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Abstract

Over the last few years, with the advances in Information and Communications Technol-

ogy (ICT) and the increasing human needs, industry has been reshaping itself. A new

industrial revolution is emerging, and it is called Industry 4.0. This revolution intends

to digitize the market and make it as intelligent as possible. As the history tells, every

time there is an industry revolution, the agricultural sector benefits from it. Agriculture

4.0 is ongoing, and it is marked by intelligence and data. It aims to make the agricultural

sector more efficient, that is: producing more outputs (such as food, fibers, fuel and other

raw materials) while using less inputs (e.g. water, fertilizers, pesticides). Additionally, it

envisions to promote food security, by reducing food loss and waste during the “Farm to

Fork” journey.

A major challenge in the agricultural sector is forecasting food storage and marketing

activities prior to harvesting. Nowadays, most farmers manually count fruits before

harvesting, in order to estimate the production yield of their fields, as a means to manage

storage and marketing activities. Manually counting fruits in large fields is a laborious,

costly and time-consuming effort, which is often also error prone. A consequence of this

outdated methodology is that it leads to food wastage, which can affect food security.

The developed work along this dissertation is an entry point to a system that is capable

of estimating the production yield of a whole orchard, while being capable of respecting

the required time constraints of each case study. With data taken with a smartphone, the

developed system was able to accurately estimate the number of fruits present in tree

sides, registering accuracies up to 98%. The high accuracy and speed results were possible

due to the combination of state-of-the-art object detection and tracking techniques. To

achieve this, a large model of Scaled YOLOv4 was combined with an online Multiple

Object Tracking (MOT) framework based on Simple Online and Realtime Tracking with a

Deep Association Metric (Deep SORT). Furthermore, this results validated the viability of

implementing a proposed system, capable of estimating the fruit yield of a whole tree and,

consequently, the production yield of the whole orchard, that is both low in complexity,

easy-to-use, fast and reliable.

Keywords: Agriculture 4.0, Fruit Tracking, Production Yield.

v



Resumo

O avanço das ICTs, juntamente com as necessidades humanas, está a proporcionar uma

nova revolução industrial, designada de Indústria 4.0. Esta revolução visa uma digita-

lização do mercado, assim como torná-lo mais inteligente. Sempre que uma revolução

industrial toma lugar, o setor agrícola beneficia disso, herdando as tecnologias que fazem

parte de tal revolução. A agricultura 4.0 está em progresso, e é marcada por inteligência e

informação. Esta revolução tem como objetivo tornar o setor agrícola mais eficiente, isto

é: produzir mais (por exemplo comida, fibras, combustível e outras matérias-primas) com

menos (e.g. água, fertilizantes, pesticidas). Adicionalmente, esta revolução visa a promo-

ção da segurança alimentar, através da redução da perda e do desperdício de comida.

Um grande problema no setor agrícola reside no planeamento de armazenamento e

marketing de alimentos, antes da sua colheita. Na realidade, a maioria dos agricultores

realiza o processo de contagem de frutos, do seu campo agrícola, manualmente, a fim

de planear o espaço necessário para armazenar os mesmos e planear as suas vendas. A

contagem manual de frutos é uma tarefa dispendiosa, que consome uma grande porção

de tempo, tediosa, e propícia a erros. Uma consequência desta metodologia de trabalho é

o desperdício alimentar, o qual leva ao comprometimento da segurança alimentar.

O trabalho desenvolvido ao longo desta dissertação é um ponto de partida para um

sistema que é capaz de estimar o rendimento de produção de um pomar inteiro, e ao

mesmo tempo capaz de respeitar as restrições temporais de cada caso de estudo. Através

de dados adquiridos com um smartphone, o sistema desenvolvido é capaz de estimar o

número de frutos presentes em faces de árvores, registando eficácias tão altas como 98%.

Os resultados obtidos foram possíveis devido às técnicas implementadas, que contaram

com a combinação de metodologias de estado de arte de deteção e rastreamento de objetos.

Um modelo da arquitetura Scaled YOLOv4 foi combinado com uma framework baseada

em Deep SORT capaz de rastrear múltiplos objetos numa sequência de imagens. Os

resultados obtidos validam a viabilidade da implementação de um sistema proposto, que

ambiciona ser simples, fácil de usar, rápido e fiável na contagem de frutos de uma árvore

inteira e, consequentemente, na estimação do rendimento de produção de um pomar

inteiro.

Palavras-chave: Agricultura 4.0, Rastreamento de Frutos, Rendimento de Produção.
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Chapter 1

Introduction

In this section will be realized a context and background about the topic, its challenges

as well as the motivation on and how to approach them. In the end will be presented the

outline for this dissertation.

1.1 Context and Background

Agriculture is one of the oldest human activities worldwide, as humanity has been rely-

ing on agricultural activities, since ancient times, to ensure its own survival. Following

Merriam-Webster dictionary definition, agriculture is "the science, art, or practice of cul-

tivating the soil, producing crops, and raising livestock and in varying degrees the prepa-

ration and marketing of the resulting products"1. Agriculture is in constant evolution

in order to meet humanity needs. It has gone through some revolutions and is currently

going through the fourth, called by some sources as “Fourth Agricultural Revolution” [1].

The global human population has been continuously increasing and, as a consequence,

more food is required [2]. To this end, a larger amount of food has to be produced, while

maintaining its availability and nutritional quality across the world, thus ensuring food

security. To achieve prime results, several problems must be addressed first [3]. New ICT

approaches must be applied, in order to solve certain issues regarding ecological prob-

lems, food safety and security, lack of digitization, and inefficient agri-food supply/value

chain, among others [4]. Thanks to the ongoing fourth industrial revolution (Industry

4.0), such challenges are now facing a good probability of being solved, through the fusion

of emerging technologies such as Internet of Things (IoT), Big Data, Artificial Intelligence

(AI) and robotics towards agriculture [5]. The integration of Industry 4.0 technologies in

agriculture is propelling a new agricultural revolution, labeled as "Agriculture 4.0" [6].

Analyzing both industrial and agricultural production processes, it is possible to

distinguish a clear difference on the lack of automation capability in the agricultural

production, which is a consequence of poor digitization and intelligence in this field [7].

Agriculture 4.0 aims to change that, reforming the classical agricultural processes and

1https://www.merriam-webster.com/dictionary/agriculture

1

https://www.merriam-webster.com/dictionary/agriculture


CHAPTER 1. INTRODUCTION

promoting the digital farming transformation through the integration of ICT systems

in such processes. The Fourth Agricultural Revolution is ongoing, and many of these

integrations are already being a success (see section Agriculture 4.0 Systems).

An essential application domain of the agricultural sector is crop monitoring [6]. With

the recent technologies being applied to agriculture, Automated Ground Vehicle (AGV),

Unmanned Ground Vehicle (UGV), Unnamed Aerial Vehicle (UAV), and already existing

tractors, equipped with a wide variety of sensors and cameras, are being used to collect

images of agricultural environments [8, 9]. These integrated platforms aim to fulfill tasks

such as mapping of agricultural plots, pest detection, characterization and sorting of

fruits, amongst others. State-of-the-art models based on Deep Learning (DL) are being

proposed to solve such imagery tasks, and are showing themselves as a powerful solution

to address these problems [10].

1.2 Motivation and Approach

Following the World Food Summit definition, "Food security exists when all people, at

all times, have physical and economic access to sufficient, safe and nutritious food that

meets their dietary needs and food preferences for an active and healthy life" [11]. To

this end, an important task is to ensure that all produced food is properly stored and

distributed. According to the United Nations, more than 30% of all produced food is not

consumed due to two factors, food loss and wastage [4]. A portion of the wasted food

is the reflection of the poor planning that is done prior to food harvesting, which often

leads to miss storage. One way to minimize food wastage is through crop monitoring

and estimation of the production yield. With the estimation of the production yield,

it is possible to better plan agricultural activities, marketing activities, and achieve a

more efficient storage system, thus avoiding food wastage. Nowadays, this estimation

is manually done, which translates in a costly, tedious, laborious, time-consuming and

error prone activity. This estimation is performed by counting the number of fruits in

a sample of trees and statistically escalating that number to the whole orchard. When

considering that there are orchards carrying hundreds of thousands of trees, this process

may prove to be ineffective, as not all trees carry the same amount of fruits [12]. The

same methodology is used in the surveyed literature, but instead of manually counting the

number of fruits, a system is able to do it through complex image and other processing

techniques. Although some of the techniques proposed by the literature are efficient

in estimating the production yield, the majority of them require massive processing

power, which, consequently, demands for large amounts of time to perform an accurate

estimation of a row of trees [13]. The complexity and amount of time required by these

solutions makes it unfeasible for them to estimate the production yield for large areas of

agricultural crop.

Farmers and owners should be motivated by the agricultural digitization, as it is an en-

abler to assist with this and other crop challenges. On top of it, agricultural organizations

2



1.2. MOTIVATION AND APPROACH

who try to adopt ICT technologies, benefit from initiatives like the Common Agricultural

Policy (CAP). With all of this in mind, a fast and efficient system, capable of estimating

the production yield of a whole orchard, in an autonomous manner, is necessary [14].

The Portuguese orchard in study, "Herdade Corte Romeira", located near Ajustrel

(Beja), kindly agreed to provide access to their orchard along the implementation of this

dissertation. This orchard is composed of 22 hectares of peach/nectarines, 23 hectares of

apricot, 17 hectares of plums, 18 hectares of pears, and 8 hectares of apples. The fruit in

study is a peach of the type nectarine "gardeta".

Figure 1.1: Portuguese orchard in study, "Herdade Corte Romeira".

During the guided visit to the Portuguese orchard, while having direct contact and

talking with the actual farmers who know exactly what happens in their fields, it was

concluded that a system able to autonomously count the number of fruits carried by a

tree, and consequently estimate the production yield of the field, is essential. This system

could be used not only to forecast how many fruits are to be harvested, but also in prior

phases during the growth of the fruit, such as assisting in deciding whether it is necessary

to apply chemical thinning2 to a tree or not. Talking directly to the groups of people who

do the actual job and knowing that this type of system is necessary was a huge motivation

to conduct a study around it.

Having this into account, a framework that is capable of autonomously estimate the

production yield of a whole orchard was proposed in chapter 3. For the proposed system

to be implemented in its integrity, it is first necessary to assess the viability of using an

ordinary smartphone to acquire Red-Green-Blue (RGB) data of a row of trees and use that

same data to try and estimate the fruit yield in each side of that same tree row. The work

developed during this dissertation was exactly to assess this premise. As such, RGB data

of both sides of a tree row was acquired using Google Pixel 4A. This data was then used

to detect and track fruits as a means to estimate the fruit yield in each side of the tree row.

To perform the detection and tracking, state-of-the-art DL techniques were implemented,

2https://ag.umass.edu/fruit/fact-sheets/hrt-thinning-apples-chemically
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which allowed for accurate and fast fruit yield estimation results. This system shown

itself as being fast and reliable enough so that the remaining phases proposed in chapter

3 could be implemented in future work, which would allow for a total fruit count of a

tree and consequent estimation of the production yield of a full orchard.

1.3 Research Questions & Hypothesis

To develop an easy-to-use system that can be both suitable for fast and accurate fruit yield

estimation, four main Research Questions (RQs) must be addressed, namely:

• RQ1: What is the best and most convenient way to acquire the necessary data for

the system to estimate the production yield of the crop?

• RQ2: How to detect every nectarine presented among all the nectarine trees?

• RQ3: How to avoid the overcounting of fruits in each side of a tree row, which

is a consequence of a given fruit being considered multiple times along different

viewpoints?

• RQ4: How to filter out the overcounted fruits when merging the fruit counts from

both sides of a tree row?

For the first research question, it is proposed that an ordinary smartphone is used to

acquire all the data. Although it greatly increases the complexity of the system due to

poor photo quality, a smartphone is widely accessible by normal people, which makes

it a viable choice. For simplicity, in the context of this work the production yield is

considered as the number of counted fruits. The second question will be addressed using

a state-of-the-art DL object detector. The third research question will be addressed using

state-of-the-art MOT algorithms. The developed system in this dissertation fits into the

first three research questions. Due to the seasonality of the fruits, along with the COVID

pandemic situation and the six month time scope of this dissertation, the fourth research

question must be implemented in future work, as a means to filter out the duplicated

fruits when merging the counts from both sides of a tree row, and thus, obtain a full

estimation of the production yield.

Chapter 3 proposes state-of-the-art methods to accomplish data acquisition, object

detection, and accurate production yield estimation.

1.4 Main Contributions

The excitement around the image processing field has been growing, as has the research

around it. DL-related solutions are presenting themselves as state-of-the-art when talking

about object detection and tracking, and new ones are being released at an astonishing
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pace. Continuously testing this new solutions is of importance, as they can increase the

efficacy of systems relying on them.

One of the contributions of this dissertation was testing state-of-the-art solutions

regarding object detection and object tracking towards the problem of estimating the

production yield of a crop. A large Scaled-YOLOv4 model [15], which belongs to the

current known best object detectors according to the Common Objects in Context (COCO)

benchmark, was implemented to solve the fruit detection problem. For fruit tracking,

FastMOT [16], a MOT framework based on Deep SORT, was implemented.

These DL techniques makes it possible for a faster and accurate estimation of the

production yield. Therefore, unlike the already proposed systems, where the estimation

of the whole orchard has to be statistically calculated, ours is an enabler to an estimation

of the production yield of the whole orchard, which makes it less prone to error. To

the best of our knowledge, it is the first time someone is implementing a state-of-the-art

object detector (Scaled YOLOv4) and tracking (Deep SORT) techniques to detect and

track fruits.

Lastly, the results obtained in estimating the fruit yield of tree row sides using an

ordinary smartphone are a contribution itself. These results enable the continuity of the

development of the remaining phases of the proposed system in chapter 3, which would

allow for a full estimation of the production yield of a whole orchard.

1.5 Dissertation Outline

The current document is organized into six chapters, namely:

• Chapter 1 (Introduction) includes a context on the proposed work, the motivation

for this dissertation, research questions and hypothesis, its main contributions, and

the structure of the document;

• Chapter 2 (Related Work and Technologies) presents supporting concepts around

Agriculture 4.0 and AI (which includes object detection and tracking techniques),

and related work regarding estimating the production yield of an agricultural crop;

• Chapter 3 (Proposed Framework) proposes a framework capable of estimating the

production yield of a whole orchard. This proposal includes how to implement the

three-step process. That is, how to acquire data about the crop, how to implement

a state-of-the-art object detection system to detect the fruits, and how to estimate

the fruit yield of a tree side while avoiding the over count of fruits;

• Chapter 4 (Implementation) dives into the details of how the solution to count

fruits in tree sides was implemented;

• Chapter 5 (Results and Discussion) exposes the obtained results as well as a dis-

cussion on what conclusions can be extrapolated from such results;

5
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• Chapter 6 (Conclusion and Follow Up) sums up all the conducted work, answering

the proposed RQs, and finally addressing a brief discussion of future work that can

follow this dissertation.

6



Chapter 2

Related Work and Technologies

Human population is growing at a consistent rate and it only aims to keep this way. It is

expected a population growth of 25% over the next 30 years [17], representing a total of

10 billion humans living in a small world by 2050 [18]. This will lead to an increase in

the demand for countless human needs, especially food. The solution to this problem is

to increase productivity in agriculture, while maintaining the high nutritional quality of

agri-food products and protecting the natural ecosystems. Industry 4.0 brings emerging

technologies towards agriculture, such as AI, IoT, Big Data and robotics (for instance,

AGVs and UAVs) [4] are being presented to solve such huge food-demand problem in

the coming years. The employment of these emerging technologies in the agricultural

sector is often recognized as Agriculture 4.0 [6, 17, 19], smart farming [20] or precision

agriculture. In the following sections, supporting concepts and related work to this

dissertation will be addressed.

2.1 Agriculture 4.0

Since the beginning of times, agriculture, along with industry, has undergone four revo-

lutions (figure 2.1) [7].

Starting on the Neolithic age with Agriculture 1.0 [21], marked by the shift from

hunter-gatherer lifestyle to sedentary farming with plant and animal domestication. Agri-

culture 1.0 heavily relied on indigenous tools like pitchfork, sickle, and hoe for cultivation.

Those practices stuck until the end of the 19th century, showing themselves as requir-

ing a lot of manual labor and low productivity. The first industrial revolution (Industry

1.0) took place during the 19th century, being defined as the transaction from hand pro-

duction (human force) to machine production (steam and water powered engines). As

a consequence of Industry 1.0, a new revolution on agriculture emerged, named Agri-

culture 2.0. In this agricultural revolution, machinery assisted human labor in seedbed

preparation, sowing, irrigation, weeding, and harvesting. With this, it was possible to

save an enormous amount of time and work for the human side. Mechanized agricul-

ture was a huge leap, as it greatly increased food production and reduced manual labor.
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Figure 2.1: History of agricultural revolutions. Figure taken from [4].

The third agriculture revolution was the consequence of technologies and methodologies

brought by the second (Industry 2.0) and third (Industry 3.0) industry revolutions. In-

dustry 2.0 was defined by electricity, electronics, mechanical devices, and cars [22]. The

new energy sources introduced by this industrial revolution, together with innovations

in the transportation systems, significantly improved the efficiency and productivity of

the agricultural sector, as it was an enabler for a better agri-food supply chain and for

a mass production assembly line-based model. Industry 3.0 is mostly characterized by

technological innovations, especially on electronics, which improved the automation ca-

pability of manufacturing equipment. During this period, green energy sources, such as

photovoltaic power, wind power, and hydroelectricity solutions were (and still are) being

explored. All these improvements brought by Industry 2.0 and 3.0 led to a recent agricul-

tural revolution, known as Agriculture 3.0. Currently, we are amidst the era of Industry

4.0 and Agriculture 4.0. The fourth agricultural revolution is defined by intelligence, and,

like the precedent revolutions, is a result of the Industry 4.0. The following subsections

will introduce some applications brought by Agriculture 4.0.

2.1.1 Agriculture 4.0 Systems

Agriculture 4.0 is characterized by a fusion of emerging technologies brought by Industry

4.0, such as IoT for connectivity between "things", smart sensors and robotics to mon-

itor and control the agricultural field, Big Data and AI approaches for data analysis,

blockchain technology for food and process traceability, among many others. Agriculture

4.0 aspires to increase the crop productivity in a sustainable manner, i.e., considering eco-

nomic, environmental and social aspects. To this end, there are several tools, techniques

8
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and technologies that can be applied to achieve a more precise and smarter farming. This

section aims to explore and explain some state-of-the-art techniques used in this field.

Internet of Things

The concept of IoT devices is to integrate the "things" in the physical world with the

virtual world by using the Internet as the medium to communicate and exchange infor-

mation [23]. These devices consist of embedded systems which interact with sensors (IoT

sensors) and actuators (IoT actuators) through wireless connectivity. IoT sensors can be

classified into five categories, namely: mechanical sensors, location sensors, optical sen-

sors, airflow sensors and electrochemical sensors [24]. Composed by field programmable

gate arrays or microprocessor, communication modules, memory and input/output inter-

faces, these sensors are widely used in Agriculture 4.0, as they possess key characteristics

like power efficiency, memory, computational efficiency, portability, durability, coverage,

reliability and cost, thus making them a suitable option for agricultural practices [23].

