
Citation: Esgalhado, F.; Vassilenko,

V.; Batista, A.; Ortigueira, M. On the

Feasibility of Real-Time HRV

Estimation Using Overly Noisy PPG

Signals. Computers 2022, 11, 177.

https://doi.org/10.3390/

computers11120177

Academic Editors: Pedro Pereira,

Luis Gomes, João Goes and

Paolo Bellavista

Received: 21 October 2022

Accepted: 2 December 2022

Published: 6 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

On the Feasibility of Real-Time HRV Estimation Using Overly
Noisy PPG Signals
Filipa Esgalhado 1,2,*, Valentina Vassilenko 1,2 , Arnaldo Batista 3 and Manuel Ortigueira 3

1 Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPHYS), NOVA School of
Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal

2 NMT, S.A., Parque Tecnológico de Cantanhede, Núcleo 04, Lote 3, 3060-197 Cantanhede, Portugal
3 UNINOVA CTS, NOVA School of Science and Technology, NOVA University Lisbon,

2829-516 Caparica, Portugal
* Correspondence: feo.cardoso@campus.fct.unl.pt

Abstract: Heart Rate Variability (HRV) is a biomarker that can be obtained non-invasively from the
electrocardiogram (ECG) or the photoplethysmogram (PPG) fiducial points. However, the accuracy
of HRV can be compromised by the presence of artifacts. In the herein presented work, a Simulink®

model with a deep learning component was studied for overly noisy PPG signals. A subset with these
noisy signals was selected for this study, with the purpose of testing a real-time machine learning
based HRV estimation system in substandard artifact-ridden signals. Home-based and wearable HRV
systems are prone to dealing with higher contaminated signals, given the less controlled environment
where the acquisitions take place, namely daily activity movements. This was the motivation behind
this work. The results for overly noisy signals show that the real-time PPG-based HRV estima-
tion system produced RMSE and Pearson correlation coefficient mean and standard deviation of
0.178 ± 0.138 s and 0.401 ± 0.255, respectively. This RMSE value is roughly one order of magnitude
above the closest comparative results for which the real-time system was also used.

Keywords: photoplethysmogram; heart rate variability; real-time; Simulink®; deep learning

1. Introduction

Cardiovascular diseases (CVD) are known as a leading cause of death worldwide and
are a major public health issue [1]. Therefore, it is essential to adopt preventive strategies for
the early detection of CVD. Heart Rate Variability (HRV) is a non-invasive CVD biomarker
that evaluates the autonomic balance and has been used in the prediction of cardiovascular
outcomes [2].

The HRV represents the time interval between successive heartbeats, which can be
typically extracted from biomedical signals such as the electrocardiogram (ECG) or the
photoplethysmogram (PPG) [3]. Time, frequency, and non-linear features can be obtained
from the HRV, such as the Standard Deviation of Normal-Normal intervals (SDNN) and
spectral properties. Reduced SDNN-derived HRV values have been linked to poor cardiac
outcomes and are a mortality predictor, including for cardiovascular conditions [4,5]. The
ECG is considered the gold standard regarding HRV extraction, although multiple studies
show that the HRV can also be accurately determined from the PPG signal [6–8].

ECG R peaks or PPG systolic points can be used as the input for the computation
of the HRV. The peak detection accuracy is thus a critical first step for HRV estimation.
Erroneously detected or unaccounted peaks lead to errors in the inter-beat time intervals,
which affects the features’ accuracy [9].

The HRV can be obtained in both clinical and laboratory settings from multi-lead
ECG systems, which can be expensive and have limited practicality in terms of a possible
home-based application [10]. For home-based and wearable systems, where simplicity and
ease of use are general criteria, single-lead ECG or PPG signals have been pointed out as
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adequate solutions for HRV estimation [10]. There seems to be a lack of studies regarding
HRV real-time systems performance for exceedingly noisy signals. It was herein considered
that the closest comparative environment would be the ECG and PPG acquisition setups in
wearable and home-based devices. In these conditions, acquisitions are typically performed
during the subject’s normal life activities, which may include appreciable movement activity.
The herein presented work explores the reliability of real-time systems in such conditions
using a selected subset of noisy data.

