and Extreme Gradient Boosting 

The Gradient Boosting algorithm can also be classified as an ensemble technique, but instead of relying 

on a simple averaging of models in the ensemble, it is based on a sequential strategy of ensemble 

formation, as Natekin and Knoll (2013) state. Unlike the Random Forest, where each tree is built 

independently, Gradient Boosting is an additive model – it adds new trees to the ensemble 

sequentially. At each iteration, the new weak tree base learners are trained concerning the error of 

the whole ensemble learnt thus far. 

In Gradient Boosting, the learning procedure consecutively fits new models to provide a more accurate 

estimate of the response variable, to compensate for the shortcomings of the existing learners. The 

main idea behind this algorithm is to build the new base learners to be as highly correlated as possible 

with the negative gradient of the loss function associated with the whole ensemble.  

Extreme Gradient Boosting (XGBoost) is also an additive ensemble of decision trees. XGBoost is a 

machine learning system that can scale tree-boosting algorithms reliably and is optimized for fast 

parallel tree construction. The biggest advantage of this method is its performance – when compared 

to other gradient-boosting algorithms, XGBoost is much faster, allowing it to handle larger amounts of 

data while maintaining good results. 

 

3.4.3. Scaling 

The variables present in both studies are in very different scales, therefore, to be able to compare 

them, there is a need to scale them. To achieve this goal, four distinct methods were used: the 

Standard Scaler; MinMax between zero and one; MinMax between minus one and one; and the Robust 

Scaler. 

The Standard Scaler, or standardization, is calculated by subtracting the mean of the variable from 

each observation and then dividing it by the standard deviation. 

The MinMax method is used to normalize the data in the desired scale. In this case, two scales were 

chosen: between zero and one and between minus one and one. In the first scenario, the new values 

are calculated by subtracting the minimum value of that variable from the observation and then 

dividing by the difference between the maximum and minimum values. In the second instance, the 

procedure is very similar. The division used to put the observation between zero and one is multiplied 

by two and then one is subtracted from this product, resulting in all observations being transformed 

to range between minus one and one. 

The Robust Scaler uses the interquartile range to scale the data. In other words, it removes the median 

and scales the data in the range between the first quartile and the third quartile. Like the previous 

methods, it also consists of a division, specifically, amongst the difference between the observed value 

and the first quartile and the difference between the third and first quartiles. 
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The results of the scaling methods were compared and the best one for each of the different tested 

algorithms was used. 

 

3.4.4. Recursive Feature Elimination 

The first algorithms to be tested for both cost and frequency estimations were, respectively, the linear 

and logistic regressions. Unlike tree-based models, where the algorithm itself chooses the relevant 

features to make partitions, these models use all given variables to produce results, therefore there 

can be a lot of unhelpful and useless information that can lead to not having the best results possible, 

making the models less effective. Hence, there is a need to select the input variables to be considered 

by these algorithms. 

To achieve this goal, the Recursive Feature Elimination (RFE) method was used. RFE selects the features 

that are more relevant to predict the target variable by fitting the desired machine learning algorithm, 

in this case, linear and logistic regressions, and ranking the features by importance. After having the 

importance of each variable, the model is fitted to the N most important features. The number of 

variables to include is decided by evaluating the r-squared coefficient, in the case of the linear 

regression, or the f1-score, in the case of the logistic regression, of the model with just the most 

important feature, then with the two most important features and so on, until having the r-squared or 

f1-score of the model that includes all variables. When the inclusion of a feature worsens the r-squared 

or f1-score, the cut-off point is found and only the variables ranked above this point are kept.  

 

3.4.5. Hyperparameter Tuning 

After deciding on the scaling method, the results of the algorithms can be improved by finetuning its 

hyperparameters. To perform this process, the function GridSearchCV, from the python package scikit-

learn, was initially used, but was later abandoned due to its high running time and optuna was used 

instead. 

Similarly to the grid search, this package trains the desired model with the different hyperparameter 

combinations specified by the user and then compares the results of all combinations using a user-

specified metric, in this case, r-squared for the cost models and f1-score for the frequency ones. This 

procedure, combined with the scaling, generates the best possible results for these problems, as every 

step is optimized. 

