
����������
�������

Citation: Sulemane, S.;

Matos-Carvalho, J.P.; Pedro, D.;

Moutinho, F.; Correia, S.D. Vineyard

Gap Detection by Convolutional

Neural Networks Fed by

Multi-Spectral Images. Algorithms

2022, 15, 440. https://doi.org/

10.3390/a15120440

Academic Editors: Laura Antonelli

and Lucia Maddalena

Received: 2 November 2022

Accepted: 19 November 2022

Published: 22 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Vineyard Gap Detection by Convolutional Neural Networks
Fed by Multi-Spectral Images
Shazia Sulemane 1 , João P. Matos-Carvalho 2,* , Dário Pedro 3 , Filipe Moutinho 1,4

and Sérgio D. Correia 2,5

1 NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
2 Cognitive and People-Centric Computing (COPELABS), Lusófona University, Campo Grande 376,

1749-024 Lisboa, Portugal
3 Beyond Vision, 3830-352 Ílhavo, Portugal
4 Center of Technology and Systems, UNINOVA, 2829-516 Caparica, Portugal
5 VALORIZA–Research Centre for Endogenous Resource Valorization, Instituto Politécnico de Portalegre,

Campus Politécnico n.10, 7300-555 Portalegre, Portugal
* Correspondence: joao.matos.carvalho@ulusofona.pt

Abstract: This paper focuses on the gaps that occur inside plantations; these gaps, although not
having anything growing in them, still happen to be watered. This action ends up wasting tons
of liters of water every year, which translates into financial and environmental losses. To avoid
these losses, we suggest early detection. To this end, we analyzed the different available neural
networks available with multispectral images. This entailed training each regional and regression-
based network five times with five different datasets. Networks based on two possible solutions
were chosen: unmanned aerial vehicle (UAV) depletion or post-processing with external software.
The results show that the best network for UAV depletion is the Tiny-YOLO (You Only Look Once)
version 4-type network, and the best starting weights for Mask-RCNN were from the Tiny-YOLO
network version. Although no mean average precision (mAP) of over 70% was achieved, the final
trained networks managed to detect mostly gaps, including low-vegetation areas and very small
gaps, which had a tendency to be overlooked during the labeling stage.

Keywords: artificial intelligence; convolutional neural networks; image processing; You Only Look
Once; semantic segmentation; precision agriculture; multi-spectral vision; unmanned aerial vehicle

1. Introduction

The increasing threat of global warming significantly affects the agricultural industry.
This can be considered crucial for obtaining a decent quality of life for humans and deals
with significant challenges, although contributing little to the global gross domestic product
(GDP) [1,2]. One of the challenges to be fixed or diminished by the current research is
water waste in agriculture that arises when a place within a crop field fails to grow plants.
These spots are still watered by some irrigation systems, which results in water being
wasted, monetary losses, and more energy wasted in watering [3,4]. The current methods
of identifying these gaps include manual labor, which is expensive and inefficient due
to the limited number of personnel available, the size of the fields, and the amount of
time it takes. This motivated the search for methods to analyze vast swaths of land and
quickly identify those gaps. To that end, modern developments in the agricultural research
field will be the subject of research and could be employed as solutions for this matter.
Nowadays, conventional agriculture is transitioning to a more digital and automatic version
of itself, usually known as precision agriculture (PA), characterized by its usage of sensors,
robotics, networks, and other engineering schemes to achieve more significant productivity
and reduce energy and time waste. The technological upgrade in agriculture also led
to the usage of unmanned aerial vehicles (UAV) [5–7], convolutional neural networks

Algorithms 2022, 15, 440. https://doi.org/10.3390/a15120440 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15120440
https://doi.org/10.3390/a15120440
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-3922-2124
https://orcid.org/0000-0001-9409-7736
https://orcid.org/0000-0001-7273-8862
https://orcid.org/0000-0002-0930-7418
https://orcid.org/0000-0003-1111-3513
https://doi.org/10.3390/a15120440
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15120440?type=check_update&version=2


Algorithms 2022, 15, 440 2 of 23

(CNN), wireless sensor networks [8], and Internet of Things (IoT) [9] as solutions for
stage identification and supervision of crop maturation, inefficient irrigation systems, and
transitioning conventional agriculture to a more sustainable industry overall [10].

Considering the above discussion, the current work proposes a methodology based on
artificial intelligence (AI) and computer vision, where images obtained by a UAV are used to
detect gaps in crop fields. In addition, the current study determines which combination of
CNN and multi-spectral index could offer a better solution to be deployed in an UAV-based
framework. The developed methodology would then help farmers rapidly identify trouble
areas and solve the issue by replanting or avoiding irrigation of the area. Image maps are
generated and fed to a CNN—the state-of-the-art method for computer vision tasks such
as classification. This allows better detection and classification than traditional methods,
since those lack the adaptability to new image data, lighting, and size without reworking
the original algorithm [11]. On the one hand, artificial intelligence and CNN have been
successfully used in several scientific fields, such as fashion [12], localization [13–15], and
digital health [16]. On the other hand, UAV and artificial intelligence in conjunction have
also been successfully applied in PA for crop disease identification [17] or flower classi-
fication [18,19]. Nevertheless, and as far as the author’s knowledge goes, gap detection,
namely, for vineyard crops, has not been considered in the scientific literature.

The CNN networks that are the focus here can be categorized as regression-based
networks, which include all YOLO network versions [20], and regional-based networks,
from which we considered here the Mask-RCNN [21], as an example. The YOLO networks
work by splitting an image into a S × S grid, and for each cell, predicting confidence
scores and bounding boxes, where S is the two-dimensional grid size in pixels. Region-
based Mask-RCNN networks, which are adaptations of RCNN networks [22], can perform
semantic segmentation and work by feeding different regions of the input image into the
network. Although region-based networks are known to be more accurate, regression-
based networks are usually quicker and can work in real time, unlike the former. Since the
final network is supposed to be deployed in a drone, it would be advantageous, although
not necessary, to be able to work in real-time, since that decreases the amount of time taken
into detecting the plantation gap [20,23].

Besides considering which type of CNN network can be the best solution for detecting
gaps, the data used in training said networks are also compared. The input images used
included multi-spectral images and color image formats; these are listed below. Each one of
these image types was generated through the mounted camera on the drone. The generated
maps followed the aesthetic characteristics observed in Figure 1. These image maps
represented entire fields spanning kilometers in length where each pixel was equivalent to
3 cm in the ground, and as mentioned previously, by looking in the original image maps,
only the bigger gaps were easily identifiable by the researchers without zooming.

• NDWI is used for remote sensing of vegetation water from space. This type of
supervision is used in agriculture and forest monitoring for fire risk evaluation, and is
particularly suitable in the context of climate change. NDWI is responsive to changes
in the water content of leaves in vegetation canopies and is less sensitive than NDVI
to atmospheric changes [24]

• CIR uses the near-infrared (NIR) portion of the electromagnetic spectrum. This type of
imagery is very useful when detecting different plant species, since the hue variations
are more pronounced than in the visible light spectrum. CIR can also be used to detect
changes in soil moisture [25].

• RGB is the most common image data available, being that it recreates images in the
visible light spectrum. RGB is an additive color model where three colors—red, green,
and blue—are combined to create a bigger color spectrum. From RGB, one can create
GS images with image processing techniques, although, in this instance, several GS
images were already provided, so it was chosen not to increase their number by
converting the RGB images.



Algorithms 2022, 15, 440 3 of 23

• NDRE combines NIR and a band between visible red and NIR. This index is very
similar to NDVI but is more sensitive to different stages of crop maturation and is
more suitable than NDVI for later crop seasons, after the vegetation has accumulated
a bigger concentration of chlorophyll. This makes it so that NDRE is more fit for the
entire cultivation season [26].

• NDVI is the oldest remote sensing technique used for vegetation monitoring. By
observing different types of wavelengths (visible and non-visible light), one can
determine the density of green vegetation in a patch of land. The pigment chlorophyll
in plant leaves absorbs visible light (from 0.4 to 0.7 µm) when doing photosynthesis,
and the cell structure of the leaves reflects NIR. This index is better applied when
trying to figure out how much plants cover a certain area, and can be great at detecting
gaps in green crops [27].

The remainder of the paper is structured as follows. Section 2 summarizes previous
related work. Section 3 provides an in-depth description of the different networks, the
image dataset, the proposed method for the preprocessing stage, and the research method-
ology. Section 4 presents the obtained results, and Section 5 critically discusses those results.
Finally, Section 6 concludes the work and discusses future research topics.

(a) (b) (c)

(d) (e)

Figure 1. Different image types of the same map. This figure includes the multispectral indices used
(figures (a,d,e)) and the color image formats (figures (b,c)). (a) NDWI, (b) CIR, (c) RGB, (d) NDRE,
and (e) NDVI.

2. Related Works

Nowadays, the use of AI and UAVs in agriculture is well documented. UAVs are
proposed as solutions for fertilizer and pesticide sprayers and crop supervision [28–31].
CNNs have been used for plant species classification, maturation stage identification, and
disease detection in crops [17,18,32], and multi-spectral imaging has been used in conjunc-
tion with these tools as a way to improve classification and supervision tactics [33–39]. For
this paper, the results were not tested in a drone. The focus was on determining which
CNNs and with which image format this could be most easily achieved. Several networks
were trained with datasets of different image formats or types for that goal.

This section outlines the different technologies that are or could be used to solve the
problem presented in the introduction. When it comes to the field of computer vision, the
histogram of gradient descent (HOG) is an algorithm that is good at distinguishing certain
features in an image while ignoring the background image data; it is particularly good at
identifying people and textual data [40]. To improve on this algorithm, researchers have
been implementing machine learning techniques that can be used in a bigger array of data
types and situations, which include the YOLO and RCNN networks.