These wearable devices can record biomedical signals and present some advan-
tages over the typical clinical ECG acquisition setting, such as user mobility and fewer
sensors [11,12]. The ECG chest strap and smartwatches with PPG sensors are examples
of wearable devices that are widely available. Some studies have evaluated the accuracy
of the wearable sensor regarding the HRV. Hinde et al. [10] evaluated twelve wearable
devices to determine the reliability of HRV features in the military population. In this study,
the Polar H10, an ECG-based system, was considered the most accurate device where a
mean bias of 0.23 ± 26.8 milliseconds was obtained for R-R intervals compared to the
three-lead ECG. It was also noted that most of the evaluated devices presented consid-
erable signal artifacts and were only reliable during rest or low-intensity exercises [10].
Hernández-Vicente et al. [13] evaluated the Polar H7 sensor in rest and exercise settings
against ECG signals. Data from sixty-seven subjects showed that, at rest, the two meth-
ods were similar with a concordance correlation coefficient above 0.90. However, during
high-intensity exercise, the high-frequency band power measurements did not reach the
concordance correlation coefficient of 0.90 for most of the subjects. Georgiou et al. [11]
conducted a review of eighteen studies to determine if wearable devices could accurately
measure HRV. It was concluded that, during rest, the correlation between gold standard
ECG and wearable device data was excellent. However, the correlation decreased gradually
as the exercise level increased. Despite the wearable systems’ advantages, such as being
low-cost and user-friendly, motion artifacts are considered its main limitation [10].

The key to overcome this constraint may be through the application of deep learn-
ing networks in biomedical signal processing [14,15]. Kazemi et al. [16] present a neural
network for PPG peak detection using a population of thirty-six subjects. Noisy PPG
were implemented by adding synthetic noise, with random amplitudes, to real signals.
An overall precision, recall, and F1-score of 82%, 80%, and 81% were obtained, respec-
tively. Goh et al. [17] developed a convolutional neural network to detect motion artifacts.
A testing accuracy of 94.9% was achieved.

Some studies have also evaluated different methodologies to reduce motion artifacts in
the PPG. Wang et al. [18] proposed a method to reduce the motion artifacts on a commercial
wristband signal (PPG), which was compared with an ECG. Different HRV parameters were
evaluated based on data from nine subjects. The lowest and highest coefficient correlation
values were 0.30 and 0.99, for the Low-Frequency/High-Frequency and mean RR, respectively.
Firoozabadi et al. [19] developed an algorithm to estimate the HRV from a single-channel PPG
signal, using the ECG as the gold standard. The lowest and highest mean difference values
between HRV parameters from the ECG and PPG signals were −0.23 and 2.58 milliseconds
for the standard deviation of the inter-beat intervals (SDNN) and standard deviation of the
successive differences (SDSD), respectively. Salehizadeh et al. [20] investigated a technique
to reconstruct motion-corrupted PPG signals to obtain a heart rate estimation. The PPG and
accelerometer data were used, and the algorithm performance was evaluated using the mean
absolute error. An overall error of 1.86 beats/min was obtained.

In this work, a machine learning based real-time system was tested in the Simulink®

platform for exceedingly noisy PPG data. This noisy subset was selected amongst the
original PPG dataset. These artifacts are mainly due to subject movements. Despite the
machine learning system having been trained using a dataset that includes normal and
noisy data, the question arises of how the system performs for conspicuous noisy data, as
this may be the case in wearable and home-based systems.
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2. Materials and Methods
2.1. Data acquisition and Pre-Processing

PPG and ECG data were simultaneously recorded by the MP35 BIOPAC® system,
Goleta, CA, USA. The ECG signals were acquired using a three-electrode lead set (SS2L)
attached to the right wrist (‘Positive’), right ankle (‘Ground’), and left ankle (‘Negative’).
The PPG data was recorded from the index finger with a BIOPAC® photoplethysmography
sensor model SS4LA. The signals’ sampling frequency was 2000 Hz. All volunteers signed
an informed consent, and the working database was anonymized. A total of 47 volunteers
participated in this study. The acquisition interval was 5 min, minimum. This research
was approved by the Hospital da Senhora de Oliveira Ethics Commission with Reference
Number 86/2019.