In the case of the decision trees, this optuna hyperparameter tuning is known as pre-pruning and its 

results were also compared to the post-pruning results, obtained by adjusting the ccp_alpha 

parameter. Only one of the processes, pre-pruning or post-pruning, is chosen.  

In the tables below, it is possible to see the results of the hyperparameter tuning procedure for both 

models: cost, a regression problem; and frequency, a classification problem. 

Table 3.7 shows the parameters that were chosen to tune the two decision trees. Tuning the ccp_alpha 

parameter proved to be more powerful than the optuna approach, showing that, in this case, post-

pruning beats pre-pruning. 
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Model Parameter Value 

Cost Model ccp_alpha 33823.6031 

Frequency Model ccp_alpha 0.000028019 

Table 3.7 – Decision Tree Parameters 

 

Regarding the Random Forests, only the Cost Model was tuned, as is shown in Table 3.8. The Frequency 

Model provided the best results when using the default parameters. 

 

Model Parameter Value 

Cost Model 

criterion absolute_error 

n_estimators 143 

max_depth 9 

min_samples_split 5 

min_samples_leaf 7 

Table 3.8 – Random Forest Parameters 

 

Table 3.9 and Table 3.10 show the parameter tuning results for both Gradient Boosting and XGBoost 

algorithms. Unlike the Random Forests, both Cost and Frequency models were more accurate when 

tuned. 

 

Model Parameter Value 

Cost Model 

n_estimators 80 

loss lad 

criterion mse 

max_depth 9 

max_features sqrt 

Frequency Model 

n_estimators 140 

loss exponential 

criterion friedman_mse 

max_depth 12 

min_samples_leaf 1 

max_features log2 

Table 3.9 – Gradient Boosting Parameters 
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Model Parameter Value 

Cost Model 

booster gblinear 

max_depth 6 

n_estimators 136 

tree_method exact 

Frequency Model 

booster gbtree 

max_depth 10 

tree_method auto 

sampling_method uniform 

Table 3.10 – XGBoost Parameters 

 

3.4.6. Oversampling and Undersampling 

As mentioned previously, the frequency dataset is very imbalanced, as there are much more people 

who do not file Inpatient claims. This bias can impact several machine-learning algorithms, even 

leading some to ignore the minority class entirely. To correct this problem, both oversampling and 

undersampling techniques were used to resample the training dataset. 

The random oversampling procedure consists of duplicating instances of the minority class and can be 

helpful when using machine-learning algorithms that are affected by an askew distribution or models 

that rely on good splits of data. On the other hand, random undersampling consists of deleting 

observations of the majority dataset and is used when the training dataset is very large or when there 

is a sufficient amount of minority class instances. This process also decreases computational time, as 

there are fewer observations. 

However, these techniques do not come without drawbacks. Both procedures help correct the 

imbalance problem, but the oversampling can increase computational time and resource use, as well 

as being possible to provide overfitted estimations. In the case of the undersampling technique, 

valuable information can be lost, as it deletes random instances of the majority class. For this reason, 

the results obtained with the resampled dataset should always be compared to those obtained using 

the original dataset. 

Since the frequency dataset is very large, it has over one million records, the undersampling technique 

is more indicated for this case. However, an oversampling of the minority class was performed before 

the undersampling, to have a more robust sample. Trying to match the number of instances of the 

minority class to those of the majority would be inefficient, computationally wise. Thus, the minority 

class was oversampled until the number of its observations equalled ten per cent of the instances of 

the majority class. After securing more samples of people with Inpatient claims, the undersampling 

procedure was then performed by deleting records of people with no claims until it matched the 

number of observations of the, already oversampled, minority class. 
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4. RESULTS AND DISCUSSION 

After dealing with all the problems that presented themselves during the pre-processing stage of the 

project, it was possible to build the proposed models: Linear and Logistic Regression, Decision Trees, 

Random Forest, Gradient Boosting and XGBoost. 

As mentioned previously, the goal of this project is to estimate the costs associated to client claims in 

the last three months of their annuity. With this goal in mind, two models were built: the cost model 

and the frequency model. 

