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UAV DATA MODELING FOR GEOINFORMATION UPDATE  

  

Paulo José Arnaldo Albuquerque 

 

 [RESUMO] 

A dissertação visa avaliar a relevância e o desempenho dos dados obtidos por Veículos 

Aéreos Não Tripulados (VANT) na atualização de Geoinformação. Os dados obtidos por 

VANT serão utilizados quer em conjunto com outros dados – obtidos por plataformas 

tradicionais de deteção remota –, quer isoladamente, recorrendo à técnica de 

Structure from Motion (SfM), para gerar o modelo digital de superfície e os 

ortomosaicos de alta precisão em diferentes momentos. Para a avaliação da precisão 

dos dados, os modelos digitais de terreno serão comparados. Por outro lado, os dados 

e informação gerados permitirão atualizar Geoinformação e quantificar as mudanças 

ocorridas no uso e ocupação do solo. Os resultados irão alimentar a discussão crítica 

da ação antrópica nos aglomerados urbanos e as propostas de intervenção. 

[ABSTRACT] 

The dissertation aims to assess the relevance and performance of data obtained by 

Unmanned Aerial Vehicles (UAVs) in updating Geoinformation. The data obtained by 

UAVs will be used either in conjunction with other data – obtained by traditional 

remote sensing platforms – or on its own, using the Structure from Motion (SfM) 

technique, to generate high-precision digital surface models and orthomosaics at 

different times. For the accuracy assessment of the data, the digital terrain models will 

be compared. On the other hand, the data and information generated will make it 

possible to update Geoinformation and quantify changes in land use and occupation. 

The results will feed the critical discussion of anthropic action in urban areas and 

intervention proposals. 

 

PALAVRAS-CHAVE: Veículos Aéreos Não Tripulados (VANTs); Geoinformação; 

Atualizações. 

KEYWORDS: Unmanned aerial vehicles (UAVs); Geoinformation; Updates. 
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LIST OF ABBREVIATIONS 

 

APA – Agência Portuguesa do Ambiente (Portuguese Environment Agency);  

ASPRS – American Society for Photogrammetry and Remote Sensing; 

CD – Change detection; 

DEM1 – Digital elevation model; 

DSM – Digital surface model; 

DTM – Digital terrain model; 

GIS – Geographic information system; 

GSD – Ground sampling distance; 

LULC – Land use, land cover; 

RMSE – Root mean square error; 

RS – Remote sensing; 

SfM – Structure from motion; 

UAV – Unmanned aerial vehicle; 

UHR – Ultra high resolution. 

 

  

                                                                 
1 Sometimes in the literature, the terms DEM, DSM and DTM are used interchangeably; however, within 
the scope of this work we will be using the definitions presented in https://geodetics.com/dem-dsm-
dtm-digital-elevation-models/. DEM represents the bare-Earth surface, removed from all natural and 
built features; DSM represents both the natural and built/artificial features and DTM typically enhances 
a DEM, by including vector features of the natural terrain, such as rivers and ridges. A DTM may be 
interpolated to generate a DEM, but not vice versa. 
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1. INTRODUCTION 

We live in the Information Age, where copious amounts of data (Big Data) are 

being collected every day to assist the decision making processes. Human settlements 

(particularly cities) are becoming very complex systems that require a lot of up-to-date 

information, which needs to be efficiently collected, analysed and properly managed. 

All this data has a geographical component attached. A famous quote in the GIS 

community states that everything happens somewhere.  

“The increased reliance on geospatial data for decision-making in urban 

planning makes it imperative that the available spatial information is up-to-date 

and faithfully represents reality. This calls for map updating methods which 

support the integration of data from different sources in an automated 

manner”. [1, p. 1] 

“To ensure the usability of spatial data as well as to provide a solid basis 

for informed decision-making and planning, map updating is imperative”. [2, p. 

312] 

Therefore, in Spatial Planning these concerns about data availability and quality 

are especially relevant. With our dissertation we intend to contribute to this debate 

and analyse the potentialities of UAV RS data modelling for the update of 

Geoinformation. 

Traditional remote sensing platforms, like satellites and airplanes, have 

significant costs associated, require a great deal of planning and don’t have a great 

temporal resolution. In the last decade, UAVs have increasingly been used as remote 

sensing platforms and offer much greater flexibility, not only for the possibility of using 

various sensors, but also for the ease of operation and the possibility of obtaining very 

high temporal resolutions.   

Adão et al. (2017) referred to UAVs as a remote sensing platform capable of 

overcoming not only satellite but also manned aircraft issues by bringing enhanced 

spectral and spatial resolutions, operational flexibility and affordability to the users. [3] 

UAVs are increasingly being used for a multitude of applications. For example: 

in agriculture, archaeology, environmental monitoring, mining, urban planning, 3D 
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modelling of historical buildings, emergency response, etc. Table 1 presents some 

UAVs’ remote sensing applications.   

Table 1. Overview of UAVs’ remote sensing applications, adapted from [4, p. 11] 

 Selected Applications Highlights 
Precision agriculture 
and vegetation 

Soil property estimation; 
crop/vegetation management; 
forest structure assessment. 

 

 Easily operated platforms; 
 High-spatiotemporal-resolution sensor data; Less 

impact of atmospheric factors; 
 Feasible access to high-resolution 3D structure of 

vegetation. 
 

Urban environment 
and management 

Traffic control;  
urban infrastructure management;  
building observation;  
urban environment mapping. 
 

 Real-time monitoring of high dynamic objects; High 
visibility; 

 Higher redundancy & reliability; 
 Easily acquired 3D models of urban objects. 

 
Disaster hazard and 
rescue 

Post-disaster assessment;  
emergency responses;  
fire surveillance;  
landslide dynamic monitoring;  
coastal vulnerability assessment. 
 

 Safer and lower-cost than in situ measurements; 
 Quick response; 
 Integrated sensor data bring more effective 

interpretation.  

This thematic has been researched in the last years, and the literature suggests 

that there is a great potential for UAV data. For example, Haala et al. (2013), 

estimating the quality of 3D point clouds obtained from UAV data, remarked how 

“UAVs are becoming standard platforms for photogrammetric data capture especially 

while aiming at large scale aerial mapping for areas of limited extent”. [5, p. 183] 

The authors’ research “demonstrated the feasibility of relatively simple UAV-

platforms and cameras for 3D point determination in the sub-pixel level. Absolute 

elevation accuracies in the order of ½ GSD [Ground Sample Distance] of the captured 

imagery could be verified for very complex topographic areas”. [5, p. 188] 

Not only are UAVs a very practical (and easily deployable) data gathering 

platform, but they are also capable of achieving great accuracy, as long as some 

precautions are taken, namely the use of GCPs. Sanz-Ablanedo et al. (2018) observed 

how the “geometrical accuracy of georeferenced digital surface models (DTM) 

obtained from images captured by micro-UAVs and processed by using structure from 

motion (SfM) photogrammetry depends on several factors, including flight design, 

camera quality, camera calibration, SfM algorithms and georeferencing strategy. (…) 

the accuracy improves as the number of GCP points increases (…)”. [6, p. 1] 

 More recently UAV RS data started to be fused with data from other RS 

platforms.  
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“Data fusion, as a general and popular multi-discipline approach, 

combines data from multiple sources to improve the potential values and 

interpretation performances of the source data, and to produce a high-quality 

visible representation of the data. Fusion techniques are useful for a variety of 

applications, ranging from object detection, recognition, identification and 

classification, to object tracking, change detection, decision making, etc. (…)  

Remote sensing data fusion, as one of the most commonly used 

techniques, aims to integrate the information acquired with different spatial 

and spectral resolutions from sensors mounted on satellites, aircraft and 

ground platforms to produce fused data that contains more detailed 

information than each of the sources”. [7, p. 5] 

There are numerous fusion methods available. To name a few: fusion of multi-

bands images, fusion of multispectral and panchromatic images, fusion of 

multispectral and hyperspectral images and the corresponding sub-methods to each of 

these methods (more details can be seen [8]). There are also different levels at which 

the fusion techniques can be applied: pixel level, feature level and decision level (more 

details can be seen in [7]). 

Geoinformation updating is essentially a CD problem, but according to 

Tewkesbury et al. (2015), given the many methods in use, most authors seem to agree 

that there isn’t a universal CD technique. The sheer number of change detection 

techniques and fusion methods makes it very difficult to consider any single one as the 

recommended technique/method. [9] 

The objective of this dissertation is to assess the potential of UAVs’ RS data and 

image fusion for Geoinformation updating, by applying some of the RS CD techniques 

and fusion methods to a case study. This dissertation is organized as follows: Section 1 

gives an overview of what is to be accomplished; Section 2 reviews the state of the art; 

Section 3 presents the case study; Section 4 presents a comparison of the data; Section 

5 presents a discussion of the results and lastly the final remarks are presented. 
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2. STATE OF THE ART  

In recent years UAVs gained enormous relevance in remote sensing and pose a 

great alternative to the traditional methods. For example, Negash et al. (2019), 

analysing the use of UAVs in agriculture, observed how they “can offer high versatility 

and flexibility, as compared to satellites, and can operate rapidly without planned 

scheduling. Additionally, they can fly at low altitudes and slowly, with the ability to 

acquire spatial and temporal high-resolution data, representing important advantages 

against conventional platforms that have been broadly used over the years”. [10, p. 

254] 

Kolarik et al. (2020), on their research on the assessment of vegetation 

structure using UAVs, also concluded that they offer an advantage over the traditional 

RS platforms, like satellites, since UAVs are not (as) constrained by atmospheric 

effects, cloud cover, temporal constraints, and seasonality. Since UAVs fly at low 

altitude they can acquire images with centimetre-level ground sampling distances 

(GSD), with much greater resolution than data collected via satellite platforms. [11] 

There is a vast array of remote sensing techniques; however a major advantage 

of UAVs is that they allow for the use of Structure from Motion (SfM), a technique that 

is “able to produce 3D information from unstructured aerial images”. [12, p. 6880] 

SfM, also referred to as SfM-MVS (Multi-View Stereo) is a photogrammetry 

technique that “operates under the same basic tenets as stereoscopic 

photogrammetry, namely that 3-D structure can be resolved from a series of 

overlapping, offset images". [13, p. 301] 

“SfM is the same method used to determine the relative position that a 

camera has with respect to another considered as fixed or reference, that is, it 

is the same method as computing the relative position between the two 

cameras”. [14, p. 3] 

Traditional photogrammetric methods require the exact location and pose of 

the cameras used and/or the coordinates of a series of control points. However, SfM 

doesn’t require these data since “the geometry of the scene, camera positions and 
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orientation is solved automatically without the need to specify a priori, a network of 

targets which have known 3-D positions”. [13, p. 301] 

 “While classic photogrammetric methods typically rely on strips of 

overlapping images acquired in parallel flight lines, SfM was designed to 

restitute the three-dimensional geometry of buildings and objects from 

randomly acquired images. As in the case of classic photogrammetry, the only 

caveat is that each physical point on the restituted object be present in multiple 

images”. [15, p. 422] 

Despite the similarities between SfM and conventional photogrammetry, SfM is 

not “simply an incremental development in photogrammetry” [16, p. 251]. SfM was 

developed in the 1990s, “has its origins in the computer vision community and the 

automatic feature-matching algorithms” were developed in the previous decade [13, 

p. 301]. Although some aspects of SfM derive “from advances in 3D computer vision 

algorithms, (…) photogrammetric principles and techniques are embedded in the SfM-

MVS workflow”. [16, p. 251] 

“Instead of using the analog airphoto stereopairs with overlap along the 

flight path, the Structure from Motion process starts by acquiring photographs 

of the object of interest with sufficient overlap (e.g. 80–90%) from multiple 

positions and/or angles. Based on advances in image feature recognition, such 

as the Scale Invariant Feature Transform (Lowe, 2004), the common points are 

automatically detected and matched between photographs. A bundle block 

adjustment is then performed on the matched features to identify the 3D 

position and orientation of the cameras, and the XYZ location of each feature in 

the photographs resulting in a sparse 3D point cloud (Snavely, Seitz, & Szeliski, 

2008; Triggs, Mc Lauchlan, Hartley, & Fitzgibbon, 2000)“. [17, p. 281] 

Mancini et al. (2013), comparing the SfM approach on coastal environments 

with Terrestrial Laser Scanning (TLS) and Global Navigation Satellite Systems (GNSS) 

confirmed “the high performance of the SfM methods applied to images acquired by 

the UAV system” [12, p. 6892]. They noted how SfM “applied to images acquired by a 

low-altitude UAV system produced a point cloud and derived DSM representing a 
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beach dune system with high topographic quality and vertical accuracy, comparable 

with GNSS survey data”. [12, p. 6895] 

