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Abstract

The growth in mobile wireless communication requires sharp solutions in handling mo-

bility problems that encompass poor handover management, interference in access points,

excessive load in macrocells, and other relevant mobility issues. With the deployment

of small cell networks in 5G mobile systems the problems mentioned intensify thus, mo-

bility prediction schemes arise to surpass and mitigate these issues. Predicting mobility

is not a trivial task due to the vastness of different variables that characterize a mobility

route translating into unpredictability and randomness. Therefore, the task of this work is

to overcome these challenges by building a solid mobility prediction architecture that can

analyze big data and find patterns in the mobility aspect to ultimately perform reliable

predictions. The models introduced in this dissertation are two deep learning schemes

based on an Artificial Neural Network (ANN) architecture and a LSTM Long-Short Term

Memory (LSTM) architecture. The prediction was made in two levels: Short-term predic-

tion and Long-term prediction. We verified that in the short-term domain both models

performed equivalently with successful results. However, in long-term prediction, the

LSTM model surpassed the ANN model. Consequently, the LSTM approach constitutes

the stronger model in all prediction aspects. Implementing this model in cellular net-

works is an important asset in optimizing processes such as routing and caching as the

cellular networks can allocate the necessary resources to provide a better user experience.

With this optimization impact and with the emergence of the Internet of Things (IoT),

the prediction model can support and improve the development of smart applications

related to our daily mobility routine.

Keywords: Mobility prediction, Machine Learning, Deep learning, Performance evalua-

tion.
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Resumo

O crescimento da comunicação móvel sem fios exige soluções precisas para lidar com

problemas de mobilidade que englobam uma gestão pobre de handover, interferência

em pontos de acesso, carga excessiva em macrocélulas e outros problemas relevantes ao

aspeto da mobilidade. Com a implantação de redes de pequenas células no sistema móvel

5G, os problemas mencionados intensificam-se. Desta forma, são necessários esquemas

de previsão de mobilidade para superar e mitigar esses problemas. Prever a mobilidade

não é uma tarefa trivial devido à imensidão de diferentes variáveis que caracterizam

uma rota de mobilidade, traduzindo-se em grandes dimensões de imprevisibilidade e

aleatoriedade. Portanto, a tarefa deste trabalho é superar esses desafios construindo uma

arquitetura sólida de estimação de mobilidade, que possa analisar um grande fluxo de da-

dos e encontrar padrões para, em última análise, realizar previsões credíveis e assertivas.

Os modelos apresentados nesta dissertação são dois esquemas de deep learning basea-

dos em uma arquitetura de RNA (Rede Neuronal) e uma arquitetura LSTM (Long-Short

Term Memory). A previsão foi feita em dois níveis: previsão de curto prazo e previsão de

longo prazo. Verificámos que no curto prazo ambos os modelos tiveram um desempenho

equivalente com resultados bem sucedidos. No entanto, na previsão de longo prazo, o

modelo LSTM superou o modelo ANN. Consequentemente, a abordagem LSTM constitui

o modelo mais forte em todos os aspectos de previsão. A implementação deste modelo,

em redes celulares, é uma medida importante na otimização de processos como, routing

ou caching, proporcionando uma melhor experiência wireless ao utilizador. Com este im-

pacto de otimização e com o surgimento da Internet of Things (IoT), o modelo de previsão

pode apoiar e melhorar o desenvolvimento de aplicações inteligentes relacionadas com a

nossa rotina diária de mobilidade.

Palavras-chave: Previsão de mobilidade, Aprendizagem de máquina, Aprendizagem pro-

funda, Avaliação de desempenho.
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1

Introduction

Mobile wireless communication has experienced a sharp growth over the recent years,

mainly due to the breakthrough of affordable mobile devices, as well as the innovative

deployment of small cell networks that will be a trademark of the 5th Generation mobile

system. The increase in traffic demand and the network densification will inevitably stim-

ulate mobility problems, principally in a poor handover management (e.g., unacceptable

delay, call dropping/blocking events) if there are no suitable mobility prediction schemes.

The existing models, such as Markov Chain (MC), Hidden Markov Model (HMM), and

Bayesian Networks, are stochastic processes based on probabilistic transitions. Under the

scope of probability, the trend of Artifical Neural Networks (ANNs) emerge as a more

reliable method for prediction accuracy insofar as with the right metrics and inputs, the

network will be capable of learning and generate the best output to a given location.

Presuming that we can estimate the user’s future position and trajectory, it enables an

efficient resource management, where the Transmission Points (TPs) can allocate the nec-

essary resources to ensure the Quality of Service (QoS). However, predicting a future

user location through the “lens” of the network constitutes a hard challenge because of

the immeasurable variables representing the unpredictability and randomness of a route.

1.1 Motivation

Over the years, mobility prediction has triggered a rapid evolution in search of solutions

related to vehicular trajectory. With the appearance of the Internet of Things (IoT), a

boost in connected vehicles and data-driven intelligent transportation systems (ITS) has

started. The huge amount of data originates a degradation of the QoS, where data loss

and unreliability are a matter of concern. The development of efficient and personalized

prediction algorithms based on mobility patterns, allows a deeper understanding of the

construction and design of safer and efficient systems. The ability of a system to predict

a trajectory will enable a panoply of interactions between the user and the mobile center,

which allows a more sophisticated and easier way of communicating and also fulfilling

the user’s requirements. Similar to the study of vehicular mobility, human mobility

1



CHAPTER 1. INTRODUCTION

focused on pedestrians’ activities constitutes an important subject. A wide range of

activities such as, walking, biking, and other movement-related activities represent an

indispensable fraction of our daily lives. Many challenges must be considered when

performing mobility prediction in pedestrians. If the scenario represents an open-air

space where users perform their daily workout routine, a simple analysis on the user’s

trajectory data will solve the problem. In a more unpredictable area such as a whole

city, other approaches are required in order to predict a random displacement accurately.

The latter defines the main motivation of this dissertation, where solutions for these

types of challenges regarding the user’s dynamic behaviors and the environment will be

addressed.

1.2 Objectives and Contributions

This section describes the aimed objectives and the contributions reached in this disserta-

tion.

Objectives:

The main goal of this thesis is to design and build a mobility prediction scheme based

on bicycles’ mobility. To correctly complete this work, the procedure should be as follow:

1. Gather knowledge in how to decide on a suitable area to perform mobility predic-

tion. Afterwards, we need to choose an appropriate dataset that contains relevant

data for the implementation of the model.

2. Evaluation of the dataset, by pre-processing the raw data in order to improve the

efficiency of the algorithm.

3. Designing of an individual trajectory prediction algorithm based on Machine Learn-

ing (ML) techniques, i.e. Artificial Neural Networks (ANN), Long Short-Term Mem-

ory (LSTM).

4. Implementation of the fully connected architecture, and definition of adequate

metrics to accurately characterize the model.

5. Performance evaluation of the mobility prediction methodologies

Contributions:

• Evaluation of the dataset features and design of a bi-dimensional grid that incorpo-

rates a whole city area.

• Construction of two efficient and adaptive mobility prediction algorithms, that

provide reliable predictions to any given environment.

• Performance assessment of both prediction models.