They are helping transforming agriculture into a more data-driven field, by gathering

valuable data from the fields, such as soil temperature, moisture, electric conductivity,

pH at various depths, air temperature, rainfall, leaf wetness, chlorophyll content of crop

leaves, wind speed, dew point temperature1, wind direction, relative humidity, solar

radiation, atmospheric pressure, among many other parameters [23, 24].

Some key applications of IoT in agriculture are described below:

• Monitoring: For example, crop monitoring, is of huge importance as there are sev-

eral environmental factors that can affect agricultural production. The acquisition

of data such as the amount of rainfall, air and soil temperature, leaf wetness, air

and soil moisture, salinity, solar radiation, pest movement, etc., enables optimal

decision making processes. Hence, it is possible to improve the overall agricultural

production and the quality of the farm products, to minimize risks and to maxi-

mize profits, always considering sustainable aspects (environmental, economical

and social). Taking the soil radiation example: data acquired by IoT sensors gives in-

formation about the plants exposure to sunlight. That data is presented to farmers

in a readable way, so that they can identify if their plants are properly exposed or

over exposed to solar radiation. Another example is the collection of data related to

plague movements, which is remotely fed to the farmers for pest control, avoiding

big losses due to pests infestations and infections [25, 26]. Sensors integrated in

agriculture-related machinery can be useful to collect relevant data, in instance, to

establish fertilizing, irrigation, nutrition plans, or planning harvesting activities.

1"The dew point is the temperature the air needs to be cooled to (at constant pressure) in order to achieve
a relative humidity (RH) of 100%. At this point the air cannot hold more water in the gas form." Source:
https://www.weather.gov/arx/why_dewpoint_vs_humidity
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• Control: For example, remote control, can be achieved using UGVs, UAVs, and other

agriculture-related machinery. While monitoring is the practice of gathering rele-

vant crop data, remote control makes a system react over that information. Based

on available information provided by sensors, UGVs and UAVs can take proper ac-

tions in the fields, for instance, to automatically spraying the fields with pesticides,

herbicides or other products [9, 27].

Agriculture-related machinery

In this context, agriculture-related machinery relates to UGVs, UAVs, and other agriculture-

related transportation systems. These systems are being massively used in precision-

spraying (e.g. water, pesticides, herbicides, and fertilizers), seed sowing and growth

assessment, mapping, crop disease detection and yield estimation [8, 9, 28].

Some common applications of these systems in agriculture are:

• Mapping, which can provide useful information about the area of the farmland,

soil conditions, and status of the crops. This information allows more profitable

agriculture tasks, such as the agronomic control of homogeneous zones and the

separation of fruit quality areas [29].

• Spraying application using UAVs can reduce pesticide use and maximize efficiency

when compared to a speed sprayer or a wide-area sprayer [27]. Besides UAVs, UGVs

can also be an effective solution to precision spraying, when equipped with cameras

and smart algorithms capable of picking regions of interest [30].

• Crop Monitoring, which is essential for optimal production, and is used to pre-

dict the yield or quality of a crop via analysis of crop data. Usually this task is

accomplished via satellite, which are typically used to scan very large farms. The

problem associated with satellite utilization is it’s poor precision of crop monitor-

ing, when compared with other alternatives. Using UAVs to monitor a large farm

is promising as it saves significant time and labor for the human side. Using smart

and autonomous systems such as AGVs is useful in diagnosing insect pests, where

early diagnosis is essential as it inhibits damage spreading quickly [31].

• Irrigation is precise when using smart transportation systems, as they can be equipped

with multi-spectral cameras and heat sensors, which can identify areas where water

is scar, avoiding over-irrigation [32].

For UAVs, they can be classified into two types of platforms: fixed and rotary-wing [8,

9]. A fixed-wing UAV is somewhat similar to an airplane, it flies via thrust and aerody-

namic lifting force. It is mainly used for spraying and photographing over wide ranges.

A rotary-wing UAV can be classified into helicopter and multi-rotor types. The helicopter

type features a single, large and powerful propeller atop the aircraft. On the other hand,

10



2.1. AGRICULTURE 4.0

the multi-rotor types have many smaller propellers, and are classified as quadcopter

(four propellers), hexacopter (six propellers), and octocopter (eight propellers), and are

used for extremely precise tasks. Helicopter types and octopters, like the fixed-wing, are

mainly used for spraying. Quadcopters and hexacopters are used for field reconnaissance

and mapping.

As for the ground vehicles, UGVs and their autonomous version, AGVs, comes usually

in varying forms, personalized for specific needs. As an example, [33] conducted an

experiment of estimating the production yield, where the data acquisition was performed

by "Shrimp", "a general purpose perception research ground vehicle", as cited by the

authors. This ground vehicle is equipped with a variety of localization, ranging and

imaging sensors, which makes it a good choice for imagery tasks, such as data acquisition.

Besides UGVs and AGVs, a common and still valid application is to take advantage of the

already existing tractors used by farmers, and equip them with the necessary material

for specific tasks. On the one hand, using tractors is beneficial as they are often already

available. On the other hand, their use can be a limiting factor for specific tasks such as

taking more detailed photos / more viewpoints of fruit trees for later processing.

A revision on agricultural ground and aerial robots done in [34], show that the use of

these in tasks such as monitoring plant health, ripeness, and soil moisture can be benefi-

cial as they replace human labor on the field during adverse weather conditions, hence

protecting their health. More studies show how ground vehicles can be of significant

help in tasks such as performing monitoring and inspecting on soy and cotton crops [35],

autonomous crop inspection [36], and autonomous cotton crop monitoring [37].

2.1.2 Image Processing in Agriculture 4.0 Systems

Agriculture has benefited of image processing methods in the past years. Classic image

processing techniques, such as the appliance of preprocessing, segmentation, extraction

of characteristics, either using Machine Learning (ML), Support Vector Machine (SVM)

and/or Artificial Neural Network (ANN), have been proposed solutions for problems like

pest detection [38], characterization and sorting of fruits, amongst others [39, 40]. Re-

cently, a new technique is standing out, namely DL [10], which will be further detailed in

section 2.2. DL is a sub-field of ML, and is similar to an ANN, but is "deeper" (has a bigger

number of layers) than a normal ANN, which allows larger learning capabilities and thus

higher performance and precision [41]. There has been a lot of research related to image

processing using DL applied to agriculture, and it is being used for pest detection [42],

insect classification [43], weed identification, soil and vegetation/crop mapping, plant

recognition, fruit counting, crop type classification, among other applications.
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2.2 Artificial Intelligence

“The art of creating machines that perform functions that require intelligence
when performed by people.” Raymond Kurzweil 1990.

AI is usually defined as the science of making computers do things that require intelli-

gence when done by humans2. AI has always been excellent at solving problems that are

intellectually difficult for human beings, problems that can be described by mathematical

rules. The field where computers lack the most is when they try to solve problems that

are rather easy for humans but hard to formally describe, that is, problems that are solved

by intuition, that for a human its solutions is trivial and automatic, like recognizing spo-

ken words or faces in images. A proposed solution to this problem is to create a system

that let’s a computer learn from experience. Such systems reside in the sub-fields of AI,

namely ML and DL [44–46].

2.2.1 Machine Learning

ML3 can be defined as an ability that lets computers acquire their own knowledge by

extracting patterns from raw data, enabling it to improve their accuracy over time with-

out being explicitly programmed to do so. ML is based on defining statistical models

(algorithms) which are as good as the amount of data they are fed. In the literature, there

are four methods through which a machine can learn [47]: supervised, unsupervised,

semi-supervised and reinforcement learning.

Supervised Learning

As the name hints, supervised learning is when a machine is supervised while learn-

ing [48]. In this method of learning, the machine is fed with labeled data, meaning that

it is already tagged with the correct answer of what it represents. Suppose there is a

machine ready to learn through a supervised learning algorithm, and the goal of the

problem is for the machine to be able to classify whether a fruit is rotten or not. For the

learning process, the machine is fed with data, which is composed of fruit decay signs

such as "fruit has bruises? yes or no", "fruit has an unpleasant odor or taste? yes or no",

and, because the learning model is supervised, at the end of each fruit decay signs there

is a column that says if it is rotten or not. With this labeled data and through a statistical

algorithm, the machine is able to module such a pattern that lets it identify if future fruits

may or may not be rotten.

2http://www.alanturing.net/turing_archive/pages/Reference%20Articles/What%20is%20AI.html
3https://www.ibm.com/cloud/learn/machine-learning
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Unsupervised Learning

On the other hand, in unsupervised learning, the machine works on its own to discover

patterns in data [49]. In this type of learning method, the machine ingests lots of unla-

beled data and uses complex algorithms to extract meaningful patterns and relationships

in data that humans would miss. The task of the machine is mainly to group unsorted

information according to similarities, patterns and differences. For this, it uses two types

of algorithms, namely clustering and association. A good use of unsupervised learning

is in email spam detection, where the machine can analyze huge volumes of emails and

uncover the patterns and features that indicate spam. This type of learning is used when

there are huge amounts of data and labelling all of it becomes impractical.

Semi-supervised Learning

Semi-supervised learning is in between supervised and unsupervised learning [50]. It is a

process of learning where the machine uses a sample of a labeled dataset (supervised) to

guide itself over an unlabeled dataset (unsupervised). Suppose there is a dataset consist-

ing of labeled and unlabeled data regarding whether a fruit is rotten or not. A classifier

can be trained with the labeled data, like it was discussed before, but there is still a huge

amount of unlabeled data remaining, which could potentially increase the classifier accu-

racy. Through a semi-supervised learning technique, denominated as "pseudo-learning",

it is possible to use the remaining unlabeled data to re-train the classifier. Using this

technique, the already trained classifier will "pseudo-label" the unlabeled data, and then

use this pseudo-labeled data to re-train itself. This process makes it possible to use unla-

beled data, that would be thrown away due to the impracticability of labelling all of it, to

increase the accuracy of a classifier.

Reinforcement Learning

Reinforcement learning is based on agent-reward-penalty learning, where the training

and testing phases are intermixed [51]. The agent interacts with the environment, and,

depending on its interaction, it can be rewarded or penalized, like a trial and error sys-

tem [52]. The goal of the agent is to maximize its rewards along its path in an environ-

ment. A sequence of rewards in a given environment achieved by the agent results in a

reinforced process, capable of solving a given problem.

The Learning Process

As mentioned before, in order for a computer to acquire enough knowledge so that it can

solve a problem that is formally difficult for a human to describe, it needs to be trained,

and that happens through the extraction of patterns from raw data. Therefore, the first

thing to do while building an ML model is to select and prepare a training dataset.
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Preparing a dataset consists in randomizing it, checking for biases that could impact

the training, and divide it into two subsets, one for training, which will be used to train

the model, and one for evaluation, which will test how good the model is and refine it.

There are two types of data, labeled and unlabeled. Labeled data is sometimes used to

call out features and classifications the model will need to identify. On the other hand, if

the dataset is composed of unlabeled data, it means that the model will need to extract

those features and assign classifications on its own.

Once the dataset is prepared, it is necessary to choose a way for the machine to learn,

that is, the statistical algorithm to run on the training dataset. The chosen algorithm

depends on whether the data is labeled or unlabeled. For labeled data, there are common

types of ML algorithms such as regression, decision trees and instance-based algorithms

(e.g. K-Nearest Neighbor). For unlabeled data, there are, mainly, clustering and associa-

tion algorithms, which are more complex than the algorithms used for labeled data [47].

Once the model is built, the last step is to reevaluate and validate its accuracy, through

methods such as bootstrapping or Leave-one-out cross-validation (LOOCV) [53, 54].

Building and training the ML model can be time-consuming and sometimes challeng-

ing, but, once it is done, classifying new data is as easy as feeding it to a computer and

instantly obtaining a result. That being said, once all the steps are successfully accom-

plished, all there is left to do, is use it, for example, to support in decision making.

Artificial Neural Networks

When a human receives any kind of information, its brain processes it through a series

of neurons, producing a certain output. ANNs are computing systems that are inspired

by the human brain neural networks. The term "neural networks" used in ML doesn’t

actually refer to biological neural networks, they simply share some characteristics with

biological neural networks, and for this reason, they are called as "Artificial Neural Net-

works"4.

ANNs are generally composed by three layers. As it works as an input-output system,

the first and last layers are the input and output layers. Between them there are the hid-

den layers, that perform the mathematical operations that help determine the output of

the ANN. Those hidden layers manipulate the input data using mathematical operations,

and, at the output layer, that data is converted into an output, through an activation func-

tion [55]. The hidden layers are composed by artificial neurons, that perform arithmetical

operations in order to produce an output. All the layers are connected between them, and

all those connections have associated weights. In most cases, ANNs are fully connected,

which means that all the neurons of a given layer are connected to all the neurons of its

neighbour layers and so on. In order for an ANN to give a desired output when presented

with a certain input, it needs to be trained. Training an ANN consists in readjusting its

weights after each iteration (input-output), through backpropagation. Lets say an ANN

4https://deeplizard.com/learn/video/OT1jslLoCyA
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is supposed to give 1 as output, but instead it gives 0.6. In order to increase its precision,

the weights are adjusted so that, in the next iteration, the result is slightly closer to 1.

In this way, iteration after iteration, the weights are constantly adjusted in order for the

neural network to achieve the best possible prediction accuracy. The train should be

conducted in a way that avoids the neural network to overfit. This phenomena occurs

when a neural network starts memorizing instead of learning. It happens when a neural

network is presented with a certain dataset a huge number of times, and fits too much

into that dataset. Technically speaking, overfit occurs when the weights are so biased to

correctly classify the training dataset, that when the neural network is presented with

another example from another dataset, it mostly miss classifies its classes.

A major problem of neural networks was the vanishing gradient problem [55]. For net-

works with one or two layers, this problem was not a big of a deal, but when using more

than two layers, the network was rather hard to train, thanks to the vanishing gradient

problem. As mentioned before, a neural network is trained through backpropagation and

readjustment of weights. When training a neural net, one has to calculate the gradient of

the loss with respect to weights of the network. When there are networks with many lay-

ers, the gradient with respect to weights in the first layers become small, like vanishingly

small. Hence, vanishing gradient. This small gradient happens due to the type of activa-

tion functions used in the network. When back propagating a neural network, one has

to use the chain rule, in order to find the gradients of upper layers. Using the chain rule,

we have that the derivatives of each layer are multiplied through the network, starting on

the output layer, all the way up to the input layer, in order to compute the derivatives of

the initial layers. The problem is, when there are many n layers in the network and an

activation function like the sigmoid function is used, n small derivatives are multiplied

together. Thus, the gradient decreases exponentially as we make our way up through

the network. As said before, this will make the gradient of the first layers become really

small, which will result in a really small update in the weights of the initial layers of the

network. This will make the network hard to train, since there is a vanishingly small

change every time an epoch is made. This problem worsens with respect to the number

of layers in the network. The more layers a network has, the worse the vanishing problem

is.

Neural networks with more than one hidden layer are often said to be deeper neural

networks, which are the type of artificial neural networks used in deep learning. Since

these networks are composed of a large number of layers, they weren’t of big attention

due to the vanishing gradient problem.

2.2.2 Deep Learning

Thanks to the research on AI, more specifically on neural networks, new activation func-

tions were proposed in order to avoid the vanishing gradient problem [56]. These new

activation functions enabled the use of deeper neural networks, later named deep neural
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networks. DL is a subfield of ML, which has been rapidly evolving due to the exponen-

tial improvements on computing power and storage systems. It achieves great results

by learning to represent the world by simple, yet many, concepts. DL has showed itself

as being a powerful tool to enable a computer capability of classifying, detecting and

recognizing. In other words, it is enabling computers to understand a certain task that

they are assign to do, rather than just following a couple of rules. The fields where DL

is most used and shining the most is, ironically, the fields where humans and animals

have no trouble in shinning, which is, for example, speech and image recognition [57–60].

Systems like Cortana, Siri, and Tesla autopilot are based on DL. Many authors refer to

the term DL as being "large deep neural nets"5.

Due to the astonishing and promising results DL has shown when used in image

processing, this dissertation proposes a system based on a type of DL networks, namely

convolutional neural networks.

Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of neural network that is prepared to

work with image and video data. Most generally, an CNN is a deep ANN that has some

type of specialization that enables it to detect patterns and make sense out of them. This

pattern detection is what makes CNNs so powerful for image analysis. Unlike regular

neural networks, CNNs hidden layers are mostly composed of convolutional layers, hence

the name, convolutional neural networks. The difference between a normal layer and a

convolutional one, is that, while a normal neuron on a normal layer receives an input and

transforms it in some way and outputs the result to the next layer, a convolutional layer

also receives an input but the transformation is a convolution operation [61].

Detecting patterns in CNN layers refers to detecting image features. Those features

vary from the most simple, like detecting edges and shapes, to the most complex, like

detecting whole animals and cars. The level of complexity of features increases with the

depth of the network.

There are several complex DL object detection models proposed by the community,

which are based on years of research and improvement. The golden standard benchmark

for evaluating object detection models is the COCO dataset. COCO dataset contains

over 120,000 images for training and testing, with 80 classes that represent common

objects. Usually, if a model does well on the COCO dataset, it is believed it will do well in

specific tasks. According to the COCO dataset benchmark, the current best performing

state-of-the-art object detector model is Scaled YOLOv4 [15].

Scaled YOLOv4

YOLO has been well known among the image processing community, ever since its first

publication [62], as being one of the best and fastest state-of-the-art object detection

5Jeff Dean - Leader of Google AI.
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model. In the last year, YOLOv4 was published [63], stating itself as being the most

reliable when talking about velocity and detection quality. However, in low frequency,

EfficientDet, among other models, performed better. Recently, Scaled YOLOv4 was pro-

posed, clearing all doubts about what the best object detection algorithm is. This new

version of YOLOv4 topped all the algorithms in the COCO dataset benchmark, and, for

this reason, is now the best performing object detection model. Let us start by explaining

what YOLO is and how it is built. We will then talk about the evolution of YOLO, and, fi-

nally, what were the enhancements it needed to become the current state-of-the-art object

detection model, Scaled YOLOv4.

Back in 2016, when the first version of YOLO was published, it was considered the

fastest object detection system ever made. The reason behind this lies in the way the

algorithm is conducted. The most popular algorithms back then were based on sliding

windows. Those algorithms would analyze multiple regions of an image, sliding a "win-

dow" all through the top left of an image to the bottom right of it. These type of systems

required multiple iterations through an CNN, which translated in slow computation

times, unpractical for realtime detection. Optimized models like R-CNN used "region

proposals" to first generate potential bounding boxes in an image and then run a classifier

over the proposed boxes. These systems also required heavy computational power, hence

becoming extremely slow for realtime detection tasks. YOLOv1 proposed a new way to

approach object detection. Using this system, You Only Look Once at an image, that is,

the image passes once through an CNN to predict what objects it contains and what are

their localization. YOLO system starts by dividing an image into a grid of SxS cells. If the

center of an object falls into a cell, that grid cell is said to be responsible for predicting it.