The SfM technique has also proven to be very effective in situations where 

there is greater spatial complexity. For example, Sadeepa Jayathunga et al. (2020), in 

their study of the potential of UAV photogrammetry for characterization of the forest 

canopy structure, concluded that SfM not only facilitated the 3D modelling of the 

forest canopy, but was also more cost-effective than Light Detection and Ranging 

(LiDAR) data. The authors also found strong correlations between “field and UAV-SfM 

structural metrics (…) [that indicate] that the UAV point cloud data have the potential 

to capture the variations of the actual forest canopy structure, such as size and size 

variation”. [18, pp. 66, 67] 

Sanz-Ablanedo et al. noted how a “strong photogrammetric network” needs 

“highly redundant imagery” and “diversity in camera roll angles”, specifically the 

introduction of oblique images. [6, p. 6] 

Some researchers have already directly compared SfM with other traditional – 

high accuracy – methods. Grohmann et al. (2020) set out to compare the accuracy of 

airborne LiDAR (Light Detection and Ranging), ALS, terrestrial LiDAR, TLS, and SfM-MVS 

(MultiView-Stereo) in the detection of dune migration and volume change. The 

authors concluded that SfM-MVS is a good alternative to the other methods. “Besides 

a good correlation to the TLS DEM, the full SfM-MVS DEM shows a good fit with 

elements of the landscape that did not experience significant change between the 

surveys, such as the road bordering the dune field to west and southwest”. [19, p. 7] 

In Portugal, Gómez-Gutiérrez & Gonçalves (2020) used two UAVs (multirotor 

and fixed wing) to survey coastal cliffs in Praia do Porto da Calada. They concluded that 

the “multirotor platform and SfM-MVS photogrammetry was found to provide the best 

cliff coverage (…)”. [20, p. 8171] 

Callow et al. (2018), in their study of coastal sediment archives, noted how the 

“availability, low-cost and utility of remotely piloted aircraft systems (…), allows 

overlapping image collection over geomorphic features for SfM applications (herein 

termed ‘RPAS-SfM’ [Remotely Piloted Aircraft System - SfM]). RPAS-collected multiple 
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overlapping digital images allow the combined use of Structure-from-Motion (SfM) 

photogrammetric techniques to produce datasets at higher resolution and lower cost 

than airborne LiDAR, and at comparable resolution and accuracy but at lower costs and 

more efficiently relative to TLS, particularly for complex terrain (Niethammer et al., 

2012; Turner et al., 2012; Mancini et al., 2013; Colomina and Molina, 2014)”. [21, p. 

2604] 

The authors also made a reference to the fact that LiDAR surveys are “limited 

to what the sensor can ‘see’ for each scan, which requires multiple scans and more 

ground control, generating large datasets and significant processing challenges”. [21, 

p. 2604] 

In their study, they concluded that UAVs and SfM “provide new insight into 

earth surface processes and geomorphic features”. [21, p. 2613] 

Despite the evident strides in the development of SfM (and LiDAR), there are 

concomitant technologies/techniques being explored, namely Convolution Neural 

Networks (CNNs). CNNs are an example of Artificial Intelligence being applied – with 

high accuracy, regardless of the intrinsic uncertainty of the processes – to the analysis 

and classification of images. CNNs “work on different self-defined filters which allow 

creation of point based network simulating neuron connections in human brain, 

making then the final decision about attribution of image to certain category or class”. 

[22, p. 3] 

Gebrehiwot et al. (2019) described how they trained CNNs to, automatically 

and with great accuracy, label UAV images used for flood mapping. For this, the 

authors used Fully Convolutional Networks (FCNs).  

Dang et al. (2020) also used CNNs (with an accuracy of about 98%) in their 

attempt of coastal classification in Vietnam. They “proposed the use of a convolutional 

neural network (ConvNet) for coastal classification based on these technologies and 

geomorphic profile graphs. The primary input data is digital elevation/depth models 

obtained from ALOS and NOAA satellite”. [23, p. 11824]  

“UAVs technology is an efficient photogrammetry data acquisition 

platform that can be used to quickly deliver high-resolution imagery for flood 



13 
 

assessment and emergency response. (…) In this study, the FCN-16s model was 

fine-tuned and trained to extract the inundated areas. (…) Experimental results 

indicated that a CNN-based classifier such as FCN-16s was very suitable in flood 

imagery segmentation with an overall accuracy of 95% and a Kappa index of 

0.904”. [24, p. 11] 

RS data acquired with UAVs presents a set of characteristics – UHR, greater 

availability of spectral and geometric information, and integrated sensor data – that, 

compared to traditional RS data, allows for differentiated applications, greater 

accuracies and increased availability of datasets. Some of the existing 

methods/techniques used for traditional RS data are reusable and fine-tuned to 

address UAV RS data; however, there is a need for more tailored analysis techniques. 

[4]  

For example, LULC mapping, one of the main applications for UAV RS data, 

faces some challenges when dealing with UAV imagery. The UHR allowed by UAV-

borne sensors has a centimetre-level GSD that turns small objects – normally 

imperceptible to traditional RS platforms – into objects of interest “(such as 

pedestrians on the street, cars, infected plants, weed patches, and dustbins)”. [4, p. 8] 

A method to improve LULC classification accuracy is to fuse UAV RS data with 

data from other RS platforms (some examples are presented in table 2). For achieving 

better accuracy, geometric and spectral information should be combined. UAV 

photogrammetric data can very easily generate DSMs, using the SfM technique, and 

these can be fused with other datasets. However, since the scale difference between 

objects (the same or different ones) can be significant, there is a need to employ multi-

scale approaches (at the feature or image level). As the scene complexity increases 

some classifiers are no longer capable of performing efficiently (e.g.: SVM, Random 

Forest, and Maximum Likelihood) and there is a need for more advanced classifiers. 

These can be a combination of simpler classifiers, or deep learning-based methods: 

fully convolutional networks; convolutional neural networks (e.g.: U-Net); Pyramid 

Scene Parsing Network (PSPNet), etc. [4] 

In remote sensing the purpose of data fusion is to integrate information 

acquired from different sensors (from multi-platforms) at different spectral and spatial 
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resolutions, and produce a result where the fused data contains more information 

than each of the sources. [7] 

Table 2. Brief comparison of data acquired using different RS platforms, from [4, p. 8] 

 LULC Mapping Change Detection 
Low-to-moderate-resolution 
satellite RS data 

 Pixel-based classification; 
 Data transformation such as principal component 

analysis or empirical object indices; 
 Occasionally applied object-based analysis for very large 

objects; 
 Objects can be approximated by single pixels; 
 Mixed pixel effects. 

 

 Pixel-based analysis approaches; 
 Radiometric normalization or reflectance computations are 

essential; 
 Object-based analysis is occasionally used for large objects; 
 Post-classification methods. 

High-to-very high-resolution 
satellite or airborne data 

 High inter-pixel similarity and high intra-pixel variance; 
 Pixel-based methods are still used; 
 Object-based methods with textural features; 
 Semantic/contextual information can be implemented; 
 Deep learning-based methods are used for scene 

analysis. 
 

 Co-registration of images is essential and algorithms handling 
misalignment can be a key for images with suboptimal camera 
networks for dense matching; 

 Object-based methods are primarily used, as it is slightly more 
robust to misalignment; 

 Shape/textural features are important for difference analysis; 
 3D change detection can be applied for stereo data, while stereo 

data might not often be available. 
 

Ultra-high-resolution UAV-
borne data 

 Very high inter-pixel similarity and high intra-pixel 
variance; 

 Object-based analysis is essential and Super-pixel based 
methods are often used; 

 The need for fusing 3D information such as height, 
geometric and oblique information for remote sensing 
analysis;  

 Contextual information and deep learning methods are 
essential for accuracy improvement. 

 Data co-registration is less problematic as most of the UAV data 
are photogrammetrically acquired and comes with associated 3D 
information by applying rigorous multi-view matching methods; 

 The need for analyzing the 3D uncertainty for geometric 
comparison; 

 The need for fusing 3D and spectral information for change 
determination; 

 Contextual information and deep learning methods are essential 
for accuracy improvement.  
 
 

Multi-source data fusion techniques have increasingly been applied in diverse 

fields, from remote sensing to computer vision, medical image processing, security and 

defence, and others. However, in remote sensing, the techniques still present 

challenges when applied to multi-source data with variable spatial and temporal 

resolutions. Data fusion techniques in remote sensing can essentially be classified into 

three different levels: pixel/data level, feature level and decision level. [7] 

A schematic representation of the three different levels of data fusion can be 

seen in figures 1 through 3. 

 

Figure 1 – Pixel level fusion, adapted from [25, p. 77] 
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Figure 2 – Feature level fusion, adapted from [25, p. 77] 
 
 

 

Figure 3 –  Decision level fusion, adapted from [25, p. 77] 
 
 

The fusion process must fulfil three criteria: “preservation of all relevant 

information, elimination of irrelevant information and noise, and minimization of 

artefacts and inconsistencies in the fused image”. [25, p. 78] 

At the pixel level, two or more geometrically co-registered images (of the same 

scene) are combined into a single image that presents more information than the 

originals. The images may originate from the same or different sensors and have the 

same or different spatial and spectral resolutions. Multispectral images have higher 

spectral resolution and lower spatial resolution than panchromatic images. The fusion 

process generates images with the highest spectral and spatial resolutions. [25]   

Feature level fusion occurs at a higher level than pixel fusion. The process 

consists of the extraction of features from the RS images and a subsequent fusion of 

those features. The objects are extracted using segmentation. “Features correspond to 

characteristics, which are depending on their environment such as shape, extent and 

neighborhood, are extracted from the original images. The similar objects from 

multiple sources are assigned to each other and then fused for further assessment”. 

[25, p. 82] 
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Decision fusion occurs at the highest processing level. In this process the input 

“images are processed individually for information extraction. Then, the decision rules 

are used to combine extracted information to reinforce common interpretation and 

resolve differences and furnish a better understanding of the observed objects. The 

input decisions are some labels or symbols with different degrees of confidence”. [25, 

p. 84] 

Zhang (2010) defines pixel level fusion as “the combination of raw data from 

multiple sources into single resolution data, which are expected to be more 

informative and synthetic than either of the input data or reveal the changes between 

data sets acquired at different times; feature level fusion as capable of extracting 

various features, e.g. edges, corners, lines, texture parameters, etc., from different 

data sources and then combines them into one or more feature maps that may be 

used instead of the original data for further processing; and decision level fusion as a 

combination of the results from multiple algorithms to yield a final fused decision and 

if the results from different algorithms are expressed as confidences (or scores) rather 

than decisions, it is called soft fusion; otherwise, it is called hard fusion. Methods of 

decision fusion include voting methods, statistical methods and fuzzy logic-based 

methods”. [7, p. 6] 

Joshi et al. (2016), in their review of radar and optical remote sensing data 

fusion (for land use mapping and monitoring) observed a vast methodological 

difference in the analysed studies and didn’t find “a particular rationale explaining the 

stage at which fusion between radar and optical datasets was performed [pixel, 

feature or decision level] (…) or in the inputs and types of classification techniques 

utilized, for the target aims of the reviewed studies”. [26, p. 15] 

They concluded their review with some remarks urging the development of: 

“(ii) robust techniques to fuse optical and radar data across different ranges of 

temporal and spatial resolutions, tested over the same study regions and within the 

same land use themes to ease the comparability of results; (iii) systematic and 

standardized procedures for assessing the accuracy and benefits of fusing data 

sources; and (iv) studies conducted over larger spatial scales, supported by efficient 
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computational processing capacity and permanent ground-based sites for calibration 

and validation”. [26, pp. 17, 18]  

In the context of using UAVs’ RS data for the update of Geoinformation the 

main focus seems to rest with the fusion of optical datasets. However, data fusion in 

remote sensing remains a relatively new research field, and new fusion techniques are 

still being developed and tested. 

For example, Dian et al. (2019) proposed a novel – pixel level – technique for 

fusing a high spatial resolution multispectral image (HR-MSI) with a low spatial 

resolution hyperspectral image (LR-HSI). The authors proposed a spatial-spectral 

sparse representation (SSR) approach with the goal of obtaining a high spatial 

resolution hyperspectral image (HR-HSI) from the fusion of an HR-MSI and an LR-HSI 

(the algorithmic approach is explained in [27]). Nirmala & Vaidehi (2015) also proposed 

new pixel and feature level image fusion methods. They employed a Non Sub-sampled 

Contourlet Transform (NSCT) “for multi-resolution decomposition as it is demonstrated 

to capture the intrinsic geometric structures in images effectively” [28, p. 743]. They 

proposed two pixel-level fusion methods (one using NSCT with fuzzy logic and another 

using NSCT and SVM) and a feature-level fusion method using NSCT and AdaboostSVM 

(a detailed explanation of these methods can be found in [28]).  