2



1.3. DISSERTATION STRUCTURE

1.3 Dissertation Structure

The report structure is organized as follows: Chapter 2 holds a literature review about

related work. An overview of different mobility prediction schemes will be presented

as well as their impact on optimizing the network. Chapter 3 presents a definition of

the data used focusing on the analytic characteristics that enable the construction of the

architectures. Chapter 4 describes the results of both ANN and LSTM deep learning tech-

niques and expresses a comparative evaluation of the models. Finally, Chapter 5 contains

the final considerations and closes the thesis with the final remarks and improvements

aspects of the performed work.
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2

Related Work

2.1 Long Term Evolution

Due to the technological breakthrough of mobile networks and devices, the world is

currently facing a rise in traffic volume, described by the number of users and the diversi-

fication of the services provided by mobile devices. Consequently, there was the necessity

to provide better throughputs, larger user capacity and greater spectral efficiency in mo-

bile networks. Universal Mobile Telecommunication System (UMTS) LTE, also known as

the 4th Generation (4G) of mobile telecommunications, is a standard for wireless broad-

band technology for mobile devices and data terminals, designated by the 3rd Generation

Partnership Project (3GPP) to cope with this demand where its main objective is to sup-

port internet-based services on mobile devices. 3GPP defined the specifications for UMTS

LTE named UMTS Terrestrial Radio Access (UTRA) and UMTS Terrestrial Radio Access

Network in Release 8 [1]. Consisting of a wide band channel it enabled peak data rates

that exceeded 300 Mb/s on the downlink and 75 Mb/s on the uplink. It was one of the

first releases to be commercialized and it is principally installed in a macro/micro cell

layout and uses OFDM as the downlink multiple access scheme and Discrete Fourier

Transform Spread (DFTS)-OFDM, also known as SC-FDE, as the uplink multiple access

schemes [2].

2.1.1 LTE-Advanced

LTE-A, also known as 3GPP Release 10, represents a significant improvement of LTE Re-

lease 8, enabling a better user experience. It was designed to meet the International Mo-

bile Telecommunications-Advanced (IMT-A) requirements defined by the International

Telecommunication Union (ITU) [2]. Carrier aggregation, downlink and uplink spatial

multiplexing and Coordinated MultiPoint (CoMP) transmission and reception portray

the techniques used in this scheme.

LTE-A is an essential step towards the transition from the 4G to the 5G wireless system.

5G networks will handle the expected traffic volume explosion and the new specifications

through a conjunction of evolved existing technologies and new radio concepts [3].

4



2.2. MOBILITY MANAGEMENT IN CELLULAR NETWORKS

2.1.2 5G

The existing technologies that contemplate 5G are Heterogeneous networks (HetNets),

massive multiple inputs multiple outputs (MIMO), mmWave communication, CoMP

and, the trend of 5G networks, ultra-dense networks (UDN), which is dense deployment

of small cells [4]. The aforementioned represent the approach to the three main usage

scenarios [5][6]:

• Enhancedmobile broadband (eMBB): High throughput, wide-area coverage and hotspots

for flawless user experience.

• Ultra-reliable and low latency communications (URLLC): High throughput, low la-

tency and high availability.

• Massive machine-type communications (mMTC): Large coverage, relation low-cost

devices/long battery life enhanced.

2.2 Mobility Management in cellular networks

As depicted in 2.1, the mobility management in LTE is handled by the mobility manage-

ment entity (MME). According to [7], MME is linked to numerous of Evolved Node Base

stations (eNB). The radio coverage of the eNBs is known as a cell, and each cell has a

unique cell ID. Fig.1 illustrates groups of cells, that are known as tracking areas (TAs).

The assignment of each cell to his TA is done upon the network planning phase and is

determined in the operation phase. TAs are also represented by a unique ID (e.g. TA1),

where this identification is broadcasted in the coverage area. TAs are grouped into lists

(TALs), that are customized for each user equipment (UE). MME supplies the UE with

the TAL that contains the TA in which it occupies [6]. Due to the implementation of UDN

in 5G, the decrease of the cell coverage radius will amplify the mobility issues, concretely

[7]:

1. Handover Management: Handover is a process in which data transmission is trans-

ferred from one base station to another without loosing its connectivity. In the

networks aforementioned, frequent handover and the consequent high switching

latency will degrade the QoS.

2. Access Points Grouping: In LTE communication systems, the choice of the next

accessing cell is done regarding the Reference Signals Received Power (RSRP) and

cell load. In 5G, due to the dense deployment, the cellular networks will simply

saturate because of the frequent execution of update procedures.

3. Resource Reservation: As in LTE, 5G will experience a sharp growth of UE. Conse-

quently, radio bandwidth resource shortage will be an imminent problem.

5



CHAPTER 2. RELATED WORK

4. Interference Coordination: Interference is effect of Access Points (APs) that share the

same resource blocks, this obstructs the implement of massive MIMO and other

scenarios.

5. Load Balancing: HetNets are a promising approach in alleviating the load of a

"busy"macrocell. These networks can redistribute parts of the traffic to small cells

to prevent the network from congesting and collision problems.

Mobility prediction arises as an interesting solver to these issues. With prior knowl-

edge of user’s data (eg. handover history, speed), we can map the range of the TPs and

allocate the necessary resources for the base stations, as well as, reduce the execution

of update procedures, coordinate the interference and diminish the load by predicting

fluctuations in the traffic load.

Figure 2.1: LTE mobility management architecture (taken from [7]).

2.3 Mobility Prediction Methods

In simple terms, mobility prediction is the ability to predict a user’s path nonetheless its

randomness and unpredictability. Hongtao and Lingcheng [7] raised a question regarding

the predictability of the user’s behavioral characteristics through multiple observations.

The answer to the latter comes in the concept of entropy. Entropy is the average level of

uncertainty, or more accurately, the level of information that will dictate the possibles

outcomes of a random variable. Formally, it is defined by

H(X) = −
n∑
i=1

P (xi) logb P (xi). (2.1)

In( 2.1),
∑

denotes the sum over the variable’s possible values and log denotes the

logarithm, where the choice of base b differs between base 2 and base 10 depending

6



2.3. MOBILITY PREDICTION METHODS

on the application. By measuring the entropy of user’s individual trajectory [8] found

that there is a potential 93% average predictability in user mobility. What indicates this

value? It indicates that mobility is not purely random and it can be analysed through

prediction techniques that enable pattern recognition by monitoring a user movement

and history. In the next subsections, we are going to detail these prediction techniques

such as: Markov chain, HMM, Bayesian Network, Data Mining and ANNs.

2.3.1 Markov Chain

A Markov chain is a stochastic model that characterizes a sequence of possible events.

This method operates in a "chain reaction"system, meaning, the probability of each event

depends directly on the outcome of the present event ("memorylessness"). If we approach

this method in terms of mobility, the present event consists of our present state/location

(present cell) and the future state/location represents our destination (next cell). This

decision is not purely random since our "source"path was once our "destination"path, thus

we can establish probabilities to each transition to obtain the most probable future path.

An example of a cellular network scenario is presented in fig.2. The three cells build our

"chain"and the transition probabilities (a...i) are defined. For instance, if a user is attached

to cell "B"it has 3 possible transitions: Stay at the current cell, move to cell "i"or move to

cell "a"with probabilities of "e", "f"and "d"respectively. As illustrated in 2.2, P represents

the transition probability matrix, where the sum of each row/column is equal to 1. The

next transition probability from the present cell to the future cell is calculated as:

Pn = [Pn−1] ∗ [P ]. (2.2)

where, n denotes the transition to the next cell and n-1 the current transition proba-

bility matrix. The main issue of the Markov Chain is that does not analyze the previous

states only the current state. Gambs et al. [9] stated that this property would decrease

the prediction performance. To solve this problem, the author proposed a novel Markov

chain named n-MMC which includes the n previous states. However, this extended

version causes a major problem which translates in the complexity of the transition prob-

ability matrix thus being inappropriate to a large number of BSs networks. The success

of this prediction algorithm comes in acquiring the transition probability matrix and

balancing it with the complexity of the network, meaning that this method is not suitable

for large networks. Moreover, studies found that the time required to collect the data is

directly correlated with the performance of the algorithm. Therefore, the "key"in using

this scheme relies on selecting an appropriate state space and pre-processing the data

accordingly.