Each grid cell predicts B bounding boxes and, to each bounding box, a confidence score is

assigned. This confidence score represents how likely it is for a box to be contained in an

object. For each grid cell, the algorithm will compute the probability of each class being

present on the cell. This probability is calculated only once for each class, independently

of how many boxes are presented in that grid cell. The following step is to assign a class

probability to each bounding box presented in a given grid cell. To do this, the condi-

tional class probabilities and the individual box confidence predictions are multiplied.

Figure 2.2 sums up this model.

The YOLO model CNN architecture is inspired in GoogLeNet model. The initial layers

of this CNN are feature extractors, and the last layers are fully connected layers, used

to predict the output probabilities and coordinates of the objects presented in the image.

The YOLOv1 network architecture is composed by 24 convolutional layers followed by 2

fully connected layers.

Four versions of YOLO have been released. On YOLOv2 [64], the authors focused

mainly on improving object detection localization, while maintaining classification accu-

racy. YOLOv3 [65], as cited by the authors, has a "bunch of small changes that make it

better". YOLOv4 [63], released in the last year, was made so that everyone who owns a

conventional GPU can train and achieve realtime, high quality object detection results.
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Figure 2.2: YOLOv1 object detection model. An input image is divided into a SxS grid cell.
Each grid cell is responsible for predicting B bounding boxes, confidence score for those
boxes, and C class probabilities. At the end, these bounding boxes are correlated with the
class probability map, resulting in an encoded probability between a class appearing in
the box and how well the predicted box fits an object. Figure taken from [62].

The authors tested and used state-of-the-art Bag of Freebies6 and Bag of Specials7 to in-

crease backbone and detector quality. On top of this, the authors of YOLOv4 modified

state-of-the-art methods, making them more efficient and suitable for single GPU train-

ing. Recently, Scaled YOLOv4 [15] was proposed, stating itself as the state-of-the-art

object detector. As illustrated on figure 2.3, there is a version of Scaled YOLOv4 that

tops every other possible detector models there are. Scaled YOLOv4 is the name given

to the group of many "scaled" versions of YOLOv4. Those versions include YOLOv4-CSP,

YOLOv4-Tiny and YOLOv4-Large models. There are three versions of YOLOv4-Large,

namely YOLOv4P5, YOLOv4P6 and YOLOv4P7. YOLOv4P6 and YOLOv4P7 are scaled

versions of YOLOv4P5, and they represent better accuracy but lower fps as they scale.

2.2.3 Object Tracking

Object detection has been around for many years, and a large study around the image

processing field enabled it to achieve greats results. Object detection stands for the

detection of one or more objects on a given image. Let us suppose there is a criminal

6Are methods that increase the model quality by changing the training strategy or increasing the training
cost, without increasing the inference cost.

7Represents plugin modules and post-processing methods that only increases the inference cost by a
small amount but can significantly improve the accuracy of object detection.
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Figure 2.3: Comparison between Scaled YOLOv4 and other state-of-the-art object detec-
tors. Figure taken from [15].

getting away in a car, there are cameras all over the city, we know object detectors exist,

there is no way he can get away, right? It is not that simple. Object detection is great when

it comes to detecting objects in a static world. A detector doesn’t know that a certain object

detected in frame n, is the same object that is detected in frame n + 1, for the detector,

these are two complete different identities. In the criminal example, a detector would

be enough if there was only the criminal car in the whole city. Happily for the criminal,

cities are full of cars, and it is rather easy for him to go unnoticed. This would be different

if there was something that enabled us to merge our knowledge of detecting objects in the

static world with information regarding the dynamic world, that is, temporal information.

With such a system, that would be possible, not only to detect the criminal car in every

frame, but also to attribute an ID to it, so that he couldn’t go unnoticed, even with

thousands of cars all around the city. This is known as object tracking, where an object

detected in frame n, can be re-detected in frame n+ 1 and re-identified as being the same

object from frame n. Object tracking has been widely used not only to catch criminals

on the run, but also in tasks like tracking athletes in sports-related fields [66], tracking

pedestrians [67], aircrafts [68], counting the number of different types of vehicles that

pass through a certain region of interest [69], among other applications, like counting
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fruits.

Over the next subsections, we’ll dive into some challenges that arise when performing

object tracking, the types of tracking methods there are and how they are performed, as

well as state-of-the-art object tracking algorithms.

Tracking Challenges

Tracking is essentially identifying an object in a given frame n, give that object an identi-

fication number, and then be able to re-identify it in the next frames n+ 1, ..., n+ x, while

always attributing the same ID to it. While the core idea might seem simple, there are

a lot of challenges that arise when trying to perform object tracking. The following list

contains some of the most common challenges faced when performing object tracking:8

• Occlusion: The tracked object "hides" behind another object, staying occluded for a

certain amount of frames (e.g. person being occluded by a passing bus);

• Identity switching: When two objects are being tracked and they cross each other,

a problem arises: to which ID belonged each object (e.g. two persons crossing each

other);

• Motion blur: An object is blurred for a certain amount of frames due to camera

focus or motion of the object. During the frames which the object is blurred, it will

not look the same, then, how to re-identify it during and after it has been deblurred

(e.g. a football ball blurs for a certain amount of frames);

• Viewpoint variation: When the viewpoint of an object changes, it becomes hard to

re-identify it due to changes in its appearance (e.g. a car being tracked and suddenly

doing an U-turn);

• Scale change: Sudden object scale variations can lead the detector to fail, as the

object suddenly becomes way bigger than it was on the previous frames (e.g. a

football ball coming in the direction of the camera at high speed);

• Background clutters: When the colors and/or shapes of the background surround-

ing the object are identical to the object itself, it becomes harder to distinguish it

from the background (e.g. fruits are often confused with leaves and trunk chunks);

• Illumination variation: If the illumination near an object is suddenly changed, its

appearance can suffer big changes, becoming harder for the detector and tracker

to identify it as the same object (e.g. a sudden shadow over an object caused by a

cloudy sky);

8Sources of mentioned challenges:

• https://cv-tricks.com/object-tracking/quick-guide-mdnet-goturn-rolo/

• https://nanonets.com/blog/object-tracking-deepsort/
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• Low resolution: Low object resolution means less pixels defining the object. This

can happen either due to an object being too small, or the camera being too far away

from it. When the number of pixels is low, it becomes hard for the detector to detect

the object (e.g. a fruit is very small when comparing it to a whole tree, becoming a

hard challenge to identify it);

• Non-stationary camera: If a camera is also in motion with respect to the object, it

becomes even harder to predict its next position, as another variable (the camera

motion) is added to the motion model equation (e.g. autonomous navigation).

Across time, there has been a huge research around object tracking and many solu-

tions have been proposed to solve the listed challenges. Over the following subsections,

methods proposed to solve these challenges and others will be analyzed.

Single and Multiple Object Tracking

There are two types of object tracking, single and multiple object tracking. In single

object tracking, as the name hints, only one object is tracked along a sequence of frames,

while in multiple object tracking, there is the challenge to track more than one object at

once along a sequence of frames.

As might be expected, single object tracking is relatively easier when comparing to

multi object tracking, as some problems, like distinguishing an object from another, don’t

necessarily arise. In fact, visual appearance could be enough to track a single object along

multiple frames. The authors of [70] summarized and went through the single object

trackers that were developed over the past decade, analyzing experimental results and

discussing the development trends. The authors also dive into the definition of single

object tracking, analyzing the components of general object tracking algorithms.

A more interesting type of tracking, for this dissertation scenario, is MOT. An MOT

model has to be able to detect more than one object in a frame, and track all of them in

the next frames, until they move out of sight. In [71], the authors discuss existing and

recent approaches to MOT, the drawbacks of each approach, problems related to MOT

research, and propose different directions for future research in this field. Similarly, the

authors of [72] analyzed and summarized top-ranked MOT methods, and they also dive

into each method.

On top of single and multiple object tracking, tracking can be done online or offline. In

online tracking, the tracker uses present and past information to perform the tracking of

one or more objects. This type of tracking is often used for realtime applications. Offline

tracking is a slower type of tracking, where the model is fed with a recorded stream, and

can look not only at n frames in the past, but also n frames into the future, using it to

improve the tracking. As can be expected, this type of tracking is slower, but, due to the

amount of information it can access, it usually outperforms online tracking.
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The Tracking Process

According to Prof. Dr. Laura Leal-Taixé, author of the famous Siamese CNN [73], there

are three main components in an online MOT model:

1. Track initialization: Having into consideration that in online tracking it is not pos-

sible to look into the future, the MOT model starts by running an object detector

over the first frame n. The output detections from the object detector will be used

to initialize the object tracks. As expected, this detector must be trained to detect

the objects that are pretended to be tracked (e.g. nectarines). After this first step,

the MOT model proceeds to processing the new frame, frame n+ 1;

2. Prediction of the next position of each object: Once the MOT model starts process-

ing the new frame n+1, it is going to try and predict the next position for each of the

previous detected objects. Because the model is only processing the second frame,

it doesn’t have much information about how each object moves, hence it must make

some assumptions. One option is for the MOT model to assume that the object

has not moved, hence the model will use the bounding box coordinates from the

detected objects on step 1 on the new frame. As the model keeps processing the

frames, it starts building a model to best predict what the next positions for each

object will be, this is called a motion model. The classic and most standard way of

building a motion model is to use a Kalman filter [74, 75]. Advancements in MOT

have shown that using recurrent neural networks like Long Short Term Memory

(LSTM) [76] can be promising, as they learn the motion model in a data driven way,

enabling it to produce favorable results. Once the model has the predicted bound-

ing boxes for the next positions, be it through a motion model or not, it moves on

to the third step;

3. Matching predictions with detections: Once the model has predicted where it thinks

the objects moved to, from frame n to frame n + 1, it passes frame n + 1 through

the detector. Now, there are two types of bounding boxes, the predicted ones and

the detected ones. The model tries to match the predicted bounding boxes with the

detected bounding boxes with the help of an appearance model. The matching oc-

curs through a measurement (e.g. Intersection over Union (IoU) between detection

and prediction boxes) that indicates how similar the set of detections from frame

n + 1 are with the predictions that are coming from the motion model. Once the

matching is done, the objects that "pass" the matching process are attributed the

same ID as they had in the previous frame, while others that might not "pass" the

matching process, or objects the model has never seen before, will receive new IDs.

Some MOT models are more complex than others. The authors of [71] dive into all

the components that might be part of any MOT model.
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Simple Online Realtime Tracking

Simple Online and Realtime Tracking (SORT) [77], is a state-of-the-art online MOT model.

SORT follows the paradigm of tracking-by-detection, where the model detects objects

each frame and associate them in realtime. SORT is comprised of four key components:

1. Detection: The first stage is identical as the "track initialization" explained in the

last section. The model first starts by detecting objects that are wished to be tracked,

and shares this detections with the second stage. In the original paper, the authors

used Faster R-CNN detection framework [78]. As the authors mentioned, the net-

work architecture itself can be swapped, and as we’ll see, YOLO architecture can

be integrated with SORT. The ability to swap detectors is an important feature of

SORT, as the quality of detection has a significant impact on tracking performance;

2. Estimation Model: The second stage receives the detections and the model tries

to propagate them using a linear constant velocity model. The estimation model

will predict the new position for each of the detected objects by using the Kalman

filter framework to optimally solve the velocity components of the linear constant

velocity model. If, for example, a previous detection falls into occlusion and no

detection was associated to it, SORT will simply predict its position using the linear

velocity model;

3. Data Association: Once predictions have been made, it’s time to associate them to

new detections. Once the detector detects all the possible objects in the frame, the

SORT model will then compute the IoU distance between each detection and all

predicted bounding boxes. This computation is solved optimally using the Hungar-

ian algorithm [79]. Finally, the model filters estimated assignments that had an IoU

distance lower than a certain threshold, known as IoUmin. Once this step is done,

the tracking is finished for the new frame, and all that is left is destroying unused

identities.

4. Creation and Deletion of Track Identities: When objects enter and leave the im-

age, new trackers have to be created and old ones destroyed. For creating new

trackers, the authors consider any detection with an overlap less than IoUmin as

being an untracked object. In this scenario, the tracker is then initialized using the

detected bounding box and the velocity set to zero. This new tracker undergoes a

probationary period as a means to prevent false positives. Trackers are destroyed if

they have not been detected for TLost frames. For the SORT algorithm, the authors

recommend setting TLost to 1, as the constant velocity model is a poor predictor of

complex dynamics and the authors focus in frame-by-frame detection, not being

worried object re-identification.
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DL has improved tracking algorithms by providing us with better detectors, and by

adding more temporal and feature complexity. In the following section, we’ll see how

SORT was improved with the help of deep learning techniques.

Deep SORT

The SORT algorithm is a great approach to online MOT, but it often fails in tracking

objects through long periods of time when considering artifacts. The authors of Deep

SORT [80] introduced another distance metric, based on the appearance of the object,

to improve the performance of SORT. This new version of SORT, Deep SORT (figure

2.4), enables occluded objects to be tracked for longer periods of time, thus reducing the

number of ID switches.

Figure 2.4: Simplified implementation architecture of Deep SORT. Adapted from [80].

As described in the previous subsection, in SORT, there is an object detector out-

putting detections, a Kalman filter tracking these detections and identifying missing

tracks, and the Hungarian algorithm solving the association problem. While SORT uses

IoU as the criterion for associating detections to tracking, Deep SORT makes the asso-

ciations by comparing the feature similarities between an object in the current frame,

and its past tracks. To obtain this features, an CNN is trained on a given dataset (ideally

a dataset that contains objects similar to the ones to be tracked) and the classification

layer is stripped from it, leaving us with a dense layer. The next time an object is passed

through this CNN, the dense layer will output an appearance feature vector, which serves

as an “appearance descriptor” of the object. On each frame, the model will save the ap-

pearance descriptor for each object in a gallery, and compare it with the already saved

appearance descriptors of that object. Now, the squared Mahalanobis distance is used
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to provide information about possible object locations based on motion (thanks to the

Kalman filter), and cosine distance is used to measure the distance between the appear-

ance descriptor of an object on the current frame and its appearance descriptors that are

saved on the gallery on the past frames. Thanks to these two metrics, Deep SORT, while

still remaining simple to implement, became the state-of-the-art algorithm for online

MOT.

2.3 Related Work

In order to estimate the production yield of a field, it is necessary to perform four main

tasks, consisting of: a) acquiring a dataset, b) detect fruits in a sequence of frames, c)

count fruits on both sides of a row of trees (2D planes), and finally d) merge the counting

of both 2D planes while filtering the resulting duplicate fruits (3D plane). In this section,

work related to object detection in agriculture will be analyzed in respect to the four main

topics. They are divided as follows: 1) Data Acquisition (that is, how data is acquired

and what type of data it is); 2) Detection Methods (how the community is handling fruit

detection); 3) 2D Plane Fruit Counting (what techniques are being used to avoid fruit

double count in the 2D planes); and 4) The Merge of the 2D Planes (how to merge both

2D planes and filter the resultant duplicated fruits).

2.3.1 Data Acquisition

Outdoors data acquisition is a hard and challenging task, especially when performed

under real agricultural field conditions. One of the biggest barriers of outside data ac-

quisition is the variations in illumination, which are mainly caused by different weather

conditions and shadows. Another challenge of data acquisition in agriculture field is the

occlusion of fruits, caused by foliage, branches, and clustering of fruits. In [81], the au-

thor suggested that the occlusion of fruits can vary depending on the type of fruit. These

barriers are problematic as they lead to miss count of fruits, and, consequently, poor fruit

yield estimation. Therefore, solutions to these problems must be addressed. [82] proposes

that data are acquired several times throughout the day, which can significantly improve

fruit count results. In [83], the authors applied data augmentation over the acquired data,

which helped to overcome detection problems due to illumination conditions, distance of

the fruits, and fruit occlusion. Another solution to avoid illumination issues is capturing

the dataset during night time, as suggested in [84]. During image acquisition, the authors

used ring flashes around the two lenses as active lighting, thus avoiding shadows or over-

exposure of light. The dataset in [85] was captured during nighttime, using a complex

flash system and expensive cameras (figure 2.5 a)). While this improves the quality of the

dataset (figure 2.5 b)), greatly increasing results (97% accuracy), it becomes an expensive

and complex system to implement in an agricultural environment. On top of this, cap-

turing information during nighttime is not convenient as it is past work time. In order
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to avoid fruit occlusion, a solution was proposed in [14], by increasing the number of

viewpoints of images of a tree, in an attempt to visualize all fruits. The counterpoint of

this method is the overcounting of fruits, which happens when a given fruit is considered

more than once across multiple images. The authors of [86] presented a multi-modal

approach, using color model RGB and Near-Infrared (NIR) spectral information. In this

work, both detections from RGB and NIR images were merged together, showing better

results than when used separately. The authors suggest that the combined use of RGB and

NIR information is an efficient way to avoid fruit occlusion. In fact, a revision in literature

on Red-Green-Blue-Depth (RGB-D) sensors done in [41], suggested that multi-modality

sensors may be beneficial in fruit detection due to the complementary information they

offer, regarding various aspects of the fruit and background. Therefore, this revision con-

cluded that fruit detection, when done with the fusion of multiple types of information,

produced better results than when done with only one type of information. Besides im-

proving fruit detection results, the use of depth sensors can also help in localizing fruits,

to prevent fruit overcount.

Figure 2.5: Complex data acquisition system. Figure taken from [85].

As to the physical systems that are used to acquire the data, there are mainly two:

aerial (UAVs) and ground (UGVs, AGVs, and tractors) vehicles. In the one hand, the use

of UAVs, in contrast with ground vehicles, isn’t time-consuming, labor intensive, and

unviable for orchards with a high density of cultivated area, as suggested in [83]. The

authors also defend that UAVs have been progressively implemented in Agriculture 4.0

systems, and have been showing themselves as being an alternative that can be rapidly

implemented, stating advantages like their flexibility and repeatability of the results they

can obtain. In this same work, UAVs were used to scan rows of a field, taking one picture
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per side of a tree. This method avoids fruit overcounting, but favors fruit occlusion, as

there are only two viewpoints per tree. On the other hand, the use of ground vehicles can

be beneficial and some are already available in most farms, like tractors.

2.3.2 Detection Methods

Prior to fruit yield estimation, it is necessary to automatically detect the fruits in the

acquired images. This process has been done with image processing techniques.

With the goal in mind to leverage the use of ICTs in the agricultural field, more

precisely the adoption of image processing techniques to count the number of fruits

in a given orchard, several methods have been developed throughout time. The very

first studies on this field are marked by traditional pixel-level segmentation techniques.

However, the limited studies that have conducted accurate fruit detection results under

these techniques were done for fruits in controlled glasshouse environments. Several

problems arise when such techniques are applied in outdoor environments, mainly due

to the high variability in the appearance of the target objects [86].