As mentioned previously, although a real-time application is not necessary and the
system can post-process the generated image from the UAV’s multispectral camera with
exterior software, it would be advantageous to be able to detect the gaps in real-time, since
it would significantly decrease the expense and time used in analyzing the data, but this
adds a challenge, since UAV platforms do not usually have enough computing power and



Algorithms 2022, 15, 440 4 of 23

memory. The UAV would have to be able to generate the maps; input the images of the
different multispectral types and formats into the network, which would need to be saved
in memory; and return a complete map that points to the various places in the plantation
where gaps were identified. Due to the sizes of the networks, it was decided to train YOLO
and Tiny-YOLO versions of the original YOLO, YOLOv2, YOLOv3, and YOLOv4 networks;
these are altered, more lightweight versions of the original YOLO networks. Custom
versions of YOLO have been used in UAV research for real-time applications and proven to
perform well as solutions [41–43]. Another network trained was Mask-RCNN, which, as
mentioned previously, is not able to work in real-time, and therefore, is more appropriate in
an external software, being that in this instance the UAV would not need to spend memory
and computational power deploying the network. Mask-RCNN is one of the most common
CNNs used in semantic segmentation, which allows identifying only the pixels that are part
of the object which translates into a more precise localization of the plantation gap inside
the generated map [20–23,44–47]. When it comes to the differences between all YOLO
networks, it mainly comes down to increases in speed, accuracy, and precision from one
version to the next. YOLOv3 was based around Darknet-53, a combination of Darknet-19,
the basis of the YOLO and YOLOv2 architectures, and deep residual neural networks; and
YOLOv4’s architecture is based around CSPDarknet-53.

Another relevant part of the solution is the use of a UAV instead of other supervision
methods already in use in agriculture, for example, satellite imaging and Geographical
Information Systems (GIS) [48–51]. Satellite data are easily accessible and already archived
on the Internet and can image unlimited areas, which is advantageous in agriculture,
although this is dependent on waiting for the satellite to pass near the right area. In
addition, acquisition can easily be postponed if the weather conditions are not ideal. When
it comes to GIS, the resolution is dependent on the size of the raster cell, which is inversely
proportional to the resolution; this makes it so that one must find a balance between
processing time and storage [52]. By using a UAV, visual information that has better
resolution can be obtained, allowing the system to detect smaller gaps, during cloudy and
non-cloudy days, at any time, without having to wait for the satellite to pass that region;
and since the UAV is equipped with a multi-spectral camera, the maps can be generated
instantly and later be processed.

This paper presents the results of training and testing Tiny-YOLO, YOLO, Tiny-
YOLOv2, Tiny-YOLOv3, Tiny-YOLOv4, and Mask-RCNN with six different datasets: Nor-
malized Difference Vegetation Index (NDVI), Normalized Difference Red-Edge (NDRE),
Normalized Difference Water Index (NDWI), RGB (Red-Green-Blue), Gray-Scale (GS), and
Color Infrared (CIR). When choosing the networks, it was important to take into account
the limited computational power of UAVs. Regardless, this method was prioritized over
other methods—for example, GIS and satellite imaging with cloud processing, because
UAV allows the system to be used at any time, independently of weather conditions, unlike
satellite imaging. The chosen networks all have the capability of being deployed in the
final system due to being light in comparison with their full network counterparts.

3. Materials and Methods

We started by preprocessing the images, since the generated maps had a resolution
of 3665 × 2539, which made it so that only the bigger gaps were easily identified. This
is not ideal, since smaller gaps needed to be detected as well, and YOLO networks have
difficulties with classifying smaller objects, as discussed in [20]. To improve detection,
every map was cropped into smaller regions of 406 × 406, which made the creation of
bounding boxes and polygons (in Mask-RCNN’s case) of the objects easier and helped the
networks identify smaller gaps as a result. Cropping each map into several smaller images
also increased the amount of data available for training and testing.

Firstly, only the regression-based networks were trained; this was decided so that
the resulting weights could be reused as starting weights when training Mask-RCNN.
Using pre-trained weights, also known as transfer learning [53,54], is a technique used



Algorithms 2022, 15, 440 5 of 23

when the knowledge gained from solving a certain problem is reused in a different but
related problem. Since the regression-based networks were previously trained to identify
rectangular regions encapsulating the gaps, these weights can be used to train Mask-RCNN,
where the objective is to identify only the pixels related to the objects which would be
inside these bounding boxes. The use of transfer learning with Mask-RCNN is common
and shown to result in reliable systems that can correctly identify objects [55,56]. Mask-
RCNN was fine-tuned to the dataset which only included training the region proposal
network (RPN), the mask head layers, and the classifier layers, since the starting weights
were already pre-trained. Fine-tuning is another technique of transfer learning where
the network is not trained from the ground up and instead only the classification layers
are re-trained with the new data; this is a technique applied to reduce the amount of
training time [57,58]. Later in the research process, more maps were available, and since
the results of the fine-tuning Mask-RCNN were not satisfactory, as will be discussed later,
the new maps were processed and added to the datasets, and all layers of Mask-RCNN
were retrained for a longer period. With this, all training procedures can be neatly divided
into three distinct stages, listed below, where the parameters and methodology of each
stage are described.

• Stage 1: Training all regression-based networks. For this, the networks in this reposi-
tory [59] were trained with the following configurations: height and width of 406 pixels
for input images, 32 batches, 4 subdivisions, 3 channels, momentum of 0.9, 0.0005
decay rate, 1.5 for saturation and exposure, a hue of 0.1, a learning rate of 0.001, and a
maximum number of batches of 4000. The maximum number of batches determines
how long the network will train for. The parameters of the network were not altered
from the defaults found in the repository at any stage of training.

• Stage 2: Training ‘head’ layers of Mask-RCNN for 30 epochs. These layers included
the region proposal network (RPN), the mask head layers, and the classifier layers.
We used the Mask-RCNN network in this repository [60]. This network is based on
feature pyramid network (FPN) and a ResNet101 as a backbone. The resulting weights
of Stage 1 were fed as starting weights for Mask-RCNN. The configurations were not
changed from the default ones in the repository configuration files.

• Stage 3: Continuation of Mask-RCNN training, but this time with ‘all’ layers being
trained for 50 epochs. The same repository of Stage 2 was used once again, with the
same configurations. The resulting weights of Stage 2 were used as starting weights
for this stage.

The camera used to photograph the different crop fields was a MicaSense RedEdge-
MX™. This camera has a resolution of 1280 × 960, a sensor size of 4.8 mm × 3.6 mm, a
focal length of 5.4 mm, and a field of view of 47.2 degrees horizontally and 35.4 degrees
vertically [61]. This camera was mounted onto the UAV and records five different multi-
spectral band channels [31,62,63].

Although all regression-based networks can be applied to analyze and detect objects,
in this situation, the objective was to deploy the best solution into a UAV, which does not
flaunt a huge amount of memory [31]. Therefore, according to what was possible to train
with the provided hardware, the tiny versions of the different YOLO networks, and YOLO
(see Appendix A), were trained once for every training dataset.

The hardware used for training the networks presented in Table 3 was a computer
with a processor Intel® Core™ i7-9750H CPU @ 2.60 GHz × 12 and a NVIDIA GeForce
GTX 1660 Ti/PCIe/SSE2 graphics card, and the languages and frameworks used were
Python, Tensorflow, Keras, and OpenCV.

In this section, there are two subsections: images and datasets, and code and reposito-
ries. The images and datasets section is where we explain the differences between all image
format types used in this research and the amounts of data in our datasets, and the code
and repositories section presents the explanations of all code developed and repositories
used to complete this paper’s research.



Algorithms 2022, 15, 440 6 of 23

3.1. The Images and Datasets

Before training and testing, a dataset was created for each image format mentioned
(see Figure 1). The generated maps were divided by file types, and one class object was
identified in every image—the vine gap. The manual identification was made by one
person. The software used to manually draw the bounding boxes is mentioned in the
next section.

Images were prepared before training the CNN; this included cropping each map into
same-sized pieces, that could or could not be overlapped with one another. Cropping the
map into smaller images resulted in a closer look into a certain space of the field. By using
zoomed images of fixed spaces, the neural networks can more easily detect the gaps in an
image. This allows YOLO [20], and its successors, to work better, since YOLO networks
give worse results when objects are farther away.

In Figure 2, the bounding boxes and labeled regions include parts of the top and
bottom vegetation, which trained the networks to search for gaps encapsulated by plants.
Although this is a better way to identify objects and regions, as it will be discussed, networks
struggled with patches of dirt that mimicked these characteristics. As mentioned before,
later in the research process, more generated maps were received, which were integrated
into the datasets and increased the amount of data available to retrain Mask-RCNN. In
Table 1, we describe the number of images we had, after cropping each map, for each image
type, and how much data we used in training and testing. We implemented a cropping
algorithm (see Algorithm 1) that in conjunction with Algorithm 2 automatically divided
each set into two subsets (training and testing) by giving a percentage of approximately
how many images we wanted for testing. As shown in Table 1, we used 10% first, and later,
when we received more images, we increased the testing data to approximately 20% due to
having more images. As seen in Tables 1 and 2, the percentage amounts were not fixed;
instead, they averaged out to the percentages discussed previously of 90–10% and 80–20%;
this is because, as it was studied, there were no advantages in achieving perfect ratios in
this case, and its effects would have been small, since it would have changed the datasets
by a couple of images.

Table 1. Number of images per multi-spectral index. First dataset used for training. Total: total
number of images; Train: total number of images used in training; Test: total number of images used
for testing. Approximately 10% of Total was used for testing.

Multi-Spectral Index Total Train Perc. (%) Train Test Perc. (%) Test

RGB 1696 1590 94% 106 6%
CIR 1575 1414 90% 161 10%
NDWI 1575 1418 90% 157 10%
NDRE 1352 1226 91% 126 9%
NDVI 327 281 86% 41 14%
GS 650 583 90% 67 10%

Table 2. Number of images per multi-spectral Index. Second dataset used for training. Total: total
number of images; Train: total number of images used in training; Test: total number of images used
for testing. Approximately 20% of Total was used for testing.

