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Abstract Artificial neural networks (ANNs) have several

applications; one of them is the prediction of biological

activity. Here, ANNs were applied to a set of 32 compounds

with anticancer activity assayed experimentally against two

cancer cell lines (A2780 and T-47D). Using training and

test sets, the obtained correlation coefficients between

experimental and calculated values of activity, for A2780,

were 0.804 and 0.829, respectively, and for T-47D, we got

0.820 for the training set and 0.927 for the test set. Com-

paring multiple linear regression and ANN models, the

latter were better suited in establishing relationships

between compounds’ structure and their anticancer activity.
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1 Introduction

Quantitative structure–activity relationship (QSAR) is the

broad designation of several statistical methods used to

establish the relation between parameters that describe

molecular structure (molecular descriptors) and a certain

biological activity of interest shown by a series of com-

pounds under study [1]. The ultimate goal is to establish a

statistical model that will allow the prediction of activity of

novel compounds before laborious and expensive synthesis

and experimental testing [2]. Relation between descriptors

(independent variables) and activity (dependent variable)

can be retrieved using linear and nonlinear methods, and

accepted models must allow an easy translation of its

parameters into synthetic chemical features. Multiple linear

regression (MLR) has been used to establish QSAR for

decades but the use of artificial neural networks (ANNs)

still bears the charm of novelty [3]. For QSAR models to

work properly, all the compounds must belong to a con-

generic series (synthesized from a common chemical

scaffold) and share the same mode of action to trigger the

biological activity [2, 4]. Linear methods, like MLR, have

the advantage of being easier to implement and interpret.

Nonlinear methods, like ANN, have the advantage of

producing, in general, better relations since biological

response is a very complex phenomenon, sometimes not

very well described by linear relations [5]. The downside of

nonlinear models is the difficulty of their interpretation [6].

Irrespective of the method (linear or nonlinear), the sta-

tistical model is created using a training set of compounds

and the predictive ability of the model is evaluated using a

test set (compounds from the test set were not used to

create the statistical model) [7]. In this type of applications,

QSAR models are accepted if the correlation coefficient

between experimental and calculated values of biological

activity is better than 0.8 for the training set, and if the

correlation coefficient between experimental and calcu-

lated values of biological activity is better than 0.6 for the

test set [8]. Here, we show the application of ANN to create

QSAR models for a series of compounds with experi-

mentally determined anticancer activity.
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2 Methodology

2.1 Dataset for analysis

A set of 32 compounds (Fig. 1) derived from natural

products, which showed anticancer activity in cellular

assays, was used in this study. Their activity was assessed

against two cancer cell lines: human ovarian cancer cell

line (A2780) and mammary carcinoma cell line (T-47D).

The activity is expressed in IC50 values (concentration of

compound needed to inhibit 50 % of the cancer cells in a

sample). The number of compounds used to establish the

correlations for A2780 and T-47D cell lines was 23 and 22,

respectively.

Fig. 1 Structures of anticancer compounds under study
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2.2 Computational details

The optimization of compounds’ structures was performed

using molecular mechanics (MM?) force field included in

HyperChem Professional 7.51 [9]. MOPAC [10] included

in Vega ZZ 2.2.0 [11] was applied to calculate thermody-

namic and quantum chemical descriptors using the fol-

lowing keywords: ‘‘FORCE PRECISE THERMO

ROT = X’’ and ‘‘VECTORS BONDS PI POLAR PRE-

CISE ENPART,’’ respectively. Additional descriptors, as

number of H-bond donors and acceptors, and logP, were

calculated using E-DRAGON [12].

These descriptors along with MOPAC output files and

HyperChem structure files were used as input files in

CODESSA program [13] to calculate additional molecular

descriptors. CODESSA calculates five classes of molecular

descriptors: constitutional; topological; geometrical; elec-

trostatic; and quantum chemical. Constitutional descriptors

are associated with the number of atoms and bonds in each

molecule. Topological descriptors include valence and

nonvalence molecular connectivity indices calculated from

the hydrogen suppressed formula of molecules, and encode

information about size, composition, and the degree of

branching of a molecule. The quantum chemical descrip-

tors provide information about binding and formation

energies, partial atom charge, dipole moment, and molec-

ular orbital energy levels. A total number of 263 descrip-

tors were calculated for each molecular structure.

2.2.1 Heuristic method

The heuristic method, implemented by CODESSA, was

used to perform molecular descriptors selection based on

their individual correlation with the biological activity.

