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Having identified a novel human DNA topoisomerase IIa (TOP2) catalytic inhibitor from a small and
structure-focused library of propargylic enol ethers, we decided to analyze if the chirality of these com-
pounds plays a determinant role in their antiproliferative activity. In this study, we describe for the first
time the synthesis of the corresponding enantiomers and the biological evaluation against a panel of rep-
resentative human solid tumor cell lines. Experimental results show that chirality does not influence the
reported antiproliferative activity of these compounds. Docking studies of corresponding enantiomers
against TOP2 reinforce the finding that the biological effect is not chiral-dependent and that these family
of compounds seem to act as TOP2 catalytic inhibitors.

� 2013 Elsevier Ltd. All rights reserved.
In the field of drug discovery, the identification of the cellular
target of any given molecule is a critical factor. Small molecules
typically exert their bioactive effects through interactions with
biological targets, which are keys to understanding their mode of
action. To date there is no universal systematic process to discover
the cellular target or mechanism of action for any given compound.
Within this context, we proposed a modular and rational approach,
based on phenotypic changes induced in cells by bioactive com-
pounds, which may enable researchers to ascertain the possible
biological targets for a given compound in an anticancer screen.1

As a result of this so-called Phenotypic Drug Discovery approach,2

we have identified compound 1 (Fig. 1) as a novel human DNA
topoisomerase IIa (TOP2) catalytic inhibitor (CI) from a small and
structure-focused library of propargylic enol ethers.3

Compound 1 is obtained from the reaction of commercially
available pentanal and methyl propiolate in a process catalyzed
by triethylamine.4 One consequence of the mechanism of the reac-
tion is that inhibitor 1, possessing a chiral carbon atom, is obtained
as a racemic mixture. Biological systems are chiral entities (e.g., en-
zymes, receptors, transporters, and DNA) and single enantiomers
may be required for effect. The tragic example of thalidomide
marked a turning point in drug development and revealed that
the physiochemical and biochemical properties of racemic mix-
tures and individual stereoisomers can differ significantly.5 There-
fore, we planned to evaluate both enantiomers independently in
order to determine the effect of chirality on the antiproliferative
activity against a panel of representative human solid tumor cell
lines. In addition, docking studies were performed to shed light
on the binding mode of compound 1 to TOP2.

Due to the shortage of commercially available chiral propargylic
alcohols, both enantiomers of inhibitor 1 could not be obtained in a
straightforward manner. Fortunately, both enantiomers of 1-oc-
tyn-3-ol (2) are commercially available. As will be described, com-
pound 2 is the synthetic precursor for compound 3, an analog of 1
that has one more carbon atom in the alkyl side chain, equally valid
for our studies since it displays a good antiproliferative activity in
human solid tumor cell lines.2 In fact, the structure–activity rela-
tionship (SAR) study pointed out the important role of both methyl
ester groups, while the aliphatic side chain serves as modulator of
the biological activity. Therefore, we directed our efforts to the
synthesis of (R)-3 and (S)-3, which is shown in Scheme 1. The enan-
tiomerically pure 1-octyn-3-ols (2) were reacted, through oxygen
in a hetero-Michael addition reaction, with methyl propiolate to
afford the corresponding vinyl ethers. The resulting vinyl ethers
were subsequently activated on the terminal alkyne with n-BuLi
in order to add to methyl chloroformate, affording (R)-3 and (S)-
3 in 50–60% overall yield.6
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Scheme 1. Reagents and conditions: (a) (i) methyl propiolate, Et3N, CH2Cl2, rt; (ii)
n-BuLi, THF, �78 �C; (iii) methyl chloroformate.

Table 1
Antiproliferative activity (GI50) against human solid tumor cells of compounds
produced via Scheme 1a

Cell line (type) (R)-3 (S)-3 (RS)-3 (RS)-1

HBL-100 (breast) 3.3 (±0.5) 2.3 (±0.1) 2.7 (±0.8) 0.47 (±0.25)
HeLa (cervix) 2.6 (±0.1) 2.9 (±0.3) 17 (±1.2) 3.4 (±0.7)
SW1573 (lung) 5.5 (±0.5) 8.4 (±2.2) 1.3 (±0.1) 0.42 (±0.16)
WiDr (colon) 26 (±1.9) 24 (±0.4) 13 (±3.5) 3.6 (±0.6)

a Values are given in lM and are means of two to five experiments; standard
deviation is given in parentheses.