Tian & Wang (2009) analysed the different levels of image fusion and proposed 

ten evaluation parameters to assess the fused images: entropy, mutual information, 

average gradient, standard deviation, cross entropy, unite entropy, deviation and 

relative deviation, mean square error, root mean square error – RMSE, and Peak-To-

Peak Signal-To-Noise Ratio – PSNR. The algorithms for each parameters as well as the 

specific use of each indicator can be seen in [29]. According to the authors, pixel-level 

fusion is “the most important and the most fundamental multi-sensor image fusion 

method” since it produces images with much richer information at the most basic 

(pixel) level, that allows for better analysis and processing results, even if the images 

are used as inputs in other fusion levels/methods. [29, p. 246]  

Ghassemian (2016) presented three approaches for the assessment of fused 

products: a first approach that doesn’t need a reference image and uses “quality 

indexes”; a second approach that “considers the images at a spatial resolution lower 
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than the original and considers the original MS image as a reference (Wald’s 

protocol)”; a third approach that doesn’t need a reference image and the 

“approximations of MS and PAN images are obtained from the fused images”, then 

each of the approximated images (MS and PAN) is compared with the respective 

original image. [25, p. 85] 

Li et al. (2017) reviewed the state of the art of pixel-level image fusion and 

analysed some of the major pixel-level image fusion methods, the adopted transforms 

and respective fusion strategies (a detailed analysis can be seen in [30]). They 

identified four major methods: multi-scale decomposition; sparse representation; 

methods in other domains (e.g.: IHS, PCA, Gram-Schmidt transform, ICA, gradient 

domain, and fuzzy theory); and combination of different transforms. They also 

presented two major classes of evaluation metrics for fused images: a) objective 

evaluation metrics requiring a reference image and b) objective evaluation metrics 

without requiring a reference image.  

For a), some of the proposed metrics are: the RMSE; the PSNR; the erreur 

relative globale adimensionnelle de synthèse (ERGAS) index. Despite the used 

evaluation metrics, the authors found that “there are still many unresolved problems”. 

First, the evaluation metrics don’t respond the same way to every fusion method; 

second, there isn’t a good solution to evaluate the image quality of cross-resolution 

images; third, most of the existing evaluation metrics cannot be directly applied to 

multi-channel images (colour, multispectral, hyperspectral) or three-dimensional data. 

[30, p. 105]   

For b), the authors categorized the evaluation metrics into two major groups: 

“(1) information theory based metrics, which only consider how much information is 

transferred from inputs to the fused image, and (2) local feature based fusion metrics, 

which evaluate the relative amount of features (sensitive to human vision system) that 

is transferred from the input images to the fused image” [30, p. 106]. In this class there 

are also some problems to be solved. First, most of the existing metrics only work with 

grey images and may perform poorly with colour images (with multiple channels) 

because they do not account for colour distortions; second, in some applications, the 

images may contain noise or image blurring and the existing metrics are not 
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generalized enough to deal with these situations; third, the real-time implementation 

of quality assessment methods remains a challenging problem. [30]   

Even with the difficulties that still affect pixel-level fusion, the authors 

concluded that it is “one of the most important techniques to integrate and analyze 

information from multiple sources”. [30, p. 110] 

From this brief analysis of the state of the art it can be concluded that UAVs are 

a proven alternative to traditional remote sensing platforms. Not only are the 

technological advantages very compelling, but there are also some subjective 

advantages. For example, Andriolo et al. (2020), referring to coastal dunes monitoring, 

consider that UAVs are “an optimal solution for a non-intrusive survey on the fragile 

dune environment”. [31] 

However, Geoinformation update requires not only the data acquisition step, 

but also the appropriate analysis procedures. These are the procedures used for CD, 

since “change detection is one of the most important subjects in remote sensing” 

([32], [4]).  

A particularly important concept in CD is the temporal trajectory, which 

represents a multi-year series of radiometrically calibrated anniversary spectral data.  

This temporal trajectory translates the spectral behaviour of corresponding land cover 

elements over time. [33] 

Deus & Tenedório (2021) analysed the LULC change trajectories for the 

Portimão municipality (Algarve, Portugal) over a 71 years period (1947-2018), 

concluding that knowing the past and current spatial dimension, pattern, and location 

of LULC change trajectories is crucial to understand territorial sustainability and 

anticipate possible futures. [34, p. 19] 

The authors also drew attention to the need for further research regarding 

multi-temporal and multi-resolution components, as well as the use of 3D data. 

“Future research on this approach that combines LULC change 

trajectory analysis and spatial pattern metrics needs to focus on analysing to 

what extent the quantitative and analytical results of LULC change detection 

are affected using multitemporal and multi-resolution imagery as data sources. 
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It should also focus on enriching this approach with the creation of new spatial 

pattern metrics based on 3D data”. [34, p. 19] 

UAVs are a proven RS platform with an increasing number of sensor being 

deployed, a myriad of techniques being developed and seem the perfect RS tool for 

the evaluation of temporal trajectories. Nevertheless, despite all the advantages, it is 

crucial to guarantee the quality of the data.  

 

2.1. QUALITY OF THE INFORMATION 

Quality of the information is a universal requirement, but this gains a particular 

significance in photogrammetry. Given its spatial nature, the scales and uncertainties 

associated with the data, great care needs to be implemented to avoid a situation of 

garbage in, garbage out. 

Before exploring some of the problems that may affect the quality of the 

information, a few remarks about scale and uncertainty are in order. 

In cartography, scale refers to the mathematical relation between the size of an 

object in the real world and its size on a map. However, in spatial data analysis, this 

concept can be contradictory: “a map which covers the whole of the Earth is termed 

small scale, but an investigation which covers the whole planet is termed large scale”. 

[35, pp. 10, 11] 

“An image with small pixels has high resolution, while one with big 

pixels has low resolution. In this regard, scale is synonymous with the level of 

detail of an image (…). Scale is also commonly used to refer to the scope or 

extent of a study area. A large scale of study area (such as a country), if 

mapped, implies a small-scale map, whereas a small scale of study area (such as 

a city), if mapped, implies a large scale map. Obviously, confusion and 

frustration arise from multiple, seemingly contradictory meanings, and how to 

translate statistical inferences across scales”. [36, p. 1] 

Lloyd (2013) also made a distinction between the various concepts of scale in 

spatial data analysis: ‘operational scale’ – “scale over which a process operates” – and 

a scale that relates to ‘spatial extent’. This ‘spatial extent’ scale is further divided into 
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two elements: ‘scales of spatial measurement’ and ‘scales of spatial variation’, where 

the ‘scale of spatial measurement’ consists of two parts: “(i) the support (geometrical 

size, shape and orientation of the measurement units) and (ii) the spatial coverage of 

the sample”. [35, pp. 10, 11] 

The support/spatial coverage distinction is extremely important, especially in 

remote sensing settings, since it can determine the accuracy (level of uncertainty) of 

the data being collected. Using the example presented by Lloyd (2013), we can observe 

– figures 4 and 5 – how two maps of the same area (same spatial coverage) present 

very different spatial variation, given the different size of the cells used (different 

support). 

Figure 4 – Persons by 100m grid cell; adopted from: [35, p. 
12]. 

Figure 5 – Persons by 1km grid cell; adopted from: [35, p. 12]. 

 

This simple example illustrates how scale and uncertainty are closely related 

and shows that before any data is even collected, uncertainty is already being 

introduced into the process. 

Other important concepts are spatial autocorrelation and spatial dependence. 

Tobler’s first law of geography states: everything is related to everything else, but near 

things are more related than distant things. The spatial autocorrelation “tends to vary 

over different spatial scales, and characterising the relationship between distance and 

difference is a core approach in the analysis of spatial scale”. [35, p. 13] 
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Lloyd (2013) used the example of a DEM to explain the connection between 

spatial autocorrelation and scale. A DEM representing a mountainous region may have 

a great variation of elevation values for points very close together, while a DEM of a 

river floodplain may present a small elevation variation even between points 

separated by large distances. 

“Most environmental processes are scale dependent (Atkinson and Tate 

2000), and therefore, the observed spatial variation is likely to differ as the 

spatial scale of measurement varies. This means that there is a need to identify 

a sampling strategy that enables identification of spatial variation of interest”. 

[35, p. 13] 

“Physical processes, or the outcomes of those processes, are a function 

of multiple complex interacting factors which operate at different spatial scales. 

Spatial variation of soil and geological properties occurs at a wide range of 

spatial scales (…)”. [35, p. 23] 

Another question is that scale should not be uniquely analysed from a 

Euclidean space perspective. In reality, most geographical features have a fractal 

nature. A famous quote by Benoit Mandelbrot states: Clouds are not spheres, 

mountains are not cones, coastlines are not circles, and bark is not smooth, nor does 

lightning travel in a straight line. 

This fractal nature of things has large implications on the concept of scale. Jiang 

et al. (2016) stressed how the “major concern surrounding scale is how it affects 

geospatial data collection and analysis results with respect to accuracy and reliability. 

(…) Unfortunately, most geographic features are not measurable, or the measurement 

is scale-dependent because of their fractal nature (…), the length of a coastline, the 

area of a lake, and the slope for a topographic surface are all scale-dependent, so they 

should not be considered absolute”. [36, p. 2] 

According to the authors, fractal geometry “aims for a scale-free or scaling that 

involves all scales (…) [, where] scale-free is synonymous with scaling, literally meaning 

no characteristic mean for all sizes. (…) It is fair to say that both Euclidean and fractal 

geometries aim to characterize things, but with different means; the former through 
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measurement (at one scale), and the latter through scaling (across all scales)”. [36, p. 

4] 

Although the previous paragraphs already suggest a relation between scale and 

uncertainty, uncertainty is not simply a function of scale. It could be argued that it is a 

universal characteristic.  

In reality, uncertainty is present in any system, no matter how simple. If we 

were to look at one of the building blocks of the universe, the atom, we would find 

uncertainty ingrained in it. The classical atomic model (where the electrons orbited the 

nucleus as if they were planets) has long been replaced by a theoretical model where 

the electrons can be found – without absolute certainty – in a probabilistic cloud 

surrounding the nucleus. This holds true not only for very small scales, but also for a 

very large ones, e.g., the trajectories of planets in our solar system are chaotic in 

nature when more than two bodies are present. 

In geography, uncertainty has been researched in the last decades and some 

authors, like Couclelis (2003) and Fusco et al. (2017), used GIS as a framework to 

address it. 

Couclelis (2003) approached uncertainty based on the notion of “that which 

cannot be known”. Using mathematical concepts like Russell’s paradox, Gödel’s 

incompleteness theorem and borrowing from physics’ Heisenberg’s uncertainty 

principle, the author revealed the universal nature of uncertainty and its obvious 

intrusion into ‘Geospatial Knowledge’.  

“Indeed, the mathematics of chaos and complexity theory have helped 

clarify what can and cannot be known in the case of complex nonlinear 

systems. (…)Wolfram (2002) and others have shown that deterministic chaos is 

a common behavior in systems modeled as cellular automata, a formalism now 

widely used by environmental scientists”. [37, p. 168] 

Even Artificial Intelligence is affected by this uncertainty pervasiveness. 

Couclelis (2003) noted how the “field of knowledge representation in artificial 

intelligence has come up with its own ‘impossibility theorems’ that stem directly from 

these formal limits to knowledge, while applying very generally to the everyday 
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knowledge construction that geospatial researchers and practitioners engage in”. [37, 

p. 169] 

The author concluded that error in geographic information “is inevitable, and 

not just because of human limitations”. She proposes a “systematic ‘encyclopedia of 

ignorance’ for geospatial knowledge”, in order “to map out the ultimate terra 

incognita of epistemic impossibility“. [37, p. 173] 

Building upon Couclelis’ (2003) paper, Fusco et al. (2017) identified “eight 

domains within the activity of the geographer, where questions of uncertainty arise: 

geographic information, geographic definitions, the explanation of geographic 

phenomena, the complexity of spatial systems, geosimulation, the representation of 

spatial knowledge, subjectivity in spatial phenomena, and planning”. [38, p. 2261] 

For our research problem we are particularly interested in the uncertainty that 

affects geographic information. Fusco et al. (2017) stated that uncertainty “appears in 

the incoherences between the modelling primitives of GIS and real spatial information, 

in data granularity, in spatio-temporal aggregation and disaggregation of data (…). 