This method performs the elimination of descriptors dis-

carding those that satisfy at least one of the following

conditions: (a) the descriptor value is not available for

every structure; (b) the descriptor has a constant value for

all structures. After this elimination, the one-parameter

correlation equations for each descriptor are calculated. To

reduce even further the number of descriptors in the initial

set, the following criteria are applied and descriptors are

eliminated if (a) the F test’s value for the one-parameter

correlation with the descriptor is below 1.0; (b) the squared

correlation coefficient of the one-parameter equation is less

than Rmin
2 (0.01); (c) the parameter’s t value is less than

t1(0.1); (d) the descriptor is highly intercorrelated (above

rfull, where rfull is a user-specified value) with another

descriptor with a higher squared correlation coefficient in

the one-parameter equations based on these descriptors. All

the remaining descriptors are then listed in decreasing

order of their regression coefficients for the corresponding

one-parameter correlation equations.

2.3 Training and test set selection

Each set of compounds was divided into five subsets

according to their biological activity range. The com-

pounds for training and test sets were selected randomly

from within each subset in order to ensure the diversity of

training set and to guarantee that test set compounds were

representative of the dataset. This selection was performed

keeping in view the training/test set ratio of 4:1. Based on

these rules, the test sets were built with 5 compounds for

the two cancer cell lines under study, and training sets had

18 and 17 compounds for A2780 and T-47D, respectively.

In Tables 1 and 2, we present training and test sets and the

biological activity values, predicted and experimental.

2.4 Artificial neural networks application

Statistica 7 [14] was used to perform the ANN methodol-

ogy. The biological activity values (IC50) and the values of

molecular descriptors most correlated with the property

were used to develop the ANN models. In Statistica 7

program, a quick regression method was applied using

the intelligent problem solver to perform the analysis.

Table 1 Experimental and predicted activity values for A2780

cancer cell line

Comp. no. Exp. MLR ANN

5a 4.918 4.396 4.552

6a 4.580 4.446 4.567

7 4.590 4.493 4.475

9 4.720 4.444 4.499

11 4.440 4.462 4.514

12 4.580 4.579 4.667

13a 4.410 4.512 4.659

17 4.444 4.765 4.822

18 4.982 4.975 4.818

19 5.147 4.913 4.675

20 4.260 4.471 4.538

21 4.247 4.436 4.528

22 4.806 4.806 4.724

23 4.277 4.495 4.558

24 4.880 4.473 4.555

25 5.551 5.838 5.815

26 5.565 5.568 5.797

27a 7.984 5.932 5.815

28 5.707 5.770 5.822

29 6.458 5.988 5.816

30 5.997 5.917 5.812

31a 6.356 5.944 5.809

32 5.609 5.866 5.821

a Compounds from test set
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The biological activity was selected as continuous output,

the molecular descriptors are the continuous input, the

subset variable corresponds to the designation of subset of

each compound, and may be considered as either a training

set or a test set. Three types of neural networks were selected

to be tested, linear, radial basis function (RBF) and multi-

layer perceptrons. Relatively to the network complexity, the

number of neurons in the hidden layer was selected to vary

between 1 and 3 to RBF, and 1 and 3 to MLP method. Some

algorithms as K-means, K-nearest neighbor, pseudo-

inverse, back-propagation and conjugate gradient descen-

dent were used to train the artificial neural networks.

2.5 Multiple linear regression

MLR methodology was applied to the same training and

test sets and using IC50 values for A2780 and T-47D cancer

cell lines. This methodology was implemented using heu-

ristic method which establishes correlations between bio-

logical activity and molecular descriptors. The obtained

correlations are evaluated based on the values of statistical

criteria (F and t test, R2 and RMSE) and selected the model

with best predictive ability. These linear models were

compared with nonlinear models obtained previously.

3 Results and discussion

3.1 Human ovarian cancer cell line (A2780)

The application of artificial neural network to the biolog-

ical activity (IC50) values and the molecular descriptors

resulted in a nonlinear model obtained through multilayer

perceptrons method. The resulting neural network shows a

structure of 3-2-1, as represented in Fig. 2.

The molecular descriptors involved in this model are as

follows: number of triple bonds; relative negative charge;

and average information content (order 0).

The number of triple bonds belongs to constitutional

molecular descriptors group, and it is related to com-

pounds’ reactivity [15]. The quantum chemical molecular

descriptor involved in this model is the relative negative

charge which represents the charge distribution and

describes the electrostatic interactions of molecules [16].