As time goes by, new techniques emerged, like the use of Deep Convolutional Neural

Network (DCNN) in fruit detection. Techniques based on DCNNs have been rapidly

growing [87], and the results they produce are getting better. Researchers hope that

these technologies can complement farmers’ knowledge and intuition by assisting them

in laborious and error-prone tasks, which is the case of estimating the production yield of

a crop production. [14] and [87] reviewed several DCNN algorithms and their respective

F1 scores9. Among the reviewed papers by the authors, some of them related to fruit

detection got F1 scores higher than 90%, which suggests the potential of DCNNs when

applied to agriculture.

A detector is as good as the data it is fed. Applying techniques to increase the training

data will most likely produce better results. These techniques are known as data augmen-

tation [88]. Some techniques proposed in [88] to augment data are: a) adding noise levels

based on Gaussian distribution [89]; b) adding blur to the dataset [89], as an attempt to

represent the lack of auto-focus functionality in the collection of data samples; c) varying

the contrast of images; and d) applying affine transformation, which simulates images

rendered from different camera positions and projections.

2.3.3 2D Plane Fruit Counting

One could think that once the detection of the fruits is done, the next simple final step

to perform is to sum the total count of detected fruits and that would be the estimation

of the production yield. Unfortunately, it’s not that easy. One of the biggest issues while

estimating the production yield is the overcounting of fruits, which is a consequence of

considering the same fruit multiple times across different images. One solution to this

9F1 score is a common evaluation metric in ML.
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problem is to not have overlapped information between pictures. The problem associated

with this approach is that it favors fruit occlusion. In this manner, while considering

acquiring a dataset by taking multiple pictures with overlapped information (a video), of

a tree, it is necessary to keep track of each fruit among these images, as a means to avoid

counting the same fruit more than once along different frames and viewpoints.

Object tracking techniques have been used to solve this 2D-plane fruit overcounting

issue. The authors of [90] tracked fruits using the Hungarian algorithm and Kalman

filter to determine the objective cost, with Kanade-Lucas-Tomasi (KLT) feature tracker

filling in the gaps. In [91], the tracking was performed using multiple images from

multiple viewpoints and a sequence of geometric operations, as a means to triangulate

and locate the fruits in the 3D plane every single frame. LiDAR was then used to associate

the tracked fruits with the corresponding tree. The main problem of using geometric

operations to locate every single fruit in the 3D plane is that it often demands for huge

processing power, slowing down the whole process of fruit yield estimation. The authors

of [14] reviewed more systems that use tracking to avoid the overcounting problem when

considering multiple frames of multiple viewpoints.

2.3.4 The Merge of the 2D Planes

After tracking and identifying every single fruit in both 2D planes (front and back of the

trees), there are cases where the same fruit is identified in both planes. This occurrences

can cause an over estimation of the production yield. In order to obtain an accurate

estimation, these duplicated counts need to be corrected.

To address this problem, [13] proposed the combination of instance segmentation

neural networks and Structure-from-Motion (SfM) for apple detection and 3D location.

The process consisted on first detecting and segmenting the fruits, followed by 3D point

cloud generation of detected apples, using SfM photogrammetry, and finally projecting

the 2D image detections onto 3D space and filter the previous count with this new 3

dimensional view. The authors state that the main advantage of this methodology are the

reduced number of false detections, as the authors cross validate the detections across the

multiple viewpoints, and the higher detection rate, as multiple viewpoints is a solution

to fruit undercount due to occlusion. Another approach to avoid fruit overcounting is to

locate every single fruit, and, if two fruits fall into the same location, they are considered

as being the same fruit [92]. [41] reviews various types of RGB-D sensors and methods

used for fruit localization.

Although merging both 2D planes while filtering out the duplicated fruits increases

the fruit yield estimation accuracy, some techniques require huge processing power and

time [13].
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2.3.5 Other Literature Contributions and Results

A summary of related work is present in table 2.1. It summarizes some of the already

cited work, as well as other contributions which can be taken into account along the

development of this dissertation.

Table 2.2 contains results obtained from previous works. The column "Type" differ in

the type of fruit yield estimation that is performed. These types are divided as follows:

• Stationary: Counting fruits in random fruit images, simply to assess the accuracy

of a certain object detector or technique;

• WO/ Correction: Counting the number of fruits in both sides of a tree row;

• W/ Correction: Counting the total number of fruits in a row of trees, applying some

technique to correct the fruits that are counted more than once form both sides of a

tree row.

2.4 Challenges & Gaps

There are three major challenges that must be addressed during the implementation of

this dissertation. These are: a) implementing a system capable of scanning the fruit

trees, while not being too complex; b) training an DL detector capable of detecting all

the present fruits in a given image while avoiding issues such as illumination and fruit

occlusion; and c) avoiding the overcount of fruits when detecting and counting through

multiple viewpoints per tree, as a means to count fruits on tree sides. Along the reviewed

work, three main gaps were identified. Firstly, the works that produced accurate results

often had their data taken with a dedicated camera and/or in some kind of controlled

environment (like using flashlights during nighttime), or acquiring spatial data on top

of the RGB one. Secondly, the time it takes for them to estimate the production yield,

which makes it unfeasible to perform estimations over large areas of agricultural crop.

And lastly, in some of the surveyed work, there is the need of an IT specialist following

the estimation process, which results in a non-autonomous estimation of the production

yield. To this end, this dissertation aims to fill these gap, by developing and validating the

reliability of a system capable of both detecting nectarine fruits with the highest accuracy

and speed possible, while filtering the overcounted fruits on tree sides when considering

multiple viewpoints per tree. This validations is a door opener to further implement the

remaining proposed framework, which would allow for a total fruit count of a tree, and,

consequently, the estimation of the production yield of the whole orchard.
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Table 2.1: Summary of surveys and applications of object detection and production yield
estimation in agriculture.

Reference Year Contribution

[84] 2013
Captured the dataset during night time using a ring flash around
the two lenses as active lighting, in order to avoid illumination
issues.

[30] 2015

Developed a prototype AGV/UGV capable of automatically or re-
motely survey farmland, detect pest diseases and spray pesticide
as necessary. eAGROBOT, as baptized by the authors, includes a
camera that captures pictures of plants, AI based embedded algo-
rithms to help the robot pick regions of interest and perform image
processing techniques on them to identify the type and extend of
diseases, a sprayer mechanism that sprays the desired pesticide,
and has Wi-Fi connectivity for necessary external support.

[86] 2016
Presented a multi-modal approach, using RGB and NIR spectral
information, as a means to avoid fruit occlusion.

[14] 2019
Proposed the increase in number of viewpoints of a tree when
acquiring a dataset, as an attempt to visualize all fruits and thus
avoiding fruit occlusion.

[82] 2019
Proposed that images are acquired throughout multiple times a
day, in order to avoid illumination and occlusion issues, thus im-
proving results.

[13] 2020
Proposed the combination of instance segmentation neural net-
works and SfM for apple detection and 3D location, as a means to
avoid fruit overcount.

[34] 2020

In this revision work, the authors reviewed several implemen-
tations of autonomous aerial and ground robots for monitoring
farms and controlling pesticides, soil moisture, and measuring
crop ripeness. Some of this tasks were accomplished using image
processing techniques based on ML.

[41] 2020
Review of the literature on RGB-D sensors and their positive im-
pact in fruit detection. Reviews various types of RGB-D sensors
and methods used for fruit localization.

[83] 2020

Applied data augmentation over a dataset, as a means to overcome
detection problems due to illumination conditions, distance of the
fruits, and fruit occlusion. Suggested that the use of UAVs present
more flexibility and produce more repeatability in their results.

[87] 2020
Reviewed several DCNN algorithms and their respective F1 scores.
Some of these algorithms achieve F1 scores higher than 90%.

[88] 2020

Suggested that data augmentation is an effective technique to in-
crease detector accuracy. In order to augment the data, the author
proposed some techniques to be applied to the dataset images,
such as the addition of noise levels based on Gaussian distribution,
adding blur, varying the contrast and applying affine transforma-
tion.
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Table 2.2: Review of literature results.

Reference Year Type Fruit Overlap Sensor Type Accuracy

[93] 2016 Stationary Orange - RGB 91.3%
[85] 2019 Stationary Mango - RGB 97.0%
[94] 2020 Stationary Chilli - RGB 92.7%
[12] 2016 WO/ Correction Apple No RGB 81.0%
[95] 2019 WO/ Correction Mango Yes RGB 62.0%
[91] 2016 W/ Correction Mango Yes RGB & LiDAR 98.6%
[92] 2016 W/ Correction Apple Yes RGB & ToF 82.0%
[90] 2018 W/ Correction Apple Yes RGB 96.7%
[90] 2018 W/ Correction Orange Yes RGB 99.8%
[13] 2020 W/ Correction Apple Yes RGB 80.0%
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Chapter 3

Proposed Framework

As discussed before, there is an obvious need for a system capable of estimating the

production yield of an orchard, in order to give farmers the chance to better manage their

storage and planning their marketing activities accordingly, thus avoiding mismatches

between supply and demand, therefore ensuring food security. It has been seen in chapter

2 that systems have been proposed to address the issue of production yield. However,

most of these systems rely on complex image acquisition and processing techniques,

making them expensive (both in price and time) and non-user-friendly for real world

scenarios.

With this in mind, a system that is capable of autonomously estimate the fruit yield of

an orchard is proposed. As can be seen in further detail below, the system was designed

to perform the estimation "on the go". Due to the properties of the chosen technologies,

which makes it a fast and reliable system, it is possible to perform a continuous estimation

of the production yield, with tools accessible to anyone and anywhere.

In the next section 3.1, the overall functioning of the system will be proposed, as well

as how it can assist farmers in better managing their marketing activities and fruit storage

in a simple and easy manner. The system will then be further detailed in section 3.2.

3.1 Framework Overview

As seen before, the proposed literature systems to estimate the production yield take RGB

and, in some cases, spatial data of a certain tree row to then count the number of fruits

in it by using high demanding processing techniques. Then, they escalate that estimation

to the whole orchard using a relation similar to

y =
a
b
× bt ,

where y is the resultant estimation of the production yield of the whole orchard, given

in number of fruits; a corresponds to the fruits already counted; b to the number of rows

which fruits have been counted; and bt to the total number of rows in the orchard of

that specific fruit. Ideally, the number of counted rows should be equal to the number of
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existing rows (b = bt), which means that all the fruits of the orchard were counted. The

problem associated with this methodology is, in an orchard where can potentially exist

hundreds of tree rows, counting the fruits belonging to one row and then escalating it

to the remaining hundreds can result in a poor estimation of the production yield, as

not all trees carry an evenly distributed number of fruits. The current proposed systems

in the literature lack in the ease of use and the time it takes to perform the estimation

of the production yield, limiting these systems to estimate the fruit yield of a couple of

rows. The main objective is to try and get b as close as possible to bt, therefore, a user-

friend, reliable and fast system capable of counting as many rows as possible should be

implemented.

The system proposed below enables that a continuous estimation of the production

yield is performed. This is done with the help of two smartphones attached to both sides

of a tractor. While the tractor is moving through the rows of trees, the smartphones are

continuously streaming to a server both video, cardinal, and GPS data of the trees. The

server will then process the available data and estimate the fruit yield of the available

tree rows. The more rows the tractor pass by, the closer b gets to bt and, consequently, the

more accurate the system will predict the estimation of the production yield. This system

needs two main characteristics to work, these are accuracy in counting the fruits per row

and speed in doing this process, so that ideally all rows can be processed. The proposed

framework is depicted in the diagram of figure 3.1.

Figure 3.1: Diagram of proposed framework. The developed work focuses around the
blue colored boxes.

Analyzing the diagram above, it can be perceived that the system is divided into five

"stages", which purposes are to: acquire data of a tree row side and send it to a server,

detect each fruit in every frame of the acquired data, use that detections to track and

estimate the fruit yield in that tree row side, search for the matching tree row side to

finally merge both sides and obtain the estimation of the production yield of the whole

tree row, and then "contribute" with that row estimation to the total orchard estimation

(contribute with a row estimation so that b gets closer to bt).
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3.2 Framework Proposal

To implement a fruit yield estimation system that is user-friendly, reliable and fast, five

main questions have to be addressed:

• How to continuously acquire data of the nectarine trees with a simple and inexpen-

sive solution?

• How to detect every fruit in the acquired images, given the challenges of outside

data acquisition?

• How to identify a fruit that appears in a sequence of frames, thus avoiding fruit

overcounting?

• How to know which tree row sides belong to the same tree row?

• How to merge the count of both tree row sides and obtain the estimation of the

production yield for that tree row?

Proposing solutions to all these questions is fundamental in order to achieve a system

capable of estimating the production yield of a field "on the go". Over the next subsections,

we’ll dive into all these questions while proposing some solutions based on the previous

research of state-of-the-art technologies regarding image acquisition (section 2.3.1), object

detection (section 2.2.2), object tracking (section 2.2.3), and other relevant related work

(section 2.3).

Before implementing the whole system, it is first necessary to access the viability of

using a smartphone to acquire the RGB data. That is, it is necessary to ensure if there is

a system capable of estimating the fruit yield on tree sides given data acquired with an

ordinary smartphone, which doesn’t count with the highest resolution. To this end, the

developed work in this dissertation focuses around the blue colored boxes in the diagram

of the proposed framework (figure 3.1). RGB data was acquired with a smartphone in

the agricultural field of "Herdade Corte Romeira", and a detection and tracking system to

estimate the fruit yield of a tree row side was successfully implemented.

As will be further discussed, to the best of our knowledge, the results came out to be

state-of-the-art, which is an exciting door opener to the development of the remaining

proposed architecture, which should be further conducted in future work. The remaining

implementation would be to acquire not only RGB, but also cardinal and GPS data with

two smartphones attached to a tractor, automatically send that data to a server, integrate

the developed system with that server, and finally merge the counts from both tree row

sides and contribute with that merged count to the total estimation of the production

yield.
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3.2.1 Data Acquisition and Processing

In order to estimate the production yield, it is necessary to first acquire data of the actual

field. Acquiring quality data in field conditions is a challenging task, as there are a lot

of uncontrollable variables, like the sunlight, wind, rain, and even the conditions of the

field itself. On top of it, the system should be easy to use, so that anyone without previous

instructions can use it. A challenging task like acquiring data on an agricultural crop

doesn’t quite match with a simple system that anyone can use. The best solution that

was found was to take advantage of something that nearly everyone uses everyday and

are used to, namely a smartphone. A smartphone has all the five main characteristics

needed for the proposed framework: it is a device that anyone knows how to use, it has

a camera capable of acquiring RGB data, it has a built-in GPS system, it knows where

north, south, west and east are, and it has a connection to the internet. On top of this,

it is highly accessible world-wide. These were the reasons which motivated the use of

a smartphone in the proposed framework. Although it has many advantages, there is a

cost associated to it. RGB data acquired with a smartphone isn’t as accurate as it would

be if acquired with a dedicated camera. The price to pay is then frame resolution and

quality. That is why it is so important to test if an actual system is capable to detect and

count fruits using a smartphone, because if it isn’t, the whole proposed framework loses

its purpose.

Having this said, two smartphones should be attached to a tractor, both inside a box

able to protect it from the sunlight and rain. Each smartphones should be placed in each

side of the tractor, parallel to it, both with the main cameras pointing to the opposite

direction of the tractor. With this disposition, the smartphones are able to scan two tree

row sides when a tractor passes through a row of trees. Figure 3.2 is an illustration of the

proposed data acquisition system.

Figure 3.2: Proposed data acquisition system.

In figure 3.2 the tractor is represented by a grey pointy box subtitled "TRACTOR",
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and the smartphones are represented using red and blue colored lines in the sides of

the tractor. In this given example, the tractor starts at the left side of tree row one and

moves in the line direction, which is merely illustrative, passing through tree rows 1,

2, 3, and 4. Both smartphones are continuously acquiring RGB data through the main

camera, cardinal data through its magnetometer, and its coordinates through the global

positioning system. Both smartphones are streaming this data to a server while acquiring

it. This data will then be further used to count the number of fruits in it, as well as

associate the fruits counted to their respective row. Subsection 3.2.3 will further detail

how the system uses the cardinal and coordinate information to match two row sides into

one unique row.

3.2.2 Tree Row Side Fruit Count

To estimate the production yield of a tree row, it is first necessary to know how many

fruits are in both sides of that row. Using figure 3.2 as an example, once the tractor

finishes passing through the left side of "Tree Row 1", the smartphone represented as a

red line and pointing east will have scanned the whole left side of "Tree Row 1" and have

it sent to the server. On the server side, using an object detector, the system will detect

all the fruits that are present in the left side of "Tree Row 1" and use these detections to

track them. As said before, the tracking is used as a means to avoid double counting a

fruit that appears more than once along a sequence of frames. The "Tree Row Side Fruit

Count" system is represented in figure 3.3.

Figure 3.3: Methodology to count the number of fruits along a tree row side.

This figure gives a better understanding of what was said before. The acquired tree
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images are passed through an object detector, which outputs "Detected Frames", or "D-

Frames" for short. This frames contain detections of all the fruits in the acquired images.

As it can be seen from the figure, in the D-Frames phase, one fruit was seen 4 times

across all the 4 frames. The detector doesn’t know this is the same fruit, for the detector,

these are 4 complete different fruits. To avoid this overcount, a tracking system is used.

The D-Frames are the input of this tracking system, which is capable of recognizing a

given fruit through a sequence of frames. The output frames of this tracking phase are

denoted as "Tracked Frames", or "T-Frames" for short. In this frames, it can be seen that

the fruit that would’ve previously been counted 4 times, now always contains the same

ID "1" along all the "T-Frames" 1, 2, 3, and 4, therefore avoiding overcounting. The output

of this tracking phase represents the number of fruits in one side (in this case the left

side of "Tree Row 1") of a tree row. Later in subsection 3.2.3, it will be discussed how the

count from this side of the tree row will be matched with the opposite side of it.

Fruit Detection

Detecting fruits hanging in trees is already a challenge by itself as they are very small

and their color is often easily confused with leaves and trunk chunks. The difficulty

increases when considering that tree fruit images are taken in uncontrolled agricultural

conditions, where there are often a lot of variation in illumination and shadows, among

other challenges of outdoor data acquisition. On top of all this, the difficulty exponentially

increases when the data is taken with an ordinary smartphone. Taking tree fruit images

with a smartphone often causes fruits to become pixelated, which, together with the

illumination, shadow, and other challenges, become even harder to distinguish it from

leaves or trunk chunks.

Thankfully, DL has gifted the image processing field with incredible tools, capable

of building the most reliable and fast object detectors. In this dissertation a detector of

the YOLO family was trained, in the expectation of overcoming the challenges mentioned

above. After analyzing the state-of-the-art, the chosen object detector was a scaled version

of YOLOv4 proposed in [15], named "Scaled YOLOv4".