Sometimes data are already affected by error functions, when they are derived from 

measurement or sampling procedures”. [38, p. 2262] 

The authors concluded that “the practical and theoretical impossibility of 

predicting the future state of a geographic system brings researchers to more general 

conceptions of uncertainty, which go well beyond questions of data validity and error 

management. Traditional probabilistic modelling of uncertain events is also 

reconsidered, as the fitting of probabilistic laws seems less and less justified (…)”.[38, 

p. 2274] 

In Fusco et al.’s (2017) opinion, “geographers should accept uncertainty as a 

necessary component of the research activity and results”. Priority should be given to 

probable “uncertainties in explanations, concept and model definitions”, and the 

creation of “models of complex systems should not aim at replicating the simple 

sensitivity to parameter approach of classical models”. [38, pp. 2274, 2275] 
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Other authors, like Comber et al. (2007) chose remote sensing as a framework, 

since they find remote sensing to be an “inherently uncertain exercise due to the 

spectral and spatial limitations of remotely sensed imagery”. [39, p. 5] 

Comber et al. (2007) pointed the Boolean classification of datasets as a major 

factor for uncertainty as parameters like spatial and spectral resolutions may introduce 

uncertainty in the identification of classes. According to the authors “there is a growing 

interest in being able to reallocate data objects into different classes for different 

landscape questions: context sensitive maps. The re-allocation may be based on the 

uncertainty associated with the original Boolean allocation and/or due to different 

weights being given to the supporting evidence, for instance from ancillary data”. [39, 

p. 2] 

The authors discussed how uncertainty in GIS is approached with probabilistic 

models that don’t take into consideration the interdependency between different 

pieces of data and evidence.  This approach is problematic for three reasons: “First, the 

much environmental data is spatial auto-correlated. Second, the classic error 

assessment method, tabulating predicted against observed in a correspondence 

matrix, assumes that like is being compared with like. This is not the case. (…) Third, 

the landscape objects themselves are assumed to [be] well defined (i.e. not vague, 

indeterminate or ambiguous – see Fisher et al, 2006) and can therefore be assessed 

using, crisp probabilistic measures to give measures of error”. [39, p. 2] 

The problem with the identification of classes is illustrated in figures 4, 5 and 6. 

Figure 6 gives some more insight into the type of errors introduced in function of the 

scales adopted. 

These errors, or fallacies – according to Jiang et al. (2016) –, occur because 

although geographic features (natural and manmade) are fractal in nature, this only 

holds for a limited scaling range. For example, using figure 6, panel a) for illustration 

purposes, we can see that if we kept using smaller and smaller yardsticks we would 

end up with an infinite perimeter, but a finite area. At some point – scale dependent – 

it is not practical to keep adding complexity to the contour, but this is translated into 

an error/inaccuracy in the measurement – and this measurement needs to be 

performed as if the element is Euclidean –. “The length of a linear geographic feature 
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such as a coastline is not measurable. To be more precise, the measurement depends 

on map scale or image resolution”. [36, p. 5] 

 

 
 

After this preamble on uncertainty and scale, some of the issues that affect the 

quality of UAVs’ RS data will be analysed. For example, weather conditions can 

compromise the accuracy of UAVs’ RS data in several ways. Strong winds can alter 

flight trajectories and cause sharp variations in altitude, pitch, roll and heading. This 

situation alone can compromise a significant part of, if not all, the collected data. Alves 

Júnior et al. (2018) reported some of these issues, namely a 45 degree rotation of the 

photographs in relation to the flight line.  

“This angular variation is known as ‘crab’ and is caused by the wind 

blowing at the side of the plane. To keep to the route as defined, the aircraft 

rotates the prow toward the opposite direction of the wind. Therefore, the 

Figure 6 – Illustration of how measurement changes with scales. In panel a) we observe how the length of the coastline changes 
with different yardstick scales. In panel b) we observe how the area of the island changes with scale. In panel c) we see how the 
slope (and the number of classes) changes with scale. On panel d) we can observe how DEM resolutions are affected by scale. 
Adopted from [36, p. 5]  
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aircraft will move parallel to the flight line, with its prow pointing to a direction 

that is different from what was initially designed for the flight line”. [40, p. 8] 

Another condition that may be influenced by weather, but is intrinsic to all 

electronic equipment, is temperature.  

Daakir et al. (2019) researched the effects of temperature variation in digital 

cameras. “When a camera is subject to a variation of temperature, it undergoes a 

deformation which impacts the internal parameters. It is recommended to use metric 

cameras with stable camera internal parameters. The quality of internal geometry 

modeling impacts directly the photogrammetric accuracy”. [41, p. 142] 

“Investigations carried out with an aerial camera show that the effect of 

temperature change induces a variation of focal length of 0.5 μm per degree 

[0.068 pixels] for a Nikor lens of 20mm [2575 pixels] (Merchant, 2006, 2012). 

Merchant adds: ‘For a flight with a height of 2000m above ground, this (focal 

length variation) corresponds to a systematic elevation error of 1m compared 

to a position determined by GPS’”. [41, p. 143] 

Most drone mounted cameras are not metric. SfM algorithms can automatically 

estimate camera parameters, but this is an estimate. So, even before getting in the air 

and take any photos the system is already prone to uncertainty. 

But the issues go beyond cameras’ internal parameters and temperature. 

“Any 3D surface model normally obtained by SfM photogrammetry is 

initially captured in an arbitrary reference system. Geo-referencing involves 

transforming this initial arbitrary datum into a predefined coordinate reference 

system. This can be done either directly using known exterior orientations of 

photographs (“direct geo-referencing”) or by providing appropriate coordinates 

to points (ground control points or GCP) that are recognizable in the 

photographs (“indirect geo-referencing”). Direct geo-referencing requires the 

measurement of the coordinates of the camera at the exact moment the 

picture is acquired, which is a challenge because the unmanned vehicle is 

moving, often with a velocity of several meters per second. With this 

movement, it is difficult to perfectly synchronize the camera triggering with the 
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sampling frequency of the Global Navigation Satellite System (GNSS) receiver. If 

the integer ambiguities of the satellite and receiver ranges are not resolved, it is 

also obviously difficult to freeze the motion of the UAV in-flight whilst a GNSS 

solution is established. Finally, it is impossible to collect several epochs at each 

point to improve the position accuracy. Despite its convenience, this method of 

geo-referencing can therefore achieve only decimeter to meter accuracies, 

even for very high-resolution projects”. [6, p. 2] 

 Sanz-Ablanedo et al. (2018) drew attention to the necessity of using GCPs to 

reduce the “dome” deformation that SfM may produce. “It has become recognized 

that processing vertical imagery with automated SfM procedures can generate an 

error surface in the form of a systematic dome feature (…).These deformations can be 

reduced by using GCP (…)”. [6, p. 2]  

However, GCPs alone don’t solve all problems. When GCPs are used, the SfM 

generated model conforms to the GCPs coordinates, but this doesn’t imply that every 

point on the 3D model has accurate coordinates: “evaluating the accuracy of a 

georeferenced model using control points is not fully objective, since the shape of the 

model adapts to the control points, and consequently GCP will always achieve the 

lowest residuals. Using check points provides a far more objective quantification of the 

true accuracy of geo-referencing procedures”. [6, p. 3] 

Just as important as the use of, is the placement of the GCPs. “In UAV-SfM 

photogrammetry where non metric cameras are used, the best option is to try to 

distribute the GCP evenly or homogeneously in the periphery but also in the center of 

the area (…)”. [6, p. 7] 

Sanz-Ablanedo et al. (2018) concluded that the “geometric accuracy of an SfM 

photogrammetric 3D model is highly dependent on the ground georeferencing 

strategy, and the results of this study confirm that the accuracy is strongly dependent 

on the number of GCPs introduced in the bundle adjustment (BA)”. [6, p. 14] 

The authors also found that, for their research, the “optimum accuracies are 

achieved when GCPs are evenly distributed around the whole area. To concentrate 

GCPs in specific areas, to leave gaps without GCPs or to concentrate points on the 
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periphery or in the center seem to be strategies that will not derive good accuracies. 

Ideally, GCPs should be distributed in a triangular node grid, since this distribution will 

minimize the maximum distance of any point to the nearest GCP”. [6, p. 14] 

They also presented a strategy to implement when check points are not 

available. It estimates the real accuracy by multiplying the RMSE obtained from the 

GCPs by a given factor, dependent on the number of GCPs. [6, p. 17] 

Scale, for all the reasons already presented, is also a very important factor in 

data accuracy, especially for data fusion. Usually the images to be fused present very 

different spatial scales and this factor alone can, and will, introduce uncertainty to the 

entire process. 

Li et al. (2017) noted how “there still exist many challenges in image fusion and 

objective fusion performance evaluation, resulting from image noise, resolution 

difference between images, imperfect environmental conditions, computational 

complexity, moving targets, and limitations of the imaging hardware”. [30, p. 110] 

Another problem is the spectral discrepancy in high resolution images. “For the 

fusion of optical images, a high image resolution corresponds with a large spectral 

discrepancy between neighbour pixels”. [7, p. 17] 

These issues will be further analysed in section 5. The next section looks at the 

Geoinformation update process. 

 

2.2. UPDATING GEOINFORMATION 

The need for updating Geoinformation arises from the occurrence of spatial 

changes; therefore CD is a vital concept in this process.  

RS CD is an ever growing research field that is disparate and presents a high 

variability [9]. The various techniques employed are mainly based in two approaches: 

pixel-based or object-based. Each of these approaches is further divided into sub-

methods; however, some authors found that these are similar, if not identical [9]. The 

main issue seems to lie with the unit of analysis (that should be based on the 

application scale and the resolution of the available images) [9]. A major disadvantage 
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of the pixel-based change detection methods is the inability to provide a spatial 

context for the real-world objects [42], however they remained the norm because of 

the lack of computing power and the scarcity of data. Nowadays these are no longer 

issues, and hybrid approaches and multi-temporal image-objects seem to be the most 

robust analysis units [9]. 

Machine Learning is currently a very valuable tool used in the analysis and 

processing of the large data sets and Data Mining techniques also presents a great 

potential to tackle the challenges of traditional techniques applied to very high 

resolution images. [42] 

Wang et al. (2020) noted the high efficiency of bi-temporal image analysis, but 

also addressed some of the problems with this practice. They pointed out how CD, 

carried out at the pixel level, “may corrupt or even dominate the true change signal 

depending on its strength (…). [But since] images are not directly compared to each 

other during the land change detection process, radiometric and phenology 

differences could be well resolved”. [43, p. 2] 

According to the authors, the primary challenge occured from the binary nature 

of the CD process. “For binary land change detection, image pixels are divided into two 

categories, Change (C) and No Change (NC), adopting various statistical techniques 

such as thresholding or hypothesis testing”. [43, p. 2] 

They referred the difficulty of choosing threshold values and the arbitrariness 

of some of those values. They also pointed out that change is a dynamic process and 

the data collected should be three-dimensional. “Not only the spatial heterogeneity, 

but also the temporal characteristic of land change scenarios should be considered for 

spatial sampling”. [43, p. 2] 

Wang et al. (2020) also emphasized the uncertainty in CD: “Errors and 

uncertainties are build-in imperfections in ICD [Image Change Detection] and make it 

hard to make accurate decision in a chaotic situation (…)”. [43, p. 8] 

The authors pointed out some of the difficulties they experienced with bi-

temporal analysis. The “assumptions of identical image situations are critical”, but 

many assumptions don’t seem to have been carefully checked. They noted how, at the 
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pre-processing stage, despite the adoption of photometric calibrations, the Landsat 

solar geometry was not available per pixel and the TOA (top of atmosphere) 

adjustments didn’t vary per pixel. It was also assumed that the majority of classes 

remained unchanged between the paired images “so that the spectral statistical 

features of land classes remain unchanged between two dates, which is also hard to 

guarantee”. Land change is a dynamic process and the use of RS images to characterize 

this process introduces uncertainty since land dynamics “are more appropriately 

viewed as fuzzy phenomena”. Binary CD interprets land dynamics “either as abrupt 

change (the complete replacement of one cover type by another, also called ‘real 

change’) or as subtle change (the modification of land cover without changing its 

overall classification, also called ‘pseudo change’)”. However, subtle changes have 

“spectral variance caused by the phenology problem (cyclical changes in the condition 

of the ground cover that do not relate to class change)”. [43, p. 9] 

“Detection of image differences may be confused with problems in 

phenology and cropping, and such problems may be exacerbated by limited 

image availability, poor quality in temperate zones (…). (…) To minimize 

phenology effect, it is practical to adopt two pairs of images, one pair within 

leaf-on season and the other within leaf-off season to mask the area of subtle 

change [5]”. [43, p. 9] 

As previously stated CD is a “disparate” process that “presents a high 

variability”. Therefore, updating Geoinformation is also a disparate process with high 

variability. It is necessary to take into account the issues described to minimize the 

uncertainty of the data. 

In the next sections the case study will be presented and the data compared. 
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3. CASE STUDY  

For our case study we chose the Aguçadoura beach, in the municipality of 

Póvoa do Varzim, in the north of Portugal. The area is identified in figures 7 to 9. 

This region was selected because APA is currently monitoring some sections of 

the Portuguese coastline and Aguçadoura is one of the regions being surveyed. This 

allowed access to official datasets that meet the accuracy standards required by 

ASPRS. 

 

Figure 7 – Aguçadoura region* 
 

 

Figure 8 – Aguçadoura*  
 

 

Figure 9 – Area of interest (own orthophotomap), with GCPs and clipping polygon overlaid. 
 