2.3.2 Hidden Markov Model

In a Markov Chain, the only parameters that are considered are the transition probabil-

ities of the observable states (eg., the three cells in fig.2). The Hidden Markov Model
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Figure 2.2: Application of a markov chain in a cellular scenario (taken from [7]).

differs from this process as it considers another set of states named unobservable or

hidden. This double stochastic feature enables the observable states to obtain extra infor-

mation through the hidden states. Qiao et al.[10] proposed a HMM to solve the challenge

of trajectory prediction in transportation networks. The observable states represent cells

and the hidden states trajectory segments. The Forward algorithm is used to solve the

trajectory evaluation problem and to discover the sequence of hidden states the author ap-

plied Viterbi algorithm. The interesting fact of this model is the ability to evaluate objects

with dynamic features (such as speed) being an important work in studying real-world

scenarios. A similar approach was presented in [11], where the hidden states represent

a sequence of visited cells. HMM can also be used in the optimization of power con-

sumption and QoS [12] presented an intelligent location-awareness access point selection

algorithm based on HMM. The outcome showed that the number of connections to high

signal level AP increased and the number of connections to low signal level AP decreased.

In relation to the Markov Chain, HMM is a more enhanced prediction algorithm as it

reduces the lost information and it can constantly learn and update its output. The

main flaw of this scheme is the "price"of the hidden states which results in an "expen-

sive"computational task. Moreover, with the advent of UDN the computation complexity

of an HMM approach would increase exponentially.

2.3.3 Bayesian Network

A Bayesian network is a direct acyclic graph that utilizes Bayesian inference for proba-

bility computations. Each edge corresponds to a conditional dependency and each node

to a unique random variable. Following these associations, we can conduct inference

on the random variables through the use of factors. Bayesian network has been widely
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used because of its ability in solving uncertainty. For example, Liu et al.[13] proposed an

approach in predicting a moving object’s future path under uncertainty. As illustrated in

fig.3, the Bayesian network was constructed in the following sequence:

1. Space-partitioning schemes;

2. Popular regions extraction;

3. Transformation of trajectory sequence and region sequence;

4. Frequent sequential pattern mining;

5. Bayesian network construction.

Similar to Markov chain and HMM, Bayesian network fails in being efficient in large

networks, as exact inference is computationally expensive. Hence, the complete pro-

cedure in constructing a Bayesian network has to be shortened. Another issue is the

deployment of small cells which will make the partition of the space challenging (first

step).

Figure 2.3: Design of Bayesian network.

2.3.4 Data Mining

Data mining is a product of three interlaced scientific domains: statistics, artificial in-

telligence, and machine learning. By definition, it is the process of "digging"(mining)

through data to discover patterns, hidden connections and predict future trends. Data

mining can be used based on different knowledge such as: Road topology information,

user behavioral information, and movement parameters. A more detailed analysis can be

found in [4].

Road Topology Information

The integration of road topology information constitutes an asset in improving the

accuracy of prediction algorithms, as mobile terminals (MTs) travel on roads with rough

characteristics that interfere with radio wave propagation. In [14] the author proposed a

mobility prediction scheme that combined spatial conceptual maps and user’s knowledge

to predict traveling trajectory and destination. The results showed that this scheme main-

tains the same degree of accuracy independently of the period time, reason being, of the

customized user strategy that does not need to obtain data of previously visited locations.
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Road topology can be acquired through Global Positioning System (GPS) or Signal-to-

Interference-plus-Noise-Ratio (SINR). However, the map can be difficult to obtain, and

with modifications on the road the performance of the algorithm can decrease. Imple-

mentation of autonomous navigation techniques such as Simultaneous Localization and

Mapping (SLAM) would be an interesting approach since the mapping of an unknown

environment can be constructed and updated in real-time.

User Behavioral Information

Characterizing user’s behaviors based on features, such as location, time of day, group

pattern, and other relevant emerges as an interesting and intuitive approach in the de-

sign of prediction models. Duong and Tran [15] proposed a mobility scheme based on

clustering and sequential pattern mining. Based on the premise that global scale users

behave as groups depending on social and geographic constraints, clustering techniques

were utilized to extract similar mobility behaviors. Sequential pattern mining techniques

were used to identify mobility patterns from the movement histories of the users in the

coverage area. The idea of clustering users with similar behavior reduces the complex-

ity of the algorithm and consequently the computation time, and the combination with

pattern mining techniques to discover frequent mobility patterns efficiently originates a

methodical approach in mobility prediction. However, its accuracy depends on the size

of the data and the complexity of the group within the region.

Movement Parameters

The purpose of this approach is to analyse the moving user’s parameters and build

a predictive algorithm through mathematical formulations or stochastic processes. The

work in[16] shows an implementation of this process. Movement data and context infor-

mation of diurnal user movements were exploited to predict cell transitions. This scheme

has limitations, because if the cells were distributed randomly it would be difficult to

obtain the cell transition, so a uniform distribution of cells is needed. Moreover, it de-

pends on the prior knowledge of moving direction. Although this type of scheme is easy

to implement it depends on the accuracy of the moving parameters and yet could not be

sufficient to successfully perform prediction.

2.3.5 Artificial Neural Networks

Pioneer of artificial intelligence (AI), ANNs are a family of models designed to simulate

the central nervous system of the human brain. These models have self-learning abili-

ties that enables them to process better results even though the input is unknown to the

network. Fig.4 illustrates a basic design of an ANN. Identical to the human brain, an

ANN has thousands of artificial neurons named processing units interconnected by nodes.

These represent the input and output units, the main objective of the network is to learn

about the information that the input processing unit provides and construct an output to
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submit to the output processing unit. The connections have unfixed numeric weights indi-

cating their adaptability. An ANN initially goes through a training phase where it learns

to recognize patterns in data and generates the "first"output. Afterward, it compares the

output produced with the actual desired output, if there is confliction the network uses a

training rule called backward propagation of error or in simple terms, backpropagation.

This rule implies that the network works backwards, going from the output to the input.

Throughout its retreat, the weight of its connection is adjusted until the difference be-

tween the actual and desired output constitutes the lowest possible error. A comparison

between polynomial perceptron network (PPN) built based on Weierstrass approxima-

tion theorem and multilayer perceptron backpropagation neural network (MLP-BP) were

provided in [17]. MLP-BP outperformed PNN however, the computation cost of PNN was

better than MLP-BP as back propagation requires a large amount of computational time.

To this day, ANNs are a good candidate for modelling a predictive system because of their

remarkable properties of learning.

Figure 2.4: Basic design of an ANN.

2.4 Network Optimization Applications

With the demand for managing efficiently radio resources and the rapid progress of artifi-

cial intelligence, mobility prediction represents the most "sophisticated"tool in optimizing

the network. It has a wide range of applications ranging from motion prediction ap-

proaches in vehicles, pedestrians and others, to cellular networks approaches essentially,

next-cell prediction. In the next subsections we are going to discuss the aforementioned

applications.
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2.4.1 Vehicular Prediction

The breakthrough of vehicle-to-vehicle (V2V) communications will boost the design of

intelligent vehicle applications like self-driving assistance, vehicle based sensing data

collection, traffic safety, geo-advertising, in-vehicle internet access, and pothole detection

[18][19]. Typically, the input of a vehicle prediction algorithm consists of the historical

trajectory of the object vehicle during the last few seconds and the output is the predicted

trajectory in the following seconds [20]. According to 2.5, vehicular prediction models

are divided into two types: maneuver-based model and end-to-end model[20].