Data pre-processing steps included bandpass filtering, trimming, and detrending. The
ECG and the PPG bandpass filters were set to 0.5 to 35 Hz [21,22] and 0.4 to 4 Hz, respec-
tively [23–27]. Twenty subjects were selected within the original dataset. The signals for
these subjects were found to have high levels of artifacts. A duration of twenty seconds was
analyzed. The Hilbert Double Envelope Method (HDEM) was used for R peak detection,
as this technique produced superior results compared to the classical R peak finders [6].

2.2. Deep Learning Model

A previously developed deep learning model [24] was implemented in the Simulink®

system. The best-performing model with a PPG signal input was selected. For this system,
the accuracy, precision, and recall are 0.745, 0.757, and 0.965, respectively [24]. The model,
represented in Figure 1, has three Bidirectional Long Short-Time Memory (BiLSTM) layers,
each with 64, 128, and 64 neurons, respectively. Each BiLSTM layer was followed by a dropout
layer with a 0.4 rate. The selected activation function was the tanh [24]. The goal of the
developed network was to classify each PPG data point into two categories: noise or signal.
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2.3. Simulink® System

A real-time peak detection and HRV estimation system was developed in
Simulink® [28]. PPG signals down sampled to a frequency of 50 Hz were used as the
system input. Figure 2 represents an overview of the developed Simulink® model, which is
comprised of three main blocks, being the first one the Deep Learning model to which the
PPG signal is applied. The above-mentioned Deep Learning model was implemented and
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tested in the authors’ previous work [24], where the system is detailed and explained. An
overview of the model development and implementation was previously mentioned in
Section 2.2 and is represented in Figure 3. Figure 4 represents the find maxima operation
aimed at pinpointing the peaks of the PPG classified as a signal. The inputs are the PPG
and its classification points, according to the deep learning process. Figure 5 depicts the
Simulink® implementation of the HRV calculation. It comprehends two main steps, being
the first one the frontend HRV determination blocks that include an integrator followed
by a time-delay and a sample-and-hold [29]. The second step is a discriminant criterium that
works as an outlier removal to correct situations where the PPG interval is beyond normal
values [24,28].
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three main blocks: Deep Learning, Find Peaks, and HRV Computation [28].
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2.4. HRV Evaluation

To evaluate the robustness of the Simulink® system relatively to noisy inputs, a
comparison of HRV vectors was performed. Due to the noise present in the PPG, the
simultaneously recorded ECG signal was used to establish the HRV ground truth. The ECG



Computers 2022, 11, 177 5 of 9

peak detection was performed with the HDEM algorithm [6]. The detected R-peaks were
subsequently expert validated through visual inspection and the ground truth HRV vector
was thus obtained. This HRV ground truth was then compared to the HRV extracted from
the Simulink® model, using the PPG signals with noise as the system input. To compare the
performance of the system, the Root Mean Square Error (RMSE) and Pearson Correlation
Coefficient were used as evaluation metrics.

Figure 6 represents a summary of the implemented methodology. All data were
analyzed with MATLAB® 2022a version, MathWorks, Inc., Natick, MA, USA.
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3. Results

Figures 7 and 8 show the output of the developed system for a 20-s PPG input
with significant noise artifacts. In both figures, the second plot shows the PPG peak
location determined by the implemented system. The third plot presents the real-time HRV
estimation, obtained from the time interval between successive peaks.
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input signal, peak detection, and HRV estimation are represented in the first, second, and third
plot, respectively.