 

4.1. COST MODELS 

To forecast the costs of the last trimester of the annuity, the models were built on an insured person 

level. However, since the goal of the project is to forecast at a business level, the costs were grouped 

by the company that each individual belonged to and only then were the results evaluated. In Table 

4.1, it is possible to see how the different algorithms performed in terms of the coefficient of 

determination (R2), Mean Absolute Error (MAE) and Root Mean Squared Error, as well as the difference 

between the Real Average Cost and Estimated Average Cost, in the train dataset. In Table 4.2, the same 

evaluation was made, but this time regarding the test dataset. 

 

 

Model 
Real Average 

Cost (€) 

Estimated 
Average Cost 

(€) 
R2 MAE RMSE 

Linear 
Regression 

471,297.44 

471,297.44 0.99961 11,328.11 14,652.10 

Decision Tree 471,297.47 0.99969 9,592.89 13,020.11 

Random Forest 382,292.53 0.94823 89,004.92 169,454.74 

Gradient 
Boosting 

391,050.76 0.95390 80,582.79 159,911.47 

XGBoost 471,068.56 0.99983 6,555.92 9,789.46 

Table 4.1 – Performance of the different Cost models on the Train Dataset 
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Model 
Real Average 

Cost (€) 
Estimated 

Avg. Cost (€) 
R2 MAE RMSE 

Linear 
Regression 

125,365.15 

124,951.83 0.99656 9,094.82 13,360.19 

Decision Tree 124,175.26 0.99509 9,704.06 15,963.99 

Random Forest 99,595.94 0.93751 26,665.50 56,932.14 

Gradient 
Boosting 

102,162.35 0.94882 23,992.51 51,524.56 

XGBoost 125,777.10 0.99704 9,180.43 12,399.24 

Table 4.2 – Performance of the different Cost models on the Test Dataset 

The XGBoost algorithm provides the best results for the cost problem and it will be used in the next 

stages of forecasting. 

 

4.2. FREQUENCY MODELS 

Identically to the cost models, the frequency was also estimated on an insured-person level. However, 

since the goal of the project is to forecast at a business level, the costs were grouped by the company 

that each individual belongs to and only then were the results evaluated.  

In classification problems, the response variable is a number, in this case zero or one, but it is calculated 

as a probability. This probability is transformed into a number based on a threshold, which is usually 

0.5. This means that the model will consider that every observation to which is assigned a probability 

higher than the threshold will file a claim. Given the complexity of the frequency problem, a new 

threshold, calculated resorting to the Precision-Recall Curves, was considered for each of the tested 

models. The new threshold is the value that maximizes the F1-Score and, in Table 4.3, it is possible to 

see the thresholds considered for each algorithm. 

 

Algorithm New Threshold 

Logistic Regression 0.959468 

Decision Tree 0.959468 

Random Forest 0.270000 

Gradient Boosting 0.936423 

XGBoost 0.909646 

Table 4.3 – New Thresholds considered for each Algorithm 

 

In Table 4.4, it is possible to see how the different algorithms performed in terms of Mean Absolute 

Error (MAE) and Root Mean Squared Error (RMSE), as well as the difference between the Real Average 

Number of Claims and Estimated Average Number of Claims, in the train dataset. Just like in the case 

of the cost models, the same evaluation was made for the test dataset, shown in Table 4.5. 
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Model 
Real Average 

Number of 
Claims 

Estimated 
Average Number 

of Claims 
MAE RMSE 

Logistic Regression 

5,494 

582 4,913 9,118 

Decision Tree 2,589 2,905 5,429 

Random Forest 5,991 499 1,067 

Gradient Boosting 2,879 2,615 4,874 

XGBoost 5,302 192 417 

Table 4.4 – Performance of the different Frequency Models on the Train Dataset 

 

Model 
Real Average 

Number of 
Claims 

Estimated 
Average Number 

of Claims 
MAE RMSE 

Logistic Regression 

38 

120 82 217 

Decision Tree 747 708 1,670 

Random Forest 206 168 449 

Gradient Boosting 22 16 30 

XGBoost 36 7 11 

Table 4.5 – Performance of the different Frequency Models on the Test Dataset 

 

The XGBoost algorithm provides the best results for the frequency problem and it will be used in the 

next stages of forecasting. 