Figure 2.5: Vehicular prediction models: (a) Maneuver-based model (b) End-to-end model
(taken from [20])

A maneuver-based model has an intermediate step named maneuver recognition step

which outputs the motion maneuver of the vehicle. This information will be used and

interpreted by the prediction step to generate the most accurate prediction trajectory

of the vehicle. These models have an intuitive approach since maneuver categories are

in accordance and from the knowledge of every human driver. However, labeling these

maneuvers when training the model results in an computational expensive task and it

is susceptible to incorrect maneuver labeling. End-to-end models bypass the maneuver

recognition step and output the trajectory prediction directly. The work of [20] proposed

a model named Spatio-Temporal-Long Short-Term Memory (ST-LSTM) to cope with the

flaws of the end-to-end LSTM vanilla models. The authors used different LSTM models

to handle the temporal relations and spatial interactions as different time series. These

requirements implicate an addition of more layers in the network and when doing back-

propagation, the gradient value can decrease over the layers ("vanishing") which can

result in values too small for training to work effectively. This problem is known as the

vanishing gradient problem. To overcome this adversity in the backpropagation, they
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introduced shortcut connections between the input and output of every LSTM layer. Re-

sults showed that this model solved the two problems of long-term prediction in dense

traffic. Under the scope of LSTM neural networks, [21] provided a personalized motion

prediction algorithm based on a Gaussian Mixture Model (GMM) to classify driving styles

and predict the trajectory of the leading vehicle. This Joint Time Series Model (JSTM)

was compared to other prediction models such as Constant Kalman Filter (CKF), Mul-

tiple LSTM (MLSTM), LSTM and it outperformed every method. However, this model

is limited as only tracks the leading vehicle, being an insufficient approach in a traf-

fic awareness system. Another interesting vehicular application, is to incorporate the

data provided by ITSs in order to build an enhanced large-scale traffic prediction algo-

rithm. The work in [22] applied a temporal-window-based support vector regression

(SVR) method based on k-means clustering algorithm to extract spatial performance pat-

terns to find road segments with identical performance. This model showed success

in predicting patterns in a large-scale traffic and it presented a viable solution in the

development of route recommendation algorithms. Wei and Yozo [23] implemented a

RNN-based vehicle mobility prediction algorithm named DeepVM to support intelligent

vehicle applications. DeepVM outperformed other state-of-art algorithms such as Markov

models-based. Its supremacy comes from its ability to process longer input data which

reduces the uncertainty of the prediction.

2.4.2 Next-Cell Prediction

As mentioned in Section 2.3, the predictability of user mobility can be obtained at a

solid value of 93% reflecting a cyclic pattern in human mobility behavior. However,

the methods to achieve this value are dependant on context data and special movement

patterns[24]. Instead of predicting user’s accurate position, next-cell prediction algo-

rithms offer an efficient strategy in dealing with handover connections issues. If wireless

networks operators know which cell will the user enter they can optimize the network

performance and enable a better QoS. The article of [24], classified mobility data for next-

cell prediction into two types: Current Movement State (CMS), and Historical Movement

Pattern (HMP).

Current Movement State (CMS)

CMS is based on real-time movement, meaning, the parameters evaluated are user’s

position, direction, acceleration, etc. Position and direction can be easily obtained through

the UEs that can periodically communicate their location coordinates to BS. Based on

their position coordinates, the BS can calculate the others motion parameters. The au-

thors divide Current Movement State Based Approaches (CMSA) into three categories:

angle-based, distance-based, and angle-distance combined ways. The survey both angle

and distance should be considering when predicting, therefore angle-distance approach
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results in the most effective way. Implementation of this method can be viewed in [25]

where both angle and distance are used to predict TPs in UDNs.

Historical Movement Pattern (HMP)

HMP data is generated by observing users long-term movements and includes Cell-

ID with CMS history, handover history, historical sectors, etc. By using CMS data, HMP

updates its user’s movement database, and with the appropriate prediction tools can ef-

fectively predict cell transitions. Historical Movement Pattern Based Approaches (HMPA)

utilizes prediction schemes based on probabilistic models (e.g. Markov chain), discrimina-

tive models(e.g. ANN), and data mining. For example, the authors mentioned a Support

Vector Machine (SVM) discriminative model type with an appropriate kernel function

defined to find the support vector in the high-dimensional space by converting the non-

linear input space into a high-dimensional space to form the optimal hyperplane. The

authors of [26] implemented a multi-class SVM that considered a road topology scenario

resembling an urban center, regular streets, and rail areas. The input was generated data

from a mobility model of integrated path follower, gravity, and random walk models.

Simulations showed that the prediction accuracy of the next-cell can exceed 90%.

Hybrid Approaches (HDA)

HDA assembles both CMS and HMP prediction techniques. While exploiting HMP

to identify movement cyclic patterns, it can also perform a real-time estimation for in-

stantaneous motion (CMS). Besides, it solves the short-term prediction problem of the

CMSA and the high computational complexity issue of the HMPA. It is the most viable

solution in dealing with short-term and long-term mobility prediction. In [27], for the

long-term trajectory, i.e. cell sequence in weeks or months, the authors used a Markov up-

date process to mine the regular movements. To deal with the randomness of short-term

movement, they determined user’s movement direction through the empirical moving

average. At last they combined these two prediction results through Dempster Shafer

theory.

2.5 Mobility Datasets

Datasets consist of a collection of data and are the main input of data analysis processes.

They are represented by tabular data in a spreadsheet format where the rows are the

records of the events and the columns are the characteristics of those events. So how

to choose an appropriate dataset to study and evaluate mobility prediction? It depends

on the approach and the type of mobility (trajectory oriented or cellular oriented). For

example, motivated by the randomness and unpredictability of taxi routes, the work in

[23] collected data of 65 taxis in Tokyo, Japan, in a period of four months. Both [21][24]

used NGSIM I-80 and US-101 freeway data to build a model that could perform prediction
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in a dense traffic flow situation. The authors of [22] extended the previous work by using

data from a large subnetwork in Singapore that consisted of a diverse set of roads having

different lane counts, speed limits, and capacities. Such variety of data enables pattern

identification and construction of a more adaptable and general prediction algorithm.

On the other hand, in [28] they used GPS data to identify atypical moving patterns in

individuals. The paper concluded that the inclusion of atypical patterns enhances the

prediction accuracy of their model in comparison with other state-of-the-art prediction

methods. Another interesting type of collected data can be viewed in [29], the authors

utilized smart card and points of interest data to perform prediction in bus travellers.

Each record of the bus smart cards provided the origin and destination of the traveler.

Dedicated to predicting mobility for IoT devices, in [30], to reflect the population effect

they outlined a path during work hours and collected Wi-Fi data using a smartphone.

Also, they used the Universal Software Radio Peripheral (USRP), a dipole antenna and a

computer to collect the cellular data. The versatility of mobility prediction algorithms

and the wide variety of datasets indicates that there is not a protocol nor a general rule

in choosing an appropriate set of data to perform prediction. However, its choice will be

directly correlated to the success of the model. Therefore, datum should be studied and

evaluated thoroughly to guarantee the best accuracy prediction. Table2.1 provides a brief

explanation on the different types of parameters that one should evaluate when choosing

an appropriate dataset to perform mobility prediction.

Mobility dataset categorization
Parameter Definition
- Mobility type It can be vehicular, bicycle or

other movement related activ-
ity

- Trace type It can be a real trace provided
from real human activity or
a synthetic trace from a built
simulation

- Gps logs Gps logs provide reliable in-
formation relatively to mobil-
ity information

- Scenario Ranging from urban/ non-
urban scenarios

- Number of traces The number of traces reflects
the quality and insight of the
dataset. Predicting mobility
in a dataset with few traces
is harder than a dataset with
plentiful traces

Table 2.1: Table that categorizes the different parameters when choosing a mobility
dataset
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Mobility Data Analytics

3.1 Mobility Scenario

The increase in motor vehicular traffic translates into an increase in pollution and chaos.