Multi-Spectral Index Total Train Perc. (%) Train Test Perc. (%) Test

RGB 2429 1906 78% 523 22%
CIR 2018 1586 79% 432 21%
NDWI 2018 1615 80% 403 20%
NDRE 1795 1397 78% 398 22%
NDVI 665 554 83% 111 17%
GS 650 505 78% 145 22%



Algorithms 2022, 15, 440 7 of 23

Figure 2. Manual identification of plantation gaps. As observed, we included parts of the vegetation
inside the ground truth boxes (dashed line) and polygons (continuous line and colored areas).

Algorithm 1 Crop images with overlap

Find every X and Y that defines the borders of the new images
for every yvalue in Y do

for every xvalue in X do
Split the image according to the coordinates
if Cropped image only contains alpha values then

Skip Image
end if
Save cropped image as a new image

end for
end for

Algorithm 2 Separate images into train batch and test batch

Create a parent folder with each image format separated into different folders
Percentage = fraction of images going into the test batch
for every folder in directory do

for every file in folder do
Choose a random number in an interval
if number < percentage then

Move image to test batch folder
else

Move image to train batch folder
end if

end for
end for

3.2. The Code and Repositories

Starting with the datasets, there were two steps: cropping each map into smaller,
more manageable sections of about 406 × 406 pixels, separating them into their respective
training and testing datasets. At no point was the resolution of the input images changed
when training the networks. When it came to the order of tasks, firstly Algorithm 1 was
used to crop, with an overlap of 25%, and then Algorithm 2 organized them into training
and test datasets.

Algorithm 1 was developed to crop each map into the same number of cropped
images; these images were then saved into their respective folders that identified their



Algorithms 2022, 15, 440 8 of 23

multi-spectral properties or image formats and saved under the same name when they
were of the same region in similar maps, as represented in Figure 3. By giving the images
in Figure 3 the same name, the bounding boxes only needed to be identified once, and
generalized to the other same-named images on other datasets, which considerably reduced
the preparation time.

(a) (b) (c)

Figure 3. Example of cropped images from the same map in different multi-spectral indices. All 3
images share the same name in their respective datasets. (a) CIR, (b) NDWI, (c) RGB.

Algorithm 2 was created to split each original dataset into two smaller collections of
images, one for training and another for testing. When it came to the first datasets (see
Table 1), a value of 0.1 was used for the percentage variable, and for the final datasets
(see Table 2) the percentage value was 0.2. This explains why the train and test batches
were not neatly divided into 90% and 10%, or 80% and 20%„ since the algorithm decided,
based on the random chance, if an image was going to the train set or test set, but as can be
observed in Tables 1 and 2, each set, on average, was approximately 10% or 20% test data,
as appropriate.

The true bounding boxes were defined using the repository YOLO-MARK from [64],
and for the polygon regions for Mask-RCNN training, VGG Image Annotator [65] was
used, for both training and testing datasets. These annotators require the presence of a
researcher to manually delimit each rectangular ground truth box and polygon vertex. This
method is very time expensive, but each vertex coordinate is saved in a file to later be fed
into the network during the training stage.

It should be noticed that not every gap was caught and marked for training. These
unmarked gaps that can be easily detected by human eyes were not chosen because it
was determined that since these ’gaps’ had some minimal amount of vegetation, this
could create uncertainty in the network; therefore, the gaps chosen were to be as empty of
vegetation as possible, with top and bottom edges very defined. This does not exclude the
human error that certainly arose during the manual delimitation of ground truth boxes.

Additionally, due to generating the maps at different times of day, the dataset is
filled with images that, although they are from the same multi-spectral index, they are
visibly dissimilar, which diversified each dataset. Further, some maps are diagonal or have
slight angles, and some seem to have a more zoomed in picture of the field. With these
slight variations, the chances of overfitting are smaller, and the resulting weights can be
generalized more easily to different fields and times of the day.

4. Results

To evaluate and assess the quality of the different methods, standard performance
metrics for object detection or instance segmentation were employed [66]. To that end,
the AP50 values for each pair of network and dataset were compared; those happen to be
the bigger numbers, and AP75 resulted in very small percentages; this is due to the way
AP50 and AP75 are calculated, being that AP50 counts as true a detection whose predicted
bounding box overlaps 50% of the truth bounding box, which is equivalent to having an



Algorithms 2022, 15, 440 9 of 23

intersection over union (IoU) of 0.5, whereas AP75 needs an overlap of 75% (IoU of 0.75),
which were the settings used for Tables 3 and 4. Therefore, if the ratio between the truth
and predicted bounding boxes were to be diminished to 10%, the overall average precision
would increase, which is demonstrated in Table 5.

4.1. Results of Training Regression Based Networks

The results shown in Table 3 were obtained by training the networks in [59] for a
maximum number of batches of 4000 and passing each test dataset in Table 1 through the
resulting networks to get the average precision (AP) values for IoU of 0.5 and 0.75. By
looking at Table 3 and comparing all AP50, one can infer that the best dataset to use for
training was the RGB dataset, and the best network was Tiny-YOLOv4, which yielded the
best results, both with an IoU of 0.50 and an IoU of 0.75.

Table 3. Regression based networks training. AP50: average precision with IoU of 0.5; AP75: average
precision with IoU of 0.75; Train: dataset used in training; Method: Network used for training.

Method Train AP50 AP75

YOLO RGB 41.61% 2.07%
Tiny-YOLO RGB 26.52% 0.30%
Tiny-YOLOv2 RGB 38.67% 6.65%
Tiny-YOLOv3 RGB 56.73% 11.82%
Tiny-YOLOv4 RGB 61.47% 19.62

YOLO CIR 31.72% 2.79%
Tiny-YOLO CIR 21.93% 0.49%
Tiny-YOLOv2 CIR 28.58% 1.16%
Tiny-YOLOv3 CIR 49.82% 4.92%
Tiny-YOLOv4 CIR 52.87% 12.39%

YOLO NDRE 11.10% 1.34%
Tiny-YOLO NDRE 4.37% 0.01%
Tiny-YOLOv2 NDRE 16.65% 0.76%
Tiny-YOLOv3 NDRE 46.20% 6.57%
Tiny-YOLOv4 NDRE 50.86% 11.96%

YOLO NDWI 4.42% 0.00%
Tiny-YOLO NDWI 0.67% 0.00%
Tiny-YOLOv2 NDWI 17.16% 0.57%
Tiny-YOLOv3 NDWI 42.97% 3.23%
Tiny-YOLOv4 NDWI 46.34% 4.09%

YOLO GS 20.09% 0.30%
Tiny-YOLO GS 11.99% 0.44%
Tiny-YOLOv2 GS 14.51% 1.89%
Tiny-YOLOv3 GS 29.61% 8.55%
Tiny-YOLOv4 GS 32.28% 10.04%

YOLO NDVI 21.63% 3.33%
Tiny-YOLO NDVI 18.61% 0.26%
Tiny-YOLOv2 NDVI 18.13% 0.11%
Tiny-YOLOv3 NDVI 27.79% 3.00%
Tiny-YOLOv4 NDVI 21.25% 6.11%

The results observed by passing the test images through each network, and different
weights, show that the confidence values usually are higher in Tiny-YOLOv4, which is
the network that gave the best results overall—consistently above 30%. he other networks
returned more inconsistent values (between 10% and 80%) with more false positives.
However, this is not how it evolved when looking at each individual dataset. Sometimes,
confidence values increased and decreased from network to network; for example, in
Figure 4, the confidence values seem to increase from Tiny-YOLOv3 to Tiny-YOLOv4 but
decrease slightly from Tiny-YOLOv2 to Tiny-YOLOv3. This of course is not consistent



Algorithms 2022, 15, 440 10 of 23

with all detections but an overall observation after looking at a random set of images from
the test dataset. The NDRE and NDWI datasets started the worst with none to very few
detections in the random set, from Tiny-YOLO and YOLO, which could be expected, since
those were not able to achieve an AP50 above 45%. Slight increases in detections were
observed with the latter networks, Tiny-YOLOv3 and Tiny-YOLOv4; and at this point, two
detections of the same gap became rare unlike with the previous networks. There were not
found at any point, in this random test set, situations where the networks categorized a
path as a gap, but other errors occurred: as seen in Figure 4, sometimes trees confused the
networks into believing there were gaps.

(a) (b) (c)

(d) (e)

Figure 4. Examples of regression-based networks’ results with predicted boxes from the respective
networks, and confidence values for each object identified. Dataset: RGB; (a): Tiny-YOLO; (b): YOLO;
(c): Tiny-YOLOv2; (d): Tiny-YOLOv3; (e): Tiny-YOLOv4.

4.2. Results of Training Mask-RCNN ‘head’ Layers

After training all regression-based networks individually, the region-based network
was trained, Mask-RCNN. Since there were already 30 weights from the previous round of
training from all the regression networks, for each dataset, those were the optimal starting
weights to use in the next two rounds.

The scripts used to convert the weights files into h5 files to use for training Mask-
RCNN were [67] for YOLO, Tiny-YOLO, and Tiny-YOLOv2 weights; Ref. [68] for Tiny-
YOLOv3 weights; and [69] for Tiny-YOLOv4 weights. Furthermore, using the hardware
previously mentioned, it was only possible to train the ‘heads’ of the Mask-RCNN network,
which included the RPN, classifier, and mask head layers.

The hardware used in training the results presented in Table 4 was again the com-
puter with an Intel® Core™ i7-9750H CPU @ 2.60 GHz × 12 processor and a NVIDIA
GeForce GTX 1660 Ti/PCIe/SSE2 graphics card, and Google Colab [70] was used for time
management purposes.