In both cases, it is patent that HRV estimation is substantially negatively affected by
the noise level of the PPG signals. This situation is purposely present in the selected PPG
recordings. The third plot of each figure outlines the implemented system replacing the
HRV outliers, resulting from the misplacement of the PPG peaks by values compatible
with the normal HRV range, using the methodology represented in Figure 5 regarding the
outlier removal procedure.

Table 1 shows the RMSE and Pearson Correlation Coefficient results of the compari-
son between ground truth HRV and its real-time estimation. The RMSE and correlation
coefficient mean (and standard deviation) are 0.178 ± 0.138 and 0.401 ± 0.255, respectively.

Table 1. RMSE and Pearson Correlation Coefficient results from the comparison of the HRV vector of
gold standard vs. Simulink®.

Noisy PPG Signal RMSE (Seconds) Correlation Coefficient

1 0.069 0.578

2 0.103 0.579

3 0.135 0.293

4 0.055 0.031

5 0.309 0.372

6 0.056 0.521

7 0.304 0.691

8 0.299 0.849

9 0.128 0.238

10 0.157 0.023

11 0.268 0.674

12 0.177 0.098

13 0.348 0.464
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Table 1. Cont.

Noisy PPG Signal RMSE (Seconds) Correlation Coefficient

14 0.068 0.053

15 0.066 0.600

16 0.603 0.729

17 0.101 0.165

18 0.124 0.198

19 0.099 0.511

20 0.099 0.341

4. Discussion and Conclusions

In this work, an evaluation of a real-time HRV computation system based on Simulink®

was performed using noisy PPG signals. The ground truth was obtained via the simulta-
neously acquired ECG signals. For the ECG, the R peaks were obtained using the HDEM
algorithm that has been proven to outperform the popular detectors. From these R peaks,
the ground truth HRV was obtained. Studies of this nature are important, bearing in mind
that there is an increasing demand for wearable and home-based systems for cardiac func-
tion evaluation. These systems are prone to produce PPG signals with higher levels of noise
given the lenient acquisition protocols outside of the clinical and laboratory environments,
mainly home-based.

Table 1 shows the obtained results. The mean and standard deviation are 0.178 ± 0.138
and 0.401 ± 0.255 for the RMSE and correlation coefficient, respectively. These values represent
the comparison between the ground truth HRV and the PPG.

A direct comparison with the results mentioned in the literature survey is only possi-
ble regarding the work of Wang et al. [18], since the used metrics include the correlation
between the ECG and PPG obtained HRV parameters, and noisy signals are used. How-
ever, in the work of Wang et al., the data was offline processed using the RR intervals.
Additionally, unlike in the herein presented work where the ECG and the real-time PPG
HRVs were directly compared, in the Wang et al. work, the comparison was focused on
certain derived parameters. Despite the potential bias, Wang et al. generic results depict a
correlation factor ranging from 0.30 to 0.99, depending on the studied parameter. It should,
however, be emphasized that the validation of this comparative attempt can be heavily
compromised, given that the relative PPG noise levels of both studies are not known.

It has been herein demonstrated that the developed real-time machine learning based
HRV estimation system, based on the PPG, can handle exceedingly noisy systems with
moderate results. The system seems to be able to stand minimally in overly noisy situations
which typically represent limited subsets of all cases. To the best of the authors’ knowledge,
the only real-time comparative work [28] where PPG signals have lower noise contami-
nation reports a RMSE mean of 0.043 ± 0.017 s, which is roughly one order of magnitude
lower than the corresponding presented results.

Nowadays, wearable devices with incorporated PPG sensors are widely available.
Smartwatches are an example of these devices which can be used to record biomedical sig-
nals, increasing the need for robust real-time algorithms that can compute different features.
It is expected that real-time deep learning implementations will be further investigated
as systems with the potential to have increased robustness and accuracy in wearable and
home-based devices.
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