* – both images from: https://portugalfotografiaaerea.blogspot.com/2019/05/praia-de-agucadoura-
praia-da-barranha-e.html  

3.1. METHODOLOGY 

The goals are threefold. First, qualitatively assess an UAV survey of the area of 

interest without the use of GCPs, to get an estimation of the associated errors. Second, 
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compare the generated orthophotomaps with APA’s orthophotomaps. Third, fuse UAV 

data with satellite remote sensing data and compare it with the original satellite data. 

Figure 10 shows a schematic of our methodology. 

 

Figure 10 – Methodology schematic 
 

We were granted access to some of APA’s datasets2 for the area of interest, 

specifically: 

▪ The photos for both UAV surveys carried out by APA (28/02/2021 and 

11/02/2022); 

▪ The orthophotomaps and DSMs for both periods, processed by APA 

using the Pix4D software; 

▪ A list of GCPs that included 5 points in our area of interest. 

 

To assure that all datasets intersected the polygon presented in figure 9 was 

used to clip all the rasters.  
                                                                 
2 More details in annex 
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The UAV RS data from APA’s surveys and ours were processed with Agisoft 

Metashape and WebODM. From this operation the orthophotomaps and DSMs – 

presented in the next sections – were created, which allowed for the operations 

described in section 4. 

For two of the orthophotomaps an HSI (Hue, Saturation and Intensity) 

transform was applied to obtain the Intensity dataset. This is the recommended 

procedure when a panchromatic image is required for the fusion step. 

Spectral bands from Sentinel 2 datasets were extracted using the SNAP 

software and later merged in QGIS.  

The fusion of both datasets (Sentinel 2 merged bands and Intensity dataset) 

was performed with a pansharpening operation in QGIS. This procedure fused both 

datasets, at the pixel level, and the result was an image with the spatial resolution of 

the Intensity dataset and the spectral resolution of the merged dataset (band 2, 3, 4 

and 8). The fused datasets were used to evaluate the NDVI index and compare the 

results with the RS satellite data.  

 

3.2. UAV DATA 

The UAV data presented in this work were collected in three different periods. 

The details can be seen in table 3. The DSMs presented in table 3 are just for 

illustration purposes. The areas are not homogeneous since APA’s surveys were 

conducted along a relatively narrow strip of coastline. Our survey area was wider and 

shorter (hence the need to use the clipping polygon shown in figure 9). 

The resulting orthophotomaps can be seen in figures 11 through 19. Although 

APA provided the orthophotomaps processed in Pix4D, it was decided to also process 

the images with WebODM and Agisoft Metashape software to have a better term of 

comparison. However, for accuracy assessment a base map was required. Since access 

to vector data for the area of interest was not possible, the 2021 APA orthophotomap 

was used as the base map. 

For our survey data, only WebODM and Agisoft Metashape software were used 

for image processing.  
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Two orthophotomaps were created with WebODM, one without GCPs and 

another with four GCPs. Although five GCPs are inside our area of interest, one of 

them (number 5, in figure 9) wasn’t used because it was not possible to identify it in 

the photos (it was placed under a parked vehicle).  

Two orthophotomaps were also created with Agisoft Metashape, one based on 

the generated DSM, the other on the DTM. 

Table 3. UAVs datasets details 

Dataset Date and flight details Photographs used DSM (Agisoft) Processing software 
APA 28/02/2021 

 
Drone: DJI Matrice 300 RTK 
 
Camera: FC6310R (8.8mm)) 
 
Flight altitude: 89,8 m 
 
GSD:  

 2,40 cm (Pix4D); 
 2,22 cm (Agisoft); 
 2,20 cm (WebODM). 
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 Pix4D 
 Agisoft Metashap 
 WebODM 

APA 11/02/2022 
 
Drone: DJI Matrice 300 RTK 
 
Camera: ZenmuseP1 (35mm) 
 
Flight altitude: 131 m 
 
GSD:  

 1,51 cm (Pix4D); 
 1,51 cm (Agisoft); 
 1,50 cm (WebODM). 
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 Pix4D 
 Agisoft Metashap 
 WebODM 

Own 26/03/2022 
 
Drone: DJI Mavic Air 2 
 
Camera: FC3170 (4.5mm) 
 
Flight altitude: 134 m 
 
GSD:  

 4,16 cm (Agisoft); 
 4,20 cm (WebODM). 

 
 

88  

 

 Agisoft Metashap 
 WebODM 
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Figures 11 to 13 show the three orthophotomaps obtained from the same APA 

dataset, collected in 2021. 

The three products have different pixel sizes because in WebODM and Agisoft 

Metashape the camera calibration parameters were performed automatically. 

 

 

Figure 11 – APA 2021 (Pix4D), pixel size: 
0,025x0,025m 
 

 

Figure 12 – APA 2021 (Agisoft), pixel size: 
0,022x0,022m  
 

 

Figure 13 – APA 2021 (WebODM ), pixel size: 
0,020x0,020m  
 

 

The same explanation is valid for the three orthophotomaps shown in figures 

14 through 16.  

The orthophotomaps in figures 17 to 19 were generated from our survey and 

the camera calibration parameters were also performed automatically by the 

software. 

Figures 20 and 21 show two orthophotomaps generated with WebODM, the 

only difference being the inclusion of four GCPs (figure 21). For the same set of 

photographs, WebODM processed two different areas.  
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Figure 14 – APA 2022 (Pix4D), pixel size: 

0,015x0,015m 

Figure 15 – APA 2022 (Agisoft), pixel size: 

0,015x0,015m 
Figure 16 – APA 2022 (WebODM), pixel size: 

0,020x0,020m 

 
Figure 17 –  Own survey (DSM – Agisoft ), pixel 
size: 0,042x0,042m 

Figure 18 –  Own survey (DTM – Agisoft), pixel 
size: 0,042x0,042m 

Figure 19 –  Own survey (WebODM), pixel size: 
0,038x0,038m 
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Although a quick observation might suggest few differences between the 

(same) datasets processed with different software, it will be shown in section 4 that 

there are somewhat significant differences. 

 

Figure 20 – Orthophotomap generated with WebODM, no GCPs. 

 

 

Figure 21 –  Orthophotomap generated with WebODM, 4 GCPs. 

 

These differences are the result of some of the issues previously addressed in 

section 2. 

In addition to UAV data, satellite data were also used to characterize the area 

of interest. The objective was to fuse data from UAV and satellite RS and analyse the 

potential of the resulting products. 
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3.3. FUSION 

The rationale behind fusing the Sentinel 2 and Intensity datasets, at the pixel 

level, is to obtain a resulting dataset that combines the information from the two 

original datasets and is more complete than either source. 

Bands 2 (blue), 3 (green), 4 (red) and 8 (near infrared) were extracted from 

Sentinel 2 datasets and later merged in QGIS. This workflow is necessary to ensure that 

the final product has all the bands from the original dataset. Exporting all bands 

directly from SNAP, avoiding merging them individually later, results in a fused image 

without all the spectral information. The results are shown in figures 22 through 27. 

 

Figure 22 – Merged bands (band 2, 3, 4 and 
8) with RGB mask, pixel size: 10x10m, 
28/02/2021. 

 

Figure 23 –  Intensity “image”, obtained from 
APA’s orthophotomap HSI transform, pixel 
size: 0,025x0,025m 

 

Figure 24 –  Fused dataset, with RGB mask,  
pixel size: 0,025x0,025m 

 

The Sentinel 2 dataset for the 2021 period coincides with APA’s survey date. 

The Sentinel 2 images have a pixel size of 10 x 10 m. The intensity dataset has a 

pixel size of 0,025 x 0,025 m and a single band. The fused image has a pixel size of 2,5 

cm and the four bands from the Sentinel 2 dataset. 
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For our UAV survey, it was not possible to obtain a suitable Sentinel 2 dataset 

for the same date, so a close one was chosen. The Sentinel 2 images were collected on 

06/02/2022 and the UAV survey took place on 26/03/2022. 

The intensity dataset has a pixel size of 0,041 x 0,041 m and a single band. The 

fused image has a pixel size of 4,1 cm and the four bands from the Sentinel 2 dataset. 

 

Figure 25 –  Merged bands (band 2, 3, 4 and 
8) with RGB mask, pixel size: 10x10m, 
06/022022 

 

Figure 26 –   Intensity “image”, obtained from 
Agisoft’s orthophotomap HSI transform, pixel 
size: 0,041x0,041m 

 

Figure 27 –  Fused dataset (Satellite and 
Agisoft datasets) with RGB mask,  pixel size: 
0,041x0,041m 
 

A more in-depth analysis of these and other datasets will be carried out in 

section 4.  

 

 



41 
 

4. DATA COMPARISON  

APA’s datasets and ours will be further examined to show how the same 

dataset, depending on the processing algorithms, the number of GCPs, pre and post-

processing steps, etc.,  can produce different results. 

Figures 28 to 33 show the results of this analysis. The zoomed area is outlined 

in figure 28. 

 

Figure 28 – APA 2021 (Pix4D), pixel size: 
0,025x0,025m 
 

 

Figure 29 –  APA 2021 (Pix4D), pixel size: 0,025x0,025m 
 

Comparing figure 29 with figures 31 and 33, it’s possible to identify some of the 

differences. 

In figure 29 three shadows of the same person can be seen. This is a result of 

the images being used by the processing algorithm in Pix4D. In figures 31 and 33 there 

is only one shadow present, but its location is different in both images. Again, this is 

the result of the images chosen by the processing algorithm in Agisoft Metashape and 

WebODM. 
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Figure 29 also shows evidence of some pre or post-processing step(s). Two 

vehicles present in figure 31 and 33 were removed in figure 29. 

 

Figure 30 –  APA 2021 (Agisoft), pixel size: 
0,022x0,022m 
 

 

Figure 31 – APA 2021 (Agisoft), pixel size: 0,022x0,022m 
 

These first occurrences are not significant for the accuracy of the 

orthophotomap and were pointed out just to demonstrate how different software will 

use different images, from the same dataset, to create the same scene.  

However, in figure 33 it’s possible to observe some warpage in the façade of 

one building (pointed at red). This is a more problematic situation that may affect the 

accuracy of the orthophotomap. 

As will be seen in the rest of this section, when datasets are compared and 

raster difference operations performed, this type of processing error may result in 

significant discrepancies in values.  

This is due to some of the problems already listed in chapter 2. For some 

buildings, where part of the façade is visible, this means that either the processing 

algorithm was unable to create a true orthoimage, and/or the dataset didn’t have any 
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oblique images. This type of error is common and may require post-processing 

stage(s). 

 

Figure 32 – APA 2021 (WebODM ), pixel size: 
0,020x0,020m 
 

 

Figure 33 – APA 2021 (WebODM), pixel size: 0,020x0,020m 
 

As mentioned in section 2, regarding the use of GCPs, accuracy results for the 

GCPs can be somewhat misleading as the created orthophotomaps are adjusted to the 

given GCPs. “However, when RMSEs are calculated for the check points with the same 

combinations, a greater variation between the vertical and horizontal axes can be 

detected clearly”. [6, p. 11] 

As specified in section 3 the 2021 APA survey was used as a base map. Twelve 

check points were chosen from that dataset and later compared with the obtained 

locations on the other orthophotomaps. The RMSE was then calculated for those check 

points. Figures 34 and 35 illustrate the process for one of the check points. 

Figure 34 shows the 2021 APA orthophotomap with 5 GCPs (yellow) and 12 

check points (green). Figure 35 shows an instance with the location of the check points 

in all the orthophotomaps (details in table 4). 
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The 2022 APA orthophotomap (Pix4D) was accurate. Agisoft Metashape and 

WebODM, using GCPs, produced precise results. However, as expected for all the 

reasons previously stated, WebODM without GCPs produced a result that is not very 

accurate, especially in the Z coordinate.  

Table 4. Check point details 

Orthophotomap X coordinate (m) Y coordinate (m) Z coordinate (m) 
APA 2021 – Base map -54380,2926 195883,0576 9,555048943 
APA 2022 (Pix4D) -54380,28527 195883,0494 9,553792953 
Own (Agisoft) -54380,21087 195883,0589 9,277898788 
Own (WebODM) -54380,20719 195882,9975 10,09000015 
Own (WebODM) without GCPs -54380,15414 195883,4832 15,97000027 

 

 

Figure 34 – Base map with 5 GCPs (yellow) and 12 
Check Points (green) 
 

 

Figure 35 – Detail of Check Point 4 in all the orthophotomaps.  

The processing reports generated by Agisoft Metashape and WebODM state 

the RMSE for the GCPs. These values are considerably lower than the values obtained 

for the check points.  
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Figures 36 and 37 show part of the reports generated by the Agisoft Metashape 

(left) and WebODM (right) software. 

 

Figure 36 – Detail of Agisoft Metashape processing report 

 

Figure 37 –  Detail of WebODM processing report 
 

Comparing the values in figures 36 and 37 with the calculated RMSE for the 

check points (tables 5 to 8) a significant difference is observed. 