The YOLO object detection model is an one-stage object detector. These types of object

detectors have three main components in their architecture. These are the backbone, the

neck, and the head. The backbone is used to extract features of the input images. It is

constituted of an CNN which is usually trained in some image database, like ImageNet1,

so that its weights are pre-adjusted to identify relevant features in an image. Backbone

selection is of huge importance, as it hugely impacts on the model performance. After

the backbone stage, comes the neck, which task is to mix and combine the feature layers

formed in the backbone CNN for the detection step. The final block, named head, utilizes

the YOLO algorithm explained back in subsection 2.2.2, and outputs a vector containing

1https://www.image-net.org/
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the coordinates of the predicted bounding boxes, as well as its confidence scores and

labels. These outputs is what is normally called "predictions".

Google research/brain used Network Architecture Search (NAS) to determine opti-

mum parameters for width, depth and resolution on EfficientNet-B0. Later, using the

NAS technique, [96] found standard optimum parameters for an object detector model.

After surveying the literature for state-of-the-art detectors, the authors of Scaled YOLOv4

found that the backbone used in YOLOv4, CPSDarknet53, matched almost all optimal

parameters established by [96]. For this reason, the authors developed model scaling tech-

nique based on YOLOv4, which would later became the current state-of-the-art object

detector, Scaled YOLOv4.

First, the authors "CSP-ized" a lot of different aspects of the previous YOLOv4 model

proposed by [63]. To "CSP-ize" is to convert an CNN into a Cross Stage Partial Network

(CSPNet). An CSPNet is an CNN that is designed to efficiently run with similar perfor-

mance relative to other CNNs. Replacing an CNN with an CSPNet increases the model

accuracy, while reducing the inference time and computation costs. This resulted in a

more accurate and faster version of YOLOv4, which the authors named "YOLOv4-CSP".

Then, a network scaling approach was conducted, where the depth (number of convolu-

tional layers), width (number of convolutional filters in a convolutional layer), resolution

(image resolution size) and network structure were scaled. The authors baptized the

scaled YOLOv4-CPS model as "Scaled YOLOv4". Scaling a network comes with a com-

putational cost, which in Scaled YOLOv4 was paid with the "CSP-ized" process. In this

way, the authors were able to achieve Scaled YOLOv4 models that are both accurate and

fast in the inference process. They scaled YOLOv4-CSP both up and down, ending up

with YOLOv4-Tiny and YOLOv4-Large models. YOLOv4-Tiny is a fast, light-weight ver-

sion of YOLOv4, while YOLOv4-Large counts with three YOLOv4 large models, namely

YOLOv4P5 and its scaled versions, YOLOv4P6 and YOLOv4P7.

Prior to detection, it is necessary to train the DL object detector. Training an object

detector is an expensive computational task. Thankfully, Google offers an online com-

putation service, Google Colab2, which is used to train the detector. After training, the

detector is able to detect the objects it saw during the training process, which, in this case,

are "gardeta" nectarines. Once the detections are available they are fed to the tracking

system.

Fruit Tracking

It is not viable to solely rely on detections to estimate the production yield. As mentioned

in the above subsections, the detector doesn’t keep track of a fruit along a sequence of

frames, and will end overcounting them. For this reason, the detections of the fruits are

2"Google Colabouratory, or “Colab” for short, is a product from Google Research. Colab allows anybody to
write and execute arbitrary python code through the browser, and is especially well suited to machine learning, data
analysis and education." Source: https://colab.research.google.com
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fed to the tracking system, which will be responsible to recognize the same fruits along a

sequence of frames and estimate the production yield of a tree row side.

In fruit tracking, there are other challenges on top of the identified ones back in Fruit

Detection. There are occasions where fruits appear during a large amount of time, and,

in some of these occasions, they become partially or even fully occluded by leaves or

trunk chunks. To this end, it is necessary a tracking algorithm that is able to overcome all

these problems. On top of it, it also has to be fast so that a huge number of tree rows can

be scanned, as a means to increase the quality of the estimation of the production yield.

Once again, DL has provided us with tools that are able to increase tracking algorithms

performance.

Ideally, with the use of a tracking algorithm, the system will remember the fruits it

counts and, consequently, doesn’t overcount them. This is illustrated in figure 3.3, where

the fruit that was previously counted four times (represented in the "D-Frames"), is now

only considered once across all tracked frames ("T-Frames"). The tracking algorithm

proposed in this dissertation is based on the "track-by-detection" paradigm. Tracking

by detection means that the tracking algorithm will use a previously trained detector to

perform the detections of the object to be tracked. This is an elegant approach, as the

detector can be switched without affecting the other parts of the system. This is useful as

the object detector can be switched in the case of a better one eventually shows up.

As for the tracking system itself, it will be done using Deep SORT. As discussed

before, Deep SORT is an extension to SORT. To create some context, let us resume how

SORT works and how DL was used to improve and transform it into Deep SORT. SORT

first starts by detecting fruits in the very first input frame, and attributes an ID and a

track to each detected fruit. In this dissertation, these detections will be provided by a

large model of Scaled YOLOv4. After the fruits are detected, SORT will use a velocity

model to best predict what their next position will be. These predictions come in the

form of bounding box, which will then pass to the second frame, where the fruits will be

detected once again. The SORT model computes the IoU distance between each detection

and all predicted bounding boxes. After it finishes computing all the IoU distances, it

filters out the ones which had an IoU distance lower than a specified threshold IoUmin.

Once this process is over, all the new fruits from frame one that made their way to frame

two, should (hopefully) be re-identified with the same ID. This is how it is possible to

avoid the overcounting while counting the number of fruits present in a tree row side.

The last step is to destroy and create new tracks. The SORT model destroys tracks when

it hasn’t seen a fruit for TLost frames. In the other hand, it creates news tracks when it sees

a fruit that it has never seen before. Although SORT is a reasonable object tracker, it often

fails in tracking objects through long periods of time when considering artifacts. The

authors of Deep SORT perform the association of detected fruits and its predicted boxes

through a deep association metric. While in SORT the association metric used is IoU, in

Deep SORT the association metric is based on the appearance of the object being tracked.

Instead of calculating the IoU distance like in SORT, Deep SORT compares the features
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similarities between an object in the current frame, and its past tracks. These features

are obtained through a trained CNN dense layer. With this main change, the authors of

Deep SORT turned the SORT algorithm into a reliable and fast tracking system.

3.2.3 Matching Tree Row Sides

After identifying and counting all fruits in a tree row side, it is necessary to merge the

counts of that tree row side with the counts of its opposite side. This raises a problem.

How does the system know which row side is the match of another row side? To solve

this problem, a methodology to match rows sides is necessary.

This is where the GPS and cardinal data come into play. While acquiring the RGB

dataset, the smartphone is also recording data regarding GPS coordinates and cardinal

orientation. Looking at figure 3.2, it is possible to understand that RGB data that is

captured while the smartphone is looking east (E), can only match with RGB data that is

captured while the smartphone is looking west (W). Let us use the left side of "Tree Row

1" as example. When the smartphone finishes sending all the RGB, GPS and cardinal

data of the left side of "Tree Row 1" to the server, it will search for another dataset that

was captured while the smartphone was pointing west. Following the example in figure

3.2, at first, the system doesn’t find any match, as there is only the data of the left side of

"Tree Row 1". Now let us consider that the tractor just finished passing through all four

tree rows and leaves to do another task. After the smartphones are done sending all the

data, on the server side, there are now seven different datasets. Each one of this datasets

corresponds to data taken from one side of the four scanned tree rows. In this example,

both sides of all tree rows were scanned expect the right side of "Tree Row 4", because the

tractor never passed through it. Now, how does the system match all the seven datasets

so that it can further estimate the prediction yield of each row? Each data set is marked

with a cardinal flag, which indicates if it was taken with the smartphone pointing east or

west. The system will compare all datasets with flag "E" with all datasets with flag "W".

If a comparison is validated in the following rule, it means that both datasets belong to

the same tree row, and hence they may be merged.

if X > ||x2avg_E| − |x3avg_W || > Y then

ROW SIDES MATCH

end if

In the above rule, "x2avg_E" represents the average of all x points in a row side which

data was captured with a smartphone pointing east (E), and "x3avg_W " follows the same

logic but belongs to a row side which data was captured with a smartphone pointing west

(W ). X and Y are predefined values. X represents the average distance between two tree

rows and Y corresponds to a value larger than the tractor width. The X value is used

to effectively find the matching row sides, while the Y value is used to make sure that
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the system doesn’t confuse matching side rows with side rows facing each other, which

can happen due to the smartphones being too close to each other (a tractor of width

away). If the absolute distance between "x2avg_E" and "x3avg_W " is lower than X, and

higher than Y, it means that both row sides represent the same tree row, and so their

fruit counts should be merged. Note that the absolute distance between "x2avg_E" and

"x3avg_W " being lower than X means that the data was acquired with smartphones that

were "a tree row away", which potentially indicates that they were acquiring data of the

same tree row.

This distance comparison is possible thanks to the worldwide emerge of 5G, in specific

in agricultural fields [97]. With the help of 5G, GPS will eventually become more accurate

than ever, with object positioning accuracy down to the meter, decimeter and centimeter3.

3.2.4 Fruit Count Correction

After matching both tree row sides to form a tree row, it is necessary to take care for

fruits that might’ve been seen in both row sides. Simply summing both counts from both

tree row sides can inflate the estimation of the production yield. This phenomenon is

represented in figure 3.4. In this figure two frames taken from opposite sides of "Tree

Row 1" were selected. The selected frames are represented in the top left and top right

sides of the figure. The left frame represents a portion of the first tree taken from "Side 1",

whilst the right frame represents the same tree but from the opposite "Side 2". In both of

these frames, there is an area, represented inside a yellow box and further zoomed below

both frames, where it is clearly demonstrated the discussed phenomenon. By looking

at both this zones (zoomed images in the bottom of the figure), it is possible to identify

four fruits that have been seen from both sides of "Tree Row 1". In this case, if simply

summing the counts from both sides of "Tree Row 1" , the system would’ve counted

8 times this fruits, instead of 4. Unfortunately, the estimation of the production yield

was not performed while capturing the dataset used in this dissertation, and, due to the

seasonality of the fruits and the time scope of this dissertation, it was not possible to

come back and take new data with the ground-truth fruit counts of that row. This makes

impossible to validate the accuracy of simply summing the fruit counts from both row

sides.

As seen before, some systems are proposed in the literature to address this overcount

problem. Some authors reconstruct a 3D model of the whole tree row using SfM-related

methodologies, while others map each fruit coordinates in the 3D plane using ToF sensors.

The problem related with these techniques is that they require massive processing power,

slowing down all the fruit count process, which makes the system unable to estimate

the production yield for a high number of tree rows. One possible solution to correct

this inflated fruit count is to use a statistical model. If the percentage of fruits that are

overcounted in a tree row don’t deviate a lot from other tree rows, it is possible to estimate

3https://www.ericsson.com/en/blog/2020/12/5g-positioning--what-you-need-to-know
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Figure 3.4: Illustration of the same fruits being seen from opposite sides of "Tree Row 1".

how many fruits are being overcounted per row, and thus correct that overcounted fruits.

This is an interesting solution to be further analyzed in future work, as it would keep the

speed proprieties of the system while hopefully maintaining good estimation accuracy.

3.2.5 Data Interpretation and Presentation

Once the counts from both tree rows are merged, the system has two main tasks left.

Firstly it has to add the contribution of the counted fruits of the merged tree row to the

total estimation of the production yield. As seen back in section 3.1, in y = a
b × bt, the

more tree rows that are added to b, the closer it gets to bt, and the more accurate the total

estimation of the production yield becomes. Contributing with the fruit counts from a

merged tree row is essentially increasing the value of b, hence, the more rows are scanned,

the better. The second task the system has to perform is to present the actual estimation

of the production yield of the whole orchard. There are a variety of ways through which

this is achievable, like through a simple web application.

The proposed system shall be running indefinitely, so that every time the server re-

ceives data from the smartphones, it continues processing it and contributing to the
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estimation of the production yield of the whole orchard. As said before, ideally, it is

desired that b = bt, which is the case where all the tree rows in the orchard have been

processed.

3.3 Possible Framework Limitations

The use of the proposed framework should always be considered upon implementation.

Depending on factors such as orchard field conditions or others, some limitations to the

proposed framework may arise. The framework architecture was designed and thought

having into consideration such limitations. Some of them are listed below, as well as the

proposed solutions to address each one:

• It may be impractical to attach two smartphones to the tractor over specific condi-

tions. As an example, when there isn’t enough distance between tree row sides on a

tree row, there may be cases where a smartphone will not be able to film the whole

tree. Another possible scenario is when the smartphone is unstable during data

acquisition, which results in imperceptible images. In such described use cases, or

any others where the use of a tractor influences the acquired data in such a way that

it can’t be used, it is suggested that a human manually acquires the data, similar

to what was done during this dissertation. This will not influence any of the other

stages of the system, so it should be considered a valid solution of the identified

limitation;

• The smartphone battery may be a limitation if the data is to be acquired for long

periods of time. A solution to this use cases is to use power banks, which count with

massive energy storage capacity, capable of charging multiple smartphones at once.
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Implementation

Along the implementation of the fruit yield estimation system, there are two main issues

to be address, namely:

• Correctly detecting and classifying all the fruits frame-by-frame in a tree side;

• Avoid fruit double counting in the 2D plane along a tree side.

Achieving good accuracy in detecting and classifying fruits is a challenging task. Even

for a human, trying to identify fruits in an image is often difficult due to lack of visibility,

illumination issues, amongst other inconveniences. During the implementation, DL ob-

ject detectors that achieved the highest scores in the COCO benchmark were tested and

compared. These are YOLOv4 and its scaled versions, YOLOv4P5 and YOLOv4P6. There

is also a larger version of Scaled YOLOv4, YOLOv4P7, which, unfortunately, demand

huge computing capabilities to be trained, such as high GPU memory (more than 16GB).

Such high demanding capabilities ask for better resources, such as training the models in

AWS EC21 dedicated instances. These options do not come cheap, and, as such, Scaled

YOLOv4P7 wasn’t considered during this implementation.

After detecting each fruit in every image with the highest accuracy possible, the next

step is avoiding fruit double count in the 2D plane. This means not counting the same

fruit more than once in a sequence of frames of a tree. Figure 4.1 is a good representation

of such an issue. To this end, a tracking framework (FastMOT [16]) based on DL was

implemented.

4.1 Fruit Detection and Classification

Fruit detection and classification mainly consists of two steps: 1) creating a dataset and

2) training an DL object detector. In the following sections, there is an explanation on

how both tasks were accomplished.

1https://aws.amazon.com/ec2/instance-types/#Accelerated_Computing
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Figure 4.1: Same fruits on one tree across two frames.

4.1.1 Creating a Dataset

The dataset was acquired at "Herdade Corte Romeira" in April 2021, and consists of two

videos from both sides of a row containing nectarine "gardeta" trees. In contrast to what

was previously proposed, due to the lack of a tractor during the period of the visit, the

dataset was acquired by a human with a smartphone (Google Pixel 4A). Nearly over 8000

fruits were identified in the acquired dataset.

Image Acquisition

The image acquisition process was performed under real field conditions, using an ordi-

nary smartphone, while trying to simulate the motion of a tractor. Acquiring the data

with a smartphone was not a random decision, as mostly everyone owns one and knows

how to work with it. Figure 4.2 represents how the dataset was captured. This approach

greatly increases the difficulty in the implementation, as the images are not as sharp as

they would be if a high-end camera were to be used.
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Figure 4.2: Dataset acquisition with a smartphone. a) and b) represent the different sides
of the tree row.

Two videos, each one representing one side of a tree row, were acquired. Eight trees

were captured in total. Later, using a software2, images were extracted from both videos

every 20 frames, which resulted in a total of 230 images.

Fruit Annotation

Labelling all the fruits along the 230 images was a laborious and arduous task, as each

photo contained, on average, 35 fruits. Precisely labelling all the fruits was hard, as fruits

can be confused for dim leaves (lack of illumination) and blurred trunk pieces (poor

image quality). There are also green fruits that can easily be confused with leaves. The

software used to label all the images was CVAT3, a free solution.

2https://www.dvdvideosoft.com/pt/products/dvd/Free-Video-to-JPG-Converter.htm
3https://cvat.org/
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The Training Dataset

The training dataset consists of train and validation images. Train images are images

which the detector will constantly see during the training process, while validation images

are only used to test the detector accuracy along this process. One of the eight trees was

reserved for the validation set, while all the others are used for the training process. The

validation tree will also be used to test the final system accuracy. The train set has a

total of 211 images of nectarine "gardeta" trees, and the same amount of negative images

(images without any nectarine "gardeta" fruit in it). Figure 4.3 a) represents an image of

the training set and b) a negative image of the same set.

Figure 4.3: a) nectarine "gardeta" tree image and b) a negative plum black diamond tree
image.

A rather curious event happened while testing different types of training processes.

While training a variety of object detector models, these same models were identifying

fruits that were missed during the manual labelling process. As such, the already labeled

frames were manually relabeled considering this new fruit detections. Figure 4.4 is a rep-

resentation of how the object detectors assisted in relabeling the dataset. This relabeled
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dataset was then used during the training processes described further below.

Figure 4.4: Using object detectors to manually assist labelling missed fruits. a) corre-
sponds to automatic detections, while b) to the manually labeled fruits. In this particular
frame, the detector helped in labelling six missed fruits.

4.1.2 Training YOLO

All the considered YOLO models were trained in google colab, using Alexey Bochkovskiy

(known as AlexeyAB in GitHub) famous fork of darknet4 framework5. The developed

google colab file6 was built so that it can be easily accessed and modified by anyone who

wish to train a model supported by the AlexeyAB fork of darknet. The file also contains

some tips on how specific parameters of the configuration files should be adjusted, as

well as tips for general training.

4"Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install,
and supports CPU and GPU computation." Source: https://pjreddie.com/darknet/

5https://github.com/AlexeyAB/darknet
6https://colab.research.google.com/drive/1rjDHD0d3Mvtdetow_dcSw_ymfTMuWZP8?usp=sharing
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Training Strategy

While training YOLO detector in the darknet framework, one has to look for the config-

uration file. This file has the structure definitions of the neural network to be trained.

Among all possible definitions in the cfg file7,8, there are some important parameters to

respect before starting the training process. These parameters are:

• max_batches - is the number of iterations that will take place during training. Ac-

cording to AlexeyAB, for each class there must be 2000 iterations, but not less than

6000 in total;

• steps - define at which iterations the learning rate should be changed, according to

a defined scale factor;

• width and height - represents the network size. Every image will be resized to

this size during training and detection. Each value for width and height must be a

multiple of 32;

• classes - number of classes in the dataset;

• filters - are the number of kernel filters to be used during convolution. This is one

of the basic building blocks of an CNN, and its purpose is to help in the feature

extraction process;

• subdivisions - will determine how many images the GPU can process at once. For

better training performance, this parameter should be set to the lowest value pos-

sible, while avoiding CUDA out of memory error9. The max acceptable value for

subdivisions is the specified batch size, which is normally defined as 64;

• letter_box - when set to "1", will keep the aspect ratio of loaded images during

training. This is important in case the width is not equal to the height;

• random - when set to "1", will train YOLO for different input resolutions. This will

find the input resolution which gives the best mAP results.