By looking at Table 4, one can conclude that the best dataset for this stage of training
was the GS dataset, and the best outcome came from training Mask-RCNN with weights
from Tiny-YOLOv3. In this initial training stage, the AP values were expected to be small,



Algorithms 2022, 15, 440 11 of 23

due to the smaller number of epochs, and since the only layers being trained were the ’head’
layers, most of the layers were not trained. In conclusion, only training the ’head’ layers
was not enough for obtaining good AP, similar to the values in Table 3. When it came to the
best starting weights for training, they did not follow the previous results in Table 3, since
Tiny-YOLOv4 did not perform as well and Tiny-YOLOv3 performed the best. This could
have been due to different conversions of the weight files, due to the different architectures,
which could heavily have influenced the first 30 epochs of training.

Table 4. Mask-RCNN ‘heads’ layers training for 30 epochs. Method: weights used + Mask-RCNN;
Train: dataset used in training; AP50: average precision with an IoU of 0.5; AP75: average precision
with an IoU 0.75.

Method Train AP50 AP75

YOLO + Mask-RCNN RGB 21.42% 1.52%
Tiny-YOLO + Mask-RCNN RGB 36.30% 4.03%
Tiny-YOLOv2 + Mask-RCNN RGB 33.72% 2.17%
Tiny-YOLOv3 + Mask-RCNN RGB 31.71% 3.78%
Tiny-YOLOv4 + Mask-RCNN RGB 7.12% 0.12%

YOLO + Mask-RCNN CIR 24.48% 1.66%
Tiny-YOLO + Mask-RCNN CIR 36.67% 3.34%
Tiny-YOLOv2 + Mask-RCNN CIR 23.96% 0.93%
Tiny-YOLOv3 + Mask-RCNN CIR 36.02% 4.50%
Tiny-YOLOv4 + Mask-RCNN CIR 19.30% 1.16%

YOLO + Mask-RCNN NDRE 4.55% 0.47%
Tiny-YOLO + Mask-RCNN NDRE 0.11% 0.0%
Tiny-YOLOv2 + Mask-RCNN NDRE 0.02% 0.0%
Tiny-YOLOv3 + Mask-RCNN NDRE 5.68% 1.94%
Tiny-YOLOv4 + Mask-RCNN NDRE 0.0% 0.0%

YOLO + Mask-RCNN NDWI 2.22% 0.0%
Tiny-YOLO + Mask-RCNN NDWI 1.68% 0.0%
Tiny-YOLOv2 + Mask-RCNN NDWI 11.69% 0.61%
Tiny-YOLOv3 + Mask-RCNN NDWI 9.14% 0.0%
Tiny-YOLOv4 + Mask-RCNN NDWI 1.20% 0.0%

YOLO + Mask-RCNN NDVI 45.65% 6.88%
Tiny-YOLO + Mask-RCNN NDVI 23.41% 1.61%
Tiny-YOLOv2 + Mask-RCNN NDVI 37.95% 6.76%
Tiny-YOLOv3 + Mask-RCNN NDVI 0.07% 0.0%
Tiny-YOLOv4 + Mask-RCNN NDVI 9.87% 0.0%

YOLO + Mask-RCNN GS 35.32% 6.46%
Tiny-YOLO + Mask-RCNN GS 23.32% 1.75%
Tiny-YOLOv2 + Mask-RCNN GS 18.91% 3.20%
Tiny-YOLOv3 + Mask-RCNN GS 46.48% 6.48%
Tiny-YOLOv4 + Mask-RCNN GS 15.38% 0.04%

At this point in training, some common issues arose that were expected to go away
or diminish by the time Mask-RCNN finished the second stage of training. By looking
at Figure 5, it can be seen that the exit of the network usually detects more and smaller
gaps than those marked; this is not particularly a bad thing, but is indicative of the fact
that most marked gaps are smaller in size. At this point in testing the network still did not
differentiate between paths and actual plantation gaps, this was particularly difficult to get
rid of since, as seen in Figure 6, these paths sometimes are very similar to gaps.



Algorithms 2022, 15, 440 12 of 23

(a) (b)

Figure 5. Examples of Mask-RCNN, after training ‘head’ layers for 30 epochs, detecting too many
objects. Dataset: CIR; Weights: Tiny-YOLO; (a): Original; (b): Detected.

(a) (b)

Figure 6. Examples of Mask-RCNN, after training ‘head’ layers for 30 epochs, miscategorizing the
path. Dataset: GS; Weights: Tiny-YOLO; (a): Original; (b): Detected.

Some datasets, such as NDRE, NDVI, and NDWI, also tended to either have too many
detected gaps or none at all, as seen in Figure 7. There could be two ways of looking at it:
the first and the one that probably has more influence on the results is the smaller amount
of training images; the other is that these images have generally less contrast, which can
either lead to nothing being detected or everything being detected as a gap.



Algorithms 2022, 15, 440 13 of 23

(a) (b) (c) (d)

Figure 7. Examples of Mask-RCNN, after training ‘head’ layers for 30 epochs. Dataset: NDRE;
Weights (a,b) YOLO; (c,d) Tiny-YOLOv2; (a,c): Original; (b,d): Detected. The Detected images (b,d)
show two different network outputs in the same dataset and network. The image in (b) failed to
detect the gap in (a), and the image in (d) predicted too many gaps in (c).

At this point, the network seems to also be mostly incapable of detecting the gaps that
are closer to 45º in orientation, as seen in Figure 8. This is due to the decreased amount of
images, with crops being displayed diagonally in the dataset and the training time being
only 30 epochs.

(a) (b)

Figure 8. Examples of Mask-RCNN, after training ‘head’ layers for 30 epochs, failing to detect
diagonal objects. Dataset: RGB; Weights: Tiny-YOLOv2; (a): Original; (b): Detected.

4.3. Results of Training Mask-RCNN ‘all’ Layers

At this point, as mentioned previously in Section 3.1, new images were added to some
of the datasets (see Tables 1 and 2), so the dataset images were once again shuffled using
Algorithm 2 into the train or test sets before training.

The hardware used in training the networks presented in Table 5 was a computer with
a processor Intel® Core™ i7-8700 CPU @ 3.20 GHz × 12 and a graphics card GeForce RTX
2070 SUPER/PCIe/SSE2. The computer was changed because the code could not run in
the previous one due to the GPU not being able to complete the training and crashing.

The subsequent fine-tuning results presented in Table 5 infer that the best dataset
in this stage was the RGB dataset, and the best starting weights for Mask-RCNN were
the weights from Tiny-YOLO. At this point in training, some of the issues discussed in
the previous stage of training should be expected to be diminished. There were no issues
related to the prediction of too many gaps in an image observed, as discussed previously
and presented in Figure 7, although, sometimes, as seen in Figure 9, there were cases where
no objects were detected.



Algorithms 2022, 15, 440 14 of 23

Another situation where the network does not work properly is when the network
still detects objects in paths, although, this time, the predicted regions are bigger, as seen
in Figure 10. The number of predictions is multiple times greater than the number of
ground truth boxes, this is not a big problem since, as discussed previously, not every gap
was marked, and the extra predictions made can be categorized as gaps with minimal
vegetation, although not being fully empty of vegetation. This affects the AP, since the
accuracy is calculated about truth bounding boxes, if there are extra prediction boxes than
those seen as erroneous by the accuracy calculation algorithm.

(a) (b)

Figure 9. Examples of Mask-RCNN, after training ‘all’ layers for 50 epochs, failing to detect objects.
Dataset: NDRE; Weights: YOLO; (a): original; (b): detected.

(a) (b)

Figure 10. Examples of Mask-RCNN, after training ‘all’ layers for 50 epochs, miscategorizing the
path. Dataset: CIR; Weights: Tiny YOLOv4; (a): original; (b): detected.



Algorithms 2022, 15, 440 15 of 23

Table 5. Mask-RCNN ‘all’ layers training for 50 epochs. Method: weights used + Mask-RCNN; Train:
dataset used in training; AP10: average precision with an IoU of 0.10; AP50: average precision with
an IoU of 0.5; AP75: average precision with an IoU 0.75.

Method Train AP10 AP50 AP75

YOLO + Mask-RCNN RGB 66.12% 56.55% 9.64%
Tiny-YOLO + Mask-RCNN RGB 67.98% 60.88% 12.81%
Tiny-YOLOv2 + Mask-RCNN RGB 66.42% 59.10% 15.33%
Tiny-YOLOv3 + Mask-RCNN RGB 63.25% 57.46% 11.50%
Tiny-YOLOv4 + Mask-RCNN RGB 64.07% 57.69% 9.18%

YOLO + Mask-RCNN CIR 65.37% 52.56% 12.38%
Tiny-YOLO + Mask-RCNN CIR 59.92% 53.69% 13.90%
Tiny-YOLOv2 + Mask-RCNN CIR 61.90% 52.74% 8.46%
Tiny-YOLOv3 + Mask-RCNN CIR 62.83% 52.14% 11.01%
Tiny-YOLOv4 + Mask-RCNN CIR 63.53% 52.88% 5.86%

YOLO + Mask-RCNN NDRE 43.76% 24.16% 2.07%
Tiny-YOLO + Mask-RCNN NDRE 42.67% 23.60% 2.02%
Tiny-YOLOv2 + Mask-RCNN NDRE 44.77% 25.22% 3.27%
Tiny-YOLOv3 + Mask-RCNN NDRE 35.89% 21.17% 0.16%
Tiny-YOLOv4 + Mask-RCNN NDRE 42.17% 24.19% 1.17%

YOLO + Mask-RCNN NDWI 56.24% 34.98% 2.98%
Tiny-YOLO + Mask-RCNN NDWI 58.21% 40.93% 7.57%
Tiny-YOLOv2 + Mask-RCNN NDWI 52.19% 40.43% 2.38%
Tiny-YOLOv3 + Mask-RCNN NDWI 59.69% 50.98% 8.30%
Tiny-YOLOv4 + Mask-RCNN NDWI 55.05% 43.10% 7.17%

YOLO + Mask-RCNN NDVI 51.06% 40.49% 5.43%
Tiny-YOLO + Mask-RCNN NDVI 55.12% 41.92% 5.39%
Tiny-YOLOv2 + Mask-RCNN NDVI 58.69% 47.08% 3.91%
Tiny-YOLOv3 + Mask-RCNN NDVI 57.50% 48.31% 3.26%
Tiny-YOLOv4 + Mask-RCNN NDVI 60.63% 49.64% 10.46%

YOLO + Mask-RCNN GS 56.43% 53.75% 15.08%
Tiny-YOLO + Mask-RCNN GS 60.30% 56.67% 12.40%
Tiny-YOLOv2 + Mask-RCNN GS 54.90% 46.00% 5.20%
Tiny-YOLOv3 + Mask-RCNN GS 56.94% 46.45% 7.72%
Tiny-YOLOv4 + Mask-RCNN GS 61.93% 57.94% 13.28%

5. Discussion

After training all networks with each dataset and analyzing the results from the
regression-based networks, it was concluded that the best network was Tiny-YOLOv4, as
a possible solution for depletion in a UAV. The weights of Tiny-YOLO were the best as
starting weights for Mask-RCNN, which also performed well in detecting the different
polygon regions that encapsulated the different gaps, after the second stage of training.
The different networks also were able to detect additional gaps beside the ones in ground
truth boxes, which were not found in the test images of a predicted box encapsulating
vegetation. More common were false positives where the networks identified roads, and
spaces between the crops and trees as gaps in the plantation. The best dataset was the
RGB dataset, although it is important to note that the datasets were not balanced. It is not
possible to conclusively say that this is the best dataset, since it is also the biggest of all
of them, sometimes with thousands more images than some of the others. This severely
affects the end results, since this dataset also has more training data, so the networks can
better approximate in those cases.