Bicycling constitutes a viable option in the population’s choice of mobility. Motivated

by this and allied to the fact that developed countries are prioritizing and integrating

cycling with mobile applications, the dataset chosen is based on crowdsourced bicycle

trips. The data was taken from Münster in Germany, this which is classified as a major city

due to having more than 100,000 inhabitants (300,000 approximately). Located in the

North Rhine-Westphalia region, northwest Germany, possesses, in terms of topography,

mainly flat features. The flatness allowed the establishment of a high-quality network of

dedicated bicycle lanes [31]. Such lanes portray 39% of the city trips, homing more than

500,000 vehicles.

3.1.1 Data Collection

Participants were recruited to provide cycling data through the employment of printed

posters, flyers, social media, and other advertising tactics. The data of 20 participants

was gathered through the Cyclist Geo-C application during summer-autumn season of

2017. During this period, participants recorded each bicycle trip through the app and

reported it with up to three tags upon terminus. To promote competition and motivation

to the users to record the trips, the app had a virtual leaderboard of all the users in the

area based on the amount of recorded trips done per day, in addition, each participant

received =C10 when the duties were finished [31].

3.1.2 Essential Dataset Features

The Dataset was stored in GeoJSON format [32] and each participant is described by the

following metadata:

• Device: An unique ID that identifies the UE;

• Altitude: Geometric altitude in meters;
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• Latitude: Geometric latitude in decimal degrees;

• Longitude: Geometric longitude in decimal degrees;

• time_gps: The recorded day time of the trip in the format: ’YYYY-MM-DDThh:mm:ss.sssZ’.

There were other dataset fields such as speed, acceleration, etc. However, they are

not relevant to this study. With the device ID, which is the "fingerprint"of the user, we

can characterize and filter the trips of the users, and with the values of latitude, longitude
and altitude we can map the position of the user. Finally, the time_gps field provides the

information of the sampling time. All of these features combined grant detailed insights

in the construction of the prediction model.

3.2 Analytics Methodology

The approach of this work consists in mapping the spatial positions (x, y) of the bicycles

into a grid forming a matrix. A previous study of the city area was done in order to

understand the disposition of the grid. Figure 3.1 illustrates the corners of the grid map.

The points were pinned based on city limits and bike lane density.

Figure 3.1: Pinned points delimiting the city of Münster.

3.2.1 Problem Notation

The grid is divided into smaller two-dimensional rectangles named as cells, cη . For

each bike location, registered at a fixed sampling period, there is an associated cell. So,
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by representing spatio-temporal displacements we can define trajectories, where each

trajectory consists of the initial point of the journey until the endpoint of the journey.

Finally, these trajectories are partitioned into smaller trajectories named sequences which

denotes a fixed number of visited cells in the trip. Lets state the problem notation to

define the proposed model.

• Definition 1: A cell cη with η ∈ {1,... N}, represents a two-dimensional sub region

of the grid. Each location of the bicycle is represented by a cell. N denotes the

maximum number of cells forming the grid.

• Definition 2: A set of multiple cells is given by Tj = {c1
η , c2

η , c3
η ,...,c

Ξj
η }, and it is

described as a trajectory. The bicycle travels in an ordered sequence of Ξj cells were

Ξj > 1.

• Definition 3: Sk = {c1
η , c2

η , c3
η ,...,cΛη } represents an ordered sequence shaped by a set

of Λ visited cells, where Λ ≤ Ξ. It is important to note that Λ remains constant

through the space state Ω, where Ω defines all sequences from a given trajectory.

• Definition 4: A set of sequences is expressed by Φ = {S1,S2,S3...,SΩ}, where Φ is a

set constituted by all Ω sequences. Since bicycles trajectories have a high degree of

randomness there is a necessity of express unique sequences. Therefore, the unique

sequences in Φ are represented by the symbol Ψ .

• Definition 5: The estimation problem uses empirical observation knowledge of Λ -

β cells in a sequence Sk to estimate/predict the next cells of the sequence, with β

≥ 1.

Table 3.1 summarizes the symbols used in this work.
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Problem Notation Classifier
Symbol Description
N Number of cells that

constitute the grid
Cη Cell η, η ∈ {1,...,N}
Ξj Trajectory defined by j

cells
Sk Sequence defined by k

cells, where k ∈ {1,...,Ω}
Ω Total of trajectory se-

quences
Λ Total of sequence cells
β Number of cells to pre-

dict based on the obser-
vation Λ - β

Φ Set of all sequences
φ Unique sequences in

the set Ψ

Table 3.1: Table with the symbols and descriptions used in the prediction problem.

3.2.2 Data Preprocessement and Characterization

With the support of the polyline entry of the dataset relative to the GPS coordinates, we

filtered the raw GeoJSON data to inscribe the values of latitude and longitude of the city.

Next, we identified each trip with the device entry of dataset enabling ordered and unique

journeys. The value of the cells formed a file text were each line of the file represents a trip.

If the difference of two consecutive times is 1000 seconds (approximately 16 minutes) a

new line is added to the file resembling a new trip. Subsequently, a time sampling value

of 30 seconds was fixed and the GPS coordinates were transformed into Cartesian and

mapped into a cell, cη, i.e., 1 ≤ η ≤ 16, as illustrated in Figure 3.2. After the mapping of

every spatial positions into a cell, we built trajectories where, Tj = {c1
η , c2

η , c3
η ,...,cΞη j }, has a

variable number of locations given by Ξj cells. The next process is to cluster the cells of

a trajectory to form a sequence, logically, each trajectory can have more/none sequences.

The parameter that determines the previously mentioned is Λ, where a sequence Sk = {c1
η ,

c2
η , c3

η ,...,cΛη } is constituted by Λ cells. The values of Λ used in this work are constant

during the prediction process. The grids used in the project were with N = 16, N = 64, N

= 256. Their area and cell area are depicted in Table 3.2.
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Figure 3.2: Cell disposition for a grid with N = 16 (4x4)

N Grid Area(m2) Cell Area(m2)
16 4818171 301136
64 1204543 18821

256 301136 1176

Table 3.2: Grid area and cell area for different values of N.

Logically, as N increases the grid and cell area decrease. This matter is critical in

the preprocessement of the data, why? Because if we analyze the cell positions of a user

in a smaller grid such as 4x4 (N = 16) they will differ not only in number but also in

occurrence, concerning bigger grids such as 8x8 (N = 64). If we have a bigger grid, the

cell area is smaller meaning that the probability of a user being in one or more cells

that make up a cell in smaller grids is higher. As we escalate the grid size, the existence

of different trajectories patterns is increased resulting in a dynamic feature to take into

account. We can study and interpret the behavior of the bicycles as their cell sampling

position is going to affect immensely the relation grid/trips and the generation of unique

sequences. In the next section, a more in-depth analysis of the aforementioned behavior

is going to be discussed, and the neglect of bigger grids (i.e. 1024, 4096, etc...) is going to

be addressed.

3.3 Dataset Analytics

With the incorporation of the grids, the next objective is to form valid sequences from

the raw data. Therefore, Figure 3.3 contains the flowchart that generates the sequences

from the trajectories Ω. The file possessing the trips of each user and the value of Λ
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indicating the length of the sequence is loaded as input. Reasonably, the value of Λ

should be greater than 1, if so, then we initialize k with the unitary value, where k serves

as an index of the sequence initially empty Sk . Next, each line of the trajectory file,

represented as Tj , is looped using a sliding window (n_window = 1) until the end-of-file

(EOF) is reached. The use of a sliding window plays a crucial role in developing sequences

from trajectories since it checks each cell in the trajectory line of the file. In the sliding

window loop, the variable i is initialized and constitutes the index of each cell in the

trajectory file. Another cycle is introduced forming a nested loop, where each cell is

iterated continuously up to the nonexistence of the cell in the trajectories array. Every cell

in the previously mentioned array is appended to a list that will construct the sequence

Sk . Finally, if the index of the cell surpasses the predefined value of Λ, k is incremented

to form a new sequence, the list Sk is emptied, the value of i is set to search for the length

of the sequence and the sequence is appended to the set of sequences.