 

4.3. FORECAST 

The goal of this project is to propose a new model to project claim costs of the last trimester of each 

client’s annuity. These projections are made by using the best-performing algorithms and multiplying 

the estimate of the cost of each client’s claims by the estimate of the number of claims. 

To evaluate the performance of this model, it is necessary to compare it to the real claim cost and 

calculate the error associated with it. This error is calculated as follows: 

𝐸𝑟𝑟𝑜𝑟 (%) =  
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝐶𝑙𝑎𝑖𝑚𝑠 −  𝑅𝑒𝑎𝑙 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝐶𝑙𝑎𝑖𝑚𝑠

𝑅𝑒𝑎𝑙 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝐶𝑙𝑎𝑖𝑚𝑠
× 100% 

It is through the error measure that the company can verify if it is projecting above or below the real 

cost that it is going to bear. Even if this metric is not as scientific as other statistical error measures, in 

a real business context, it is very important, since projecting below the real costs will result in the 

company losing money. 
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In Table 4.6 it is possible to see how the new proposed model performs, regarding the different clients 

present in the study. The reported claims values refer to the last trimester of their annuity. 

While the new proposed model is not perfect, it shows promising results, with a global error of 9%. 

Yet, more important than the performance of this model individually, is its performance when 

compared to the currently in-use baseline model. This comparison is shown in the following section. 

 

4.4. COMPARISON WITH BASELINE METHOD 

At Multicare, this last trimester projection is currently being made resorting to an ARIMA model. 

However, the ARIMA only looks at past claim history and fails to comprehend how each variable can 

be important to the forecasting process. It is for this reason that this project is focused on the use of 

machine learning techniques to answer this problem. 

In Table 4.6, it is possible to see how the proposed model compares to the baseline method, the 

ARIMA, in terms of percentual error. 

Table 4.6 – Comparison by Client Between the Proposed Model and the ARIMA baseline 

Client Annuity 
Real 

Reported 
Claims (€) 

Predicted 
Reported 

Claims (New 
Model) (€) 

Proposed 
Model 

Error (%) 

Predicted 
Reported 

Claims 
(ARIMA) (€) 

ARIMA 
Error (%) 

A 1 11,482.72 8,224.41 -28 14,471.59 26 

B 1 30,392.21 24,644.65 -19 43,777.21 44 

C 1 20,387.14 14,289.55 -30 9,141.66 -55 

D 1 36,398.78 9,236.20 -75 9,806.83 -73 

E 1 44,907.33 19,832.75 -56 38,701.01 -14 

F 1 169,078.32 307,453.04 82 194,732.53 15 

F 2 145,290.68 278,919.83 92 199,077.90 37 

G 1 1,401.03 4,238.11 202 4,631.36 231 

H 1 4,750.02 6,583.59 39 7,643.24 61 

I 1 101,974.61 100,970.84 -1 51,133.27 -50 

J 1 11,050.13 60,487.23 447 3,136.87 -72 

K 1 0.00 3,535.54 - 1,530.82 - 

L 1 21,034.48 24,889.70 18 22,667.38 8 

M 1 502,742.56 497,244.53 -1 323,120.57 -36 

N 1 3,867.15 4,337.94 12 5,277.39 36 

N 2 9,062.88 7,026.39 -22 5,104.48 -44 

O 1 513,712.56 394,547.61 -23 287,482.75 -44 

P 1 0.00 5,931.15 - 4,188.14 - 

P 2 6,822.18 7,730.09 13 4,071.90 -40 
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Doing a global analysis, it is possible to conclude that the new model, proposed in this study, is able to 

recover more than half a million euros, when compared to the ARIMA projections, as it is possible to 

see in Table 4.7, by subtracting the total claim costs of the ARIMA model to the Proposed Model total 

claim costs. 

 

 
Total Claim 

Costs (€) 
MAE 

Difference to 
Real (€) 

Difference to 
Real (%) 

Real Reported 
Claims 

1,634,354.78 - - - 

Proposed Model 
Projections 

1,780,123.15 28,202.95 145,768.37 9 

ARIMA Model 
Projections 

1,229,696.90 32,950.51 -404,657.88 -25 

Table 4.7 – Global Comparison Between the Proposed Model and the ARIMA 

 

As was already mentioned, the new model projects 9% above the real costs, while the ARIMA model 

has a global error of -25%. This value shows the true power and potential of the new model, as it 

forecasts above the real costs, instead of under-pricing clients as the ARIMA does. This means that by 

using the new model, the company will no longer lose money. 
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5. CONCLUSIONS 

As technology and knowledge progress, companies need to stay updated on current and new methods 

and use them to try and get competitive advantages over their competitors. The renewal of insurance 

contracts is one of the most important parts of managing Tailor Made clients, therefore the proposals 

need to be as accurate as possible. 