 

 

Table 5. Calculated RMSE for our own survey, processed with Agisoft Metashape. The real values were obtained from the 2021 APA survey. 
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Table 5 shows a RMSE_XY of approximately 9 cm, while Agisoft’s processing 

report shows a value of approximately 1,9 cm. 

A similar situation occurred for WebODM. The report states an RMSE_X of 1 

cm, the same for RMSE_Y and an RMSE_Z of 4 cm. The total RMSE_XYZ is 4 cm. 

Comparing these values with those calculated for the check points, in table 6, a 

significant difference is observed, particularly for the Z coordinate, which is greater by 

a magnitude of ten. 

 

The calculated values for the remaining orthophotomaps can be seen in tables 

7 and 8. 

 

APA’s 2022 survey presents the smaller RMSE for all coordinates, especially for 

the Z coordinate. If we compare APA’s 2022 survey with ours (processed with Agisoft 

Metashape and WebODM), and consider the altimetric precision, the RMSE_XYZ 

Table 6. Calculated RMSE for our own survey, processed with WebODM. The real values were obtained from the 2021 APA survey. 

Table 7. Calculated RMSE for 2022 APA’s survey, processed with Pix4D. The real values were obtained from the 2021 APA survey. 
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outperforms the Agisoft Metashape and WebODM results by a factor of 9 and 19 

respectively. 

The RMSE calculated for the dataset processed without GCPs is the largest for 

all coordinates by at least a factor of 10, with the altimetric accuracy having an error of 

more than 6 meters. 

 

The same procedure was used to calculate the RMSE for all the remaining 

orthophotomaps. The results3 can be seen in table 9. 

 

These results suggest that, for now, GCPs are still essential for the planimetric 

accuracy of orthophotomaps and altemetric precision needs to be particularly 

assessed. For this sample, a conclusion that Pix4D and Agisoft Metashape have a 

better altimetric accuracy than WebODM can also be drawn.  

                                                                 
3 APA’s survey of the Aguçadoura region was divided into two sections. The RMSE values for the 2021 
dataset processed with Pix4D were averaged from the values of both reports (one with 4 GCPs, the 
other with 5). For the 2022 dataset only a final report was available.  

Table 8. Calculated RMSE for our own survey, processed with WebODM, without GCPs. The real values were obtained from the 2021 APA survey. 

Table 9. Calculated RMSE for all orthophotomaps 
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For the rest of this section the results of DSMs differences and the fusion 

process will be assessed. In all raster operations where more than one raster image is 

being used, the result was downsampled (the dataset with the largest pixel size was 

used as reference). The reason for this is the attempt to minimize the noise that can 

occur when upsampling images.  

Figures 38 and 39 show the DSMs generated from APA’s datasets collected in 

2022 and 2021, respectively. The result of a raster difference operation is presented in 

figure 40. The resulting raster shows the differences between the two DSMs, 

representing two different epochs. This corresponds to the changes that occurred 

between the two time periods. In this case, with the exception of the sandy area next 

to the water, almost no change is observed (yellow represents no change) and the 

extreme values (with the exception of the watercourse, where reflectance can be 

challenging to assess) occur in the vicinity of built structures, for the reasons previously 

presented (see figure 33).  

 

Figure 38 –DSM, APA 2022 (Pix4D), 
pixel size: 0,015x0,015 m 

 

Figure 39 – DSM, APA 2021 (Pix4D), 
pixel size: 0,05x0,05m 

 

Figure 40 – Difference of DSMs (2022 
DSM – 2021 DSM), pixel size: 0,05x0,05m 

 

The DSMs generated from our UAV survey were also used to perform the same 

raster difference operation. Figures 41 through 46 show the results of this operation. 

Once more, the extreme values occur essentially around buildings. 
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Figure 41 – DSM, 2022 (Agisoft), 
pixel size: 0,083x0,083m 

 

Figure 42 – DSM, APA 2021 (Pix4D), 
pixel size: 0,05x0,05m 

 

Figure 43 – Difference of DSMs (2022– 
2021), pixel size: 0,083x0,083m 

 

Figure 44 – DSM, WebODM (2022), 
pixel size: 0,076x0,076m 

 

Figure 45 – DSM, APA 2021 (Pix4D), 
pixel size: 0,05x0,05m 

 

Figure 46 – Difference of DSMs (2022– 
2021), pixel size: 0,076x0,076m 

 

Having previously determined the RMSE for all datasets in order to establish 

the altimetric accuracy, a comparison of the differences between DSMs was 
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performed. The results of a raster difference of “raster differences” can be seen in 

figures 47 to 49. We used the pairs with lower RMSE. 

 

Figure 47 – Difference of DSMs (APA 2022 – APA 2021), 
pixel size: 0,05x0,05m 
 

 

Figure 48 – Difference of DSMs (Agisoft 2022– APA 2021), 
pixel size: 0,083x0,083m 
 

 

Figure 49 – Difference of “difference of DSMs”, pixel 
size:  0,083x0,083m 
 

 

The product of this operation (figure 49) shows that the differences are zero, or 

near zero, for most of the raster (yellow represents the value zero), except on the 

edges of buildings and on the water course, where reflectance can be challenging to 

assess. What this result suggests is that the two datasets correlate well and – taking in 

consideration the edges of buildings and the water courses – either one could be used 

to assess the changes that occurred between both time periods. 



51 
 

A comparison between the datasets from our UAV survey was also performed. 

The DSMs generated with Agisoft Metashape and WebODM were compared. Figures 

50 to 52 show the result. 

 

Figure 50 –DSM, Agisoft 2022, pixel size:  

 

 

Figure 51 – DSM, ODM 2022, pixel size:  

 

Figure 52 – Difference of DSMs, pixel size:  

 
As seen in table 9, WebODM performed worse than Agisoft Metashape, 

especially for altimetric accuracy. As shown in figure 52, there are some differences 

within and around the built-up areas (top right, bottom). Since the datasets are the 

same, these differences are related to the choice of processing algorithms. Some fine-

tuning is necessary to adjust the best processing algorithm to the data.  

In the last part of this section the fusion process (pixel level) will be analysed.  
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As mentioned before, the objective of fusing different datasets is to obtain a 

final product with more information than any of the sources. 

To assess the potentialities of data fusion the NDVI index (a well-established 

index in CD) was firstly calculated for the Sentinel 2 datasets (2021 and 2022) and a 

difference of rasters was performed (result shown in figure 55). 

 

Figure 53 – NDVI index, Sentinel 2 images, pixel size : 
10x10m, 06/02/2022 
 

 

Figure 54 – NDVI index, Sentinel 2 images, pixel size : 
10x10m, 28/02/2021 
 

Figure 55 – difference of NDVI’s (2022 NDVI – 2021 
NDVI), pixel size: 10x10m 
 

 

Figure 55 conveys the information (changes in NDVI index) that can be 

extracted from the Sentinel 2 datasets. The pixel size of the final product is 10x10m.  

Next, Sentinel 2 datasets were fused with datasets that have a much greater 

spatial resolution (APA 2021, Pix4D, pixel size: 0,025x0,025m and our UAV survey, 

Agisoft Metashape, pixel size: 0,041x0,041m). 
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The results of this operation can be seen in figures 56 to 58. 

Figure 56 – NDVI index from fused dataset (APA and 
satellite, 2021), pixel size: 0,025x0.025m 
 

 

Figure 57 –  NDVI index from fused dataset (Agisoft and 
satellite, 2022), pixel size: 0,041x0,041m 
 

Figure 58 – difference of NDVI’s (2022 NDVI – 2021 
NDVI), pixel size: 0,041x0,041m 
 

From a direct comparison of figures 53 to 58 the difference in detail is evident. 

The fused products have a much higher level of detail, but attention needs to be paid 

when examining the results. Since the difference in spatial scales is a few orders of 

magnitude, the original pixels have a much coarser classification. This means that a 

considerable percentage of pixels in the fused image (with much higher spatial 

resolution) may be misclassified. The result continues to be more informative than the 

original satellite data, but accuracy should be assessed with some care.  

The results presented in this section will be discussed in section 5. 
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5. DISCUSSION 

The RMSE values (see table 9) are a clear indication of the importance of using 

GCPs. The orthophotomap generated from our own survey, without GCPs, presents 

very significant errors for all check points. But even when GCPs were used, there are 

significant differences between the RMSE that the software presented for the GCPs 

and the RMSE calculated for the check points. 

Sanz-Ablanedo et al. (2018) addressed this issue, noting that SfM models adapt 

to the GCPs coordinates using similar weights for all axes. “When RMSE is calculated 

for the control points, there is no difference between the three components, as the 

deformation of the model adapts to the control points using the same weight for the 

three axes. However, when RMSEs are calculated for the check points with the same 

combinations, a greater variation between the vertical and horizontal axes can be 

detected clearly”. [6, p. 11] 

This effect is observed in all of the processed orthophotomaps and 

corroborates that it “is not possible to correctly evaluate the geometric quality of an 

SfM 3D model using just a few check points, and indeed it can be perilous. (…). 

Consequently, a good evaluation of the geometric quality of an SfM 3D model should 

include many check points, which must be also evenly distributed across the whole 

area and not just located at the periphery”. [6, p. 15] 

This recommendation was implemented as far as possible, since in the beach 

area there were not enough unique features to be used as check points. Twelve check 

points were chosen to complement the five GCPs and this should give a fairly precise 

indication of the RMSE for the entire model. 

Sanz-Ablanedo et al. (2018) noted how “it is not possible to achieve a vertical 

accuracy that approaches the GSD, regardless of the number of GCPs used in a project. 

For plan accuracy, it is possible to achieve an accuracy similar to the GSD, providing 

there is at least one GCP for 35 images (…). In practice, this represents a very high 

number of GCPs. With a more modest 50 images per GCP, a vertical accuracy of 2 × 

GSD and a 1.2 × GSD horizontal accuracy is achieved. With 75 images per GCP, 
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accuracy worsens to 3 × GSD for vertical accuracy and 2 × GSD for horizontal accuracy”. 

[6, p. 16] 

The results obtained, with the exception of the orthophotomaps processed 

with WebODM, seem to agree with Sanz-Ablanedo et al. (2018) findings. 

“If few GCPs are used, the RMSE in check points will be about ±5 times 

the averaged GSD of the project. By introducing a higher number of GCPs (more 

than 2 GCPs per 100 photos in our case study) the RMSE will converge slowly to 

a value approximately double the average GSD. These values are valid in 3D. As 

in classical photogrammetry, vertical errors in SfM photogrammetry will be 2.5 

times the error of easting or northing components. The study has 

demonstrated that GCPs should be evenly distributed around the whole 

interest area, ideally in a triangular mesh grid, since with this setup the 

maximum distance to any GCP is minimized. Results indicate that for a given 

number of GCP, the accuracy achieved using an optimal distribution will be 

twice as good as that if GCPs are poorly distributed”. [6, p. 17]  

Sanz-Ablanedo et al. (2018) gave a recommendation for situations where check 

points are not available. 

  “Accuracy should not be measured using the ground points used to 

control the BA. However, if independent check points are not available, real 

accuracy could be estimated by multiplying the 3D-RMSE derived from the GCP 

by a factor of 3 if the project has a high (more than 3.5 GCPs per 100 photos in 

our case study) or 4–8 if the project has a low number of GCPs (less than 2 GCPs 

per 100 photos)”. [6, p. 17] 

According to ASPRS 2014 standards, the RMSE obtained for the processed 

orthophotomaps, with exception of the case where no GCPs were used, places them in 

the category of High Accuracy Digital Planimetric Data, with map scales varying from 

1:200 to 1:400. 

The differences of rasters performed in section 4 revealed some extreme values 

around the buildings and on the water surface. As mentioned, the errors around 

buildings are a result of the algorithms used in the SfM method. The choice of the best 
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algorithm is not straightforward and requires fine-tuning and compromises to obtain 

the best result for each case.  

Koeva et al. (2018) noted how the quality of the orthophotomaps “depends on 

which algorithm is used to interpolate the DSM from the point cloud. A common 

method is triangulation, which may result in noise around overhanging roof edges (…). 

Other interpolation methods, such as Inverse Distance Weighting, improve the visual 

appearance of overhanging roofedges, but cause rounded roofcorners (…). Such 

observations stress that quality of the DSM and orthophoto also depend on which 

software and algorithms are utilised”. [2, p. 322] 

The erros on the water surface are related to its reflectance. Caroti et al. (2017) 

reported a problem with the camera’s automatic focus caused by this issue.  

“Water surface is in fact too homogeneous for automatic focusing to 

work correctly, which caused blurred images in some cases and image skipping 

in others. This problem has been solved by setting manual focus at infinity, as 

the flight level was greater than the hyperfocal distance”. [44, p. 6] 

 In terms of the fusion process, one of the principal issues is the discrepancy in 

spatial scales of the source images. Images with pixel sizes of a few centimetres were 

fused with satellite images with a pixel size of 10 meters.  

Zhang (2010) addressed this issue, referring the need for new fusion methods. 