Figure 3.3: Flowchart that describes the procedures to generate sequences.
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3.3.1 Sequences Cumulative Distribution Function

This subsection examines the weight of the observation space which characterizes the

sequences Φ and the unique sequences φ. Table 3.3 outlines the preceding sequences for

diverse values of Λ, 4, 8, 12, and N, 16, 64, 256. We can decipher a inverse probability

relation between the number of trajectory sequences Ω and the number of unique se-

quences φ, caused by grid escalation. As the grid increases, Ω decreases and φ increases,

this phenomenon is explained by the mobility of the bicycles which is the same in all

grids, and the consequent reduction in cell area, whereby creates different patterns in

sampling the cell positions.

N Λ Φ Ψ

16 4 5126 187
8 4424 524
12 3797 812

64 4 5126 468
8 4424 1233
12 3797 1795

256 4 5126 513
8 4424 1307
12 3797 1863

Table 3.3: Table containing the value of the observation space Φ , unique sequences φ, for
different values of grid and sequence length Λ .

3.3.1.1 Sequences CDF Analysis

To compute and specify the incidence of the unique sequences φ that contemplate each

Sk sequence we used the Cumulative Distribution Function (CDF).

• Definition: CDF serves as a probability tool to represent the probability distribu-

tion of random variables defined as:

FX(x) = P (X ≤ x) (3.1)

The equation 3.1 denotes the probability of a random variable X being lesser than or

equal to x. To contextualize and integrate in our work we computed CDFs for various Λ

and N values. In Figure 3.4 we visualize that the y-axis designates the cumulative proba-

bility of the first 100 sequences in Sk . The isolated dots represent the unique sequences

with more probability and incidence, and the stabilization of the function is explained by

the cumulative sum of the less probable unique sequences occurrence.
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3.3. DATASET ANALYTICS

Figure 3.4: CDF with Λ = 4 for various N.

The above figure illustrates a CDF with sequence length Λ = 4. We can elucidate

that a low value of lambda such as 4 conducts to a high percentage probability of unique

isolated sequences and less unique sequences in ω. Nevertheless, with a increase in the

grid to N = 64 or N = 256 the stabilization of the slope occurs in lower probability values

resulting in an increase in unique sequences. Even though, we can obtain interesting

values to study prediction they are not challenging enough, hence Figure 3.5 and Figure

3.6 demonstrate better CDF values to study the influence of unique sequences.

Figure 3.5: CDF with Λ = 8 for various N.
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Figure 3.6: CDF with Λ = 12 for various N.

As we can depict, an increase in Λ means an increase in the length of the sequence

where the appearance of unique sequences is more probable. Additionally, the increase

in the grid and the consequent reduction in cell area are a plausible reason for the exis-

tence of more unique sequences. All of these values are in accordance to Table 3.3 were

we can analyse the effect of the growth in Λ and N on the sequences. In terms of the

prediction problem, more unique sequences implicates more randomness which adds a

more compelling twist in the architecture of the algorithm, so why not use bigger grids

and sequence lengths such as N = 1024, N = 4098, Λ = 20, Λ = 24 etc...? Mathematically

this should produce more unique sequences, although with this datum, the increase of

these parameters did not bring relevant CDF values that justified its conceptualization.

24



4

Deep Learning Architectures

In the next chapter, the approach leading to the construction of Deep Learning Architec-

tures will be discussed. Firstly, the different scenarios will be shown and the respective

implication in handling the data with the one-hot encoding solution will be explained.

Next, an in-depth explanation of the models LSTM and ANN will be provided, and finally,

a performance evaluation and comparison of both neural networks will close the chapter.

4.1 Scenarios and Data Handling

With the sequences constructed and the incidence of the unique sequences studied by

the CDF’s evaluation, the objective that follows and ultimately the main objective of this

work is to predict the next grid cell of the cyclist. To perform that we have to understand

the scenarios of the problem which are characterized by the following parameters:

• Three different grid sizes: N = 16, N = 64 and N = 256;

• Three different Λ values: Λ = 4, Λ = 8 and Λ = 12;

• Multiple outputs/cells to determine: The outputs to predict will be β = 1, meaning

only the last cell of the sequence will be estimated, β = 3 outputs, meaning the last

three cells of the sequence will be estimated, and β = 4 outputs, defining that with

the observation knowledge of a predetermined length of a sequence, the last four

cells will be estimated (consult definition 5 of the problem notation in Section 3.2).

.

Let us evaluate each scenario for the three sequence lengths (Λ):

Scenario Λ = 4

Λ = 4 means that the length of the sequence Sk will have four cells. The input size

of the data is 5126 sequences for all three grids and the desired output is the last cell

per sequence β = 1, knowing Λ - β = 3. In this case is not interesting to test for β = 3

because Λ - β = 1, one cell of knowledge is not sufficient to obtain good prediction results.

Logically, the case β = 4 is also not taken into consideration.
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Scenario Λ = 8

Λ = 8 indicates a length of eight cells in Sk . The input size of the data is 4424 sequences

for all the three grids and the desired output is the last cell per sequence β = 1, knowing

Λ - β = 7, and the last three cells per sequence β = 3, knowing Λ - β = 5 . Reasonably, the

last three cells can be determined with success due to the longer length of the sequence.

Scenario Λ = 12

Λ = 12 represents a length of twelve cells in Sk . The input size of the data is 3797

sequences for all three grids and the desired output is the last cell per sequence β = 1 and

the last four cells per sequence β = 4, knowing Λ - β = 8. As a result of a longer sequence

length, this scenario has the longest output cell prediction.

Table 4.1 summarizes the aforementioned parameters scenarios:

N Λ Φ Λ - β
16 4 5126 1

8 4424 3
12 3797 4

64 4 5126 1
8 4424 3
12 3797 4

256 4 5126 1
8 4424 3
12 3797 4

Table 4.1: Table indicating the main parameters of the work and the respective inputs
and outputs for each scenario.

4.1.1 One-Hot Encoding

One-Hot Encoding is a machine learning binary technique used to convert data in order

to enhance the performance of an algorithm. In simple terms, we assign a vector of

0’s and in a specific index a 1 to categorize data. Different values of the data will have

different binary vectors combinations with a unique unitary value in a given position of

the vector. Transposing into this work, the one-hot technique is applied to distinguish

and categorize the cells of the grid. For example, Figure 4.1 illustrates an array with 17

columns representing the case of 16 cells in a grid and 3 lines representing the knowledge

observation we get for Λ = 4, we can visualize that the first cell is 15 because of the unitary

value present in the index 15. Additionally, cells 2 and 3 share the same cell represented

by a completely different combination of 0’s and 1 indicating cell 11.
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Figure 4.1: Illustration of the one-hot encoding technique in 3 cells of a sequence.

The orthogonality that this technique provides to the data is an added value in the

development of the model since it permits better expressibility and guarantees a rescale

central property in the manipulation of big data.

4.1.2 Model Assumptions

The models used in this work are 2 deep learning models. These models are trained

based of the dataset to further execute the prediction process. The models utilized are

an Artificial Neural Network (ANN) and a Long-short Memory Network (LSTM). The

variables that are previously prepared to enable the network training are the length of

the sequence Λ, the number of cells N that the network takes into consideration, and the

number of cells β that the network should predict. These variables and their values are

common in both network cases, however, the main core parameters of the networks are

common but their values differ. Their definition is the following:

• Epoch: As the name suggests, is an epoch of training the neural network with the

information of the dataset. The number of epochs that a neural network contains

indicates the number of forward and backward passes that the network executes.

An epoch is organized in batches and the number of batches is passed through each

epoch.