There are also parameters to ensure that data augmentation is performed during

the training process. This includes randomly rotating images, randomly changing the

saturation and brightness levels, randomly applying blur, randomly cropping images,

among other operations.

Six different training processes were conducted using models of the YOLOv4 family.

Each one with the same train and validation dataset, but with different configuration
7https://github.com/AlexeyAB/darknet/wiki/CFG-Parameters-in-the-%5Bnet%5D-section
8https://github.com/AlexeyAB/darknet/wiki/CFG-Parameters-in-the-different-layers
9Each GPU has its own number of images which it can process at once. This will depend on the image

size, number of images, and GPU memory. If there are too many images, or large images, it is possible that a
"CUDA out of memory" error might occur. In this case, the number of subdivisions should be increased, so
that the GPU processes less images at once.
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files/parameters. The chosen models to be trained were the default YOLOv4 model (with

a custom configuration file proposed by AlexeyAB) and its scaled versions (YOLOv4P5

and YOLOv4P6), as they top the COCO benchmark. At the time of writing this disser-

tation, google colab best GPUs offer 16GB of memory on the paid plan. Unfortunately,

this isn’t enough to train the largest YOLOv4 model, YOLOv4P7, as it requires massive

memory to train on the images of the current use case.

The chosen configuration parameters for each of the trained models are defined in

table 4.1. YOLOv4 was trained with default settings "DS", that is, the default parameters

in the original configuration file with little adjustments. YOLOv4P5 was trained three

times with different configuration file parameters: one with DS; one with the width and

height "WH" set so that they are as close to the original image resolution as possible;

and the third one "WHR", where the width and height were also set to be as close to the

original image as possible, but with the active random flag. Regarding YOLOv4P6, it was

trained two times, with the same logic used in the training process of YOLOv4P5 being

applied here. Unfortunately, it wasn’t possible to train YOLOv4P6 with the random flag

("WHR") due to lack of GPU memory.

Before diving into the table, it is important to explain how the values for the filters

parameters came up. For the default YOLOv4 model, it is defined by AlexeyAB10 that

f ilters = (5 + classes) ∗ 3 = (5 + 1) ∗ 3 = 18

As for the YOLOv4PX versions11, it is given by

f ilters = (5 + classes) ∗ 4 = (5 + 1) ∗ 4 = 24

Table 4.1: Configuration file parameter definition for all the trained models.

YOLO Model v4 DS v4P5 DS v4P5 WH v4P5 WHR v4P6 DS v4P6 WH

GPU V100 V100 P100 P100 V100 P100
Train Time 12h 24h 93h 97h 30h 87h
Width 608 896 1024 604 1280 960
Height 608 896 1856 1472 1280 1792
Batch 64 64 64 64 64 64
Subdivisions 32 32 64 64 64 64
Filters 18 24 24 24 24 24
Letter Box N/A 1 1 1 1 1
Random Flag Yes No No Yes No No

Beyond these parameters, in all the models, "max_batches" was set to 6000, "steps" was

set to "4800,5400" and "classes" was set to 1.

10https://github.com/AlexeyAB/darknet#:~:text=L783-,change%20,-%5Bfilters%3D255
11https://github.com/AlexeyAB/darknet/issues/7838#:~:text=filters%3D%3C
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4.2 Fruit Tracking

Achieving good accuracy in the fruit tracking process is crucial for the fruit yield estima-

tion system. On top of being crucial, it is also a really challenging task to accomplish

under real field conditions and with data taken with an ordinary smartphone. A state-of-

the-art algorithm must be used in order to achieve the best possible results. That’s why

FastMOT was the chosen framework to be implemented [16]. FastMOT is a framework

built on top of python that implements Deep SORT algorithm with some improvements.

The developer of FastMOT swapped the feature extractor normally used in Deep SORT

for a better ReID model, OSNet. The weights of the trained detector were converted

to ONNX format12, which were then converted once again by the FastMOT framework

to a TensorRT file13. This enables FastMOT to perform detections using the TensorRT

backend, which speeds up the inference times. Besides detection, the feature extractor

replaced in Deep SORT also uses the TensorRT backend to speed up the whole tracking

process. Similarly, algorithms, used in Deep SORT to perform the object movement pre-

dictions and associations between detections and predictions, were also optimized using

Numba14.

4.2.1 FastMOT

FastMOT supports, along other detectors, YOLOv4 and its scaled versions. The YOLO

detectors previously trained will be used in order to test the accuracy of this tracking

framework. In order to evaluate FastMOT effectiveness in tracking fruits and avoid fruit

count duplication, it is necessary to set it up, configure it to run on our custom data,

convert the trained model to ONNX format and, finally, run the fruit tracking system.

Setting up FastMOT

In the FastMOT15 repository, a Dockerfile16 can be found. This Dockerfile is used to

set up the core dependencies needed to use FastMOT. In order to run the Dockerfile,

nvidia-docker must be installed first on an Ubuntu environment.

To use an Ubuntu environment, a possible solution, which was implemented in this

dissertation, is to use Windows Subsystem for Linux (WSL). WSL is a Microsoft project

which lets Windows users run a Linux environment inside their Windows operating

system, without the need to install virtual machines or dualboot17. After installing WSL18,

12ONNX is an open format for ML models, which allows to interchange models between various ML
frameworks and tools.

13A TensorRT file (.trt) is a file that results from the optimization of a neural network, which allows for
ten times faster inference times. Source: https://developer.nvidia.com/tensorrt

14https://numba.pydata.org/
15https://github.com/GeekAlexis/FastMOT
16https://docs.docker.com/engine/reference/builder/
17https://docs.microsoft.com/en-us/windows/wsl/about
18https://docs.microsoft.com/en-us/windows/wsl/install-win10
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one needs to install nvidia-docker19.

After setting up both Ubuntu and nvidia-docker, it is finally possible to set up the

FastMOT framework using the provided Dockerfile. This image requires an NVIDIA

driver version >= 450 for Ubuntu 18.04 and >= 465.19.01 for Ubuntu 20.04. Assuming

system requirements are met, running the following bash commands will set up FastMOT.

To begin with, it is necessary to clone the FastMOT repository from GitHub (listing

4.1).

Listing 4.1: Cloning FastMOT to a local directory.

$ cd $HOME

$ g i t clone https : / / github . com/ GeekAlexis /FastMOT . g i t

The first command line sets the directory to the defined home directory and the second

command line clones the git repository to a directory called "FastMOT".

After cloning the repository, it is necessary to build and run the docker image (listing

4.2).

Listing 4.2: Building and running a docker image.

$ docker build −t fastmot : l a t e s t .

$ docker run −−gpus a l l −−rm − i t −v $ (pwd ) : / usr / s r c /app/FastMOT \

−v /tmp / . X11−unix : / tmp / . X11−unix −e DISPLAY=unix$DISPLAY \

−e TZ=$ ( cat / e t c / timezone ) fastmot : l a t e s t

After running both commands, a FastMOT docker container will be up and running

inside the Ubuntu environment. Now it’s necessary to build the YOLOv4 TensorRT plugin

(listing 4.3).

Listing 4.3: Building YOLOv4 TensorRT plugin.

$ cd fastmot / plugins

$ make

Lastly, it’s necessary to download a pretrained feature extractor model (OSNet) for

Deep SORT to function properly (listing 4.4). This model doesn’t come included with the

repository due to its size.

Listing 4.4: Downloading pretrained OSNet model.

$ cd $HOME/FastMOT

19https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html

52

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html


4.2. FRUIT TRACKING

$ . / s c r i p t s /download_models . sh

FastMOT is now successfully set up inside the WSL Ubuntu environment. Now, every

time it is desired to use FastMOT, one simply needs to run the docker container using the

"docker run" command provided above.

Following FastMOT set up, it is necessary to configure it to track custom classes.

Configuring FastMOT for Custom Model and Classes

FastMOT default configuration is set to track humans with YOLOv4 as the detector. For

this dissertation use case, it is intended to track fruits (nectarine "gardeta") using the

scaled version of YOLOv4, YOLOv4P5.

First, it is necessary to tell FastMOT what classes are to be tracked. In this case, it

is desired to track nectarine "gardeta" (ng) fruits. To this end, the file "label.py" under

FastMOT/fastmot/models must be edited. The code in listing 4.5 corresponds to the file

for the current use case.

Listing 4.5: FastMOT custom class definition.

"""
90− c l a s s COCO l a b e l s
‘ un labe l ed ‘ ( id = 0) i s r e p l a c e d with ‘ head ‘ f o r CrowdHuman
These ar e d i f f e r e n t from t h e d e f a u l t 80− c l a s s COCO l a b e l s used by YOLO
"""

LABEL_MAP = (

’ ng ’

)

Following class definition comes detector definition. Currently, FastMOT supports

Single Shot Detector, YOLOv3 and derivatives, and YOLOv4 and derivatives. The detec-

tor to be used can be defined in mot.json file, which can be found under FastMOT/cfg

directory. The detector to be used during this dissertation is from the YOLO family. To

instruct FastMOT to use YOLOv4P5, it is necessary to edit the "detector_type" variable

and set it to "YOLO" and set the variable "model" in "yolo_detector_cfg" to the desired

YOLOv4P5. Still in "yolo_detector_cfg", the variable "class_ids" must also be changed

accordingly to the class defined in "label.py", which in this case will be set to 0 (zero). The

code used to configure FastMOT (mot.json) can be found in appendix A.

Not only the detector type needs to be defined, but also the detector configurations.

YOLOv4P5 configurations can be edited in "yolo.py", which can be found under Fast-

MOT/fastmot/models directory. This file contains all the definitions for the different

types of detectors supported by FastMOT. For YOLOv4P5, the definitions to be edited

are represented in listing 4.6.
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Listing 4.6: FastMOT model configuration.

. . .

c l a s s YOLOv4P5(YOLO) :

ENGINE_PATH: path to TensorRT engine ( converted at runtime )

MODEL_PATH: path to ONNX model

NUM_CLASSES: t o t a l number of c l a s s e s

LETTERBOX: keep aspect r a t i o when r e s i z i n g

NEW_COORDS: new_coords parameter for each yolo l a y e r

INPUT_SHAPE : input s i z e in the format " ( channel , �height , �width ) "

SCALES : sca le_x_y parameter for each yolo l a y e r

ANCHORS: anchors grouped by each yolo l a y e r

. . .

• ENGINE_PATH is the path to a TensorRT engine file, which will be automatically

generated at runtime;

• MODEL_PATH is the path to an ONNX file. This file is generated from the conver-

sion of both weights and configuration files from the detector training process. More

details on how to proceed with the conversion can be found in Model Conversion

to ONNX;

• NUM_CLASSES simply represents the number of classes to be tracked;

• LETTERBOX is a variable that tells the model to keep the aspect ratio of an image

while resizing it during inference;

• NEW_COORDS is a parameter in the object detector configuration file that tells the

model how the predicted bounding boxes should be calculated20;

• INPUT_SHAPE is the dimensions used in the configuration file during the training

process;

• SCALES corresponds to the parameter "scale_x_y" that can be found in the configu-

ration file used for the training phase;

• ANCHORS is the anchors grouped by each YOLO layer according to the configura-

tion file used during training. This anchors can be obtained from the "mask" and

"anchors" variables of each YOLO layer in the configuration file. Each mask number

serves as a pointer to a group of two anchors in the "anchors" variable. Say mask =

0,2 and anchors = a,b,c,d,e,f then, in FastMOT, ANCHORS = a,b,e,f.

20https://github.com/AlexeyAB/darknet/issues/6987#issuecomment-729218069
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The chosen YOLOv4 model to be used along the implementation of this dissertation is

"YOLOv4P5 WH", as it produced the best results upon training. The defined parameters

for this model are represented in listing 4.7.

Listing 4.7: FastMOT "YOLOv4P5 WH" parameters.

c l a s s YOLOv4P5(YOLO) :

ENGINE_PATH = Path ( _ _ f i l e _ _ ) . parent / \

’ yolov4_p5_w_1024_h_1856 . t r t ’

MODEL_PATH = Path ( _ _ f i l e _ _ ) . parent / \

’ yolov4_p5_w_1024_h_1856 . onnx ’

NUM_CLASSES = 1

LETTERBOX = True

NEW_COORDS = True

INPUT_SHAPE = ( 3 , 1856 , 1024)

SCALES = [ 2 . 0 , 2 . 0 , 2 . 0 ]

ANCHORS = [ [ 1 3 , 1 7 , 31 ,25 , 24 ,51 , 61 ,45] ,

[48 ,102 , 119 ,96 , 97 ,189 , 217 ,184] ,

[171 ,384 , 324 ,451 , 616 ,618 , 800 ,800]]

The core configurations for FastMOT to work on custom classes is finished. Now, it is

necessary to adjust specific tracking parameters to this dissertation use case.

Additional Parameter Tuning

All the parameter tuning takes place in "mot.json" file, which can be consulted in its

entirety on appendix A. Over the next paragraphs we’ll discuss which parameters were

updated and why.

Parameter "resize_to" tells FastMOT to what size it should resize the input data to.

This should be equal to the dimensions used in the configuration file of the chosen YOLO

model. Since "resize_to" takes as arguments two variables, width and height, and given

the chosen definitions for the trained YOLO model, this variable is set to [1024, 1856].

Regarding "video_io", the variables "resolution" and "frame_rate" must be adjusted

accordingly to the input video settings. In this case, and knowing that "resolution" takes

[width, height] as parameters, this variable is set to [1080, 1920] and "frame_rate" variable

is set to 30. This indicates FastMOT that the input video runs at 30 frames per second at

a resolution of 1080 width and 1920 height.

The variable "detector_frame_skip" instructs FastMOT how many frames it should

skip per processed frame. As an example, if this variable is set to 7, for every processed

frame, FastMOT will skip 7. The developer of FastMOT found this method to fasten the

process of tracking, and uses KLT to fill in the gaps of the skipped frames. While it should

work on some scenarios where the end goal is to track big and slow targets, skipping

frames in small and fast moving targets like nectarines was tested and concluded that
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produces awful results. As so, this variable is set to 1, so that every single input frame is

processed.

Next comes "yolo_detector" parameters definition. In addition to the already men-

tioned variables ("model" and "class_ids"), variable "conf_thresh" should be set to the

chosen detector IoU threshold, 0.3. As seen in the results chapter, this was the value for

which the detector obtained better results in both quantitative and qualitative outcomes.

The variable "max_age" defined inside "multi_tracker" represents the max number

of undetected frames before a track is terminated. As an example, if "max_age" = 30

and fruit with track ID 23 goes undetected for 30 frames, its track is terminated. This

variable has to be chosen in respect with "detector_frame_skip", such that the product

between "max_age" and "detector_frame_skip" is equal or close to 30, as recommended

by the developer of FastMOT. Since "detector_frame_skip" was set to 1, "max_age" will

be set to 30.

The variable "motion_weight" will be adjusted in respect to the obtained results. This

variable represents a motion weight in the matching cost function. After many iterations,

it was found that the value that performed the best qualitative and quantitative results

was "motion_weight"=0.02. Lastly, the variable "conf_thresh" will be adjusted based on

the chosen IoU threshold of the trained detector, that is, 0.3.

The default "kalmal_filter" parameters21 of FastMOT are set to track humans. Nec-

tarines are smaller by a few orders of magnitude. As such, and according to FastMOT

developer, the correct way to define Kalman filter parameters is to think in terms of

object size, as Kalman filter parameters are scaling factors22. As such, we assume that

nectarines are roughly 6x times smaller than a human body. Considering that in issue

#18723, the developer of FastMOT assumed human heads to be 5x smaller than human

bodies, a nectarine being 6x smaller than a body seems like a fair approximation. In

fact, this approximation produced the best qualitative and quantitative outcomes. After

applying this factor, we end up with the Kalman filter parameters represented in listing

4.8.

Listing 4.8: Custom Kalman filter parameter definition. On the left side of the arrow are

the old parameters, while on the right side are the new, scaled ones.

" ka lman_f i l t e r " : {

" s t d _ f a c t o r _ a c c " : 2.25 −> 13.5 ,

" s t d _ o f f s e t _ a c c " : 78.5 −> 471 ,

" s t d _ f a c t o r _ d e t " : [ 0 . 0 8 , 0 . 0 8 ] ,

" s td _fa c to r_ f low " : [ 0 . 1 4 , 0 . 1 4 ] ,

" min_std_det " : [ 4 . 0 , 4 . 0 ] ,

" min_std_flow " : [ 5 . 0 , 5 . 0 ] ,

21https://github.com/GeekAlexis/FastMOT/blob/ffc637fd95df20fc1a7ab22ead8cd3247c8e4178/
fastmot/kalman_filter.py

22https://github.com/GeekAlexis/FastMOT/issues/187#issuecomment-907702450
23https://github.com/GeekAlexis/FastMOT/issues/187
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" in i t_pos_weight " : 5 −> 30 ,

" i n i t _ v e l _ w e i g h t " : 12 −> 72 ,

" vel_coupling " : 0 . 6 ,

" v e l _ h a l f _ l i f e " : 2 −> 12

}

Model Conversion to ONNX

Now, it’s necessary to convert the trained darknet model to the ONNX format. This

conversion is necessary so that FastMOT is further able to convert the ONNX file to a

TensorRT file (.trt), which allows for faster inference times.

To convert the trained darknet model to ONNX format, a script provided by the

FastMOT framework should be used. This script is located under FastMOT/scripts, and

it’s named "yolo2onnx.py". In order to run it, some dependencies must firstly be installed

(listing 4.9).

Listing 4.9: Dependencies installation to run ONNX conversion.

$ apt−get update && apt−get −y i n s t a l l sudo

$ sudo apt−get i n s t a l l protobuf−compiler l ibprotoc −dev

$ pip3 i n s t a l l onnx==1.4.1

After installing the dependencies, run the conversion script by adding the paths to

the weights and configuration files from the detector training process (listing 4.10):

Listing 4.10: Darknet model conversion to ONNX.

$ . / s c r i p t s / yolo2onnx . py −−conf ig <p a t h _ t o _ c f g _ f i l e > \

−−weights <path_to_weights_f i le >

After running this script, an ONNX file will be generated under FastMOT/fastmot/-

models directory.

Running FastMOT on a Custom Dataset

Once everything is set up, running FastMOT comes down to one bash command line. The

used bash command is represented in listing 4.11.

Listing 4.11: Bash command to run FastMOT.