A comment must be made about the labeling of the different polygons, since the
labeling was entirely done by one person. This is not ideal, since it leads to fewer ground
truth boxes being identified due to time constraints and human error. These situations
are better avoided with more than one person being responsible for identifying ground
truth boxes.



Algorithms 2022, 15, 440 16 of 23

Analyzing Table 6 showed that the best overall result was the solution with Tiny-
YOLOv4 and an RGB dataset. Both these results coincided with our expectations, since [20]
mentioned that the Tiny-YOLO version did not match YOLO in accuracy, so YOLO being
better than Tiny-YOLO was expected; for the rest, since every subsequent YOLO version
managed to improve on its predecessor, it was expected that, even for Tiny versions
they would follow an order of most recent to oldest YOLO. When it came to training
Mask-RCNN, the best result was with starting weights from Tiny-YOLO, after training a
combined of 80 epochs (30 epochs for head layers and 50 for all layers). As discussed in
previous chapters and sections, the results most probably were influenced by the amount
of data inside each dataset, being that RGB was the biggest dataset. Due to the different
dataset sizes, it is not possible to ensure which dataset performs better overall. To enable it,
it is necessary to recreate the conditions using the same amount of training and testing data
to be able to directly compare which image format performs best.

Table 6. The best results in each AP from each round of training and testing (Tables 3–5).

Method Train AP50 AP75

Tiny-YOLOv4 RGB 61.47% 19.62%

YOLO + Mask-RCNN (just ‘head’ layers) NDVI 45.65% 6.88%

Tiny-YOLOv3 + Mask-RCNN (just ‘head’ layers) GS 46.48% 6.48%

Tiny-YOLO + Mask-RCNN (full) RGB 60.88% 12.81%

Tiny-YOLOv2 + Mask-RCNN (full) RGB 59.10% 15.33%

6. Conclusions

In this paper, multiple regression-based networks—YOLO, Tiny-YOLO, Tiny-YOLOv2,
Tiny-YOLOv3, and Tiny-YOLOv4—were trained with different datasets comprised of maps
made from different multi-spectral indexes, in order to determine which combination
resulted in the best network to be employed in a drone for detection of gaps in a vine planta-
tion. Besides the regression-based networks mentioned, Mask-RCNN was trained with the
weights resulting from the regression-based training sessions, with the respective datasets.

This study was an initial attempt at resolving the issue of plantation gap detection
using UAV imagery. One issue that still is unresolved is the false positives detected in
paths, which are very similar to gaps. The false positives can be diminished by training the
networks for a longer period but, since not every gap was labeled, this would teach the
networks to ignore smaller or low-vegetation gaps most of the time. Future improvements
include a better dataset with all data labeled correctly, which can be achieved using the
final weights in this study, and later removing any incorrect identification. Having this
dataset would mean that the networks could be trained for longer periods of time without
learning to ignore less obvious gaps.

With this research, the work presented can continue by generalizing these networks
to detect more than gaps. By using multi-spectral images, the system can also be trained
into detecting parts of the crops where the vegetation is drier and use that information to
control the irrigation system in order to avoid watering gaps and places where the plants
and soil still have acceptable levels of humidity. The supervision of humidity in a certain
field can be done with NDWI and NDVI images with the help of UAV imagery, as seen
in [71].

Further studies could be made where the different variables are diminished or erased,
or new studies focused on different types of agricultural issues could continue from here,
where the best multi-spectral indexes, image formats, and networks can be determined and
employed into a drone as solutions.



Algorithms 2022, 15, 440 17 of 23

Author Contributions: Conceptualization, S.S. and J.P.M.-C.; methodology, S.S., J.P.M.-C. and D.P.;
software, S.S.; validation, S.S., D.P., F.M. and S.D.C.; formal analysis, S.S., J.P.M.-C. and F.M.; inves-
tigation, S.S. and J.P.M.-C.; resources, D.P.; data curation, D.P. and S.D.C.; writing—original draft
preparation, S.S.; writing—review and editing, F.M. and S.D.C.; visualization, S.S. and J.P.M.-C.;
supervision, J.P.M.-C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by Fundação para a Ciência e a Tecnologia under
Projects UIDB/00066/2020, UIDB/04111/2020, foRESTER PCIF/SSI/0102/2017, and IF/00325/2015;
Instituto Lusófono de Investigação e Desenvolvimento (ILIND) under Project COFAC/ILIND/
COPELABS/1/2020; Project “(Link4S)ustainability—A new generation connectivity system for
creation and integration of networks of objects for new sustainability paradigms [POCI-01-0247-
FEDER-046122 | LISBOA-01-0247-FEDER-046122]” is financed by the Operational Competitiveness
and Internationalization Programmes COMPETE 2020 and LISBOA 2020, under the PORTUGAL
2020 Partnership Agreement, and through the European Structural and Investment Funds in the
FEDER component; and also IEoT: Intelligent Edge of Things under under Project LISBOA-01-0247-
FEDER-069537.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code developed and used can be accessed in the following link:
https://github.com/ShaziaSulemane/vine-gap-cnn.git (accessed on 21 October 2022), versions
Darknet19 (YOLO, Tiny-YOLOv2, Tiny-YOLOv3, Tiny-YOLOv4), Mask-RCNN. The name of the
repository is vine-gap-cnn.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Networks
RCNN Regional Convolutional Neural Networks
YOLO You Only Look Once
SSD Single Shot MultiBox Detection
SVM Multiclass Support Vector Machine
MLR Multinomial Logistic Regression
SGD Stochastic Gradient Descent
ReLU Rectified Linear Unit
mAP Mean Average Precision
fps Frames per Second
FPN Feature Pyramid Network
RoI Region of Interest
RPN Region Proposal Network
IoU Intersection over Union
FCN Fully Convolutional Network
AR Average Recall
SS Selective Search
NDWI Normalized Difference Water Index
CIR Color-Infrared
NIR Near-Infrared
RGB Red-Green-Blue
GS Gray-Scale
NDRE Normalized Difference Red-Edge
NDVI Normalized Difference Vegetation Index
UAV Unmanned Aerial Vehicle
GDP Gross Domestic Product
GS Gray-Scale
PAN Path Aggregation Network
SPP Spatial Pyramid Pooling
NMS Non Maximum Suppresion

https://github.com/ShaziaSulemane/vine-gap-cnn.git


Algorithms 2022, 15, 440 18 of 23

Appendix A. Network Architectures

Table A1. Tiny YOLO Architecture.

Layer Filters Size Input Output

0 conv 16 3 × 3 416 × 416 × 3 416 × 416 × 16
1 max 2 × 2 416 × 416 × 16 208 × 208 × 16
2 conv 32 3 × 3 208 × 208 × 16 208 × 208 × 32
3 max 2 × 2 208 × 208 × 32 104 × 104 × 32
4 conv 64 3 × 3 104 × 104 × 32 104 × 104 × 64
5 max 2 × 2 104 × 104 × 64 52 × 52 × 64
6 conv 128 3 × 3 52 × 52 × 64 52 × 52 × 128
7 max 2 × 2 52 × 52 × 128 26 × 26 × 128
8 conv 256 3 × 3 26 × 26 × 128 26 × 26 × 256
9 max 2 × 2 26 × 26 × 256 13 × 13 × 256
10 conv 512 3 × 3 13 × 13 × 256 13 × 13 × 512
11 max 2 × 2 13 × 13 × 512 13 × 13 × 512
12 conv 1024 3 × 3 13 × 13 × 512 13 × 13 × 1024
13 conv 1024 3 × 3 13 × 13 × 1024 13 × 13 × 1024
14 conv 30 1 × 1 13 × 13 × 1024 13 × 13 × 30
15 detection

Table A2. YOLO Architecture.