“For example, for a pair of PAN and MS images with very high 

resolution, one pixel in the MS image corresponds to several pixels from variant 

spectral features observable in the PAN band. The resolution transition from 

low to high or very high therefore leads to new demands for pan-sharpening 

techniques. Thus, one of the trends for pan-sharpening techniques is to 

develop new methods for dealing with high-resolution images. For the fusion of 

SAR and optical images, or LiDAR intensity images, however, higher resolution 

leads to more difficulties in co-registration of these images.” [7, p. 17] 

However, even with the difficulties that still affect pixel-level fusion, Li et al. 

(2017) concluded that it is “one of the most important techniques to integrate and 

analyze information from multiple sources”. [30, p. 110] 
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The results obtained (figures 53 to 58) suggest the potential of this technique. 

Spectral information originally only available with a pixel size of 10 meters is now 

available with a pixel size of a few centimetres. Taking into account the 

aforementioned problems, such as the much greater spectral variation of high 

resolution images, the end result conveys more spectral information than the original 

satellite image. 
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FINAL REMARKS 

Throughout this work, we sought to evaluate the accuracy of UAVs’ RS data and 

its potential for updating Geoinformation. The results obtained in section 4, and 

discussed in section 5, suggest that not only UAVs’ RS data are suitable for updating 

Geoinformation, but they are capable of achieving great detail with high accuracy. 

Even the orthophotomap processed without GCPs obtained an arguably small 

RMSE_XY of 1,6 meters. This type of error suggests that the orthophotomap generated 

might be used in situations where a submeter planimetric accuracy is not needed. 

However, several ‘uncertainties’ are present in all the resulting products. Many 

factors contributed to these errors. For example, the sensors that were used were 

different. APA 2021 and APA 2022 surveys used different RGB cameras, with different 

resolutions. Our survey also used a different camera, with a lower resolution than the 

two APA cameras. This factor alone implies significant differences in the resulting 

orthophotomaps. 

Another reason for uncertainty is the choice of software/algorithms. Computing 

power and time constraints meant that extensive comparative analysis of software and 

processing algorithms was not carried out. Many processing parameters were not fine-

tuned and default values were used; an example of this is the downsampling that 

occurred in some orthophotomaps, where the pixel size is bigger than the GSD.  

Many other factors contributed to the errors present in the final products: 

weather conditions, time of day (lighting and shadow conditions), UAVs used, 

arrangement of GCPs, etc. 

Despite all the 'uncertainties', some of the results obtained seem to agree with 

the findings of Sanz-Ablanedo et al. (2018). Check points in APA's surveys, processed 

with Agisoft Metashape, have a 3D RMSE that is three times higher than GCPs. The 

same is not true for the remaining orthophotomaps. This occurred because APA’s 

surveys used cameras with higher resolution than ours and Agisoft Metashape seems 

to perform better with the collected data. 
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The fused products also present some uncertainties. As Zhang (2010) noted, 

“the techniques remain challenging for multi-source data fusion within varying spatial 

and temporal resolutions”. [7, p. 5] 

The final products, despite showing a promising potential and being an 

improvement in relation to the original spectral information, need further 

investigation. Fusion with RS data with a bigger spatial resolution, as well as fusion at 

the feature and decision level, needs to be compared in order to establish the most 

effective technique for our research problem.   

Assessing the true accuracy of the fused products requires a comprehensive 

statistical analysis, which is beyond the scope of this work. 

However, this dissertation is the starting point for a more profound research 

that will be carried on in our doctoral thesis. That investigation aims to assess the 

relevance and performance of data obtained by UAVs in updating large-scale 

Geoinformation. All the issues and limitations of this work will be addressed in that 

future research. 
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ODM Quality Report
Processed with ODM version 2.8.7

Dataset Summary

Date 12/07/2022 at 17:49:47

Area Covered 0.191596 km²

Processing Time 27.0m:23.0s

Capture Start 26/03/2022 at 14:42:56

Capture End 26/03/2022 at 15:02:17

Processing Summary

Reconstructed Images 88 over 88 shots (100.0%)

Reconstructed Points (Sparse) 141813 over 145459 points (97.5%)

Reconstructed Points (Dense) 10,544,227 points

Average Ground Sampling Distance (GSD) 4.2 cm

Detected Features 13,144 features

Reconstructed Features 5,148 features

Geographic Reference GPS and GCP

GPS / GCP errors 6.29 / 0.00 meters



Previews

Orthophoto

Digital Surface Model

-9.94m 27.63m



Digital Terrain Model

-11.29m 19.99m



Survey Data

GPS/GCP/3D Errors Details

GPS Mean Sigma RMS Error

X Error (meters) -1.979 0.634 2.078

Y Error (meters) -0.867 0.870 1.228

Z Error (meters) -5.789 1.205 5.913

Total 6.286

GCP Mean Sigma RMS Error

X Error (meters) -0.000 0.001 0.001

Y Error (meters) -0.001 0.001 0.001

Z Error (meters) 0.003 0.006 0.006

Total 0.004

3D Mean Sigma RMS Error

X Error (meters) 0.013 0.015 0.020

Y Error (meters) 0.012 0.014 0.018

Z Error (meters) 0.026 0.039 0.047

Total 0.035



Absolute Relative

Horizontal Accuracy CE90 (meters) 0.003 0.038

Vertical Accuracy LE90 (meters) 0.013 0.063

Ground Control Point Error

ID Error X (m) Error Y (m) Error Z (m)

GCP-0 -0.000 0.000 -0.000

GCP-1 -0.002 -0.003 0.013

GCP-2 0.001 0.000 -0.001

GCP-3 -0.000 0.000 0.000



Features Details

Min. Max. Mean Median

Detected 10041 18119 13079 13144

Reconstructed 1557 12501 5222 5148

Reconstruction Details

Average Reprojection Error (normalized / pixels / angular) 0.06 / 0.41 / 0.00014

Average Track Length 3.24 images

Average Track Length (> 2) 4.45 images



Tracks Details

Length 2 3 4 5 6 7 8 9 10

Count 70032 27510 16715 11065 8348 3661 2453 1290 381

Camera Models Details

v2 dji fc3170 4000 2250 brown 0.6666

k1 k2 k3 p1 p2 focal aspect_ratiocx cy

Initial 0.0000 0.0000 0.0000 0.0000 0.0000 0.6667 1.0000 0.0000 0.0000

Optimized -0.0282 0.0992 -0.0777 -0.0004 0.0002 0.6367 1.0000 -0.0003 -0.0067
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Survey Data
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Fig. 1. Camera locations and image overlap.

Number of images: 88

Flying altitude: 134 m

Ground resolution: 4.16 cm/pix

Coverage area: 0.25 km²

Camera stations: 88

Tie points: 690,579

Projections: 1,864,094

Reprojection error: 0.389 pix

Camera Model Resolution Focal Length Pixel Size Precalibrated

FC3170 (4.5mm) 4000 x 2250 4.5 mm 1.77 x 1.77 μm No

Table 1. Cameras.
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Camera Calibration

1 pix

Fig. 2. Image residuals for FC3170 (4.5mm).

FC3170 (4.5mm)
88 images

Type Resolution Focal Length Pixel Size
Frame 4000 x 2250 4.5 mm 1.77 x 1.77 μm

Value Error F Cx Cy B1 B2 K1 K2 K3 K4 P1 P2

F 3009.94 1.8 1.00 -0.47 0.34 -0.03 -0.04 -0.54 0.79 -0.70 0.36 0.03 -0.07

Cx -4.90032 0.039 1.00 -0.17 0.01 0.02 0.24 -0.37 0.32 -0.16 0.36 0.01

Cy -25.8209 0.023 1.00 -0.02 -0.05 -0.18 0.27 -0.23 0.11 -0.02 0.45

B1 2.30818 0.065 1.00 -0.01 -0.01 -0.00 -0.00 0.00 -0.04 0.09

B2 3.28181 0.066 1.00 0.02 -0.03 0.02 -0.01 -0.08 -0.04

K1 -0.0434964 7.8e-005 1.00 -0.90 0.91 -0.85 -0.05 0.04

K2 0.24036 0.00072 1.00 -0.98 0.83 0.03 -0.05

K3 -0.325224 0.0016 1.00 -0.91 -0.03 0.04

K4 0.0913147 0.0011 1.00 0.02 -0.02

P1 0.000245404 2.3e-006 1.00 -0.05

P2 -0.0003311 1.6e-006 1.00

Table 2. Calibration coefficients and correlation matrix.
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Camera Locations

100 m

-15 m

-12 m

-9 m

-6 m

-3 m

0 m

3 m

6 m

9 m

12 m

15 m

x 8

Fig. 3. Camera locations and error estimates.

Z error is represented by ellipse color. X,Y errors are represented by ellipse shape.

Estimated camera locations are marked with a black dot.

X error (m) Y error (m) Z error (m) XY error (m) Total error (m)

0.911483 1.56082 12.418 1.80747 12.5489

Table 3. Average camera location error.

X - Easting, Y - Northing, Z - Altitude.
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Ground Control Points

1

23

4

-1.1 cm

-0.88 cm

-0.66 cm

-0.44 cm

-0.22 cm

0 cm

0.22 cm

0.44 cm

0.66 cm

0.88 cm

1.1 cm

x 1000

Control points Check points
100 m

Fig. 4. GCP locations and error estimates.

Z error is represented by ellipse color. X,Y errors are represented by ellipse shape.

Estimated GCP locations are marked with a dot or crossing.

Count X error (cm) Y error (cm) Z error (cm) XY error (cm) Total (cm)

4 1.35869 1.11923 0.62448 1.76032 1.86781

Table 4. Control points RMSE.

X - Easting, Y - Northing, Z - Altitude.
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Label X error (cm) Y error (cm) Z error (cm) Total (cm) Image (pix)

1 -0.717514 -0.00962359 -0.0262079 0.718057 0.221 (6)

2 -1.01282 1.57903 -0.601878 1.97013 0.155 (6)

3 2.36707 -1.58523 1.09389 3.05165 0.478 (4)

4 -0.490393 -0.065918 -0.0191261 0.495173 0.648 (9)

Total 1.35869 1.11923 0.62448 1.86781 0.453

Table 5. Control points.

X - Easting, Y - Northing, Z - Altitude.
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Digital Elevation Model

-13 m

31 m

100 m

Fig. 5. Reconstructed digital elevation model.

Resolution: 8.32 cm/pix

Point density: 144 points/m²
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Processing Parameters

General
 Cameras 88
 Aligned cameras 88
 Markers 4
 Coordinate system ETRS89 / Portugal TM06 (EPSG::3763)
 Rotation angles Yaw, Pitch, Roll

Point Cloud
 Points 690,579 of 708,605
 RMS reprojection error 0.218034 (0.389036 pix)
 Max reprojection error 1.0156 (22.736 pix)
 Mean key point size 2.11585 pix
 Point colors 3 bands, uint8
 Key points No
 Average tie point multiplicity 2.73122
 Alignment parameters

  Accuracy Highest
  Generic preselection Yes
  Reference preselection Yes
  Key point limit 240,000
  Tie point limit 0
  Adaptive camera model fitt ing No
  Matching time 13 minutes 41 seconds
  Alignment time 4 minutes 7 seconds

 Optimization parameters
  Parameters f, cx, cy, k1-k3, p1, p2
  Adaptive camera model fitt ing Yes
  Optimization time 29 seconds

 Software version 1.5.3.8469
Depth Maps

 Count 88
 Depth maps generation parameters

  Quality High
  Filtering mode Mild
  Processing time 2 minutes 25 seconds

 Software version 1.5.3.8469
Dense Point Cloud

 Points 43,689,673
 Point colors 3 bands, uint8
 Depth maps generation parameters

  Quality High
  Filtering mode Mild
  Processing time 2 minutes 25 seconds

 Dense cloud generation parameters
  Processing time 3 minutes 39 seconds

 Software version 1.5.3.8469
Model

 Faces 8,682,318
 Vertices 4,344,689
 Vertex colors 3 bands, uint8
 Texture 4,096 x 4,096, 4 bands, uint8
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General
 Depth maps generation parameters

  Quality High
  Filtering mode Mild
  Processing time 2 minutes 25 seconds

 Reconstruction parameters
  Surface type Height field
  Source data Dense cloud
  Interpolation Enabled
  Strict volumetric masks No
  Processing time 2 minutes 38 seconds

 Texturing parameters
  Mapping mode Adaptive orthophoto
  Blending mode Mosaic
  Texture size 4,096
  Enable hole filling Yes
  Enable ghosting filter Yes
  UV mapping time 1 minutes 18 seconds
  Blending time 3 minutes 44 seconds

 Software version 1.5.3.8469
DEM

 Size 5,665 x 10,285
 Coordinate system ETRS89 / Portugal TM06 (EPSG::3763)
 Reconstruction parameters

  Source data Dense cloud
  Interpolation Enabled
  Processing time 1 minutes 1 seconds

 Software version 1.5.3.8469
Orthomosaic

 Size 11,010 x 16,678
 Coordinate system ETRS89 / Portugal TM06 (EPSG::3763)
 Colors 3 bands, uint8
 Reconstruction parameters

  Blending mode Mosaic
  Surface DEM
  Enable hole filling Yes
  Processing time 3 minutes 4 seconds

 Software version 1.5.3.8469
Software

 Version 1.5.3 build 8469
 Platform Windows 64
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Generated with Pix4Dmapper version 4.6.4

Quality Report

Important: Click on the different icons for:

  Help to analyze the results in the Quality Report

  Additional information about the sections

 Click here for additional tips to analyze the Quality Report

Summary

Project 202202V020
Processed 2022-02-19 23:07:22
Camera Model Name(s) ZenmuseP1_35.0_8192x5460 (RGB)
Average Ground Sampling Distance (GSD) 1.51 cm / 0.59 in

Area Covered 0.840 km2 / 83.9653 ha / 0.32 sq. mi. / 207.5903 acres

Quality Check

Images median of 25254 keypoints per image

Dataset 1464 out of 1493 images calibrated (98%), all images enabled

Camera Optimization 0.19% relative difference between initial and optimized internal camera parameters

Matching median of 8030.18 matches per calibrated image

Georeferencing yes, 9 GCPs (9 3D), mean RMS error = 0.027 m

Preview

 

Figure 1: Orthomosaic and the corresponding sparse Digital Surface Model (DSM) before densification.
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Calibration Details

Number of Calibrated Images 1464 out of 1493
Number of Geolocated Images 1493 out of 1493

Initial Image Positions

Figure 2: Top view of the initial image position. The green line follows the position of the images in time starting from the large blue dot.