$ fname=" v2_second_tree_only "

$ python3 app . py −−input_uri custom/ videos /$fname .mp4 −−mot \

−−log eval / r e s u l t s /MOT20−$fname . t x t −−gui −−output_uri \
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r e s u l t s / results_$fname .mp4

Where "fname" is a local variable that is the name of the input video to be tracked, as

well as the name of the output files, —mot is to instruct FastMOT to run multiple object

tracker, —log is to log all the results to an txt file, and —gui is to prompt a live tracking

display. Once this command is executed, FastMOT will take —input_uri video, process

it using the defined settings and parameters, and output a video in the defined path and

name –output_uri.
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Results and Discussion

The results of the implementation process of this dissertation are divided into two parts:

• First, results regarding the efficiency of the DL detector should be analyzed. That

is, how well the trained detectors can identify fruits in frames they had never seen

before. To analyze their accuracy, fruits along validation frames will be manually

labeled and counted, to then be compared to the automatically detected and counted

fruits by the trained YOLO detectors;

• Second, the accuracy of the implemented solution to count fruits in tree row sides

shall be analyzed. For this analysis, fruits will be manually counted in two valida-

tion videos representing a validation tree. One video contains the front of that tree,

and the other the back of it. The results from the manual counting will then be

compared to the results given by the proposed tracking/counting system.

5.1 Frame-by-frame Fruit Count Accuracy

All the YOLO models were trained in google colab, using its available GPUs, Tesla V100

or Tesla P100, both with 16 gigabytes of dedicated memory. The combined training time

of all the four different models was above 343 hours, with an average of 57 hours per

train. The "YOLOv4P5 WH" model had the best overall performance. As can be seen in

figure 5.2, all the models performed relatively well. The charts presented in this image

were generated from the darknet framework while each model was training, showing the

mAP and loss metric of a YOLO model along all the training iterations (6000). This mAP

was calculated for an IoU threshold of 0.5. Over the next sections, it will be discussed

how adjusting this threshold increased the overall quality of all the models.

5.1.1 Quantitative Outcomes

The performance of each trained model was assessed with two metrics, accuracy and mAP.

The accuracy metric measures how accurately a model can predict how many fruits are
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Figure 5.1: Charts generated by the darknet framework during training.
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in a given frame, while the mAP metric determines how well the model is classifying the

literal fruits. For this dissertation scenario, which end is to estimate the production yield

of a crop, the most important metric is the one which tells how many "fruits" are being

counted per frame, whether it is a fruit or not. This is the accuracy metric. Considering

there is a small validation dataset (18 frames from both sides of a tree), it is not safe to

choose the best model only considering the accuracy metric. Here comes the importance

of considering and analyzing the mAP metric. Let us suppose a given model had an

accuracy of 97%, but the mAP metric was just below 80%. This means that in that 97%,

many of the detected objects weren’t fruits, but rather leaves, trunk chunks, or any other

object the detector thought was a fruit. Even though the probabilities are not that high,

this scenario is possible when considering a small validation dataset. On the other hand,

if the model has a high mAP and a lower accuracy, it is possible that it is detecting some

fruits with high accuracy, but it is missing a lot of them, probably due to fruit occlusion.

The chosen model was the one which had both high and similar accuracy/mAP.

In order to determine the average accuracy and mAP of all the trained models, six

tables have been made (appendix B). These tables consist of six columns, where the first

one represents the frame for which the accuracy and mAP will be calculated, the second

one has the number of fruits that were manually counted in each frame, the third one

the fruits that were automatically counted in each frame, and the last two the respective

metrics in study. The last column "mAP@0.3" means that the mAP was determined using

a threshold higher or equal to 0.3. By testing multiple threshold values, both quantitative

and qualitative outcomes show that the 0.3 threshold produced the best results in terms

of accuracy and mAP.

All the calculated and determined accuracy and mAP were put together in two sepa-

rate tables, as a means to compare the results from the different YOLO models. Table 5.1

holds the accuracy, while table 5.2 holds the mAP values for all the trained models.

For all the models, without exception, the average mAP results were higher than the

average accuracy. This conclusion is an indication that, although the detector is detecting

with high accuracy the fruits presented in all the frames, it is skipping some of them. It

is likely that this is happening due to poor photo quality, a consequence of the dataset

being taken with an ordinary smartphone. Poor photo quality promotes fruit occlusion,

fruit blur, fruit color not being so sharp, among other challenges for the detector. Another

reason to justify such results, beyond the quality of the dataset, is its quantity. Although

some fruits really are difficult to detect even when manually trying to identify them, an

increased number of photos from different perspectives would probably increase both

detector accuracy in predicting the number of fruits and its mAP. Section 5.1.2 will

dive into more conclusions between the relation of the results from both tables, as visual

results give a different perspective in this matter.

As can be concluded from the results itself, YOLOv4P5 with its width and height ad-

justed so that it would best match the original image size of the dataset photos ("YOLOv4P5

WH") had the best results both in accuracy and mAP. One might question why "YOLOv4P6

61



CHAPTER 5. RESULTS AND DISCUSSION

Table 5.1: Fruit count accuracy for the trained YOLO models.

YOLO Model v4 DS v4P5 DS v4P5 WH v4P5 WHR v4P6 DS v4P6 WH

Frame 1 93% 76% 97% 93% 97% 83%
Frame 2 92% 78% 86% 86% 89% 73%
Frame 3 93% 83% 95% 85% 98% 85%
Frame 4 100% 71% 86% 88% 97% 83%
Frame 5 91% 72% 94% 91% 91% 74%
Frame 6 77% 71% 81% 87% 85% 75%
Frame 7 83% 72% 94% 87% 91% 77%
Frame 8 96% 98% 93% 98% 93% 87%
Frame 9 80% 79% 95% 84% 89% 71%
Frame 10 81% 84% 84% 81% 88% 74%
Frame 11 97% 82% 95% 89% 92% 82%
Frame 12 87% 76% 97% 89% 92% 87%
Frame 13 89% 81% 98% 89% 91% 85%
Frame 14 91% 79% 91% 95% 93% 80%
Frame 15 95% 75% 91% 88% 89% 86%
Frame 16 94% 56% 81% 65% 75% 64%
Frame 17 82% 78% 93% 84% 87% 80%
Frame 18 94% 69% 78% 83% 81% 75%
Average 89.8% 76.7% 90.5% 86.9% 89.9% 79.0%

WH" didn’t outperform "YOLOv4P5 WH", since the same logic is being applied to both

models but one of them (P6) is a larger model, expected to achieve a higher mAP. A

possible explanation for this results might be that, although P6 is a larger model than

P5, it also requires more memory for the GPU to train it. As a consequence, the width

and height of the trained v4P6 WH model was lower (W=960; H=1792) than the width

and height of the trained v4P5 WH one (W=1024; H=1856), which is closer to the orig-

inal width and height of the dataset images. It might also be due to bad luck. This last

possibility could only be validated using a larger dataset for the training process.

Taking the chosen model "YOLOv4P5 WH" as an example, table 5.3 has been made

and holds the mAP@0.3 and mAP@0.5 values for all frames for this model. As can be

seen from it, without exception, all the mAP values are greater when the inference is

done with an IoU threshold of 0.3. Further analysis on how decreasing the IoU threshold

improved the results will be made in the next subsection.

Figure 5.2 gives a different perspective on the quantitative outcomes of both accuracy

and mAP metrics. The first conclusion that can be drawn from these charts is that there

are frames where the detectors struggle to precisely predict and count the fruits (e.g.

frame 6 mAP and frame 16 accuracy, respectively), whereas there are others where the de-

tectors can precisely predict them (e.g. frame 13 mAP and frame 8 accuracy, respectively).

This occurrence is an indication on how the changes in light, shadows and perspective

along multiple frames of the same tree can affect the detector accuracy and mAP metrics.
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Table 5.2: mAP@0.3 for the trained YOLO models.

YOLO Model v4 DS v4P5 DS v4P5 WH v4P5 WHR v4P6 DS v4P6 WH

Frame 1 91% 95% 96% 89% 92% 89%
Frame 2 97% 93% 98% 96% 95% 89%
Frame 3 95% 96% 91% 95% 95% 96%
Frame 4 95% 92% 95% 94% 92% 96%
Frame 5 97% 92% 94% 96% 93% 94%
Frame 6 84% 79% 87% 86% 82% 86%
Frame 7 88% 91% 88% 89% 88% 78%
Frame 8 94% 93% 92% 93% 95% 91%
Frame 9 94% 96% 97% 94% 97% 90%
Frame 10 96% 94% 96% 94% 95% 89%
Frame 11 96% 95% 94% 96% 94% 92%
Frame 12 90% 92% 95% 92% 92% 92%
Frame 13 98% 97% 97% 98% 98% 98%
Frame 14 91% 92% 91% 90% 91% 88%
Frame 15 95% 95% 96% 96% 97% 95%
Frame 16 88% 89% 89% 90% 90% 82%
Frame 17 93% 92% 98% 91% 93% 94%
Frame 18 91% 91% 90% 89% 90% 93%
Average 93.0% 92.4% 93.5% 92.6% 92.9% 90.5%

This difference in performance between frames will be further discussed when analyzing

the qualitative outcomes.

Figure 5.2: Accuracy and mAP metrics charts of all the trained models. Chart a) rep-
resents the fruit count accuracy, while chart b) the fruit detection mAP@0.3 along all
frames.

Another interesting conclusion is that while on the mAP chart all the curves are

close to each other, on the accuracy chart they deviate a lot more. This is a curious

indicative to dive into in the next section, where the qualitative outcomes will be explored.

Table 5.4 assists knowing in which frame the difference between the accuracy and mAP

metric was the highest for the chosen model, "YOLOv4P5 WH". This table holds the

difference between the accuracy and mAP metric for each frame. As it can be concluded,
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Table 5.3: Comparison of mAP metric when inference is performed using the "YOLOv4P5
WH" model with a threshold of 0.3 vs 0.5.

Frame No. mAP@0.3 mAP@0.5 Difference

1 96.49% 94.32% 2.17%
2 97.87% 97.87% 0.00%
3 90.56% 87.29% 3.27%
4 95.33% 88.16% 7.17%
5 94.13% 94.13% 0.00%
6 87.05% 81.18% 5.87%
7 87.55% 81.59% 5.96%
8 92.07% 89.34% 2.73%
9 97.08% 91.29% 5.79%

10 96.19% 96.19% 0.00%
11 93.70% 90.91% 2.79%
12 94.88% 94.88% 0.00%
13 97.05% 94.76% 2.29%
14 90.88% 90.88% 0.00%
15 95.83% 95.45% 0.38%
16 88.86% 86.57% 2.29%
17 97.67% 92.39% 5.28%
18 89.78% 85.49% 4.29%

the frame which has the biggest difference between the accuracy and mAP metric is frame

number 10 (12.47%). This frame will be subjected to analysis in the following section,

Quantitative Outcomes.

In order to confirm that there is an an overall bigger deviation in the accuracy metric

when comparing to the mAP metric along all the models, a similar table to table 5.4 was

made. Table 5.5 holds the standard deviation values of both accuracy and mAP metrics

between all models and frames, as well as the overall standard deviation between both

metrics. As it can be concluded, while the accuracy metric has an average SD of 6.93%,

the mAP metric has an average SD more than three times lower, of 1.96%. This confirms

that, comparing to the accuracy values, the mAP values do not change that much between

models along different frames.

5.1.2 Qualitative Outcomes

The analysis of qualitative outcomes is as important as the analysis of the quantitative

outcomes. All results presented in this section were obtained using the chosen YOLO

model, "YOLOv4P5 WH". Three main topics will be explored:

• How changing the IoU threshold from 0.5 to 0.3 can positively affect the detection

results;

• Why the detector shows high accuracy on some frames, while struggling on others;
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Table 5.4: Difference between the accuracy and mAP metric for "YOLOv4P5 WH" model.

Frame No. Model Accuracy Model mAP Difference

1 96.55% 96.49% 0.06%
2 86.49% 97.87% 11.38%
3 95.12% 90.56% 4.56%
4 86.21% 95.33% 9.12%
5 93.62% 94.13% 0.51%
6 80.77% 87.05% 6.28%
7 93.62% 87.55% 6.07%
8 93.33% 92.07% 1.26%
9 94.64% 97.08% 2.44%

10 83.72% 96.19% 12.47%
11 94.74% 93.70% 1.04%
12 97.37% 94.88% 2.49%
13 98.15% 97.05% 1.10%
14 91.07% 90.88% 0.19%
15 91.23% 95.83% 4.60%
16 81.25% 88.86% 7.61%
17 93.33% 97.67% 4.34%
18 77.78% 89.78% 12.00%

• What’s happening in the frames where the mAP is way higher than the accuracy?

Regarding the first matter, it has been seen in the quantitative outcomes how de-

creasing the IoU threshold from 0.5 to 0.3 increases the mAP metric. But what is really

happening when it comes to qualitative outcomes? Figure 5.3 a) and b) illustrates an

example where on the left frame (denoted as frame a)), the inference was performed with

an IoU threshold of 0.3, while on the right frame (frame b)), the inference counted with

an IoU threshold of 0.5. To better understand the different types of detections happening

in both frames, colored boxes were used, where each color represents one specific object

being detected. Green stands for correctly detected fruits, blue stands for missed fruits,

and red for all the other wrong detections, be it leaves, trunk chunks, etc. Analyzing both

inferred frames: on frame a) there are a total of 47 correctly detected fruits, 11 missed

fruits, and 3 wrong detections; while on frame b) 43 correctly detected fruits, 15 missed

ones, and 0 wrong detections. The results came out as expected. That is, by decreasing

the IoU threshold, fewer fruits were missed (47 vs 43) but more wrong detections were

made (3 vs 0). Of all the tested IoU thresholds, this was the best not only in terms of the

mAP metric, but also accuracy metric, as more fruits are correctly detected and wrong

detections help to fill the missed ones.

For the second question, frames 13 and 18 were selected to analysis. While frame 13

had an accuracy of 98.15%, the highest among all frames, frame 18 had an accuracy of

77.78%, the lowest among all frames. Similar to the prior analysis, figure 5.4 a) and b)
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Table 5.5: Accuracy and mAP metrics standard deviation when inference is performed
using the "YOLOv4P5 WH" model.

Frame No. Accuracy SD mAP SD SD between Accuracy and mAP

1 8.45% 3.05% 3.82%
2 7.13% 3.36% 2.67%
3 6.06% 2.08% 2.81%
4 10.44% 1.47% 6.34%
5 9.67% 1.83% 5.55%
6 5.89% 2.88% 2.12%
7 8.38% 4.54% 2.71%
8 4.14% 1.42% 1.92%
9 8.20% 2.77% 3.84%
10 4.57% 2.45% 1.50%
11 6.66% 1.45% 3.68%
12 7.01% 1.46% 3.93%
13 5.62% 0.43% 3.67%
14 6.84% 1.23% 3.96%
15 6.60% 0.69% 4.18%
16 13.59% 2.94% 7.53%
17 5.52% 2.33% 2.26%
18 8.50% 1.22% 5.15%
Average 6.93% 1.96% 3.51%

illustrates both frames (at the left, a) representing frame 13 and, at the right, b) represent-

ing frame 18) and its correct, miss and wrong detected fruits. Following the previous box

color code, green stands for correctly detected fruits, blue stands for missed fruits, and

red for all the other wrong detections. Analyzing both frames, for the highest accuracy

frame, it didn’t miss a single fruit, but wrongly detected 3 objects that were not fruits. As

for the lowest accuracy frame, the detector missed 10 fruits and got 2 wrong detections.

The main conclusion to draw from this analysis is that when there are frames with a low

accuracy, it does not mean the detector is wrongly classifying many other objects, but

rather it is missing a lot of them. This proves the premise that the quality of a photo

have a huge impact in the detector accuracy in predicting the number of fruits in a photo.

Another interesting analysis is represented in figure 5.4 a’) and b’). a’) has the 4 wrong

detections of a), while b’) has the 2 wrong detections of b). Looking at the "wrong detec-

tions" leaves a question unanswered, are those really "wrong detections", or rather fruits

that weren’t labeled due to the lack of resolution of the photo? This answer could only be

answered by analyzing the tree in real life and concluding whether those are fruits or not.

If any or all of the "wrong detections" are indeed fruits, this could be greatly affecting

the detector training process as well as the values of both two final metrics, which would

likely be a few percentage points closer to 100%.
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Figure 5.3: Comparison of inferencing the same frame with the same model but with
different IoU thresholds. a) was inferred with an IoU threshold of 0.3, while b) with an
IoU threshold of 0.5.

For the last question, the chosen frame for analysis was frame 10. This frame corre-

sponds to the frame where the difference between the mAP and accuracy is the highest,

having an mAP of bigger value than the accuracy. As before, figure 5.5 illustrates the

correctly detected fruits as green, missed ones as blue and wrong detections as red. This

results prove the point stated before. That is, if there is a high mAP and a low accuracy,

the detector is likely to be classifying the fruits with high precision (only one wrong

detection in all 36 detections), but missing a lot of them (8 in 43 fruits). The takeaway

conclusion from this analysis is that, for this dissertation scenario where the end goal is

to estimate the production yield of a crop, it is not safe to choose a model based only on

its mAP metric. The model has to be chosen based not only on mAP, but also accuracy.

Lastly, there is one interesting conclusion when looking at all the inferred frames.

In none of them did the detector considered the many fruits that were on the ground.

Knowing if the detector would consider or not the fruits on the ground was a major

concern upon implementation. The fact that it didn’t show how mature and accurate DL
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Figure 5.4: Inference of the highest accuracy frame, a), and lowest accuracy frame, b). a’)
and b’) represents the 4 and 2 objects that the detector wrongly classified as fruits on a)
and b), respectively.
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Figure 5.5: Inference of a frame with a high mAP and low accuracy.
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object detectors can be, especially YOLOv4 models.

5.2 2D Fruit Yield Estimation

All the presented results were obtained using the mentioned FastMOT framework and

using a computer with the following specifications: NVIDIA GeForce 970 GPU; AMD

Ryzen 5 3600 3.6GHz CPU; and 16GB of RAM. All the 2D fruit yield estimation re-

sults presented below were obtained using the chosen, best performing, YOLOv4 model,

"YOLOv4P5 WH".

5.2.1 Quantitative Outcomes

The results were obtained by passing two videos, each one representing one side of the

validation tree, through the FastMOT framework. The output of this inference is the

total number of counted fruits and the input video with the associated tracks. To obtain

the quantitative results, fruits of both videos were manually counted. Let one video

representing one side of a tree be nominated "v1" and the other video "v2". Although it is

hard to manually count the number of fruits in a video with illumination issues, shadows,

and not great resolution, 155 fruits were counted in video v1 and 123 fruits were counted

in video v2. The implemented system was able to automatically count 161 fruits in video

v1, and 120 fruits in video v2. This represents an accuracy of 96% for video v1 and

98% for video v2. This values can be considered a near-perfect fruit yield estimation

if considering that there is an error associated to manually counting the ground truth

number of fruits in the validation tree videos.

5.2.2 Qualitative Outcomes

The quantitative results were close to perfect, but the question is, is the system this

accurate, or is it counting fruits it isn’t supposed to, or counting things that are not

fruits. When there isn’t a big validation dataset, qualitative outcomes become of major

importance to analyze. Analyzing these outcomes gives a perspective on how accurately

the system is keeping track of fruits along all their appearance and how often they might

be overcounted. They validate how viable the quantitative outcomes are. Figure 5.6 a)

and b) give a general overview of the tracking system output. It represents a sequence of

frames for various timestamps of the validation tree v1 and v2.