• Batch Size: The data is organized in batches to perform training. The number

of samples placed in the batches constitutes the batch size used in each epoch to

perform the training.

• Input Layer: The Input Layer is composed of units or neurons and is the gateway

into the network. The data enters through this layer and the processing starts

stimulating the data to be passed to deeper layers.

• Hidden Units: The Hidden Units comprise the subsequent layers of the Input Layer

and they drive and process the information to the Output Layer.

• Output Layer: Is the last layer of action formed by a fixed number of units in which

the desired output is derived through this layer.

In both cases, the number of cells is the same, from this number the sequences are

built obeying the Λ value and these sequences are transformed into one-hot encoded

vectors that serve as input to the networks. The output is a one-hot encoding matrix that
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computes the predicted β cells for each one-hot sequence. In the next section, we discuss

and explain the main differences and the modus operandi of both scenarios.

4.2 Artificial Neural Network Learning Model

The first model that we present to solve the prediction of the next cell/cells problem is

the "mother"of artificial intelligence and it is an ANN base type architecture. We built the

ANN with 4 layers: The first corresponds to the input layer and it has (Λ - β) * N units and

its input shape is carved to the same dimension. Thus, the information that the network

knows in the input layer is in accordance with the empirical knowledge observation in

relation to the grid size. The activation function used to activate the neurons is the

Rectified Linear Activation Function or in short ReLU. The definition of this function is

given by:

f (x) =max(0,x). (4.1)

In addition to being a computationally simpler function, the linear behavior that

imposes allied to the fact that the encoded input information is constituted by 0’s and

1’s we can easily see why it is the most compelling activation function for this particular

case. Plus, to top it off it solves the vanishing gradient problem that other activation

functions suffer in the ANN realm. Digging into the network, we have 2 hidden layers

that are comprised by the same units of the input layer with the twist that they decrease,

in the first hidden layer, by a factor of 80%, and in the second by 60%. These values were

arbitrary (only following the premise that they should be smaller than the input units)

and they produce better training results. The activation function on these layers is also

ReLU. Finally, the output layer is composed of the output units of, logically, β * N, as we

want to estimate β cells in the grid of N size. The activation function used in the output

layer is the Softmax function, why Softmax? Because it forces the output to represent

the probability of the data being a defined one-hot vector which in turn represents a

specific cell in the grid. Hence, figure 4.2 represents a summarized ANN architecture

that receives an input one-hot matrix and outputs a one-hot encoded matrix where the

lines are β and the columns are N.
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Figure 4.2: ANN input and output structure.

In regard to compilation training parameters we used theAdam optimizer and Cate-
gorical Crossentropy as loss function since harmonizes well with the one-hot encoded data.

Table 4.2 summarizes the architecture components.

Layers Units Activation
Input Layer (Λ - β) * N ReLU
Hidden Layer 1 (Λ - β) * N ReLU
Hidden Layer 2 (Λ - β) * N ReLU
Output Layer β * N Softmax

Table 4.2: ANN layers configuration.

4.3 Long-Short Memory Network Learning Model

A Long-short Memory Network is a special type of Recurrent Neural Network (RNN)

capable of learning entire sequences of data. The term memory is very important in this

network and therefore let us understand how the memory particle functions:

• Short-term memory: Acts in the information acquisition aspect and is retained for

a few seconds. The information then has two possible outcomes: Either is cached

for longer periods or completely discarded.

• Long-term memory: Holds the information enabling its recovery or even to be used

a posteriori.

How can LSTM control and select the flow of information that receives? Well, due

to the fact that has a special gate (besides the normal input and output gates input) that
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revolutionized the deep learning world and it is the main reason that these networks can

manage the information in a critique manner, it is named Forget Gate. The forget gate

decides which information is discarded/forgotten by the network. The interdependency

in the layers and neurons enables the trajectory pattern recognition task to be flawless.

There are many advantages in relation to the ANN that can already be foreseen nonethe-

less let us first explore the main architecture used in this work to estimate future cell

positions. The LSTM we built has a simple structure with two layers functioning as input

layer and output layer inspired by the work of [33]. Is in the hidden units where the

effects of the input gate, forget gate, and output gate manifest. The number of hidden

units we used is 16 shaped to support bi-dimensional data with β - Λ and N size. First,

we thought that the hidden units should sample the size of N but promptly after some

tests, we realized that 16 was the best value in the aspects of computation complexity

and prediction results. The activation function of these units in the input layer is the

hyperbolic tangent activation function (tanh) which takes any real value in the scope [-1,

1] fitting in the one-hot encoded data. The output layer has the same number of neurons

as the ANN which is the number of prediction cells we want to estimate: β * N. The

activation function of these neurons is the Sigmoid and it works in a similar fashion as

the tanh, the difference being is that is a logistical function working with outputs in the

intervals of [0, 1] values, which is coherent with the one-hot output. As depicted in Figure

4.3, the network receives one-hot vectors labeled Xi until the observation knowledge of β

- Λ, is reached. These vectors are fed into the hidden units in which the flow of informa-

tion of the trajectory patterns is managed, controlled and ultimately transported to the

output dense layer. In the output layer we want to output β cells analogous to the ANN

scenario. The output is given by Y which is a one-hot encoded matrix with the prediction

information of the β cells per grid size N.

Figure 4.3: LSTM architecture (adapted from [34]).
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In this architecture, the Adam optimizer and the Categorical Crossentropy function

were also used so that we could have a valid comparison term of both models. The

specifications of the network are described in Table 4.3.

Layers Dimension Activation
Input Layer 16 tanh
Output Layer β * N sigmoid

Table 4.3: LSTM layers configuration.

4.4 Performance Evaluation

In the next section, we are going to analyze in detail all the results produced in both deep

learning architectures. First, the loss theme in the training phase will be discussed to

then introduce and debate the prediction results where it will be divided into two types

of prediction: Short-term prediction, refers to the β = 1 case, and long-term prediction

relative to β = 3 and β = 4 results. The training and prediction of the models were

executed using Python programming language with the support of Keras, TensorFlow,

and NumPy packages. The MATLAB programming languange was used to gather all the

results provided by the models. All the results and implementations were computed in

an Intel 4-Core i7-8550U CPU @ 3.79 GHz computer with 16 GB of memory plus 8GB

of DRAM. In [35] we made available a prototype of the project uploaded in a Github

repository containing all the developed files/scripts of the work implemented.

4.4.1 Training evaluation

The training phase was executed using a batch size of 64 to comprehend the dataset of

4500/5000 average data. With this small batch size value, we had to exceed the epochs

number and 1000 epochs were the defined value for training the network. To optimize

and not run the risk of over-fit the model we defined 10 levels of patience. This means that

the network will wait for 10 epochs before stopping the training if no progress is done. We

have already mentioned that the loss function used in both scenarios was a crossentropy

based categorical function. This loss function represents the difference between the actual

processed data and the data processed by the training model. This difference generate

the so-called loss function and the objective is to have a convergent loss function. For the

example scenario of N = 16, Λ = 4 and β = 1, we can observe in figure 4.4 and figure 4.5

the required convergence aspect. If these functions diverge the trained data would not be

in accordance with the real observable dataset which would produce bad loss values and

ultimately poor prediction results. The convergence guarantees a decrease in loss values

and correct training of the dataset.
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Figure 4.4: Categorical crossentropy loss function for a grid with 16 cells, Λ = 4 and β =
1 in ANN training.

Figure 4.5: Categorical crossentropy loss function for a grid with 16 cells, Λ = 4 and β =
1 in LSTM training.

The graphics in Figure 4.4 and Figure 4.5 express the training success in short-term

prediction, Figure 4.6 and Figure 4.7 illustrate the same convergence property for long-

term prediction.

32



4.4. PERFORMANCE EVALUATION

Figure 4.6: Categorical crossentropy loss function for a grid with 16 cells, Λ = 8 and β =
3 in ANN training.