This project was born out of the need to provide more accurate estimations in the first part of the 

renewal: the forecast of the costs in the last three months of the clients’ annuity. To achieve this goal 

there were two main steps. First, retrieving and preparing the data; second, building models and 

assessing their performance. 

For the first step, two datasets were built: Cost, to estimate the cost of each inpatient claim, and 

Frequency, to predict how many claims an insured person is going to file in the period of the study. 

These are the two components of the estimation process and are estimated separately, as they usually 

evidence different behaviours and can, consequentially, be explained by different variables. 

As for the second step, Linear and Logistic Regressions, Decision Trees, Random Forest, Gradient 

Boosting and XGBoost algorithms were all tested and evaluated to decide which was the best approach 

to solve the problem in hand. 

After having the data ready and the models built, all the procedures were assessed and XGBoost 

revealed itself to be the best-performing algorithm in both cost and frequency estimation tasks and 

was thus chosen to be the procedure to apply in this project. This evaluation was done using the 

traditional metrics of R-Squared (R2), Mean Absolute Error (MAE) and Root Mean Squared Error 

(RMSE). 

After comparing the results of the model proposed in this study with the current baseline model, an 

ARIMA-based model, it was possible to conclude that the new estimation method is much more 

powerful and accurate. To make this assessment, an error metric, that is widely used in the company, 

was recurred to and it showed that the ARIMA projections were 25% below the real costs, contrasting 

with the estimates of the new proposed model, which are 9% above the real costs. This not only makes 

the predictions more accurate, as it also saves the company money along the process. When 

considering only the clients in this pilot study, the new model represents a recovery of more than half 

a million euros. 
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6. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

This project represents a new approach to an existing problem and that is one of the reasons why it 

was defined as a pilot study. Even though the results are promising, only having a set of clients 

constitutes a limitation. Therefore, the results need to be interpreted with caution. 

The second reason why this study was defined as a pilot is the amount of data, particularly the 

frequency dataset. As mentioned previously, this dataset contains over one million observations, 

which made the modelling stage of this project very time-consuming. If this project moves forward 

and is implemented for the entirety of Multicare’s clients, there is going to emerge a clear necessity 

for more computational power. 

In terms of future work, the first step is to add the Reimbursement, given that this project, as stated 

in the introduction, is focused on the claims that happened under the Healthcare Provider Network. 

In order to contemplate every Inpatient claim and be able to estimate the full costs, this step is of great 

necessity. Additionally, and since not every reimbursement claim is known immediately, the IBNR 

(Incurred But Not Reported) costs also need to be taken into consideration. Currently, these costs are 

estimated using a technique known as Chain Ladder, which is a traditional actuarial technique. As of 

now, a machine learning-based approach to this problem is under development. 

After addressing these problems and assuring they can be correctly implemented, the remaining 

clients should be added. Additionally, even though that in the case of the Inpatient coverage the 

variables external to the company, the social-economic and demographic indicators, were not deemed 

important for the models, this might not be true for the other coverages. Currently, only the insured 

people present in this pilot study have their address georeferenced, but this is a mandatory step to be 

able to use these external variables. 

The renewal process consists of two parts: predicting the last three months of the annuity and 

predicting the next annuity, but this project only answers the first step of the renewals. Even though 

this is already an improvement and can potentially save the company money, it is only half the process 

and predicting the next annuity is as important to the renewal process as the last three months’ 

projections. Combining both components will allow Multicare to give clients more adjusted insurance 

rates. 

Lastly, and to finalize the redesign of the renewal process, the methodology applied in this project, as 

well as the future work identified in this section, should be implemented for the remaining coverages. 

The new renewal system will only be usable by the company once all the identified steps are carried 

out. 
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