For the qualitative outcomes, two main aspects will be analyzed. These are: how well

the system can keep track of the same fruit from the moment it gets into scene until it

gets out; and how well the system handles fruit occlusion. To answer both questions, the

output videos of the validation tree will be analyzed.

It is important for a fruit to always keep the same ID from the very beginning, when it

enters the scene, until the very end, which is when it leaves the scene or becomes totally

occluded. This assures that a fruit isn’t counted more than once along its appearance
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Figure 5.6: Sample of frames extracted from the output videos of the tracking system.
a) frames were extracted from output video v2, which was acquired with a left-to-right
motion, and b) frames were extracted from output video v1, which was acquired with a
right-to-left motion.
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in multiple frames. Figure 5.7 represents a row sampled at various timestamps of the

tracked tree side v1. We’ll focus on analyzing the tracks with IDs 61 and 39, since these

run through the image in its full length. The system initialized its tracks at timestamp

T1. On timestamp T2, the system loses track of ID 39 since it becomes partially occluded

by leaves. Thanks to the ID re-identification system, after being partially occluded, the

tracked fruit receives the same ID 39 on timestamp T3, avoiding fruit overcount. Simi-

larly, the system loses track of fruit with ID 61 on timestamp T4 but is able to re-identify

it with the same ID in timestamp T5. From this timestamp, where the fruits are located in

the middle of the scene, until the very end, they always keep the same ID. On top of this,

the remaining visible fruits in this sampled row with IDs 44, 7, 85, 124, 155, 203, 244,

245, 261, and 272 always keep their IDs throughout the whole video sequence, totally

avoiding the overcount of fruits. After this analysis, it is viable to say that the developed

system is robust against ID switches in a scenario where a fruit is present along all width

of a scene.

It was previously seen that the system can handle partially occluded fruits. Next, it

is important to analyze how it handles full fruit occlusion scenarios. When hundreds

of fruits are being considered, it is easy to find one or another that hides itself behind

tree leaves or chunks. To analyze this, fruit with track ID 137 of video v1 was chosen,

as it became fully occluded twice during its tracking. Figure 5.8 illustrates its trajectory

along both occlusions. The fruit becomes occluded in timestamp T2, which consequently

conducts the system to lose track of it, and reappears in timestamp T3, where the system

is able to re-identify it with the same ID. Next a longer occlusion occurs, in timestamp

T4. As it can be seen, the system is able to re-identify it once again in timestamp T5.

With the analysis of fruit ID 137 it is possible to conclude that the system is robust to full

occlusions, avoiding fruit overcount.

5.3 Discussion of Results

In the orchard in study, "Herdade Corte Romeira", the estimation of the fruit yield is

conducted manually and statistically. A human counts the number of fruits in one or

a couple of trees, calculates the average number of fruits per tree, and then multiples

it by the total number of trees in the orchard for a given fruit. This system is not only

tedious, labour intensive and time consuming, but also obviously prone to error when

considering that there are thousands of trees, as it is the case of the farm in study, where

there are 22 hectares of nectarines, which reflects in a huge number of nectarine trees.

The developed system is able to count fruits in tree row sides with data acquired with

an ordinary smartphone, achieving accuracies up to 98% while being able to respect the

time constraints of each use case.

Six DL detectors were trained, all with different settings. Of all the trained models,

the model that performed the best was YOLOv4P5 with its width and height adjusted

so that it would best match the input images width and height. This model obtained
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Figure 5.7: Keeping track of a fruit when it enters the scene until it gets out. Row from
tree side v1 sampled at various timestamps T1, T2, ..., T8.
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Figure 5.8: Fruit with track ID 137 suffering two full occlusions.

an average mAP and fruit count accuracy of 94% and 91%, respectively. This results

could’ve been negatively influenced by the difficulty in the dataset labelling process, as

there are occasions where it is hard, even when manually human labelling, to distinguish

leaves and chunk pieces from actual fruits. Although the trained YOLOv4P6, a larger

model than YOLOv4P5, was expected to obtain better results than YOLOv4P5, it didn’t

actually happen. The most feasible justification for this is that the YOLOv4P6 model

couldn’t be trained with a width and height close to the input images, due to lack of GPU

memory. This could’ve affected the training process and, consequently, the mAP and

fruit count accuracy results. When comparing to literature state-of-the-art results [85,

93, 94], where detector performance is analyzed using static images, with better quality

and closer to the fruits, the obtained results are really satisfactory, considering the small

training dataset and the fact that it was extracted from a video taken with an ordinary

smartphone. One limitation while training the object detector really was the dataset size.

The seasonality of the fruits, together with the time scope of this dissertation, prevented

that more photos were taken during the development of this work as a means to enlarge

the dataset and thus improve results. That being said, a possible improvement for future

work is to increase the dataset size, which will most likely improve the overall results of

all the work.

The chosen YOLO model was then used to count fruits in both sides of a tree. As

a means to avoid fruit overcounting, a tracking technique, namely Deep SORT, was

implemented. A framework named FastMOT was used to implement Deep SORT. As this

framework requires an Ubuntu distribution, WSL was installed in a windows machine

and, after some challenging setup, FastMOT was fully configured and ready to track on

our custom dataset, "gardeta" nectarines. In order to validate the system quality, fruits

were manually counted in both validation videos v1 and v2, obtaining a ground truth

count of 155 and 123 fruits, respectively. Then, to obtain the number of fruits counted

by the developed system, a piece of code on FastMOT files was edited so that it could

print in the console the unique number of IDs counted when performing the tracking,

which would represent the total number of fruits presented in one side of a tree. After

passing both videos v1 and v2 through the FastMOT framework, it estimated that there

was 161 fruits in video v1 and 120 in video v2. When comparing with the ground truth

data, this translates to an accuracy of 96% for video v1 and 98% for video v2. These
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are extremely satisfactory results, when considering that this system is able to output

results given specific time constraints and that the validation dataset was acquired with a

smartphone under uncontrolled lightning and climate conditions. The authors of [95] got

an accuracy of 98% when counting mango’s in tree row sides under controlled and perfect

light conditions (using a 720W LED floodlight with a dedicated camera, at night-time),

similar to figure 2.5. The developed system achieved the same results under uncontrolled

climate and lightning conditions, without a dedicated camera and with a smaller fruit.

This is an indicator of how promising a prototype using the developed system can be to

automatically estimate the production yield of a full orchard, which is possible due to the

intrinsic speed characteristics of the developed system. Similarly to before, better results

would likely be achieved if a bigger dataset was available for training. It is important to

consider that some fruits might’ve been missed or overcounted while counting the ground

truth number of fruits in both videos, as manually counting fruits in fast and low quality

videos is a hard assignment. This could potentially indicate that the system is being over

or under rated. Unfortunately, the lack of a real life ground truth fruit count of both sides

of the validation tree is not available to confirm the obtained results. Besides fruit count

of both sides, it would be useful to have real life ground truth data of the whole validation

tree, as a means to assess how well the system would’ve estimated the production yield of

the whole tree without using a correction phase, that is, just by summing the fruit counts

from both tree row sides. Having this said, in future work, it is suggested to gather a new

validation dataset of the nectarines once they are again available pre-harvest, and count

the number of fruits on each side of the tree, as well as the total number of fruits of the

tree.

After going through a variety of challenges, both conceptual and technical, the initially

proposed system was implemented with success. Overall, the system behaved as expected,

and, to the best of our knowledge, with state-of-the-art fruit yield estimation results

regarding tree row sides. The characteristics of the developed and proposed system allows

for it to be escalated both horizontal and/or vertically, thus being able to obtain speed

results that fit into the required time constraints of each use case. The obtained results

opens doors for future research and development of the remaining proposed framework,

which would allow to obtain the total fruit count of a tree, and, consequently, the total

estimation of the production yield of the whole orchard.
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Conclusion and Follow Up

6.1 Conclusion

The estimation of the production yield is an essential and important task that is performed

prior to fruit harvesting. This information gives farmers the possibility to better organize

their storage system, so that ideally every fruit can be properly stored. On top of this,

knowing how many fruits need to be harvested helps farmers better plan their marketing

activates, such as matching supply and demand. This dissertation was an entry point to

achieve a fast and reliable system capable of estimating the fruit yield of a whole orchard.

The implemented system is capable of estimating the fruit yield of tree row sides with

accuracies up to 98% while allowing for speeds that are able to fit into the time constraints

of each use case.

The work done is divided into three parts. First a visit was conducted to "Herdade

Corte Romeira", who kindly guided us through their orchard. This visit allowed to answer

RQ1, where a dataset on nectarine trees was taken with a smartphone (Google Pixel 4A)

carried by a human. Unfortunately a tractor wasn’t available at the time of the visit,

thus not being possible to take the data like it was previously proposed. The acquired

dataset consists of images from both sides of a row composed of eight trees. Of all the

eight trees, seven were used to train an object detector, and one was used to validate both

detector and tracker results. Using the seven trees, models of the Scaled YOLOv4 family

were trained, from which Scaled YOLOv4P5 performed the best, with an average mAP

of 94% and average fruit count accuracy of 91%, thus answering RQ2. After validating

the accuracy of Scaled YOLOv4P5, it was integrated with FastMOT, a framework that

implements Deep SORT with some improvements, which was the answer to RQ3. With

right parameter tuning, it was possible to achieve a fruit count accuracy of 96% on one

side of the validation tree, and 98% on its opposite side. The counts from both sides of

this tree could be summed in order to compare the results between this obtained merged

count, and the total ground truth number of fruits carried by this validation tree, as a

means to assess RQ4. Counting the total number of fruits carried by the validation tree

from a video isn’t accurate, and, as such, future work should include this validation.
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To the best of our knowledge, the developed system presented state-of-the-art results

regarding tree row side fruit count.

On top of the implemented solution, a system to accurately estimate the fruit yield of

the whole orchard was proposed. In this system, two smartphones are attached to a trac-

tor, and are continuously acquiring and sending data to a server. The server is processing

this data and contributing with the fruit counts from tree rows to perform an accurate

estimation of the production yield of the whole orchard. With this proposed system, in-

stead of limiting the estimation to a couple of tree rows, it is possible to perform it using

data of larger areas, thus increasing the overall accuracy of the fruit yield estimation of

the whole orchard. For this system to work, it is crucial to assess the viability of counting

fruits from a sequence of frames acquired with a smartphone. Thanks to this dissertation

contribution, this was validated with state-of-the-art results, which should motivate the

continuity of the development of the proposed system, allowing the estimation of the

fruit yield of a whole tree and, consequently, orchard.

6.2 Follow Up

Following this dissertation, future work should include increasing the size of the dataset,

so that there are both more data that enables better object detector training results and

more data to better validate the developed system. While acquiring this new data, the

fruits carried by the filmed trees should also be counted, as a means to validate how well

the already developed system would perform in estimating the fruit yield of a tree row by

simply summing both counts from both sides of that tree row, that is, without a correction

phase.

As a means to determine whether the developed system is able to assist in chemical

thinning control, the best performing object detector should be re-trained under a dataset

consisting of unripened fruits, that is, smaller and greener fruits than the ones considered

in this dissertation.

Following this, and giving the promising results achieved, future efforts should focus

as well on the implementation of the remaining parts of the proposed system, which

would be capable of estimating the production yield of an whole orchard.
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Appendix A

FastMOT Configuration Code

Listing A.1: FastMOT configuration code

{

" r e s i z e _ t o " : [1024 , 1856] ,

" v ideo_io " : {

" r e s o l u t i o n " : [1080 , 1920] ,

" frame_rate " : 30 ,

" b u f f e r _ s i z e " : 10

} ,

"mot" : {

" detec tor_type " : "YOLO" ,

" detector_frame_skip " : 1 ,

" s sd_detec tor " : {

" model " : " SSDInceptionV2 " ,

" c l a s s _ i d s " : [ 1 ] ,

" t i l e _ o v e r l a p " : 0 .25 ,

" t i l i n g _ g r i d " : [ 4 , 2 ] ,

" conf_thresh " : 0 . 5 ,

" max_area " : 130000 ,

" merge_thresh " : 0 .6

} ,

" yo lo_detec tor " : {

" model " : "YOLOv4P5" ,

" c l a s s _ i d s " : [ 0 ] ,

" conf_thresh " : 0 . 3 ,
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" max_area " : 800000 ,

" nms_thresh " : 0 .5

} ,

" publ i c_detec tor " : {

" sequence " : " eval / data /MOT20−03" ,

" conf_thresh " : 0 . 5 ,

" max_area " : 800000

} ,

" f e a t u r e _ e x t r a c t o r " : {

" model " : " OSNet025 " ,

" ba tch_s ize " : 16

} ,

" mult i_ t racker " : {

" max_age " : 30 ,

" age_penalty " : 1 ,

" age_weight " : 0 . 1 ,

" motion_weight " : 0 .02 ,

" max_feat_cost " : 0 . 9 ,

" max_reid_cost " : 0 . 6 ,

" iou_thresh " : 0 . 4 ,

" dupl icate_ iou " : 0 . 8 ,

" conf_thresh " : 0 . 3 ,

" l o s t _ b u f _ s i z e " : 50 ,

" ka lman_f i l t e r " : {

" s t d _ f a c t o r _ a c c " : 13 .5 ,

" s t d _ o f f s e t _ a c c " : 471 ,

" s t d _ f a c t o r _ d e t " : [ 0 . 0 8 , 0 . 0 8 ] ,

" s td _fa c to r_ f low " : [ 0 . 1 4 , 0 . 1 4 ] ,

" min_std_det " : [ 4 . 0 , 4 . 0 ] ,

" min_std_flow " : [ 5 . 0 , 5 . 0 ] ,

" in i t_pos_weight " : 30 ,

" i n i t _ v e l _ w e i g h t " : 72 ,

" vel_coupling " : 0 . 6 ,

" v e l _ h a l f _ l i f e " : 12

} ,

" flow " : {

" b g _ f e a t _ s c a l e _ f a c t o r " : [ 0 . 1 , 0 . 1 ] ,
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" o p t _ f l o w _ s c a l e _ f a c t o r " : [ 0 . 5 , 0 . 5 ] ,

" f e a t u r e _ d e n s i t y " : 0 .005 ,

" f e a t _ d i s t _ f a c t o r " : 0 .06 ,

" ransac_max_iter " : 500 ,

" ransac_conf " : 0 .99 ,

" max_error " : 100 ,

" i n l i e r _ t h r e s h " : 4 ,

" bg_feat_thresh " : 10 ,

" target_feat_params " : {

" maxCorners " : 1000 ,

" qua l i tyLeve l " : 0 .06 ,

" b lockSize " : 3

} ,

" opt_flow_params " : {

" winSize " : [ 5 , 5 ] ,

" maxLevel " : 5 ,

" c r i t e r i a " : [ 3 , 10 , 0 . 0 3 ]

}

}

}

}

}
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Appendix B

Appendix 1 Object Detector Results

Table B.1: YOLOv4 DS accuracy and mAP@0.3.

Frame No. Manually Counted Automatically Counted Accuracy mAP@0.3

1 29 27 93% 91%
2 37 34 92% 97%
3 41 38 93% 95%
4 58 58 100% 95%
5 47 43 91% 97%
6 52 40 77% 84%
7 47 39 83% 88%
8 45 47 96% 94%
9 56 45 80% 94%

10 43 35 81% 96%
11 38 37 97% 96%
12 38 43 87% 90%
13 54 48 89% 98%
14 56 51 91% 91%
15 57 54 95% 95%
16 48 45 94% 88%
17 45 53 82% 93%
18 36 34 94% 91%
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Table B.2: YOLOv4P5 DS accuracy and mAP@0.3.

Frame No. Manually Counted Automatically Counted Accuracy mAP@0.3

1 29 22 76% 95%
2 37 29 78% 93%
3 41 34 83% 96%
4 58 41 71% 92%
5 47 34 72% 92%
6 52 37 71% 79%
7 47 34 72% 91%
8 45 46 98% 93%
9 56 44 79% 96%

10 43 36 84% 94%
11 38 31 82% 95%
12 38 29 76% 92%
13 54 44 81% 97%
14 56 44 79% 92%
15 57 43 75% 95%
16 48 27 56% 89%
17 45 35 78% 92%
18 36 25 69% 91%

Table B.3: YOLOv4P5 WH accuracy and mAP@0.3.

Frame No. Manually Counted Automatically Counted Accuracy mAP@0.3

1 29 28 97% 96%
2 37 32 86% 98%
3 41 39 95% 91%
4 58 50 86% 95%
5 47 44 94% 94%
6 52 42 81% 87%
7 47 44 94% 88%
8 45 42 93% 92%
9 56 53 95% 97%

10 43 36 84% 96%
11 38 36 95% 94%
12 38 37 97% 95%
13 54 53 98% 97%
14 56 51 91% 91%
15 57 52 91% 96%
16 48 39 81% 89%
17 45 42 93% 98%
18 36 28 78% 90%
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Table B.4: YOLOv4P5 WHR accuracy and mAP@0.3.

Frame No. Manually Counted Automatically Counted Accuracy mAP@0.3

1 29 27 93% 89%
2 37 32 86% 96%
3 41 35 85% 95%
4 58 51 88% 94%
5 47 43 91% 96%
6 52 45 87% 82%
7 47 41 87% 89%
8 45 44 98% 93%
9 56 47 84% 94%

10 43 35 81% 94%
11 38 34 89% 96%
12 38 34 89% 92%
13 54 48 89% 98%
14 56 53 95% 90%
15 57 50 88% 96%
16 48 31 65% 90%
17 45 38 84% 91%
18 36 30 83% 89%

Table B.5: YOLOv4P6 DS accuracy and mAP@0.3.

Frame No. Manually Counted Automatically Counted Accuracy mAP@0.3

1 29 28 97% 92%
2 37 33 89% 95%
3 41 40 98% 95%
4 58 56 97% 92%
5 47 43 91% 93%
6 52 44 85% 86%
7 47 43 91% 88%
8 45 48 93% 95%
9 56 50 89% 97%

10 43 38 82% 95%
11 38 35 92% 94%
12 38 35 92% 92%
13 54 49 91% 98%
14 56 52 93% 91%
15 57 51 89% 97%
16 48 36 75% 90%
17 45 39 87% 93%
18 36 29 81% 90%
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Table B.6: YOLOv4P6 WH accuracy and mAP@0.3.

Frame No. Manually Counted Automatically Counted Accuracy mAP@0.3

1 29 24 83% 89%
2 37 27 73% 89%
3 41 35 85% 96%
4 58 48 83% 96%
5 47 35 74% 94%
6 52 39 75% 82%
7 47 36 77% 78%
8 45 39 87% 91%
9 56 40 71% 90%

10 43 32 74% 89%
11 38 31 82% 92%
12 38 33 87% 92%
13 54 46 85% 98%
14 56 45 80% 88%
15 57 49 86% 95%
16 48 31 65% 82%
17 45 36 80% 94%
18 36 27 75% 93%
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