Table 2
Docking results of propargyl enol ethers against TOP2
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Entry R Docking interaction energy (kcal mol�1)

S Enantiomer R Enantiomer

1 Me �6.3 �6.2
2 Et �6.2 �6.2
3 nPr �5.9 �6.3
4 cPr �6.3 �6.5
5 iPr �6.4 �6.5
6 nBu �6.7 �6.6
7 iBu �6.3 �6.6
8 sBu �6.7 �6.6
9 tBu �6.6 �6.8

10 nPent �6.4 �6.3
11 nHex �6.3 �6.4
12 cHex �7.1 �7.2
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Figure 1. Chemical structure of TOP2 CI inhibitor (RS)-1.
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Once in hand, both enantiomers were evaluated for their anti-
proliferative activity. Compounds (R)-3 and (S)-3 were tested
against the panel of representative human solid tumor cells HBL-
100, HeLa, SW1573, and WiDr using the well-established NCI pro-
tocol.7 The results expressed as GI50 were obtained after 48 h of
exposure to the compounds and are shown in Table 1. The biolog-
ical testing demonstrated that both enantiomers had similar activ-
ities and the results were comparable with those previously
obtained for the racemate (RS)-3.2 At this point, we encountered
that the biological activity was not affected by the stereochemistry
of the chiral center.

In order to gain a better understanding on how propargylic enol
ethers might bind to the catalytic site of TOP2, we carried out dock-
ing experiments8 of a series of derivatives into the binding pocket
of the a subunit of the previously reported crystal structure of the
human TOP2 with bound ADP (PDB ID: 1ZXN).9 In addition to (R)-1
and (S)-1, we analyzed the binding to TOP2 of both enantiomers of
a series of eleven propargylic enol ethers that differ in the aliphatic
side chain, including (R)-3 and (S)-3. The results are shown in
Table 2.

In all cases under study, the calculated docking interaction
energy is comparable for both enantiomers and they have very
similar docked conformations as shown in Figure 2 for (R)-1 and
(S)-1. Analysis of docked results shows that both enantiomers have
almost identical poses inside the protein and establish H-bonds
with TOP2 residues Arg-162, Gly-164, Tyr-165, Gly-166 and Phe-
373. Additionally, hydrophobic non-bonded interactions are
formed with TOP2 residues Asp-86, Glu-87, Val-90, Gly-160, Gly-
161, Asn-163, Ile-317, Pro-371, Thr-372 and Lys-378. These dock-
ing results further reinforce the previous observation that the bio-
logical action is not affected by the stereochemistry of the chiral
center. Furthermore, a competitive inhibition mechanism can be
proposed for these compounds as they could effectively displace
ADP from TOP2 active site (Fig. 2). When considering the alkyl side
chain, the docking results show that the best interaction is ob-
tained for the cyclohexyl derivative (entry 12). This is an interest-
ing result, since the SAR study indicated that branched analogs
were less favored when compared to linear ones.2 When compar-
ing GI50 values of the racemates, the cyclohexyl derivative was
10 times less active than lead 1. We cannot discard that other fac-
tors might influence the biological activity of this family of propar-
gylic enol ethers and explain the results obtained.

In conclusion, the concise enantioselective synthesis of both
enantiomers of compound 3 starting from the appropriate 1-oc-
tyn-3-ol was accomplished by standard procedures. Both enantio-
mers, previously postulated to be human TOP2 catalytic inhibitors,
showed almost identical antiproliferative effects against four di-
verse human solid tumor cell lines. Docking studies of the enanti-
omers from a set of compounds from this series, against TOP2,
reinforce the conclusion that their antiproliferative activity is not
chiral-dependent and suggest that they act as TOP2 CIs. Further
modification toward quantitative structure–activity relationship
studies, which will be followed by structure-based calculations,
is currently underway to better understand structural features
needed for increasing their antiproliferative activities.
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Figure 2. Binding modes of compounds (R)-1 (green) and (S)-1 (yellow) into the catalytic site of TOP2 represented as a ribbon model (PDB ID: 1ZXN).6 Only amino acids that
establish H-bonds (dashed lines) with inhibitors are labeled. An overlay of (R)-1 (docked pose) and (S)-1 (docked pose) with ADP (cyan, X-ray crystal pose) is shown in the
catalytic site of TOP2 represented as cartoon.
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Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.bmcl.2013.07.
055.
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