The average information content (order 0) is a topological

molecular descriptor that is associated with the dispersion

interactions of molecules and describes their size, branch-

ing, and composition [1].

The analysis of artificial neural networks does not allow

an easy interpretation of molecular descriptors contribution

to the biological activity, but based on the ratio between the

performance of neural network before and after the elimi-

nation of each descriptor (sensibility analysis) is possible to

determine the significance of molecular descriptors. The

application of sensibility analysis to the obtained neural

network allowed us to identify the number of triple bonds

as the most significant descriptor for this model, followed

by the relative negative charge and the average information

content (order 0).

In Fig. 3, we show the correlation between predicted

and experimental activity values obtained through artificial

neural networks. The resulting correlation coefficients were

0.804 and 0.829 for training and test sets, respectively.

3.2 Mammary carcinoma cell line (T-47D)

In order to establish a nonlinear relationship between bio-

logical activity (IC50) and molecular descriptor for this

Fig. 2 Neural network (3-2-1) design obtained for A2780 cancer cell

line

Table 2 Experimental and predicted activity values for T-47D

cancer cell line

Comp. no. Exp. MLR ANN

1 4.267 4.383 4.128

2 4.159 4.034 4.223

3 4.144 3.914 4.134

4a 4.278 4.422 4.239

5a 4.625 4.102 4.249

6a 4.189 4.048 4.114

7 4.204 4.079 4.115

8 4.000 4.149 4.115

9 4.316 4.192 4.120

10 4.235 4.142 4.233

11 4.096 4.114 4.117

12 4.072 4.192 4.206

13 4.056 4.074 4.115

14a 4.000 4.149 4.117

15 4.407 4.334 4.332

16 4.000 4.327 4.115

25 4.678 5.062 5.322

27 5.272 5.326 5.322

29 5.082 5.310 5.322

30a 5.599 5.719 5.322

31 5.691 5.300 5.322

32 5.886 5.632 5.322

a Compounds from test set
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cancer cell line, artificial neural networks were applied.

From this was obtained a neural network with the struc-

ture 2-3-1 through RBF method, as represented in Fig. 4.

In this model, two molecular descriptors were used: the

number of N atoms and the area-weighted surface charge

of hydrogen-bonding donor atoms. Performing the sensi-

tivity analysis, we verified that area-weighted surface

charge of hydrogen-bonding donor atoms is the most sig-

nificant descriptor for this model. This is an electrostatic

descriptor which is related to the hydrogen-bonding

acceptor properties of the molecules [16]. The number of N

atoms belongs to constitutional descriptors group, and it is

related to the capability of a molecule to form hydrogen

bonds [17].

The correlation between predicted and experimental

activity values for training and test sets is shown in Fig. 5.

For training set, the correlation coefficient obtained was

0.820 and for test set was 0.927.

3.3 Linear and nonlinear models comparison

In order to determine the best method, linear or nonlinear,

to establish the relationship between molecular structure

and activity, the linear methodology was applied to the

same compounds set and using the experimental biological

activity (IC50) values obtained for A2780 and T-47D can-

cer cell lines.

In Table 3, we show the correlation coefficients (R2) for

training and test sets using linear and nonlinear methods for

the two cancer cell lines under study. Comparing the

results, we can say that when using nonlinear methodology,

the correlation coefficients obtained are, in general, slightly

better.

4 Conclusions

ANN methodology was used to obtain nonlinear models

that describe the relationship between the structure and the

anticancer activity of compounds. MLP method proved to

be more suitable to establish this relationship using anti-

cancer activity values for A2780 cancer cell line and RBF

method to T-47D cancer cell line. The obtained models

showed high prediction ability and provided information

about the structural features that influence the activity. The

application of a linear method to the system under study

allowed the comparison between linear and nonlinear

models. In this work, the nonlinear models showed to be

better suited in describing the relationship between

molecular descriptors and anticancer activity for A2780

and T-47D cancer cell lines.

Fig. 5 Correlation between experimental and calculated activity

values for T-47D cancer cell line
Fig. 3 Correlation between experimental and calculated activity

values for A2780 cancer cell line

Fig. 4 Neural network (2-3-1) design obtained for T-47D cancer cell

line

Table 3 Correlation coefficients (R2) values obtained for A2780 and

T-47D cancer cell lines using linear and nonlinear methods

Methods A2780 T-47D

Training Test Training Test

MLR 0.875 0.825 0.882 0.829

ANN 0.804 0.829 0.820 0.927
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