Figure 4.7: Categorical crossentropy loss function for a grid with 16 cells, Λ = 8 and β =
3 in LSTM training.

We can state that this property is present in both training models and in both short and

long-term prediction cases. We can also assure that in the other scenario cases presented

in Subsection 4.1 the same convergence slope occurs. With the training of the models

well implemented and validated, we can enter the realm of the prediction results.

4.4.2 Prediction Performance

As we mentioned the objective of this work is to correctly implement a model that can

estimate cell positions whether for a short instance (β = 1) or for long periods (β = 3, β

= 4). All the results described in this section for these cell intervals are applied to all

the grids as well as all sequence lengths described in section 4.1. The predictive models,

ANN and LSTM, that encapsulate all the conditions of the problem are evaluated through
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a study metric of Prediction Performance, as follows:

P P =
1
Π

Π∑
j=1

G(cpredj , cori j ). (4.2)

In equation 4.2 Π defines the total of sequences, where G(cpredj , cori j) denotes a binary

function that returns 1 when cpredj , the cell predicted, matches cori j , the original cell in

the sequence, and returns 0 if their value is different. With the sum of all correct/incorrect

predictions divided by the number of sequences evaluated, we can compute the percent-

age performance of the models. To facilitate the display of results we are going to first

assess the short-term prediction results and then debate the long-term performance of

both models.

4.4.3 Short-Term Prediction

The short-term prediction is defined as the prediction of the last cell of a sequence (β =

1). All sequence lengths are considered for all the grids’ sizes.

ANN and LSTM performance for Λ = 4, β = 1

Figure 4.8 and Figure 4.9 illustrate the prediction performance for both ANN and

LSTM values for the sequence length value of Λ = 4 in all 3 grids, N = 16, N = 64 and N =

256. As we can observe by the bar graph the results of both models are practically equal.

For the smaller grid the value is approximately 93% and for the remaining is about 87%

demonstrating successful results in the first study case. This however can be explained

by the high probability of occurring certain sequences (illustrated by the CDF’s plots in

Subsection 3.3). As this scenario have the biggest number of sequences φ and the lesser

number of unique sequences ψ it is normal that both models will correctly evaluate the

next cell position translating into high values of performance.

34



4.4. PERFORMANCE EVALUATION

Figure 4.8: ANN prediction performance for Λ = 4, β = 1 and N = 16, 64 and 256.

Figure 4.9: LSTM prediction performance for Λ = 4, β = 1 and N = 16, 64 and 256.

ANN and LSTM performance for Λ = 8, β = 1

With the increase in Λ the prediction performance will also increase as is depicted

in figure 4.10 and figure 4.11. Why does this phenomenon happen? Because the models

have more knowledge from the observation of more cells. Consequently, their inference

and estimation capabilities will increase reflecting in values of 90% minimum.
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Figure 4.10: ANN prediction performance for Λ = 8, β = 1 and N = 16, 64 and 256.

Figure 4.11: LSTM prediction performance for Λ = 8, β = 1 and N = 16, 64 and 256.

ANN and LSTM performance for Λ = 12, β = 1

Finally, the last case of short-term prediction represents the case where both mod-

els gather more observation knowledge. Albeit, this scenario produces more unique

sequences resulting in a higher degree of unpredictability the vast knowledge that the

networks possess allows high-quality estimation results represented in figure 4.12 and

figure 4.13. These results recognize the power of both deep learning models where rates

of 93/94% were achieved surpassing the previous scenarios and closing the sequence of

short-term prediction impressively.
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Figure 4.12: ANN prediction performance for Λ = 12, β = 1 and N = 16, 64 and 256.

Figure 4.13: LSTM prediction performance for Λ = 12, β = 1 and N = 16, 64 and 256.

4.4.4 Long-Term Prediction

In the short-term prediction performance subsection, there were no relevant differences

between the results of the ANN and LSTM models. However, in the long-term domain,

the results are quite differ. The proposed cases are both for ANN and LSTM for Λ = 8

and β = 3 for all grids, and Λ = 12 and β = 4 also for all grid sizes.

ANN and LSTM performance for Λ = 8, β = 3

In this case, the architectures have the knowledge of 5 cells and need to correctly

determine cells c6, c7, c8. As we can see in Figure 4.14 and 4.15 in the next cell prediction,
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c6, the results are identical but as we go deeper in prediction, c7 and c8 the LSTM architec-

ture outperforms the ANN architecture. There is not a particular reason rather reasons

and aspects of the network such as the forget gate and hidden units, conjugated with

the type of categorical information that enables better high probability prediction results.

We can identify that in long-term prediction the escalation of the grid translates into a

decrease in results, the reason being is the increase in the unique sequences ψ which

generates more unpredictability and allied to a bigger grid develops a harder estimation

task for the models.

Figure 4.14: ANN prediction performance for Λ = 8, β = 3 and N = 16, 64 and 256.

Figure 4.15: LSTM prediction performance for Λ = 8, β = 3 and N = 16, 64 and 256.
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ANN and LSTM performance for Λ = 12, β = 4

The final long-term scenario enables the models to have knowledge from the obser-

vation state of 8 cells and require to correctly identify 4 cells c9, c10, c11, c12. As in the

previous case, Figure 4.16 and Figure 4.17 portray a similar result in the next cell predic-

tion c9. The disparity of results in deeper estimations is similar emphasizing more in the

bigger grid N = 256 where ANN estimated the last fourth cell with a probability of 53.2%

and the LSTM computed a rate of 80.1%. Therefore, the task of longer predictions in

bigger grids is extremely difficult and the capabilities of LSTM models excel from ANN

models in these prediction scenarios.

Figure 4.16: ANN prediction performance for Λ = 12, β = 4 and N = 16, 64 and 256.

Figure 4.17: LSTM prediction performance for Λ = 12, β = 4 and N = 16, 64 and 256.
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Conclusion

5.1 Final Considerations

This dissertation proposed two deep learning models, an ANN architecture and an LSTM

architecture to predict cycling mobility in the city of Münster in Germany. The results pre-

sented in chapter 4 showed that for short-term prediction, indicating next-cell prediction

(β = 1), both models had success with similar values in the prediction performance metric.

The smaller grid (N = 16) had the best results for smaller sequence lengths (Λ) however,

with the increase in Λ the bigger grids (N = 64 and N = 256) improved and equalized

in the estimation values. This specifies that the more past cell positions knowledge the

networks have, the better results they will generate regardless of the user’s displacements.

In the scenario of long-term prediction (β = 3, β = 4), the LSTM model outperformed the

ANN model in the longer predictions. For that reason, we state that the LSTM models are

the main approach for a prediction problem, not taking away the good performance from

the ANN, but the computational supremacy that the LSTM displayed is clearly evident.

Although, the success of this work dwells in the deep learning domain the importance

of evaluating different types of parameters when choosing a dataset and the respective

preprocessement of the raw data reflects in enhanced performance of these prediction

algorithms.

5.2 Future Work

The work described in this dissertation focused on building a mobility prediction algo-

rithm capable to cope with big data and being adaptable to any given environment. The

success of this work stems from identifying the different mobility scenarios to customize

our algorithm, efficiently preprocess big data in a way that our prediction algorithm can

handle and deliver the best prediction output. Future works can include an improvement

in the main components of the LSTM recurrent neural network such as the importance

of the hidden units and how they affect the behavior of the model. A more successful

prediction model implies a better impact in optimizing cellular networks. Thus, the next
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step is to have a significant and literal impact on the mobile network by using these mo-

bility prediction schemes as a reference to optimize processes such as routing, caching,

naming, etc. By optimizing the network, our model can reach IoT applications where

we will provide an enhanced personalized mobility prediction algorithm to support the

development of smart applications related to our daily life.
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