Layer Filters Size Input Output

0 conv 32 3 × 3 416 × 416 × 3 416 × 416 × 32
1 max 2 × 2 416 × 416 × 32 208 × 208 × 32
2 conv 64 3 × 3 208 × 208 × 32 208 × 208 × 64
3 max 2 × 2 208 × 208 × 64 104 × 104 × 64
4 conv 128 3 × 3 104 × 104 × 64 104 × 104 × 128
5 conv 64 1 × 1 104 × 104 × 128 104 × 104 × 64
6 conv 128 3 × 3 104 × 104 × 64 104 × 104 × 128
7 max 2 × 2 104 × 104 × 128 52 × 52 × 128
8 conv 256 3 × 3 52 × 52 × 128 52 × 52 × 256
9 conv 128 1 × 1 52 × 52 × 256 52 × 52 × 128
10 conv 256 3 × 3 52 × 52 × 128 52 × 52 × 256
11 max 2 × 2 52 × 52 × 256 26 × 26 × 256
12 conv 512 3 × 3 26 × 26 × 256 26 × 26 × 512
13 conv 256 1 × 1 26 × 26 × 512 26 × 26 × 256
14 conv 512 3 × 3 26 × 26 × 256 26 × 26 × 512
15 conv 256 1 × 1 26 × 26 × 512 26 × 26 × 256
16 conv 512 3 × 3 26 × 26 × 256 26 × 26 × 512
17 max 2 × 2 26 × 26 × 512 13 × 13 × 512
18 conv 1024 3 × 3 13 × 13 × 512 13 × 13 × 1024
19 conv 512 1 × 1 13 × 13 × 1024 13 × 13 × 512
20 conv 1024 3 × 3 13 × 13 × 512 13 × 13 × 1024
21 conv 512 1 × 1 13 × 13 × 1024 13 × 13 × 512
22 conv 1024 3 × 3 13 × 13 × 512 13 × 13 × 1024
23 conv 1024 3 × 3 13 × 13 × 1024 13 × 13 × 1024
24 conv 1024 3 × 3 13 × 13 × 1024 13 × 13 × 1024
25 route 16 26 × 26 × 512
26 conv 64 1 × 1 26 × 26 × 512 26 × 26 × 64
27 reorg_old /2 26 × 26 × 64 13 × 13 × 256
28 route 27 24 13 × 13 × 1280
29 conv 1024 3 × 3 13 × 13 × 1280 13 × 13 × 1024
30 conv 30 1 × 1 13 × 13 × 1024 13 × 13 × 30
31 detection



Algorithms 2022, 15, 440 19 of 23

Table A3. Tiny YOLOv2 Architecture.

Layer Filters Size Input Output

0 conv 16 3 × 3 416 × 416 × 3 416 × 416 × 16
1 max 2 × 2 416 × 416 × 16 208 × 208 × 16
2 conv 32 3 × 3 208 × 208 × 16 208 × 208 × 32
3 max 2 × 2 208 × 208 × 32 104 × 104 × 32
4 conv 64 3 × 3 104 × 104 × 32 104 × 104 × 64
5 max 2 × 2 104 × 104 × 64 52 × 52 × 64
6 conv 128 3 × 3 52 × 52 × 64 52 × 52 × 128
7 max 2 × 2 52 × 52 × 128 26 × 26 × 128
8 conv 256 3 × 3 26 × 26 × 128 26 × 26 × 256
9 max 2 × 2 26 × 26 × 256 13 × 13 × 256
10 conv 512 3 × 3 13 × 13 × 256 13 × 13 × 512
11 max 2 × 2 13 × 13 × 512 13 × 13 × 512
12 conv 1024 3 × 3 13 × 13 × 512 13 × 13 × 1024
13 conv 512 3 × 3 13 × 13 × 1024 13 × 13 × 512
14 conv 30 1 × 1 13 × 13 × 512 13 × 13 × 30
15 detection

Table A4. Tiny YOLOv3 Architecture. Layer 16: [yolo] params: iou loss: mse, iounorm: 0.75, objnorm:
1.00, clsnorm: 1.00, deltanorm: 1.00, scalexy: 1.00.

Layer Filters Size Input Output

0 conv 16 3 × 3 608 × 608 × 3 608 × 608 × 16
1 max 2 × 2 608 × 608 × 16 304 × 304 × 16
2 conv 32 3 × 3 304 × 304 × 16 304 × 304 × 32
3 max 2 × 2 304 × 304 × 32 152 × 152 × 32
4 conv 64 3 × 3 152 × 152 × 32 152 × 152 × 64
5 max 2 × 2 152 × 152 × 64 76 × 76 × 64
6 conv 128 3 × 3 76 × 76 × 64 76 × 76 × 128
7 max 2 × 2 76 × 76 × 128 38 × 38 × 128
8 conv 256 3 × 3 38 × 38 × 128 38 × 38 × 256
9 max 2 × 2 38 × 38 × 256 19 × 19 × 256
10 conv 512 3 × 3 19 × 19 × 256 19 × 19 × 512
11 max 2 × 2 19 × 19 × 512 19 × 19 × 512
12 conv 1024 3 × 3 19 × 19 × 512 19 × 19 × 1024
13 conv 256 1 × 1 19 × 19 × 1024 19 × 19 × 256
14 conv 512 3 × 3 19 × 19 × 256 19 × 19 × 512
15 conv 18 1 × 1 19 × 19 × 512 19 × 19 × 18
16 yolo
17 route 13 19 × 19 × 256
18 conv 128 1 × 1 19 × 19 × 256 19 × 19 × 128
19 upsample 2× 19 × 19 × 128 38 × 38 × 128
20 route 19 8 3 × 3 38 × 38 × 384 38 × 38 × 384
21 conv 256 1 × 1 38 × 38 × 256 38 × 38 × 256
22 conv 18 38 × 38 × 18
23 yolo



Algorithms 2022, 15, 440 20 of 23

Table A5. Tiny YOLOv4 Architecture. Layer 30: [yolo] params: iou loss: ciou, iounorm: 0.07, objnorm:
1.00, clsnorm: 1.00, deltanorm: 1.00, scalexy: 1.05 nmskind: greedynms, beta = 0.600000. Layer 37: [yolo]
params: iou loss: ciou, iounorm: 0.07, objnorm: 1.00, clsnorm: 1.00, deltanorm: 1.00, scalexy: 1.05 nmskind:
greedynms, beta = 0.600000.

Layer Filters Size Input Output

0 conv 32 3 × 3 608 × 608 × 3 304 × 304 × 32
1 conv 64 3 × 3 304 × 304 × 32 152 × 152 × 64
2 conv 64 3 × 3 152 × 152 × 64 152 × 152 × 64
3 route 2 1/2 152 × 152 × 32
4 conv 32 3 × 3 152 × 152 × 32 152 × 152 × 32
5 conv 32 3 × 3 152 × 152 × 32 152 × 152 × 32
6 route 5 4 152 × 152 × 64
7 conv 64 1 × 1 152 × 152 × 64 152 × 152 × 64
8 route 2 7 152 × 152 × 128
9 max 2 × 2 152 × 152 × 128 76 × 76 × 128
10 conv 128 3 × 3 76 × 76 × 128 76 × 76 × 128
11 route 10 1/2 76 × 76 × 64
12 conv 64 3 × 3 76 × 76 × 64 76 × 76 × 64
13 conv 64 3 × 3 76 × 76 × 64 76 × 76 × 64
14 route 13 12 76 × 76 × 128
15 conv 128 1 × 1 76 × 76 × 128 76 × 76 × 128
16 route 10 15 76 × 76 × 256
17 max 2 × 2 76 × 76 × 256 38 × 38 × 256
18 conv 256 3 × 3 38 × 38 × 256 38 × 38 × 256
19 route 18 1/2 38 × 38 × 128
20 conv 128 3 × 3 38 × 38 × 128 38 × 38 × 128
21 conv 128 3 × 3 38 × 38 × 128 38 × 38 × 128
22 route 21 20 38 × 38 × 256
23 conv 256 1 × 1 38 × 38 × 256 38 × 38 × 256
24 route 18 23 38 × 38 × 512
25 max 2 × 2 38 × 38 × 512 19 × 19 × 512
26 conv 512 3 × 3 19 × 19 × 512 19 × 19 × 512
27 conv 256 1 × 1 19 × 19 × 512 19 × 19 × 256
28 conv 512 3 × 3 19 × 19 × 256 19 × 19 × 512
29 conv 18 1 × 1 19 × 19 × 512 19 × 19 × 18
30 yolo
31 route 27 19 × 19 × 256
32 conv 128 1 × 1 19 × 19 × 256 19 × 19 × 128
33 upsample 2× 19 × 19 × 128 38 × 38 × 128
34 route 33 23 38 × 38 × 384
35 conv 256 3 × 3 38 × 38 × 384 38 × 38 × 256
36 conv 18 1 × 1 38 × 38 × 256 38 × 38 × 18
37 yolo

References
1. Kummu, M.; Taka, M.; Guillaume, J.H. Gridded Global Datasets for Gross Domestic Product and Human Development Index over

1990–2015; Nature Publishing Group: Berlin, Germany, 2018; Volume 5, pp. 1–15. [CrossRef]
2. Tang, Y.; Luan, X.; Sun, J.; Zhao, J.; Yin, Y.; Wang, Y.; Sun, S. Impact assessment of climate change and human activities on GHG

emissions and agricultural water use. Agric. For. Meteorol. 2021, 296, 108218. [CrossRef]
3. Jensen, C.; Ørum, J.E.; Pedersen, S.; Andersen, M.; Plauborg, F.; Liu, F.; Jacobsen, S.E. A Short Overview of Measures for Securing

Water Resources for Irrigated Crop Production. J. Agron. Crop Sci. 2014, 200, 333–343. [CrossRef]
4. Mestre, G.; Matos-Carvalho, J.P.; Tavares, R.M. Irrigation Management System using Artificial Intelligence Algorithms. In

Proceedings of the 2022 International Young Engineers Forum (YEF-ECE), Lisbon, Portugal, 1 July 2022; pp. 69–74. [CrossRef]
5. Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349.

[CrossRef]

http://doi.org/10.1038/sdata.2018.4
http://dx.doi.org/10.1016/j.agrformet.2020.108218
http://dx.doi.org/10.1111/jac.12067
http://dx.doi.org/10.1109/YEF-ECE55092.2022.9849888
http://dx.doi.org/10.3390/info10110349


Algorithms 2022, 15, 440 21 of 23

6. Merz, M.; Pedro, D.; Skliros, V.; Bergenhem, C.; Himanka, M.; Houge, T.; Matos-Carvalho, J.P.; Lundkvist, H.; Cürüklü, B.;
Hamrén, R.; et al. Autonomous UAS-Based Agriculture Applications: General Overview and Relevant European Case Studies.
Drones 2022, 6, 128. [CrossRef]

7. Pedro, D.; Lousã, P.; Ramos, Á.; Matos-Carvalho, J.P.; Azevedo, F.; Campos, L. HEIFU—Hexa Exterior Intelligent Flying Unit. In
Proceedings of the Computer Safety, Reliability, and Security, SAFECOMP 2021 Workshops, York, UK, 7 September 2021; Habli, I.,
Sujan, M., Gerasimou, S., Schoitsch, E., Bitsch, F., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 89–104.