Computed Image/GCPs/Manual Tie Points Positions
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Uncertainty ellipses 1000x magnified

Figure 3: Offset between initial (blue dots) and computed (green dots) image positions as well as the offset between the GCPs initial positions (blue crosses) and
their computed positions (green crosses) in the top-view (XY plane), front-view (XZ plane), and side-view (YZ plane). Red dots indicate disabled or uncalibrated

images. Dark green ellipses indicate the absolute position uncertainty of the bundle block adjustment result.

Absolute camera position and orientation uncertainties
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X [m] Y [m] Z [m] Omega [degree] Phi [degree] Kappa [degree]
Mean 0.005 0.005 0.038 0.003 0.003 0.003
Sigma 0.002 0.001 0.000 0.001 0.001 0.002

Overlap

Number of overlapping images: 1 2 3 4 5+

Figure 4: Number of overlapping images computed for each pixel of the orthomosaic. 
Red and yellow areas indicate low overlap for which poor results may be generated. Green areas indicate an overlap of over 5 images for every pixel. Good

quality results will be generated as long as the number of keypoint matches is also sufficient for these areas (see Figure 5 for keypoint matches).

Bundle Block Adjustment Details

Number of 2D Keypoint Observations for Bundle Block Adjustment 13250477
Number of 3D Points for Bundle Block Adjustment 3197039
Mean Reprojection Error [pixels] 0.077

Internal Camera Parameters

ZenmuseP1_35.0_8192x5460 (RGB). Sensor Dimensions: 35.000 [mm] x 23.328 [mm]

EXIF ID: ZenmuseP1_35.0_8192x5460

Focal
Length

Principal
Point x

Principal
Point y R1 R2 R3 T1 T2

Initial Values 8194.340 [pixel]
35.010 [mm]

4096.001 [pixel]
17.500 [mm]

2729.996 [pixel]
11.664 [mm] -0.048 0.021 -0.097 0.002 -0.001

Optimized Values 8178.710 [pixel]
34.943 [mm]

4061.288 [pixel]
17.352 [mm]

2753.976 [pixel]
11.766 [mm] -0.048 0.033 -0.112 0.001 -0.002
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Uncertainties (Sigma) 2.537 [pixel]
0.011 [mm]

0.126 [pixel]
0.001 [mm]

0.116 [pixel]
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The correlation between camera internal parameters
determined by the bundle adjustment. White indicates a full
correlation between the parameters, ie. any change in one can
be fully compensated by the other. Black indicates that the
parameter is completely independent, and is not affected by
other parameters.

The number of Automatic Tie Points (ATPs) per pixel, averaged over all images of the camera model,
is color coded between black and white. White indicates that, on average, more than 16 ATPs have
been extracted at the pixel location. Black indicates that, on average, 0 ATPs have been extracted at
the pixel location. Click on the image to the see the average direction and magnitude of the re-
projection error for each pixel. Note that the vectors are scaled for better visualization. The scale bar
indicates the magnitude of 1 pixel error.

2D Keypoints Table

Number of 2D Keypoints per Image Number of Matched 2D Keypoints per Image
Median 25254 8030
Min 11963 25
Max 47637 30432
Mean 25217 9051

3D Points from 2D Keypoint Matches

Number of 3D Points Observed
In 2 Images 1404766
In 3 Images 605653
In 4 Images 338893
In 5 Images 217543
In 6 Images 158570
In 7 Images 108403
In 8 Images 68948
In 9 Images 53992
In 10 Images 44070
In 11 Images 36390
In 12 Images 30139
In 13 Images 25029
In 14 Images 16485
In 15 Images 13439
In 16 Images 11843
In 17 Images 11604
In 18 Images 12156
In 19 Images 11541
In 20 Images 7600
In 21 Images 4134
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In 22 Images 2644
In 23 Images 2392
In 24 Images 2332
In 25 Images 2131
In 26 Images 1720
In 27 Images 961
In 28 Images 660
In 29 Images 558
In 30 Images 428
In 31 Images 389
In 32 Images 341
In 33 Images 330
In 34 Images 271
In 35 Images 209
In 36 Images 187
In 37 Images 99
In 38 Images 68
In 39 Images 44
In 40 Images 27
In 41 Images 18
In 42 Images 13
In 43 Images 8
In 44 Images 6
In 45 Images 4
In 46 Images 1

2D Keypoint Matches
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Number of matches
25 222 444 666 888 1111 1333 1555 1777 2000

Figure 5: Computed image positions with links between matched images. The darkness of the links indicates the number of matched 2D keypoints between the
images. Bright links indicate weak links and require manual tie points or more images.

Geolocation Details
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Ground Control Points

GCP Name Accuracy XY/Z [m] Error X [m] Error Y [m] Error Z [m] Projection Error [pixel] Verified/Marked
10 (3D) 0.020/ 0.020 -0.008 -0.011 -0.007 0.204 12 / 12
12 (3D) 0.020/ 0.020 -0.002 -0.011 -0.026 0.241 15 / 15
13 (3D) 0.020/ 0.020 0.011 0.019 -0.041 0.217 10 / 10
15 (3D) 0.020/ 0.020 0.003 0.014 -0.013 0.263 13 / 13
20 (3D) 0.020/ 0.020 0.020 0.005 -0.005 0.266 16 / 16
27 (3D) 0.020/ 0.020 -0.045 -0.006 0.033 0.180 13 / 13
30 (3D) 0.020/ 0.020 0.047 -0.003 0.026 0.369 19 / 19
31 (3D) 0.020/ 0.020 0.027 -0.060 0.014 0.182 11 / 11
33 (3D) 0.020/ 0.020 -0.054 0.053 0.028 0.413 15 / 15
Mean [m] -0.000132 -0.000030 0.000987
Sigma [m] 0.030804 0.028536 0.024488
RMS Error [m] 0.030804 0.028536 0.024508

Localisation accuracy per GCP and mean errors in the three coordinate directions. The last column counts the number of calibrated images where the GCP has
been automatically verified vs. manually marked.

Absolute Geolocation Variance

Min Error [m] Max Error [m] Geolocation Error X [%] Geolocation Error Y [%] Geolocation Error Z [%]
- -0.04 0.07 0.07 0.14
-0.04 -0.03 0.00 0.07 0.55
-0.03 -0.02 0.07 0.00 0.62
-0.02 -0.02 0.00 0.14 2.40
-0.02 -0.01 0.21 0.14 9.99
-0.01 0.00 48.32 49.62 33.88
0.00 0.01 50.99 49.69 39.90
0.01 0.02 0.21 0.00 9.72
0.02 0.02 0.00 0.07 1.92
0.02 0.03 0.07 0.07 0.34
0.03 0.04 0.00 0.07 0.27
0.04 - 0.07 0.07 0.27
Mean [m] 0.681864 0.147030 53.891737
Sigma [m] 0.002555 0.002827 0.008937
RMS Error [m] 0.681869 0.147057 53.891738

Min Error and Max Error represent geolocation error intervals between -1.5 and 1.5 times the maximum accuracy of all the images. Columns X, Y, Z show the
percentage of images with geolocation errors within the predefined error intervals. The geolocation error is the difference between the initial and computed image

positions. Note that the image geolocation errors do not correspond to the accuracy of the observed 3D points.

Geolocation Bias X Y Z
Translation [m] 0.681862 0.147018 53.891779

Bias between image initial and computed geolocation given in output coordinate system.

Relative Geolocation Variance

Relative Geolocation Error Images X [%] Images Y [%] Images Z [%]
[-1.00, 1.00] 99.66 99.38 97.26
[-2.00, 2.00] 99.73 99.66 99.66
[-3.00, 3.00] 99.86 99.73 100.00
Mean of Geolocation Accuracy [m] 0.011904 0.011904 0.021819
Sigma of Geolocation Accuracy [m] 0.000567 0.000567 0.000976

Images X, Y, Z represent the percentage of images with a relative geolocation error in X, Y, Z.

https://cloud.pix4d.com/knowledge-base?topic=HELP_REPORT_GEOLOCATION&version=4.6.4&lang=en_US
https://cloud.pix4d.com/knowledge-base?topic=HELP_REPORT_GEOLOCATION_INFO&version=4.6.4&lang=en_US
https://cloud.pix4d.com/knowledge-base?topic=HELP_REPORT_ABSOLUTE_GEOTAG_VAR&version=4.6.4&lang=en_US
https://cloud.pix4d.com/knowledge-base?topic=HELP_REPORT_ABSOLUTE_GEOTAG_VAR_INFO&version=4.6.4&lang=en_US
https://cloud.pix4d.com/knowledge-base?topic=HELP_REPORT_RELATIVE_GEOTAG_VAR&version=4.6.4&lang=en_US
https://cloud.pix4d.com/knowledge-base?topic=HELP_REPORT_RELATIVE_GEOTAG_VAR_INFO&version=4.6.4&lang=en_US


Geolocation Orientational Variance RMS [degree]
Omega 118.928
Phi 0.975
Kappa 31.639

Geolocation RMS error of the orientation angles given by the difference between the initial and computed image orientation angles. 

Initial Processing Details

System Information

Hardware
CPU: Intel(R) Xeon(R) W-2255 CPU @ 3.70GHz
RAM: 32GB
GPU: unknown graphics card (Driver: unknown)

Operating System Windows 10 Pro for Workstations, 64-bit

Coordinate Systems

Image Coordinate System WGS 84
Ground Control Point (GCP) Coordinate System ETRS89 / Portugal TM06
Output Coordinate System ETRS89 / Portugal TM06

Processing Options

Detected Template No Template Available
Keypoints Image Scale Full, Image Scale: 0.5
Advanced: Matching Image Pairs Aerial Grid or Corridor
Advanced: Matching Strategy Use Geometrically Verified Matching: no
Advanced: Keypoint Extraction Targeted Number of Keypoints: Automatic

Advanced: Calibration
Calibration Method: Standard
Internal Parameters Optimization: All
External Parameters Optimization: All
Rematch: Auto, no

Point Cloud Densification details

Processing Options

Image Scale multiscale, 1/2 (Half image size, Default)
Point Density Optimal
Minimum Number of Matches 3
3D Textured Mesh Generation no
LOD Generated: no
Advanced: Image Groups group1
Advanced: Use Processing Area yes
Advanced: Use Annotations yes
Time for Point Cloud Densification 03h:24m:41s
Time for Point Cloud Classification NA
Time for 3D Textured Mesh Generation NA

Results

Number of Processed Clusters 9
Number of Generated Tiles 11
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Number of 3D Densified Points 257292197

Average Density (per m3) 455.1

DSM, Orthomosaic and Index Details

Processing Options

DSM and Orthomosaic Resolution 1 x GSD (1.51 [cm/pixel])

DSM Filters Noise Filtering: yes
Surface Smoothing: yes, Type: Sharp

Raster DSM
Generated: yes
Method: Inverse Distance Weighting
Merge Tiles: yes

Orthomosaic
Generated: yes 
Merge Tiles: yes
GeoTIFF Without Transparency: no
Google Maps Tiles and KML: no

Time for DSM Generation 02h:04m:33s
Time for Orthomosaic Generation 07h:37m:37s
Time for DTM Generation 00s
Time for Contour Lines Generation 00s
Time for Reflectance Map Generation 00s
Time for Index Map Generation 00s
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