8. Correia, S.; Realinho, V.; Braga, R.; Turégano, J.; Miranda, A.; Gañan, J. Development of a Monitoring System for Efficient
Management of Agricultural Resources. In Proceedings of the VIII International Congress on Project Engineering, Bilbao, Spain,
7–8 October 2004; pp. 1215–1222.

9. Torky, M.; Hassanein, A.E. Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and
challenges. Comput. Electron. Agric. 2020, 178, 105476. [CrossRef]

10. Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 3136.
[CrossRef]

11. Charu, C.A. Neural Networks and Deep Learning: A Textbook; Determination Press: San Francisco, CA, USA, 2018.
12. Henrique, A.S.; Fernandes, A.M.R.; Rodrigo, L.; Leithardt, V.R.Q.; Correia, S.D.; Crocker, P.; Scaranto Dazzi, R.L. Classifying

Garments from Fashion-MNIST Dataset Through CNNs. Adv. Sci. Technol. Eng. Syst. J. 2021, 6, 989–994. [CrossRef]
13. Matos-Carvalho, J.P.; Santos, R.; Tomic, S.; Beko, M. GTRS-Based Algorithm for UAV Navigation in Indoor Environments

Employing Range Measurements and Odometry. IEEE Access 2021, 9, 89120–89132. [CrossRef]
14. Santos, R.; Matos-Carvalho, J.P.; Tomic, S.; Beko, M.; Correia, S.D. Applying Deep Neural Networks to Improve UAV Navigation

in Satellite-less Environments. In Proceedings of the 2022 International Young Engineers Forum (YEF-ECE), Lisbon, Portugal,
1 July 2022; pp. 63–68. [CrossRef]

15. Santos, R.; Matos-Carvalho, J.P.; Tomic, S.; Beko, M. WLS algorithm for UAV navigation in satellite-less environments. IET Wirel.
Sens. Syst. 2022, 12, 93–102. [CrossRef]

16. Salazar, L.H.A.; Leithardt, V.R.; Parreira, W.D.; da Rocha Fernandes, A.M.; Barbosa, J.L.V.; Correia, S.D. Application of Machine
Learning Techniques to Predict a Patient’s No-Show in the Healthcare Sector. Future Internet 2022, 14, 3. [CrossRef]

17. Ramesh, N.V.K.; B, M.R.; B, B.D.; Suresh, N.; Rao, K.R.; Reddy, B.N.K. Identification of Tomato Crop Diseases Using Neural
Networks-CNN. In Proceedings of the 2021 12th International Conference on Computing Communication and Networking
Technologies (ICCCNT), Kharagpur, India, 6–8 July 2021; pp. 1–5. [CrossRef]

18. Narvekar, C.; Rao, M. Flower classification using CNN and transfer learning in CNN- Agriculture Perspective. In Proceedings
of the 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi, India, 3–5 December 2020;
pp. 660–664. [CrossRef]

19. Salvado, A.B.; Mendonça, R.; Lourenço, A.; Marques, F.; Matos-Carvalho, J.P.; Miguel Campos, L.; Barata, J. Semantic Navigation
Mapping from Aerial Multispectral Imagery. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial
Electronics (ISIE), Vancouver, BC, Canada, 12–14 June 2019; pp. 1192–1197. [CrossRef]

20. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
[CrossRef]

21. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

22. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

23. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 1–14. [CrossRef] [PubMed]

24. Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens.
Environ. 1996, 58, 257–266. [CrossRef]

25. Mozgeris, G.; Gadal, S.; Jonikavičius, D.; Straigytė, L.; Ouerghemmi, W.; Juodkienė, V. Hyperspectral and color-infrared imaging
from ultralight aircraft: Potential to recognize tree species in urban environments. In Proceedings of the 2016 8th Workshop on
Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Los Angeles, CA, USA, 21–24 August
2016; pp. 1–5.

26. Boiarskii, B.; Hasegawa, H. Comparison of NDVI and NDRE Indices to Detect Differences in Vegetation and Chlorophyll Content.
J. Mech. Contin. Math. Sci. 2019, spl1. [CrossRef]

27. Yagci, A.L.; Di, L.; Deng, M. The influence of land cover-related changes on the NDVI-based satellite agricultural drought
indices. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014;
pp. 2054–2057.

28. Subba Rao, V.P.; Rao, G.S. Design and Modelling of anAffordable UAV Based Pesticide Sprayer in Agriculture Applications. In
Proceedings of the 2019 Fifth International Conference on Electrical Energy Systems (ICEES), Chennai, India, 21–22 February
2019; pp. 1–4. [CrossRef]

http://dx.doi.org/10.3390/drones6050128
http://dx.doi.org/10.1016/j.compag.2020.105476
http://dx.doi.org/10.3390/rs12193136
http://dx.doi.org/10.25046/aj0601109
http://dx.doi.org/10.1109/ACCESS.2021.3089900
http://dx.doi.org/10.1109/YEF-ECE55092.2022.9850152
http://dx.doi.org/10.1049/wss2.12041
http://dx.doi.org/10.3390/fi14010003
http://dx.doi.org/10.1109/ICCCNT51525.2021.9580083
http://dx.doi.org/10.1109/ICISS49785.2020.9316030
http://dx.doi.org/10.1109/ISIE.2019.8781301
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1016/S0034-4257(96)00067-3
http://dx.doi.org/10.26782/jmcms.spl.4/2019.11.00003
http://dx.doi.org/10.1109/ICEES.2019.8719237


Algorithms 2022, 15, 440 22 of 23

29. Zheng, H.; Zhou, X.; Cheng, T.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of a UAV-based hyperspectral frame camera for
monitoring the leaf nitrogen concentration in rice. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 7350–7353. [CrossRef]

30. Li, D.; Zheng, H.; Xu, X.; Lu, N.; Yao, X.; Jiang, J.; Wang, X.; Tian, Y.; Zhu, Y.; Cao, W.; et al. BRDF Effect on the Estimation of
Canopy Chlorophyll Content in Paddy Rice from UAV-Based Hyperspectral Imagery. In Proceedings of the IGARSS 2018—2018
IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 6464–6467. [CrossRef]

31. Matos-Carvalho, J.P.; Pedro, D.; Campos, L.M.; Fonseca, J.M.; Mora, A. Terrain Classification Using W-K Filter and 3D Navigation
with Static Collision Avoidance. In Proceedings of the SAI Intelligent Systems Conference, London, UK, 5–6 September 2019; Bi,
Y., Bhatia, R., Kapoor, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1122–1137.

32. Vardhini, P.; Asritha, S.; Devi, Y. Efficient Disease Detection of Paddy Crop using CNN. In Proceedings of the 2020 International
Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), Bengaluru, India, 9–10 October 2020;
pp. 116–119. [CrossRef]

33. Feng, Q.; Chen, J.; Li, X.; Li, C.; Wang, X. Multi-spectral Image Fusion Method for Identifying Similar-colored Tomato Organs. In
Proceedings of the 2019 IEEE International Conference on Unmanned Systems and Artificial Intelligence (ICUSAI), Shenzhen,
China, 21–23 April 2019; pp. 142–145. [CrossRef]

34. Zhou, Z.; Li, S.; Shao, Y. Crops Classification from Sentinel-2A Multi-spectral Remote Sensing Images Based on Convolutional
Neural Networks. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium,
Valencia, Spain, 22–27 July 2018; pp. 5300–5303. [CrossRef]

35. Hossain, M.I.; Paul, B.; Sattar, A.; Islam, M.M. A Convolutional Neural Network Approach to Recognize the Insect: A Perspective
in Bangladesh. In Proceedings of the 2019 8th International Conference System Modeling and Advancement in Research Trends
(SMART), Moradabad, India, 22–23 November 2019; pp. 384–389. [CrossRef]

36. Murata, K.; Ito, A.; Takahashi, Y.; Hatano, H. A Study on Growth Stage Classification of Paddy Rice by CNN using NDVI Images.
In Proceedings of the 2019 Cybersecurity and Cyberforensics Conference (CCC), Melbourne, Australia, 8–9 May 2019; pp. 85–90.
[CrossRef]

37. Habibie, M.I.; Ahamed, T.; Noguchi, R.; Matsushita, S. Deep Learning Algorithms to determine Drought prone Areas Using
Remote Sensing and GIS. In Proceedings of the 2020 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing
Technology (AGERS), Jakarta, Indonesia, 7–8 December 2020; pp. 69–73. [CrossRef]

38. Sobayo, R.; Wu, H.H.; Ray, R.; Qian, L. Integration of Convolutional Neural Network and Thermal Images into Soil Moisture
Estimation. In Proceedings of the 2018 1st International Conference on Data Intelligence and Security (ICDIS), South Padre Island,
TX, USA, 8–10 April 2018; pp. 207–210. [CrossRef]

39. Liu, Z.; Wu, J.; Fu, L.; Majeed, Y.; Feng, Y.; Li, R.; Cui, Y. Improved Kiwifruit Detection Using Pre-Trained VGG16 with RGB and
NIR Information Fusion. IEEE Access 2020, 8, 2327–2336. [CrossRef]

40. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893.
[CrossRef]

41. Wang, X.; Zhuang, X.; Zhang, W.; Chen, Y.; Li, Y. Lightweight Real-time Object Detection Model for UAV Platform. In Proceedings
of the 2021 International Conference on Computer Communication and Artificial Intelligence (CCAI), Guangzhou, China, 7–9
May 2021; pp. 20–24. [CrossRef]

42. Gotthans, J.; Gotthans, T.; Marsalek, R. Prediction of Object Position from Aerial Images Utilising Neural Networks. In
Proceedings of the 2021 31st International Conference Radioelektronika (RADIOELEKTRONIKA), Brno, Czech Republic, 19–21
April 2021; pp. 1–5. [CrossRef]

43. Ding, Y.; Qu, Y.; Zhang, Q.; Tong, J.; Yang, X.; Sun, J. Research on UAV Detection Technology of Gm-APD Lidar Based on YOLO
Model. In Proceedings of the 2021 IEEE International Conference on Unmanned Systems (ICUS), Beijing, China, 22–24 October
2021; pp. 105–109. [CrossRef]

44. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [CrossRef]

45. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
46. Bochkovskiy, A.; Wang, C.; Liao, H.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. CoRR 2020. Available online:

http://xxx.lanl.gov/abs/2004.10934 (accessed on 1 October 2021).
47. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December

2015. pp. 1440–1448.
48. Srinivas, R.; Nithyanandan, L.; Umadevi, G.; Rao, P.V.V.S.; Kumar, P.N. Design and implementation of S-band Multi-mission

satellite positioning data simulator for IRS satellites. In Proceedings of the 2011 IEEE Applied Electromagnetics Conference
(AEMC), Kolkata, India, 18–22 December 2011; pp. 1–4. [CrossRef]

49. Weidong, Z.; Chun, W.; Jing, H. Development of agriculture machinery aided guidance system based on GPS and GIS. In
Proceedings of the 2010 World Automation Congress, Kobe, Japan, 19–23 September 2010; pp. 313–317.

50. Yu, H.; Liu, Y.; Yang, G.; Yang, X. Quick image processing method of HJ satellites applied in agriculture monitoring. In
Proceedings of the 2016 World Automation Congress (WAC), Rio Grande, Puerto Rico, 31 July–4 August 2016; pp. 1–5. [CrossRef]

http://dx.doi.org/10.1109/IGARSS.2016.7730917
http://dx.doi.org/10.1109/IGARSS.2018.8517684
http://dx.doi.org/10.1109/ICSTCEE49637.2020.9276775
http://dx.doi.org/10.1109/ICUSAI47366.2019.9124912
http://dx.doi.org/10.1109/IGARSS.2018.8518860
http://dx.doi.org/10.1109/SMART46866.2019.9117442
http://dx.doi.org/10.1109/CCC.2019.000-4
http://dx.doi.org/10.1109/AGERS51788.2020.9452752
http://dx.doi.org/10.1109/ICDIS.2018.00041
http://dx.doi.org/10.1109/ACCESS.2019.2962513
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1109/CCAI50917.2021.9447518
http://dx.doi.org/10.1109/RADIOELEKTRONIKA52220.2021.9420193
http://dx.doi.org/10.1109/ICUS52573.2021.9641207
http://dx.doi.org/10.1109/CVPR.2017.690
http://xxx.lanl.gov/abs/2004.10934
http://dx.doi.org/10.1109/AEMC.2011.6256919
http://dx.doi.org/10.1109/WAC.2016.7583037


Algorithms 2022, 15, 440 23 of 23

51. Murugan, D.; Garg, A.; Ahmed, T.; Singh, D. Fusion of drone and satellite data for precision agriculture monitoring. In
Proceedings of the 2016 11th International Conference on Industrial and Information Systems (ICIIS), Roorkee, India, 3–4
December 2016; pp. 910–914. [CrossRef]

52. Bansod, B.; Singh, R.; Thakur, R.; Singhal, G. A comparision between satellite based and drone based remote sensing technology
to achieve sustainable development: A review. J. Agric. Environ. Int. Dev. (JAEID) 2017, 111, 383–407.

53. Shao, L.; Zhu, F.; Li, X. Transfer Learning for Visual Categorization: A Survey. IEEE Trans. Neural Netw. Learn. Syst. 2015,
26, 1019–1034. [CrossRef]

54. Chiba, S.; Sasaoka, H. Basic Study for Transfer Learning for Autonomous Driving in Car Race of Model Car. In Proceedings of the
2021 6th International Conference on Business and Industrial Research (ICBIR), Bangkok, Thailand, 20–21 May 2021; pp. 138–141.
[CrossRef]

55. Shenavarmasouleh, F.; Arabnia, H.R. DRDr: Automatic Masking of Exudates and Microaneurysms Caused by Diabetic
Retinopathy Using Mask R-CNN and Transfer Learning. In Advances in Computer Vision and Computational Biology; Arabnia,
H.R., Deligiannidis, L., Shouno, H., Tinetti, F.G., Tran, Q.N., Eds.; Springer International Publishing: Cham, Switzerland, 2021;
pp. 307–318.

56. Khan, M.A.; Akram, T.; Zhang, Y.D.; Sharif, M. Attributes based skin lesion detection and recognition: A mask RCNN and transfer
learning-based deep learning framework. Pattern Recognit. Lett. 2021, 143, 58–66. [CrossRef]

57. Wani, M.A.; Afzal, S. A New Framework for Fine Tuning of Deep Networks. In Proceedings of the 2017 16th IEEE International
Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 359–363. [CrossRef]

58. Too, E.C.; Yujian, L.; Njuki, S.; Yingchun, L. A comparative study of fine-tuning deep learning models for plant disease identification.
Comput. Electron. Agric. 2019, 161, 272–279. [CrossRef]

59. AlexeyAB. Darknet. Github Repository. Available online: https://github.com/AlexeyAB/darknet (accessed on 1 Novem-
ber 2021).

60. matterport. Mask RCNNGithub Repository. Available online: https://github.com/matterport/Mask_RCNN (accessed on 1
November 2021).

61. RedEdge-MX Integration Guide. 2022. Available online: https://support.micasense.com/hc/en-us/articles/360011389334-Red
Edge-MX-Integration-Guide (accessed on 1 November 2022).

62. Pino, M.; Matos-Carvalho, J.P.; Pedro, D.; Campos, L.M.; Costa Seco, J. UAV Cloud Platform for Precision Farming. In Proceedings
of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto,
Portugal, 20–22 July 2020; pp. 1–6. [CrossRef]

63. Vong, A.; Matos-Carvalho, J.P.; Toffanin, P.; Pedro, D.; Azevedo, F.; Moutinho, F.; Garcia, N.C.; Mora, A. How to Build a 2D and
3D Aerial Multispectral Map?—All Steps Deeply Explained. Remote Sens. 2021, 13, 3227. [CrossRef]

64. AlexeyAB. Yolo Mark. Github Repository. Available online: https://github.com/AlexeyAB/Yolo_mark (accessed on 1
November 2021).

65. Dutta, A.; Zisserman, A. The VIA Annotation Software for Images, Audio and Video. In Proceedings of the 27th ACM
International Conference on Multimedia, Nice, France, 21–25 October 2019; ACM: New York, NY, USA, 2019. [CrossRef]

66. Michelucci, U. Advanced Applied Deep Learning: Convolutional Neural Networks and Object Detection; Apress: Pune, India, 2019.
[CrossRef]

67. Allanzelener. YAD2K: Yet Another Darknet 2 Keras. Github Repository. Available online: https://github.com/allanzelener/YA
D2K (accessed on 1 November 2021).

68. Xiaochus. YOLOv3. Github Repository. Available online: https://github.com/xiaochus/YOLOv3 (accessed on 1 Novem-
ber 2021).

69. Runist. YOLOv4. Github Repository. Available online: https://github.com/Runist/YOLOv4.git (accessed on 1 November 2021).
70. Google. Google CoLaboratory. Available online: https://colab.research.google.com/drive/151805XTDg--dgHb3-AXJCpnWaqR

hop_2#scrollTo=ojGuEt8MpJhA (accessed on 1 November 2021).
71. Casamitjana, M.; Torres-Madroñero, M.C.; Bernal-Riobo, J.; Varga, D. Soil Moisture Analysis by Means of Multispectral Images

According to Land Use and Spatial Resolution on Andosols in the Colombian Andes. Appl. Sci. 2020, 10, 5540. [CrossRef]

http://dx.doi.org/10.1109/ICIINFS.2016.8263068
http://dx.doi.org/10.1109/TNNLS.2014.2330900
http://dx.doi.org/10.1109/ICBIR52339.2021.9465856
http://dx.doi.org/10.1016/j.patrec.2020.12.015
http://dx.doi.org/10.1109/ICMLA.2017.0-135
http://dx.doi.org/10.1016/j.compag.2018.03.032
https://github.com/AlexeyAB/darknet
https://github.com/matterport/Mask_RCNN
https://support.micasense.com/hc/en-us/articles/360011389334-RedEdge-MX-Integration-Guide
https://support.micasense.com/hc/en-us/articles/360011389334-RedEdge-MX-Integration-Guide
http://dx.doi.org/10.1109/CSNDSP49049.2020.9249551
http://dx.doi.org/10.3390/rs13163227
https://github.com/AlexeyAB/Yolo_mark
http://dx.doi.org/10.1145/3343031.3350535
http://dx.doi.org/10.1007/978-1-4842-4976-5
https://github.com/allanzelener/YAD2K
https://github.com/allanzelener/YAD2K
https://github.com/xiaochus/YOLOv3
https://github.com/Runist/YOLOv4.git
https://colab.research.google.com/drive/151805XTDg--dgHb3-AXJCpnWaqRhop_2#scrollTo=ojGuEt8MpJhA
https://colab.research.google.com/drive/151805XTDg--dgHb3-AXJCpnWaqRhop_2#scrollTo=ojGuEt8MpJhA
http://dx.doi.org/10.3390/app10165540

	Introduction
	Related Works
	Materials and Methods
	The Images and Datasets
	The Code and Repositories

	Results
	Results of Training Regression Based Networks
	Results of Training Mask-RCNN `head' Layers
	Results of Training Mask-RCNN `all' Layers

	Discussion
	Conclusions
	Network Architectures
	References

